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1. Introduction

Let Q be a polygonal (resp., polyhedral) domain in R? for d = 2 (resp.,
3), ya € L2(Q), f € La(Q2) and v < 1 be a positive constant. The optimal
control problem is to find

_ 1
(5,0) = argmin 5 Iy =l + 20l 0 (1.1)
y,u S

where (y,u) belongs to K C H(Q) x Lo(?) if and only if

aly,z) = /Q(f +u)zdz Vz e H Q) (1.2)

and
u€Uyg={veE L) : p1 <v< o in QF. (1.3)
Here the symmetric bilinear form a(-,-) on H'(Q) satisfies
alylin <alyy) <Blyling Yy e H (), (1.4)
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where a < [ are positive constants, and we assume that

¢1,¢02 € H'(Q) (1.5)

satisfy
¢1 < ¢2 in € (1.6)

Remark 1.1. Throughout this paper the inequalities and equalities between
functions are to be interpreted in the sense of almost everywhere in €.

Remark 1.2. We follow the standard notation for function spaces, norms
and differential operators that can be found for example in [1, 7].

Remark 1.3. The condition (1.4) is satisfied by many partial differential
equation constraints with rough coefficients.

The optimal control problem defined by (1.1)—(1.4) is a model linear-
quadratic problem (cf. [23, 33]) and the error analysis of a finite element
method for this problem was first given in [14] under additional assump-
tions on the bilinear form a(-, -). A substantial literature has been developed
over the years (cf. the monographs [31, 24, 18] and the references therein).
Nevertheless, the existing error analysis cannot be directly applied to multi-
scale finite element methods under the rough coefficient assumption in (1.4).

Our goal is to develop new abstract error estimates under the assump-
tion (1.4) that are suitable for the error analysis of classical finite element
methods and also for multiscale finite element methods. Our results (cf.
Theorem 4.1 and Theorem 4.3) reduce the error analysis of finite element
methods for the optimal control problem to the error analysis of finite ele-
ment methods for elliptic boundary value problems. Therefore they can be
applied to any finite element methods that have already been analyzed for
elliptic boundary value problems. In particular they can be applied to many
multiscale finite element methods.

The rest of the paper is organized as follows. We recall the relevant
properties of the optimal control problem in Section 2 and introduce the
approximation problem in Section 3. We derive the abstract error estimates
in Section 4, present several applications in Section 5 and end with some
concluding remarks in Section 6.

2. The Continuous Problem

According to the classical theory in [13, 21], the convex minimization prob-
lem defined by (1.1)—(1.4) and (1.6) has a unique solution (y,u) € K char-
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acterized by the first order optimality condition

/<y—yd><y - y)da?Jr’Y/ u—w)dr>0 V(u)eK  (21)
Q Q

Let the adjoint state p € H(Q2) be defined by
ola.d) = [ G-wade Vo€ HY(®). (22

In view of (1.2) and (2.2), we have, for any (y,u) € K,

/Q(y—yd)(y—y)d:ﬂ+’y/ﬂu(u—u)dx:a(y—y,p)+’y/u(u—u)d:c

Q

= /Qp(u — @)dx + 7/ u(u — u)dz, (2.3)

Q

and hence
/(ﬁ—i-’yﬁ)(u—ﬂ)dxzo Vu € Uy,
Q

which means that « is the Ly projection of the function —(p/) on the closed
convex subset Uyq of Ly(2). Consequently we have

u = max(¢1, min(¢2, —(p/7))) (2.4)

and (g, u) is determined by (1.2), (2.2) and (2.4).
2.1. Bounds for [|§ — ydl|z. () and ||z z, o)
It follows from (1.1), (1.3), (1.6) and v < 1 that
15 = vall, ) +7@l7, @) < lv1 —valZ,@ + 19117, (2:5)
where y; € HE(Q) is defined by
a(yl,z):/sz(f—i—(bl)zdm Vz e Hy (). (2.6)

From (1.4) and (2.6) we have

aly|F gy < alyi, ) = /Q(f+¢1)y1 dz < ||f + ¢1ll L. 1yl ()



4 Susanne C. Brenner and Li-yeng Sung

which together with the Poincaré-Friedrichs inequality
0]l 2,0) < Crrlvlm) Vv € Hy(Q) (2.7)

implies
1911l a(2) < (Crr/A)f + d1llLo(0)- (2.8)
Combining (2.5), (2.8) and the Cauchy-Schwarz inequality, we find

17 = vallZ, ) + 71807, < 20vallZ, @) + 4(Cp/e)fII7, @
+[4(CEp/a®) + 116117,

Similarly we have

ly — ?/d||%2(Q) +’YH@||%2(Q) < 2”de%2(9) +4(C%F/O‘2)”f”%2(9)
+ [4(CEp/a®) + 11627, 0

and hence

19 = YallL.(2) < Cy, (2.9)
allz,) < v 1Cy, (2.10)

where
Cy = (2lyall3, @) + 4Chr /a1 13,0
+ 4(CRr/0) + 1 min(012, oy 621 0) - (211
2.2. Bounds for || (o) and |p|gr(q)

It follows from (1.4) and (2.2) that

04|I5|§{1(Q) <a(p,p) = /Q(Z? —ya)pdzr < |7 — vall L) 1P/l . (0)
which together with (2.7) and (2.9) implies

Pl 1) < (Cpr/a)Cy. (2.12)

Since the space H'((2) is invariant under the max and min operators (cf.
[15, Lemma 7.6]), we conclude from (1.5) and (2.4) that u € H*(Q2) and

|l () < max (|61]1(0), [02]m (), 7 1Bl (0))- (2.13)
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2.3. The Lagrange Multiplier A\

The function
AN=p+~yuc H(Q), (2.14)

which can be interpreted as a Lagrange multiplier for the inequality con-
straints in (1.3), plays a key role in the error analysis in Section 4.
We can write

A= A1+ Ao, (2.15)
where
A1 =max(\,0) >0 and Ay =min(\,0) <0, (2.16)
and, in view of (2.13), (2.14) (and v < 1),
[AMla @) A2l i) < M E o)

< |pla () + max (|¢1] g () 92| ) Pla () (2:17)

From (1.6) and (2.4) we have

b2 if —(p/7) > ¢2
u=q—(p/7) if o1 < —(p/7) < 92,
o1 if —(p/v) <¢1

which implies through (2.14) and (2.16) the following complementarity con-
ditions:

/ )\1(17, — (Z)l)da: =0= / )\2(17, — d)g)dx (2.18)
Q Q

Remark 2.1. In view of (2.10), (2.11)-(2.13), and (2.17), ||a( 1, (), |%| a1 (),
[M|a1(0) and |[A2| g1 (q) are bounded by constants that only depend on the

numbers ||yallz,()s [fllz.()s 01l @), 1620l (0, o™ and v~

3. The Approximation Problem

Let Vi (resp. W;) be a closed subspace of H}(€2) (resp., L2(Q2)). The ap-
proximation problem for (1.1) is to find

_ _ . 1
o o) = argmin o [llye = valld o) +luil@]s G
(y*vuT)EK*vT
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where (yx,ut) belongs to K, ; C Vi x Wi if and only if

a(Yu, 24) = /Q(f + ut)zeda Vze € Vi (3.2)

and
Qid1 < up < Qid2 in Q. (3.3)

Here Q : Lo(2) — W is the Lo projection operator and we assume that
Qv >0 if v>0. (3.4)
Again by the classical theory the minimization problem defined by (3.1)—

(3.3) has a unique solution (%, i, ;) € K, ; characterized by the first order
optimality condition

/Q(y*,T — Ya)(Yx — Yut)dw + V/OU*,T(UT — U j)dz =2 0 (3.5)

for all (y«,ut) € K .
Let p,+ € Vi be defined by

0(ge, Por) = /Q (ot —yasde Ve € V. (3.6)

We will provide estimates for ||y — ’g*’THLz(Q), llu — ﬂ*’T||L2(Q), Ilp —
ﬁ*,THLQ(Q)a |U — U t|la and [p — Py t|o in Section 4, where

[v|e = Va(v,v) Vo€ H(Q).

The simple result below is useful for the analysis of the approximation
problem.

Lemma 3.1. Let g € Lo(Q) and v, € Vi satisfy

a(vi, wy) = / gqwsdx YVw, € V. (3.7)
Q
We have

el ) < (Cor/a)llgl o) (3-8)
[v4la < (Cpr/Va)llgllL@)-
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Proof. The estimate (3.8) follows from (1.4), (2.7) and (3.7):

||U*”%2(Q) < C%F’”ﬁ{l(m < (Cip/a) alv., v.)

= (C%F/Oé)/ggv*dﬂf < (Cor/ gl L) vl 2.

Similarly we have

|U*‘Z = a(vs, v4) = / gusdx
Q

<9l oo llv<l o0
< gl 2. Crrlvsl i1 () < 119l L, 0) (Crr/Va)|via

by (1.4), (2.7) and (3.7), which implies (3.9). O
4. Error Estimates

We will derive error estimates in terms of the Ly projection Q+ : Lo(Q) —
W; and the Ritz projection R, : H&(Q) — Vi defined by

a(R.C,vs) = a(C,vy) Vo, € Vs (4.1)

4.1. Estimate for the L, Errors

Theorem 4.1. There exists a positive constant C), depending only on o™

and v~1 such that

19 — st
<G (17 = Rl o) + 1P — Rubll o) + 12— Qitl| 1,
+ 1A = Qi A1l L) + A2 — @Al L, )
+ 61 — Qto1llL,) + 02 — Qid2llL, @) (4.2)

Proof. First we note that (2.2), (3.2) and (4.1) imply

La(@) T 18 = Ut Ly ) + 1P = Pt ll o)

/Q(y‘ — Ya)(Yx — Yxt)dx = a(ysx — Yut, D)
= a(y« — Yut, RaD) = /Q (uf — Gy)Rupda  (4.3)

for all (y.,u;) € Ky ;.
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Let (s, ut) € Vi x Wi be defined by
i = Qi (4.4
and
a(Ys, 24) = /(f + Uy) zodx V2, € Vs (4.5)
Q

Then 4 satisfies the constraint (3.3) by (1.3) and (3.4), and hence (¥, tt)
belongs to K, ;.
We have

2
L>(92)

:/(?J—y*,f)(?/—?]*)dﬂv-l—’y/(u—u*,T)(u—ﬂT)da:
Q Q

+ /Q(zi — Uu1) (s — Yug)dz + v /Q(ﬂ = Ui p) (Ut — Usg)dz.  (4.6)

1 — Q*,T’\%Q(Q) + M4 — Gy

Using (2.14), (3.5) and (4.3), we find

/Q (T — 1)@ — Tog)dz + /Q (5= ) (@ — )
= / 27@* — gj*j)dm + ")// ﬂ(fLT — ﬂ*,T)daz
Q Q
— / Q*,T(g]* — g*j)da: — ’y/ fL*’T(fLT — ﬂ*’]t)dl‘
Q Q
< /Q(y — Ya) (s — Gup)dx + /Q (g — U i) dx
— [ (Rap+70) (@ — 0.)da
- /Q its — @i+ )da + / (Rop — )iy — weg)de,  (47)

Q

and
[ (R = )iy~ o
<P = Rupll 1,0 (1Q10 — ull Ly0) + Nt — Gatll L)) (4.8)

by (4.4), the Cauchy-Schwarz inequality and the triangle inequality.
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We can estimate the first term on the right-hand side of (4.7) by (2.15),
(2.18), (3.3) and (4.4) as follows.

/Q)\(ﬂT — ﬂ*gf)da; = /Q/\l ('111- — 6*7T)dw + /Q )\Q(fLT — ﬂ*j)da?
= / M (Qtu — u)dz + / Ao(Qiu — u)dw
Q 0
=+ /Q )\1(@ — gbl)dSU + /Q )\Q(ﬂ — d)Q)dﬂj
+ /Q (61— Qrén)da + /Q Mol — Qi62)da
T /Q M (Qin — e g)da + /Q Mo(Q1 — e g)da
< /Q)\l(QTﬁ —u)dx + /Q )\Q(QTE — u)dx
+ /Q A(¢r — Qior)dx + /Q A2(p2 — Qi¢2)dx
— [ = @@ - a)de + [ (2 - Q)@ - w)ds
Q 0
+ / (A1 — QiA1)(¢1 — Qi1 )dx + / (A2 — Q1 X2)(d2 — Q1 p2)dx,
Q Q
which implies

/ )\(ﬂT — ﬂ*’T)dSC
Q

< (1Qta — all ) + 161 — Qtd1llLo0) + o2 — Qrd2ll L))
X (A1 = QtAtll L, + 12 — @i Xall 1, @))- (4.9)

Putting (4.4) and (4.6)—(4.9) together, we arrive at the estimate

15 = Gut 17,0 + VM@ = Till] 0
<G = s il @ 17 = Tl o) + YN0 = Uil 2y ) |18 — Q| 1,0
+ [P — Rubll o) (1Q+2 — ull 1, 0) + [t — Tt | £, (02))
+ ([1Q — | 1, 0) + 161 — Qid1ll L, ) + ld2 — Qid2ll L, 0))
X (A = QiAtllL, ) + A2 — Qixell L, @),

which together with the inequality of arithmetic and geometric means im-
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plies

17 = Gt o) + YT = Bt 17,0
<C(lg - ﬂ*”i(g) +la— QTQH%Q(Q) +y7 P - R*ﬁH%Q(Q)
+ A1 — QMlH%z(Q) + [|A2 = QVQH%Z(Q)
+lé1 — Q101ll7, ) + 162 — Qi2117,0) (4.10)

where C' is a universal positive constant.

Note that (1.2), (4.1), (4.4) and (4.5) imply

CL(R*Q - g*v Z*) = a(g - Q*’ Z*)
= / (@ — Gy)zedar = /(ﬂ — Q1) zydx Yz € Vi
Q Q

and hence
IR — Jull Lo () < (Chp/a)||a — @yl 0y

by Lemma 3.1. Therefore we have

19 = Tl o) < 17 — Radlll o) + (Cop/a)|lt — Qi 1,0)- (4.11)

Similarly (2.2), (3.6) and (4.1) imply

a(Q*aR*ﬁ_p*,T) = a(‘]*aﬁ _]3*,]‘) = /Q(g - g*,T)Q*dﬂc Vg« € Vi, (4'12)

and hence
BB = Petll Lae) < (Cop/)1F = Gt Lo (4.13)
by Lemma 3.1. Consequently we have
1P = PetllLa) < 15— RebllLao) + (CRp/NT = Getlliae)  (4.14)

by (4.13) and the triangle inequality.
The estimate (4.2) follows from (4.10), (4.11) and (4.14). O

The following result shows that (4.2) is sharp up to the terms involving

Q.
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Theorem 4.2. There exists a positive constant Cyy depending only on a”!

such that

19 — Rell o) + 1P — Babll Lo(0)
< Ch(”:'j — Ys

L@ + 8 = Gl + 1P — Peillio)  (4.15)

Proof. We have

19 — Ratll 1o00) < 1T — UstllLa@) + 10t — BebllLa() (4.16)

and, in view of (1.2), (3.2) and (4.1),

(R = Tos 22) = (= Tty 22) = /(u Cp)mde Yz € Vi, (417)
Q
which implies through Lemma 3.1

1544 = Rell o) < (Cop/a)lli = tut L(e)- (4.18)

Similarly we have

19 — Rubll o) S 1IP — Petllo@ + (Cop/a) 1T — Fatll Lo (4.19)
by (4.13) and the triangle inequality.
The estimate (4.15) follows from (4.16), (4.18) and (4.19). O

4.2. Estimate for the Energy Errors

Theorem 4.3. There exists a positive constant Cyx depending only on o'

and v~1 such that
|y — g*fr’a +p— 13*71“’&
< C%(\Z] - R*g’a + ’ﬁ - R*p|a + Hﬂ - QTaHLz(Q)
+ A = Qi Ml Ly ) + A2 — Qi A2l 2,0
+ o1 = QonllLy) + 162 — QidallLy@)).  (4:20)

Proof. We begin with a triangle inequality

|g - g*,’r’a + ’]5 - ﬁ*,”a
< |y — RuGla + | R« — Jutla + [P — Rubla + |Rep — Prila- (4.21)
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From (4.17) we obtain

|Rell = Uutla < (Cor/ V)|t — il Ly (4.22)

by Lemma 3.1.
Similarly we have

[Rup = Putla < (Crr/Va)llT = JutllL.() (4.23)

by (4.12) and Lemma 3.1.
Finally the Poincaré-Friedrichs inequality (2.7) and (1.4) imply

HQ_R*QHLQ(Q)+||ﬁ_R*ﬁHL2(Q) < (CPF/\/a)(@—R*ﬂa""ﬁ—R*ﬂa), (424)

and the estimate (4.20) follows from Theorem 4.1 and (4.21)—(4.24). O
5. Applications

We can apply the error estimates in Section 4 to standard finite element
methods and multiscale finite element methods.

5.1. Standard Finite Element Methods

We assume that the bilinear form a(-,-) is given by
a(y,z) = / [A(2)Vy - Vz + c(2)yz|da, (5.1)
Q

where the nonnegative function ¢(z) and the d x d symmetric matrix function
A(z) are sufficiently smooth, and there exists a positive constant p such that

A@E > pleff VeeQ, (eRY

We can take Vi, =V}, C H}(2) to be the P, Lagrange finite element space
(cf. [10, 7]) associated with a regular triangulation 73 of Q, and Wi = W,
to be the space of piecewise constant functions associated with a regular
triangulation 7, of 2. The optimal state (resp., optimal control and adjoint
state) is denoted by ¥ , (resp., Uy, and Dy p).

For simplicity, we assume 2 is convex. It is known that 7 and p belong
to H%(Q) (cf. [16, 11, 30]) and we have the following estimates (cf. [10, 7))
for the Ritz projection operator Ry, : H} () — Vj:

¢ — Rila < Cihl¢lp2) V¢ € H*(Q) N H(Q), (5.2)
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1€ = RiCllzy) < C1h*[Claey V¢ € HA(Q) N H(Q), (5.3)

where the positive constant C; depends only on the coefficients in (5.1) and
the shape regularity of 7j.

The Lo projection @, : L2(Q2) — W, satisfies (3.4) and we have a
standard error estimate (cf. [10, 7]):

1€ = QplllL,) < Cohl¢lmmy V(€ HY(Q), (5.4)

where the positive constant C'5 depends only on the shape regularity of 7,,.
It follows from Remark 2.1, Theorem 4.1, Theorem 4.3, and (5.2)—(5.4)
that

o) + 1D = Drplli.) < C(W* +p),  (5.5)
17 = Thpla + P = Drpla < C(h+p), (5.6

17 = TnpllLa0) + 12— @n,p

where the positive constant C' is independent of h and p, and we have re-
covered the error estimates in [14] for a convex €.

We can also take W; to be Ly(£2), which is the variational discretization
concept in [17]. In this case @+ is the identity map on Lo(€2) so that (3.4)
is satisfied trivially and we denote the optimal state (resp., optimal control
and adjoint state) by gy (resp., up and pp). The estimates (5.5) and (5.6)
become

17 = Gl o) + 18— nll L, ) + 17 — Prll o) < CR?, (5.7)
17— Tnla + P — Prla < Ch, (5.8)

where C'is independent of h, and we have recovered the result in [17].

Remark 5.1. The estimates (5.5)—(5.8) also hold for a general Q provided
the triangulations 7, and 7, are properly graded around the singular parts
of 09 (cf. [22]).

5.2. Multiscale Finite Element Methods

Under assumption (1.4), the optimal state y and adjoint state p belong to
H}(Q) and we cannot claim any additional regularity.

If we take Vi, = V}, C H$(Q) to be the P, finite element space associ-
ated with Q and W; = W, to be the space of piecewise constant functions
associated with 7,, then Theorem 4.1 implies

hli;ilo (17 = UnpllLo) + 18 = tnpll ) + 18 = Propll o)
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< lﬁﬁ)l (17 — Badlll o) + 1P — Rubll L, (0))
+ 1;%1 (M = QoM Loy + M1 = QpillLy @) + 11 — Qpétrll ()

+ 162 = Qo2 + Il — QpillLy (@)
=0.

Therefore this standard finite element method converges, but the conver-
gence in h can be arbitrarily slow (cf. [4]), and an accurate approximation
of (g, u,p) will require a very small mesh size h.

We can remedy this slow convergence by taking Vi to be a multiscale
finite element space. For example we can take V, to be the rough polyhar-
monic space V* in [32, 25] associated with a triangulation Tz and Wy = W,
remains the space of piecewise constant functions associated with a trian-
gulation 7,. The optimal state (resp., optimal control and adjoint state) is
denoted by g;ﬁi (resp., a’;ﬁz and 13;?;).

Let ¢ € H}(Q) satisfy

a(C,vy) = / gugdx Yv, € Véps, (5.9)
Q
where g € Ly(€2). Then we have, by (1.4), (2.7) and the estimates in [32, 25],

1€ = Ry Cllza0) < (Crr/Va)l€ = R*Cla < C3Hl|gllL,)  (5.10)

where R}7” H(% (2) — V;? is the Ritz projection operator and the positive
constant C3 depends only on the shape regularity of 7z and a~!.
It follows from Remark 2.1, Theorem 4.1, Theorem 4.3 and (5.10) that
19— G52 ey + i — T2 ey + 15 — B2 o)
1T = T pla + 10— Pola < Co(H +p), (5.11)

where the positive constant C, depends only on the numbers |yql|.,(q),
11 Lo)s 101l ) [102]l ), @, 7!, and the shape regularities of T
and 7,, and we have recovered the results in [8].

We can also take V, to be the constraint energy minimizing generalized
multiscale finite element space V™ in [9] associated with a triangulation
Tu. In this case the function ¢ € H}(2) defined by (5.9) satisfies

1€ = RE"Clae) < (Cer/Va)lC = RE™Cla < Calllg] 1.0,



New Estimates for An Elliptic Optimal Control Problem 15

where the positive constant C4 depends only on o', the shape regularity
of Ty and A~1. (A is a spectral parameter used in the construction of the
multiscale finite element space Vj;"".) Therefore (5.11) also holds for the
approximate solution (g%%s,a%’ff,ﬁﬂf‘; ) obtained by this multiscale finite
element method where C,, depends also on A~1. This is the result in [2] in
the case where 7, = 7.

Finally we can take V, to be the local orthogonal decomposition multi-
scale finite element spaces V¢ in [28, 29, 5] associated with a triangulation
Ty that incorporates information from a standard finite element space Vj,
associated with a refinement 7, of Tr. We denote the optimal state (resp.,
optimal control and adjoint state) by yﬁdp (resp., ﬁﬁé}flp and ﬁlﬁflp), and the
Ritz projection operator from H}(Q) to V}j’d is denoted by R%d.

Let v, € V3, and v, € V}j’d satisfy

a(vp, wp) = / gwpdx Ywy, € Vp,
Q

a(vy,wy) = / g dx Yw, € Vl?d.
Q

Then we have, by the results in [28] and [5],
on = vule < CsH|glly) and lvn = vallL,@) < CsH?|gll o), (5-12)
where the positive constant Cs depends only on o~ and the shape regularity

of TH
According to Remark 2.1, Theorem 4.1 and (5.4), we have

— —lod — —lod — —lod
19 = il L) + 12— w5, ) + 12 — Pl Lo
< Cs(17 = Rl () + 1P — REPll ) + p) (5.13)
where the positive constant Cg only depends on the numbers ||yqllz,(q),
1., 61llm ), l92llm @), @™, 7!, and the shape regularity of 7.

Let (Uh,p, Un,p, Dn,p) be the solution of (3.1) based on the space Vi =V},
and the space Wy = W,,. Then we have

a(Rpy, zn) = / (f+a)zpdr Vz €V,
Q

a(RE", 2n) = / (f + @)zuds Yz, € Vied,
Q
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by (1.2) and (4.1), which together with (5.12) imply
|Rhg — Rl 1,0y < CsH?| f + |1, (0)- (5.14)
Similarly we have

IRhp — REPll o) < CsH?|1Y — yall (o) (5.15)

by (2.2), (4.1) and (5.12).
Putting Theorem 4.2 and (5.13)—(5.15) together we arrive at

17 — 755 Loy + 18— @55l a0 + 1P — Sl a0
< Cs (17 — Bugll Lo + |1 Bry — Rl L)
+ 15 = Rudll y@) + |1 BrT — Rl 1,0 + P)
< Cs([l7 — Rnll o) + 1P — Rubll L0
+ CsH?| f + ll 1, () + CsH? 1Y — yall L, (0) + P)
< C6Cs(17 = Tnpll o) + 16— tnpll L, + 110 — PhopllLo@)
+ CsCsH* (|| f + tll Ly + 15 — vall Lo )) + Cop. (5.16)

Similarly, we have by Theorem 4.3

15— 7% a + 1B — 015 a < C7(17 = Ghpla + 1B — Drpla + H +p),  (5.17)

where the positive constant C7 only depends on the numbers ||yqllz,(q),
1 fllzoe)s o1l @), 102l @)y @™ 77", and the shape regularities of Ty
and 7.

Comparing (5.5)—(5.6) and (5.16)(5.17), we conclude that up to the
error of a fine scale approximation, the performance of the local orthogonal
decomposition multiscale finite element method for a problem with rough
coefficients on a general 2 is identical to the performance of standard finite
element methods for a problem with smooth coefficients on a convex domain.
Moreover all the constants in the estimates are independent of the mesh sizes
and the contrast 3/c.

Numerical results for the local orthogonal decomposition method for
(1.1) can be found in [6].

6. Conclusions

We have developed new abstract error estimates for a model linear-quadratic
elliptic distributed optimal control problem that reduce the error analysis
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to the properties of the Ritz projection operator for the finite element space
for the state and the Lo projection operator for the finite element space for
the control. They can be applied to standard finite element methods for a
classical partial differential equation constraint and multiscale finite element
methods when the coefficients in the partial differential equation constraint
are rough. Besides the multiscale finite element methods mentioned in Sec-
tion 5, they can also be applied to many others, such as the ones investigated
in [19, 20, 3, 12, 26, 27].

For simplicity we have assumed that a(-,-) is symmetric. But the esti-
mates in Section 4 can be extended to a nonsymmetric a(-,-) by replacing
the term R.p with the term S,.p, where S, : Hé(Q) — V. is defined by

a(‘]*a S*C) = a(‘]*aC) Vg € Vs

Finally we note that error estimates for boundary control problems with
rough coeflicients are still absent.
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