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1. Introduction

Let Ω be a polygonal (resp., polyhedral) domain in Rd for d = 2 (resp.,
3), yd ∈ L2(Ω), f ∈ L2(Ω) and γ ≤ 1 be a positive constant. The optimal
control problem is to find

(ȳ, ū) = argmin
(y,u)∈K

1

2

[
‖y − yd‖2L2(Ω) + γ‖u‖2L2(Ω)

]
, (1.1)

where (y, u) belongs to K ⊂ H1
0 (Ω)× L2(Ω) if and only if

a(y, z) =

∫
Ω

(f + u)z dx ∀ z ∈ H1
0 (Ω) (1.2)

and

u ∈ Uad = {v ∈ L2(Ω) : φ1 ≤ v ≤ φ2 in Ω}. (1.3)

Here the symmetric bilinear form a(·, ·) on H1(Ω) satisfies

α|y|2H1(Ω) ≤ a(y, y) ≤ β|y|2H1(Ω) ∀ y ∈ H1(Ω), (1.4)
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where α ≤ β are positive constants, and we assume that

φ1, φ2 ∈ H1(Ω) (1.5)

satisfy

φ1 ≤ φ2 in Ω. (1.6)

Remark 1.1. Throughout this paper the inequalities and equalities between
functions are to be interpreted in the sense of almost everywhere in Ω.

Remark 1.2. We follow the standard notation for function spaces, norms
and differential operators that can be found for example in [1, 7].

Remark 1.3. The condition (1.4) is satisfied by many partial differential
equation constraints with rough coefficients.

The optimal control problem defined by (1.1)–(1.4) is a model linear-
quadratic problem (cf. [23, 33]) and the error analysis of a finite element
method for this problem was first given in [14] under additional assump-
tions on the bilinear form a(·, ·). A substantial literature has been developed
over the years (cf. the monographs [31, 24, 18] and the references therein).
Nevertheless, the existing error analysis cannot be directly applied to multi-
scale finite element methods under the rough coefficient assumption in (1.4).

Our goal is to develop new abstract error estimates under the assump-
tion (1.4) that are suitable for the error analysis of classical finite element
methods and also for multiscale finite element methods. Our results (cf.
Theorem 4.1 and Theorem 4.3) reduce the error analysis of finite element
methods for the optimal control problem to the error analysis of finite ele-
ment methods for elliptic boundary value problems. Therefore they can be
applied to any finite element methods that have already been analyzed for
elliptic boundary value problems. In particular they can be applied to many
multiscale finite element methods.

The rest of the paper is organized as follows. We recall the relevant
properties of the optimal control problem in Section 2 and introduce the
approximation problem in Section 3. We derive the abstract error estimates
in Section 4, present several applications in Section 5 and end with some
concluding remarks in Section 6.

2. The Continuous Problem

According to the classical theory in [13, 21], the convex minimization prob-
lem defined by (1.1)–(1.4) and (1.6) has a unique solution (ȳ, ū) ∈ K char-
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acterized by the first order optimality condition∫
Ω

(ȳ − yd)(y − ȳ)dx+ γ

∫
Ω
ū(u− ū)dx ≥ 0 ∀ (y, u) ∈ K. (2.1)

Let the adjoint state p̄ ∈ H1
0 (Ω) be defined by

a(q, p̄) =

∫
Ω

(ȳ − yd)q dx ∀ q ∈ H1
0 (Ω). (2.2)

In view of (1.2) and (2.2), we have, for any (y, u) ∈ K,∫
Ω

(ȳ − yd)(y − ȳ)dx+ γ

∫
Ω
ū(u− ū)dx = a(ȳ − y, p̄) + γ

∫
Ω
ū(u− ū)dx

=

∫
Ω
p̄(u− ū)dx+ γ

∫
Ω
ū(u− ū)dx, (2.3)

and hence ∫
Ω

(p̄+ γū)(u− ū)dx ≥ 0 ∀u ∈ Uad,

which means that ū is the L2 projection of the function −(p̄/γ) on the closed
convex subset Uad of L2(Ω). Consequently we have

ū = max(φ1,min(φ2,−(p̄/γ))) (2.4)

and (ȳ, ū) is determined by (1.2), (2.2) and (2.4).

2.1. Bounds for ‖ȳ − yd‖L2(Ω) and ‖ū‖L2(Ω)

It follows from (1.1), (1.3), (1.6) and γ ≤ 1 that

‖ȳ − yd‖2L2(Ω) + γ‖ū‖2L2(Ω) ≤ ‖y1 − yd‖2L2(Ω) + ‖φ1‖2L2(Ω), (2.5)

where y1 ∈ H1
0 (Ω) is defined by

a(y1, z) =

∫
Ω

(f + φ1)z dx ∀ z ∈ H1
0 (Ω). (2.6)

From (1.4) and (2.6) we have

α|y1|2H1(Ω) ≤ a(y1, y1) =

∫
Ω

(f + φ1)y1 dx ≤ ‖f + φ1‖L2(Ω)‖y1‖L2(Ω),
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which together with the Poincaré-Friedrichs inequality

‖v‖L2(Ω) ≤ CPF|v|H1(Ω) ∀ v ∈ H1
0 (Ω) (2.7)

implies

‖y1‖L2(Ω) ≤ (CPF/α)‖f + φ1‖L2(Ω). (2.8)

Combining (2.5), (2.8) and the Cauchy-Schwarz inequality, we find

‖ȳ − yd‖2L2(Ω) + γ‖ū‖2L2(Ω) ≤ 2‖yd‖2L2(Ω) + 4(C2
PF/α

2)‖f‖2L2(Ω)

+ [4(C2
PF/α

2) + 1]‖φ1‖2L2(Ω).

Similarly we have

‖ȳ − yd‖2L2(Ω) + γ‖ū‖2L2(Ω) ≤ 2‖yd‖2L2(Ω) + 4(C2
PF/α

2)‖f‖2L2(Ω)

+ [4(C2
PF/α

2) + 1]‖φ2‖2L2(Ω)

and hence

‖ȳ − yd‖L2(Ω) ≤ C], (2.9)

‖ū‖L2(Ω) ≤ γ−1C], (2.10)

where

C] =
(

2‖yd‖2L2(Ω) + 4(C2
PF/α

2)‖f‖2L2(Ω)

+ [4(C2
PF/α

2) + 1] min(‖φ1‖2L2(Ω), ‖φ2‖2L2(Ω))
) 1

2

. (2.11)

2.2. Bounds for |ū|H1(Ω) and |p̄|H1(Ω)

It follows from (1.4) and (2.2) that

α|p̄|2H1(Ω) ≤ a(p̄, p̄) =

∫
Ω

(ȳ − yd)p̄ dx ≤ ‖ȳ − yd‖L2(Ω)‖p̄‖L2(Ω),

which together with (2.7) and (2.9) implies

|p̄|H1(Ω) ≤ (CPF/α)C]. (2.12)

Since the space H1(Ω) is invariant under the max and min operators (cf.
[15, Lemma 7.6]), we conclude from (1.5) and (2.4) that ū ∈ H1(Ω) and

|ū|H1(Ω) ≤ max
(
|φ1|H1(Ω), |φ2|H1(Ω), γ

−1|p̄|H1(Ω)

)
. (2.13)
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2.3. The Lagrange Multiplier λ

The function

λ = p̄+ γū ∈ H1(Ω), (2.14)

which can be interpreted as a Lagrange multiplier for the inequality con-
straints in (1.3), plays a key role in the error analysis in Section 4.

We can write

λ = λ1 + λ2, (2.15)

where

λ1 = max(λ, 0) ≥ 0 and λ2 = min(λ, 0) ≤ 0, (2.16)

and, in view of (2.13), (2.14) (and γ ≤ 1),

|λ1|H1(Ω), |λ2|H1(Ω) ≤ |λ|H1(Ω)

≤ |p̄|H1(Ω) + max
(
|φ1|H1(Ω), |φ2|H1(Ω), |p̄|H1(Ω)

)
. (2.17)

From (1.6) and (2.4) we have

ū =


φ2 if − (p̄/γ) ≥ φ2

−(p̄/γ) if φ1 < −(p̄/γ) < φ2

φ1 if − (p̄/γ) ≤ φ1

,

which implies through (2.14) and (2.16) the following complementarity con-
ditions: ∫

Ω
λ1(ū− φ1)dx = 0 =

∫
Ω
λ2(ū− φ2)dx. (2.18)

Remark 2.1. In view of (2.10), (2.11)–(2.13), and (2.17), ‖ū‖L2(Ω), |ū|H1(Ω),
|λ1|H1(Ω) and |λ2|H1(Ω) are bounded by constants that only depend on the
numbers ‖yd‖L2(Ω), ‖f‖L2(Ω), ‖φ1‖H1(Ω), ‖φ2‖H1(Ω), α

−1 and γ−1.

3. The Approximation Problem

Let V∗ (resp. W†) be a closed subspace of H1
0 (Ω) (resp., L2(Ω)). The ap-

proximation problem for (1.1) is to find

(ȳ∗,†, ū∗,†) = argmin
(y∗,u†)∈K∗,†

1

2

[
‖y∗ − yd‖2L2(Ω) + γ‖u†‖2L2(Ω)

]
, (3.1)
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where (y∗, u†) belongs to K∗,† ⊂ V∗ ×W† if and only if

a(y∗, z∗) =

∫
Ω

(f + u†)z∗dx ∀ z∗ ∈ V∗ (3.2)

and

Q†φ1 ≤ u† ≤ Q†φ2 in Ω. (3.3)

Here Q† : L2(Ω) −→W† is the L2 projection operator and we assume that

Q†v ≥ 0 if v ≥ 0. (3.4)

Again by the classical theory the minimization problem defined by (3.1)–
(3.3) has a unique solution (ȳ∗,†, ū∗,†) ∈ K∗,† characterized by the first order
optimality condition∫

Ω
(ȳ∗,† − yd)(y∗ − ȳ∗,†)dx+ γ

∫
O
ū∗,†(u† − ū∗,†)dx ≥ 0 (3.5)

for all (y∗, u†) ∈ K∗,†.
Let p̄∗,† ∈ V∗ be defined by

a(q∗, p̄∗,†) =

∫
Ω

(ȳ∗,† − yd)q∗dx ∀ q∗ ∈ V∗. (3.6)

We will provide estimates for ‖ȳ − ȳ∗,†‖L2(Ω), ‖ū − ū∗,†‖L2(Ω), ‖p̄ −
p̄∗,†‖L2(Ω), |ȳ − ȳ∗,†|a and |p̄− p̄∗,†|a in Section 4, where

|v|a =
√
a(v, v) ∀ v ∈ H1(Ω).

The simple result below is useful for the analysis of the approximation
problem.

Lemma 3.1. Let g ∈ L2(Ω) and v∗ ∈ V∗ satisfy

a(v∗, w∗) =

∫
Ω
gw∗dx ∀w∗ ∈ V∗. (3.7)

We have

‖v∗‖L2(Ω) ≤ (C2
PF/α)‖g‖L2(Ω), (3.8)

|v∗|a ≤ (CPF/
√
α)‖g‖L2(Ω). (3.9)
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Proof. The estimate (3.8) follows from (1.4), (2.7) and (3.7):

‖v∗‖2L2(Ω) ≤ C2
PF|v|2H1(Ω) ≤ (C2

PF/α) a(v∗, v∗)

= (C2
PF/α)

∫
Ω
gv∗dx ≤ (C2

PF/α)‖g‖L2(Ω)‖v∗‖L2(Ω).

Similarly we have

|v∗|2a = a(v∗, v∗) =

∫
Ω
gv∗dx

≤ ‖g‖L2(Ω)‖v∗‖L2(Ω)

≤ ‖g‖L2(Ω)CPF|v∗|H1(Ω) ≤ ‖g‖L2(Ω)(CPF/
√
α)|v∗|a

by (1.4), (2.7) and (3.7), which implies (3.9).

4. Error Estimates

We will derive error estimates in terms of the L2 projection Q† : L2(Ω) −→
W† and the Ritz projection R∗ : H1

0 (Ω) −→ V∗ defined by

a(R∗ζ, v∗) = a(ζ, v∗) ∀ v∗ ∈ V∗. (4.1)

4.1. Estimate for the L2 Errors

Theorem 4.1. There exists a positive constant C[ depending only on α−1

and γ−1 such that

‖ȳ − ȳ∗,†‖L2(Ω) + ‖ū− ū∗,†‖L2(Ω) + ‖p̄− p̄∗,†‖L2(Ω)

≤ C[
(
‖ȳ −R∗ȳ‖L2(Ω) + ‖p̄−R∗p̄‖L2(Ω) + ‖ū−Q†ū‖L2(Ω)

+ ‖λ1 −Q†λ1‖L2(Ω) + ‖λ2 −Q†λ2‖L2(Ω)

+ ‖φ1 −Q†φ1‖L2(Ω) + ‖φ2 −Q†φ2‖L2(Ω)

)
. (4.2)

Proof. First we note that (2.2), (3.2) and (4.1) imply∫
Ω

(ȳ − yd)(y∗ − ȳ∗,†)dx = a(y∗ − ȳ∗,†, p̄)

= a(y∗ − ȳ∗,†, R∗p̄) =

∫
Ω

(u† − ū∗,†)R∗p̄ dx (4.3)

for all (y∗, u†) ∈ K∗,†.
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Let (ỹ∗, ũ†) ∈ V∗ ×W† be defined by

ũ† = Q†ū (4.4)

and

a(ỹ∗, z∗) =

∫
Ω

(f + ũ†)z∗dx ∀ z∗ ∈ V∗. (4.5)

Then ũ† satisfies the constraint (3.3) by (1.3) and (3.4), and hence (ỹ∗, ũ†)

belongs to K∗,†.

We have

‖ȳ − ȳ∗,†‖2L2(Ω) + γ‖ū− ū∗,†‖2L2(Ω)

=

∫
Ω

(ȳ − ȳ∗,†)(ȳ − ỹ∗)dx+ γ

∫
Ω

(ū− ū∗,†)(ū− ũ†)dx

+

∫
Ω

(ȳ − ȳ∗,†)(ỹ∗ − ȳ∗,†)dx+ γ

∫
Ω

(ū− ū∗,†)(ũ† − ū∗,†)dx. (4.6)

Using (2.14), (3.5) and (4.3), we find∫
Ω

(ȳ − ȳ∗,†)(ỹ∗ − ȳ∗,†)dx+ γ

∫
Ω

(ū− ū∗,†)(ũ† − ū∗,†)dx

=

∫
Ω
ȳ(ỹ∗ − ȳ∗,†)dx+ γ

∫
Ω
ū(ũ† − ū∗,†)dx

−
∫

Ω
ȳ∗,†(ỹ∗ − ȳ∗,†)dx− γ

∫
Ω
ū∗,†(ũ† − ū∗,†)dx

≤
∫

Ω
(ȳ − yd)(ỹ∗ − ȳ∗,†)dx+ γ

∫
Ω
ū(ũ† − ū∗,†)dx

=

∫
Ω

(R∗p̄+ γū)(ũ† − ū∗,†)dx

=

∫
Ω
λ(ũ† − ū∗,†)dx+

∫
Ω

(R∗p̄− p̄)(ũ† − ū∗,†)dx, (4.7)

and∫
Ω

(R∗p̄− p̄)(ũ† − ū∗,†)dx

≤ ‖p̄−R∗p̄‖L2(Ω)

(
‖Q†ū− u‖L2(Ω) + ‖u− ū∗,†‖L2(Ω)

)
(4.8)

by (4.4), the Cauchy-Schwarz inequality and the triangle inequality.
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We can estimate the first term on the right-hand side of (4.7) by (2.15),
(2.18), (3.3) and (4.4) as follows.∫

Ω
λ(ũ† − ū∗,†)dx =

∫
Ω
λ1(ũ† − ū∗,†)dx+

∫
Ω
λ2(ũ† − ū∗,†)dx

=

∫
Ω
λ1(Q†ū− ū)dx+

∫
Ω
λ2(Q†ū− ū)dx

+

∫
Ω
λ1(ū− φ1)dx+

∫
Ω
λ2(ū− φ2)dx

+

∫
Ω
λ1(φ1 −Q†φ1)dx+

∫
Ω
λ2(φ2 −Q†φ2)dx

+

∫
Ω
λ1(Q†φ1 − ū∗,†)dx+

∫
Ω
λ2(Q†φ2 − ū∗,†)dx

≤
∫

Ω
λ1(Q†ū− ū)dx+

∫
Ω
λ2(Q†ū− ū)dx

+

∫
Ω
λ1(φ1 −Q†φ1)dx+

∫
Ω
λ2(φ2 −Q†φ2)dx

=

∫
Ω

(λ1 −Q†λ1)(Q†ū− ū)dx+

∫
Ω

(λ2 −Q†λ2)(Q†ū− ū)dx

+

∫
Ω

(λ1 −Q†λ1)(φ1 −Q†φ1)dx+

∫
Ω

(λ2 −Q†λ2)(φ2 −Q†φ2)dx,

which implies∫
Ω
λ(ũ† − ū∗,†)dx

≤
(
‖Q†ū− ū‖L2(Ω) + ‖φ1 −Q†φ1‖L2(Ω) + ‖φ2 −Q†φ2‖L2(Ω)

)
×
(
‖λ1 −Q†λ1‖L2(Ω) + ‖λ2 −Q†λ2‖L2(Ω)

)
. (4.9)

Putting (4.4) and (4.6)–(4.9) together, we arrive at the estimate

‖ȳ − ȳ∗,†‖2L2(Ω) + γ‖ū− ū∗,†‖2L2(Ω)

≤ ‖ȳ − ȳ∗,†‖L2(Ω)‖ȳ − ỹ∗‖L2(Ω) + γ‖ū− ū∗,†‖L2(Ω)‖ū−Q†ū‖L2(Ω)

+ ‖p̄−R∗p̄‖L2(Ω)

(
‖Q†ū− u‖L2(Ω) + ‖u− ū∗,†‖L2(Ω)

)
+
(
‖Q†ū− ū‖L2(Ω) + ‖φ1 −Q†φ1‖L2(Ω) + ‖φ2 −Q†φ2‖L2(Ω)

)
×
(
‖λ1 −Q†λ1‖L2(Ω) + ‖λ2 −Q†λ2‖L2(Ω)

)
,

which together with the inequality of arithmetic and geometric means im-
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plies

‖ȳ − ȳ∗,†‖2L2(Ω) + γ‖ū− ū∗,†‖2L2(Ω)

≤ C
(
‖ȳ − ỹ∗‖2L2(Ω) + ‖ū−Q†ū‖2L2(Ω) + γ−1‖p̄−R∗p̄‖2L2(Ω)

+ ‖λ1 −Q†λ1‖2L2(Ω) + ‖λ2 −Q†λ2‖2L2(Ω)

+ ‖φ1 −Q†φ1‖2L2(Ω) + ‖φ2 −Q†φ2‖2L2(Ω)

)
, (4.10)

where C is a universal positive constant.

Note that (1.2), (4.1), (4.4) and (4.5) imply

a(R∗ȳ − ỹ∗, z∗) = a(ȳ − ỹ∗, z∗)

=

∫
Ω

(ū− ũ†)z∗dx =

∫
Ω

(ū−Q†ū)z∗dx ∀ z∗ ∈ V∗

and hence

‖R∗ȳ − ỹ∗‖L2(Ω) ≤ (C2
PF/α)‖ū−Q†ū‖L2(Ω)

by Lemma 3.1. Therefore we have

‖ȳ − ỹ∗‖L2(Ω) ≤ ‖ȳ −R∗ȳ‖L2(Ω) + (C2
PF/α)‖ū−Q†ū‖L2(Ω). (4.11)

Similarly (2.2), (3.6) and (4.1) imply

a(q∗, R∗p̄− p̄∗,†) = a(q∗, p̄− p̄∗,†) =

∫
Ω

(ȳ − ȳ∗,†)q∗dx ∀ q∗ ∈ V∗, (4.12)

and hence

‖R∗p̄− p̄∗,†‖L2(Ω) ≤ (C2
PF/α)‖ȳ − ȳ∗,†‖L2(Ω) (4.13)

by Lemma 3.1. Consequently we have

‖p̄− p̄∗,†‖L2(Ω) ≤ ‖p̄−R∗p̄‖L2(Ω) + (C2
PF/α)‖ȳ − ȳ∗,†‖L2(Ω) (4.14)

by (4.13) and the triangle inequality.

The estimate (4.2) follows from (4.10), (4.11) and (4.14).

The following result shows that (4.2) is sharp up to the terms involving

Q†.
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Theorem 4.2. There exists a positive constant C\ depending only on α−1

such that

‖ȳ −R∗ȳ‖L2(Ω) + ‖p̄−R∗p̄‖L2(Ω)

≤ C\
(
‖ȳ − ȳ∗,†‖L2(Ω) + ‖ū− ū∗,†‖L2(Ω) + ‖p̄− p̄∗,†‖L2(Ω)

)
. (4.15)

Proof. We have

‖ȳ −R∗ȳ‖L2(Ω) ≤ ‖ȳ − ȳ∗,†‖L2(Ω) + ‖ȳ∗,† −R∗ȳ‖L2(Ω), (4.16)

and, in view of (1.2), (3.2) and (4.1),

a(R∗ȳ − ȳ∗,†, z∗) = a(ȳ − ȳ∗,†, z∗) =

∫
Ω

(ū− ū∗,†)z∗dx ∀ z∗ ∈ V∗, (4.17)

which implies through Lemma 3.1

‖ȳ∗,† −R∗ȳ‖L2(Ω) ≤ (C2
PF/α)‖ū− ū∗,†‖L2(Ω). (4.18)

Similarly we have

‖p̄−R∗p̄‖L2(Ω) ≤ ‖p̄− p̄∗,†‖L2(Ω) + (C2
PF/α)‖ȳ − ȳ∗,†‖L2(Ω) (4.19)

by (4.13) and the triangle inequality.
The estimate (4.15) follows from (4.16), (4.18) and (4.19).

4.2. Estimate for the Energy Errors

Theorem 4.3. There exists a positive constant Cz depending only on α−1

and γ−1 such that

|ȳ − ȳ∗,†|a + |p̄− p̄∗,†|a
≤ Cz

(
|ȳ −R∗ȳ|a + |p̄−R∗p̄|a + ‖ū−Q†ū‖L2(Ω)

+ ‖λ1 −Q†λ1‖L2(Ω) + ‖λ2 −Q†λ2‖L2(Ω)

+ ‖φ1 −Q†φ1‖L2(Ω) + ‖φ2 −Q†φ2‖L2(Ω)

)
. (4.20)

Proof. We begin with a triangle inequality

|ȳ − ȳ∗,†|a + |p̄− p̄∗,†|a
≤ |ȳ −R∗ȳ|a + |R∗ȳ − ȳ∗,†|a + |p̄−R∗p̄|a + |R∗p̄− p̄∗,†|a. (4.21)
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From (4.17) we obtain

|R∗ȳ − ȳ∗,†|a ≤ (CPF/
√
α)‖ū− ū∗,†‖L2(Ω) (4.22)

by Lemma 3.1.
Similarly we have

|R∗p̄− p̄∗,†|a ≤ (CPF/
√
α)‖ȳ − ȳ∗,†‖L2(Ω) (4.23)

by (4.12) and Lemma 3.1.
Finally the Poincaré-Friedrichs inequality (2.7) and (1.4) imply

‖ȳ−R∗ȳ‖L2(Ω)+‖p̄−R∗p̄‖L2(Ω) ≤ (CPF/
√
α)
(
|ȳ−R∗ȳ|a+|p̄−R∗p̄|a

)
, (4.24)

and the estimate (4.20) follows from Theorem 4.1 and (4.21)–(4.24).

5. Applications

We can apply the error estimates in Section 4 to standard finite element
methods and multiscale finite element methods.

5.1. Standard Finite Element Methods

We assume that the bilinear form a(·, ·) is given by

a(y, z) =

∫
Ω

[
A(x)∇y · ∇z + c(x)yz

]
dx, (5.1)

where the nonnegative function c(x) and the d×d symmetric matrix function
A(x) are sufficiently smooth, and there exists a positive constant µ such that

ξtA(x)ξ ≥ µ|ξ|2 ∀x ∈ Ω, ξ ∈ Rd.

We can take V∗ = Vh ⊂ H1
0 (Ω) to be the P1 Lagrange finite element space

(cf. [10, 7]) associated with a regular triangulation Th of Ω, and W† = Wρ

to be the space of piecewise constant functions associated with a regular
triangulation Tρ of Ω. The optimal state (resp., optimal control and adjoint
state) is denoted by ȳh,ρ (resp., ūh,ρ and p̄h,ρ).

For simplicity, we assume Ω is convex. It is known that ȳ and p̄ belong
to H2(Ω) (cf. [16, 11, 30]) and we have the following estimates (cf. [10, 7])
for the Ritz projection operator Rh : H1

0 (Ω) −→ Vh:

|ζ −Rhζ|a ≤ C1h|ζ|H2(Ω) ∀ ζ ∈ H2(Ω) ∩H1
0 (Ω), (5.2)
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‖ζ −Rhζ‖L2(Ω) ≤ C1h
2|ζ|H2(Ω) ∀ ζ ∈ H2(Ω) ∩H1

0 (Ω), (5.3)

where the positive constant C1 depends only on the coefficients in (5.1) and
the shape regularity of Th.

The L2 projection Qρ : L2(Ω) −→ Wρ satisfies (3.4) and we have a
standard error estimate (cf. [10, 7]):

‖ζ −Qρζ‖L2(Ω) ≤ C2h|ζ|H1(Ω) ∀ ζ ∈ H1(Ω), (5.4)

where the positive constant C2 depends only on the shape regularity of Tρ.
It follows from Remark 2.1, Theorem 4.1, Theorem 4.3, and (5.2)–(5.4)

that

‖ȳ − ȳh,ρ‖L2(Ω) + ‖ū− ūh,ρ‖L2(Ω) + ‖p̄− p̄h,ρ‖L2(Ω) ≤ C(h2 + ρ), (5.5)

|ȳ − ȳh,ρ|a + |p̄− p̄h,ρ|a ≤ C(h+ ρ), (5.6)

where the positive constant C is independent of h and ρ, and we have re-
covered the error estimates in [14] for a convex Ω.

We can also take W† to be L2(Ω), which is the variational discretization
concept in [17]. In this case Q† is the identity map on L2(Ω) so that (3.4)
is satisfied trivially and we denote the optimal state (resp., optimal control
and adjoint state) by ȳh (resp., ūh and p̄h). The estimates (5.5) and (5.6)
become

‖ȳ − ȳh‖L2(Ω) + ‖ū− ūh‖L2(Ω) + ‖p̄− p̄h‖L2(Ω) ≤ Ch2, (5.7)

|ȳ − ȳh|a + |p̄− p̄h|a ≤ Ch, (5.8)

where C is independent of h, and we have recovered the result in [17].

Remark 5.1. The estimates (5.5)–(5.8) also hold for a general Ω provided
the triangulations Th and Tρ are properly graded around the singular parts
of ∂Ω (cf. [22]).

5.2. Multiscale Finite Element Methods

Under assumption (1.4), the optimal state ȳ and adjoint state p̄ belong to
H1

0 (Ω) and we cannot claim any additional regularity.
If we take V∗ = Vh ⊂ H1

0 (Ω) to be the P1 finite element space associ-
ated with Ω and W† = Wρ to be the space of piecewise constant functions
associated with Tρ, then Theorem 4.1 implies

lim
h,ρ↓0

(
‖ȳ − ȳh,ρ‖L2(Ω) + ‖ū− ūh,ρ‖L2(Ω) + ‖p̄− p̄h,ρ‖L2(Ω)

)
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≤ lim
h↓0

(
‖ȳ −Rhȳ‖L2(Ω) + ‖p̄−Rhp̄‖L2(Ω)

)
+ lim

ρ↓0

(
‖λ1 −Qρλ1‖L2(Ω) + ‖λ1 −Qρλ1‖L2(Ω) + ‖φ1 −Qρφ1‖L2(Ω)

+ ‖φ2 −Qρφ2‖L2(Ω) + ‖ū−Qρū‖L2(Ω)

)
= 0.

Therefore this standard finite element method converges, but the conver-
gence in h can be arbitrarily slow (cf. [4]), and an accurate approximation
of (ȳ, ū, p̄) will require a very small mesh size h.

We can remedy this slow convergence by taking V∗ to be a multiscale
finite element space. For example we can take V∗ to be the rough polyhar-
monic space V rps

H in [32, 25] associated with a triangulation TH and W† = Wρ

remains the space of piecewise constant functions associated with a trian-
gulation Tρ. The optimal state (resp., optimal control and adjoint state) is
denoted by ȳrpsH,ρ (resp., ūrpsH,ρ and p̄rpsH,ρ).

Let ζ ∈ H1
0 (Ω) satisfy

a(ζ, vH) =

∫
Ω
gvHdx ∀ vH ∈ V rps

H , (5.9)

where g ∈ L2(Ω). Then we have, by (1.4), (2.7) and the estimates in [32, 25],

‖ζ −RrpsH ζ‖L2(Ω) ≤ (CPF/
√
α)|ζ −RrpsH ζ|a ≤ C3H‖g‖L2(Ω), (5.10)

where RrpsH : H1
0 (Ω) −→ V rps

H is the Ritz projection operator and the positive
constant C3 depends only on the shape regularity of TH and α−1.

It follows from Remark 2.1, Theorem 4.1, Theorem 4.3 and (5.10) that

‖ȳ − ȳrpsH,ρ‖L2(Ω) + ‖ū− ūrpsH,ρ‖L2(Ω) + ‖p̄− p̄rpsH,ρ‖L2(Ω)

+ |ȳ − ȳrpsH,ρ|a + |p̄− p̄rpsH,ρ|a ≤ C�(H + ρ), (5.11)

where the positive constant C� depends only on the numbers ‖yd‖L2(Ω),
‖f‖L2(Ω), ‖φ1‖H1(Ω), ‖φ2‖H1(Ω), α

−1, γ−1, and the shape regularities of TH
and Tρ, and we have recovered the results in [8].

We can also take V∗ to be the constraint energy minimizing generalized
multiscale finite element space V gms

H in [9] associated with a triangulation
TH . In this case the function ζ ∈ H1

0 (Ω) defined by (5.9) satisfies

‖ζ −RgmsH ζ‖L2(Ω) ≤ (CPF/
√
α)|ζ −RgmsH ζ|a ≤ C4H‖g‖L2(Ω),
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where the positive constant C4 depends only on α−1, the shape regularity

of TH and Λ−1. (Λ is a spectral parameter used in the construction of the

multiscale finite element space V gms
H .) Therefore (5.11) also holds for the

approximate solution (ȳgmsH,ρ , ū
gms
H,ρ , p̄

gms
H,ρ ) obtained by this multiscale finite

element method where C� depends also on Λ−1. This is the result in [2] in

the case where Tρ = Th.

Finally we can take V∗ to be the local orthogonal decomposition multi-

scale finite element spaces V lod
H in [28, 29, 5] associated with a triangulation

TH that incorporates information from a standard finite element space Vh
associated with a refinement Th of TH . We denote the optimal state (resp.,

optimal control and adjoint state) by ȳlodH,ρ (resp., ūlodH,ρ and p̄lodH,ρ), and the

Ritz projection operator from H1
0 (Ω) to V lod

H is denoted by RlodH .

Let vh ∈ Vh and vH ∈ V lod
H satisfy

a(vh, wh) =

∫
Ω
gwhdx ∀wh ∈ Vh,

a(vH, wH) =

∫
Ω
gwHdx ∀wH ∈ V lod

H .

Then we have, by the results in [28] and [5],

|vh − vH|a ≤ C5H‖g‖L2(Ω) and ‖vh − vH‖L2(Ω) ≤ C5H
2‖g‖L2(Ω), (5.12)

where the positive constant C5 depends only on α−1 and the shape regularity

of TH .

According to Remark 2.1, Theorem 4.1 and (5.4), we have

‖ȳ − ȳlodH,ρ‖L2(Ω) + ‖ū− ūlodH,ρ‖L2(Ω) + ‖p̄− p̄lodH,ρ‖L2(Ω)

≤ C6

(
‖ȳ −RlodH ȳ‖L2(Ω) + ‖p̄−RlodH p̄‖L2(Ω) + ρ

)
, (5.13)

where the positive constant C6 only depends on the numbers ‖yd‖L2(Ω),

‖f‖L2(Ω), ‖φ1‖H1(Ω), ‖φ2‖H1(Ω), α
−1, γ−1, and the shape regularity of Tρ.

Let (v̄h,ρ, ūh,ρ, p̄h,ρ) be the solution of (3.1) based on the space V∗ = Vh
and the space W† = Wρ. Then we have

a(Rhȳ, zh) =

∫
Ω

(f + ū)zhdx ∀ zh ∈ Vh,

a(RlodH ȳ, zH) =

∫
Ω

(f + ū)zHdx ∀ zH ∈ V lod
H ,
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by (1.2) and (4.1), which together with (5.12) imply

‖Rhȳ −RlodH ȳ‖L2(Ω) ≤ C5H
2‖f + ū‖L2(Ω). (5.14)

Similarly we have

‖Rhp̄−RlodH p̄‖L2(Ω) ≤ C5H
2‖ȳ − yd‖L2(Ω) (5.15)

by (2.2), (4.1) and (5.12).
Putting Theorem 4.2 and (5.13)–(5.15) together we arrive at

‖ȳ − ȳlodH,ρ‖L2(Ω) + ‖ū− ūlodH,ρ‖L2(Ω) + ‖p̄− p̄lodH,ρ‖L2(Ω)

≤ C6

(
‖ȳ −Rhȳ‖L2(Ω) + ‖Rhȳ −RlodH ȳ‖L2(Ω)

+ ‖p̄−Rhȳ‖L2(Ω) + ‖Rhȳ −RlodH p̄‖L2(Ω) + ρ
)

≤ C6

(
‖ȳ −Rhȳ‖L2(Ω) + ‖p̄−Rhp̄‖L2(Ω)

+ C5H
2‖f + ū‖L2(Ω) + C5H

2‖ȳ − yd‖L2(Ω) + ρ
)

≤ C6C]
(
‖ȳ − ȳh,ρ‖L2(Ω) + ‖ū− ūh,ρ‖L2(Ω) + ‖p̄− p̄h,ρ‖L2(Ω)

)
+ C6C5H

2
(
‖f + ū‖L2(Ω) + ‖ȳ − yd‖L2(Ω)

)
+ C6ρ. (5.16)

Similarly, we have by Theorem 4.3

|ȳ − ȳlodH,ρ|a + |p̄− p̄lodH,ρ|a ≤ C7

(
|ȳ − ȳh,ρ|a + |p̄− p̄h,ρ|a +H + ρ

)
, (5.17)

where the positive constant C7 only depends on the numbers ‖yd‖L2(Ω),
‖f‖L2(Ω), ‖φ1‖H1(Ω), ‖φ2‖H1(Ω), α

−1, γ−1, and the shape regularities of TH
and Tρ.

Comparing (5.5)–(5.6) and (5.16)–(5.17), we conclude that up to the
error of a fine scale approximation, the performance of the local orthogonal
decomposition multiscale finite element method for a problem with rough
coefficients on a general Ω is identical to the performance of standard finite
element methods for a problem with smooth coefficients on a convex domain.
Moreover all the constants in the estimates are independent of the mesh sizes
and the contrast β/α.

Numerical results for the local orthogonal decomposition method for
(1.1) can be found in [6].

6. Conclusions

We have developed new abstract error estimates for a model linear-quadratic
elliptic distributed optimal control problem that reduce the error analysis
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to the properties of the Ritz projection operator for the finite element space
for the state and the L2 projection operator for the finite element space for
the control. They can be applied to standard finite element methods for a
classical partial differential equation constraint and multiscale finite element
methods when the coefficients in the partial differential equation constraint
are rough. Besides the multiscale finite element methods mentioned in Sec-
tion 5, they can also be applied to many others, such as the ones investigated
in [19, 20, 3, 12, 26, 27].

For simplicity we have assumed that a(·, ·) is symmetric. But the esti-
mates in Section 4 can be extended to a nonsymmetric a(·, ·) by replacing
the term R∗p̄ with the term S∗p̄, where S∗ : H1

0 (Ω) −→ V∗ is defined by

a(q∗, S∗ζ) = a(q∗, ζ) ∀ q∗ ∈ V∗.

Finally we note that error estimates for boundary control problems with
rough coefficients are still absent.
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