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Abstract

Terpenoids are ubiquitous to all kingdoms of life and are one of
the most diverse groups of compounds, both structurally and
functionally. Despite being derived from common precursors,
isopentenyl diphosphate and dimethylallyl diphosphate, their
exceptional diversity is partly driven by the substrate and
product promiscuity of terpene synthases that produce a wide
array of terpene skeletons. Plant terpene synthases can be
subdivided into different subfamilies based on sequence ho-
mology and function. However, in many cases, structural ar-
chitecture of the enzyme is more essential to product
specificity than primary sequence alone, and distantly related
terpene synthases can often mediate similar reactions. As
such, the focus of this brief review is on some of the recent
progress in understanding terpene synthase function and
diversity.
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Plant terpene synthases drive metabolic
diversity

"Terpenoid products are ubiquitous across all kingdoms of
life and are among the most structurally and functionally
diverse compounds in nature. They are especially wide-
spread in plants where individual terpenoids play key

roles both in primary metabolism as photosynthetic pig-
ments, electron acceptors, and hormones, as well as in
secondary metabolism, acting as signaling compounds for
plant-plant, within-plant, and plant—insect interactions,
and as defense compounds [1—4]. Recently, the signaling
properties of terpenoids have been further extended by
showing their involvement in stigma development via a
KARRIKIN INSENSITIVE 2—mediated signaling
pathway [5,%6]. Plant-derived terpenoids have also
gained attention for their industrial and medicinal appli-
cations [7,8], inflating the value in deciphering the
biosynthesis and regulation of these economically rele-
vant compounds. Despite the overwhelming diversity of
terpenoid structures, with over 40,000 identified in plants
alone [9], they all originate from the same universal 5-
carbon building blocks, isopentenyl diphosphate (IPP)
and its allylic isomer dimethylallyl diphosphate
(DMAPP), which are produced via the plastidial 2C-
methyl-D-erythritol-4-phosphate  (MEP) and extra-
plastidial mevalonate (MVA) pathways.

The MEP and MVA pathways control flux towards
terpenoid products through elaborate multi-faceted
regulation that involves primary carbon supply, down-
stream prenyltransferases (PTs), feedback mechanisms,
gene clusters, and formation of biosynthetic enzyme
complexes [10]. Upon its synthesis, DMAPP can act as the
immediate precursor for hemiterpenes (Cs), like isoprene
through isoprene synthase [11], or IPP/DMAPP units can
be condensed by PTs to form varyingchain-length prenyl
diphosphates [12]. In general, prenyl diphosphates are
extended by sequential head-to-tail condensation of 5-
carbon units by PT5, resulting in a range of products
with increasing chain lengths from geranyl diphosphate
(GPP, Cy) which yield monoterpenes, to geranylfarnesyl
diphosphate (GFPP, Cys) for sesterterpenes. In addition,
some irregular PT products have been identified as
terpenoid precursors formed through non-head-to-tail
condensation of IPP and DMAPP [13—15]. Further-
more, a growing number of ¢zs-P'Ts have been identified
that form the cisoid isomers neryl diphosphate (NPP), Z,Z-
farnesyl diphosphate (Z,Z-FPP), and nerylneryl diphos-
phate (NNPP) of the typical #ans-prenyl diphosphates
GPP, E,E-farnesyl diphosphate (FPP, Cis), and gera-
nylgeranyl diphosphate (GGPP, Cy), respectively [16].

The various chain-length prenyl diphosphates in both
trans and «s conformations are often cyclized or
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2 Plant terpene synthases

dephosphorylated by terpene synthases (‘TPSs) to yield
an initial terpene backbone that can be further modified
and decorated by downstream enzymes [16,17]. TPSs
are enzymes typically responsible for converting a rela-
tively small number of possible substrates into a wide
array of structures through what have been considered
some of the most complex chemical reactions in nature
[18], and their essential role in biology is emphasized by
their prevalence in all kingdoms of life with examples in
plants [19], bacteria [20], fungi [21], red algae [22],
corals [23], sponges [24], insects [25], amoebae [20],
and even giant viruses [**26] (Figure 1). Within plants,
the spectrum of terpenoids and the corresponding
biosynthetic mechanisms forming these compounds are
especially complex and diverse [27]. Numerous plant
terpenoids are often further modified into more bioac-
tive constituents and stored in specialized compart-
ments to serve physiological and ecological functions, as
exemplified by the conversion of sesquiterpenes into
sesquiterpene lactones [28], or the formation of acety-
lated diterpenoids [29]. Such downstream modification
of terpenoid skeletons drastically increases the diversity
of terpenoid constituents. A single modifying enzyme
can utilize one or more terpenoid substrates within a
terpenoid biosynthetic network or sequentially modify
the same terpenoid compound at different positions to
form numerous end products [30,31]. Different groups
of TPSs and terpenoid-modifying enzymes have been
the subject of several excellent reviews and papers in
recent years [27,%*32—37]; thus, the focus of this brief
review is on recent progress surrounding the structural
and functional diversity of select short-chain (C1p—Css)
TPSs and their products in plants.

Protein architecture and activity separate
two TPS classes

Despite the varied activities and primary sequences, all
TPSs share a similar tertiary structure composed
entirely of a-helices, while having different numbers of
a-helical domains [18,38] (Table 1 & Figure 2). The
mid-sized family of TPSs can be divided into two main
classes based on mechanistic action, rather than
sequence similarity, both of which are found in plants
[19]. Class I TPSs remove the diphosphate group of a
prenyl diphosphate substrate to form an allylic carbo-
cation that can be quenched by water capture or
deprotonated, forming either an alcohol or olefin,
respectively [18,39]. The prenyl diphosphate substrate
is initially coordinated in the active site by a trinuclear
divalent metal ion cluster, most often consisting of three
Mg ions that interact with the aspartate-rich motifs
and NSE/DTE conserved amino acid residues, that also
facilitates ionization and abstraction of the diphosphate
moiety [40—43] (Figure 3). While Mg®" is the typical
cofactor tested in vitro, class I TPSs can often utilize
other cofactors that may yield distinct product profiles
[44—46]. In contrast, class II TPSs are capable of
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Phylogenetic relationship between terpene synthases. (a) Unrooted phylo-
genetic tree of short-chain terpene synthases (TPSs) and closely related
proteins. Sequences were selected based on references in the textas well as
UniProtkB and NCBI databases with an emphasis on plant terpene
synthases and the non-seed plant microbial-type TPS-like (MTPSL) pro-
teins. Branches are colored by organism lineage, and shading depicts
general groupings of sequences. Protein amino acid sequences were
aligned by ClustalW, and a maximum likelihood tree was calculated using
MEGA X [105] followed by visualization with TreeViewer [106]. (b) Unrooted
phylogenetic cladogram of plant short-chain TPSs generated in the same
way as in (a) from an alignment that excluded non-plant sequences.
Branches are colored by plant lineage, while outer lines emphasize TPS
subfamilies and the MTPSL group in non-seed plants. The red circles on
branch tips indicate proteins mentioned in the text, while the red bar and
black arrow highlight the position of Calohypnum plumiforme isoprene
synthase (CpKSL1/CpISPS) [GenBank: BEH00593.1]. UniProtKB acces-
sions are shown where available; otherwise GenBank and NCBI reference
sequence accessions are displayed. PT; prenyltransferase.

retaining the diphosphate moiety of prenyl di-
phosphates while cyclizing the prenyl chain through
protonation of an olefinic double bond, often generating
new substrates for class [ TPSs, though class I1 TPSs can
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Table 1

Plant terpene synthase subfamilies and their typical characteristics.

Subfamily Plant lineage Class Domains Example® Organism Main substrate Main product Reference
al Dicots | Bo Q8SA63° Artemisia annua FPP (Cys) B-Caryophyllene [107]
a2 Monocots | B B2C4D0 Zea mays FPP (C1s) B-Caryophyllene [108]
b Angiosperms | Bot Q40322° Mentha spicata GPP (C1p) (-)-Limonene [109]
[ Mosses | Bo. BEH00593.1° Calohypnum plumiforme DMAPP (Cs) Isoprene [**66]
Land plants 1] vBa Q38802° Arabidopsis thaliana GGPP (C20) ent-copalyl diphosphate [110]
Non-seed plants 11/ vBa. E3WDE2 Jungermannia subulata (liverwort) GGPP (Cy0) ent-kaurene [111]
d1 Gymnosperms | Bot Q675L1°¢ Picea abies GPP (C10) (-)-Limonene [112]
d2 Gymnosperms | Bo 064405 Abies grandis FPP (C1s) Y-Humulene [113]
d3 Gymnosperms | vBa Q41594 Taxus brevifolia GGPP (C20) Taxa-4(5),11(12)-diene [114]
11/1 vBa Q38710 Abies grandis GGPP (Cy) Abietadiene [115]
e Land plants | vBa Q39548° Cucurbita maxima CPP (Cy0) ent-kaurene [116]
| Bo G8GJ94 Salvia sclarea 8-hydroxy-CPP (Cxg) Sclareol [117]
f Land plants | vBa Q96376 Clarkia breweri GPP (C+0) (+)-Linalool [118]
g Angiosperms | Bo Q84UV0° Arabidopsis thaliana GPP (C10) Linalool [119]
h Non-seed plants | vPBo AOA8UODD35 Phylloglossum drummondii (lycophyte) GGPP (Cy0) Levopimaradiene [**32]
1] vBa AOA8BUODA95° Osmunda sp. (fern) GGPP (C2) 8-Endo-copalyl diphosphate [**32]
11/ vBa. AOA8UODAH5 Osmunda japonica (fern) GGPP (Cy0) syn-manool [**32]
MTPSL Non-seed plants | o D8RLD3° Selaginella moellendorffii (lycophyte) FPP (C1s) (+)-Germacrene D [120]

Abbreviations: CPP; copalyl diphosphate, FPP; farnesyl diphosphate, GGPP; geranylgeranyl diphosphate, GPP; geranyl diphosphate.
2 UniProtKB accession.

b GenBank accession.

¢ Structure shown in Figure 2.
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Figure 2
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Protein architectures and phylogenetic tree of select plant terpene synthases from each subfamily.

Peptide sequences of representative TPSs were aligned by ClustalW, and a maximum likelihood tree was generated as in Figure 1 with branch lengths
shown as the number of substitutions per site above and bootstrap values greater than 50% from 1000 iterations shown below branches. Each tip is
labeled with the corresponding species and accession number, and branches are colored according to TPS subfamily membership (shown in the upper
right corner). Structural models of representative proteins are displayed next to the corresponding sequences highlighted by red circles. TPSs are
grouped and shaded based on their general activity class as shown on the right. A schematic of the corresponding peptide sequence alignment is shown
on the left of the phylogenetic tree with solid vertical lines representing positional amino acid presence for each protein. The corresponding domain
architectures are also shown for each protein (y, yellow; 3, dark orange; a, light blue). The black arrow (within Class I, Il, I/l group) indicates the position of
Calohypnum plumiforme isoprene synthase (CpKSL1/CpISPS) [GenBank: BEH00593.1]. Protein structures were obtained from published PDB struc-
tures (Q40622, 20NG; Q38802, 3PYA) or EMBL-EBI AlphaFold predicted [121,122] structures (Q84UV0, AF-Q84UV0—-F1; Q8SA63, AF-Q8SA63-F1;
Q675L1, AF-Q675L1-F1; Q39548, AF-Q39548-F1; D8RLD3, AF-D8RLD3-F1) except for (AOA8UODA95) which was modeled using ColabFold [123]. All
structures were aligned to Q38802 (indicated by a red arrow) for which the protein crystal structure has been published (PDB: 3PYA), and the different
domains were colored based on InterProScan [124] designations using UCSF ChimeraX [125].

also utilize olefinic substrates such as squalene for
triterpenoid biosynthesis [47,48]. Members of class 11
frequently use GGPP as a substrate towards the pro-
duction of phytohormones through enz-copalyl diphos-
phate (enz-CPP), but they are also involved in secondary
metabolite production [18,27]. In lower plants [49,50]
and gymnosperms [51], a subset of bifunctional class I1/1
TPSs possess both of the aforementioned activities and
carry out sequential cyclization and dephosphorylation
of GGPP that typically requires separate class II and
class I TPSs in angiosperms [7,52].

Class I TPSs in plants can also be subdivided based on
sequence similarity into canonical TPSs found across
the plant kingdom and non-canonical microbial-terpene
synthase-like (M'TPSL) proteins which have been
identified only in non-seed plants [53—55] (Figure 1).
MTPSI. genes in non-seed plants form four separate
subclades, each of which encodes catalytically active
TPSs, but with substantial primary sequence diversity

even within the normally conserved aspartate-rich motif
(DDxxD) where, for example, subclade III only contains
the first DD of this motif [53]. Other groups of non-
canonical TPSs have been identified outside of the
plant kingdom including UbiA-related class I TPSs in
fungi and bacteria [56—58], and bifunctional P'T/class 11
TPSs [59] as well as class I triterpene synthases in fungi
[60]. While UbiA-related proteins are found in plants,
none of them, to the best of our knowledge, have been
shown to display strict 'TPS activity; therefore, they will
not be further considered here. Regardless of the TPS
class and subfamily, in all cases, the enzyme structure is
essential to maintaining its functional integrity as the
carbocation intermediate(s) is highly reactive and could
alkylate neighboring nucleophilic amino acids within the
enzyme cavity or be vulnerable to water capture [18].
Consistent with these constraints, the active site for
class I TPSs is buried within the characteristic o fold
[61], while for class I TPSs, it is found between the B
and 7y domains [27,62] (Figure 2). Beyond the
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Promiscuity of Colquhounia coccinea TPS1. Colquhounia coccinea terpene synthase 1 (CcTPS1; Genbank: QZL13763.1) is shown as an example of an
‘extremely promiscuous enzyme’ capable of catalyzing TPS reactions from multiple prenyl diphosphate substrates shaded in gray [77]. A structural model
of CcTPS1 is presented in the middle with the compounds produced from different substrates surrounding it. The reaction center is located within the a-
domain (light blue) containing predicted substrate-binding (yellow) and divalent metal cofactor-binding residues (magenta), that are typically required for
terpene synthase activity. CcTPS1 was modeled in conjunction with three Mg?* ions (light green) using AlphaFold3 [126]; domains and key residues were
predicted using InterProScan [124], and the model was visualized with UCSF ChimeraX [125]. Photo credit for image of Colqohounia coccinea:
©cocorattanakorn/Adobe Stock.
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conservation of this architecture, TPS primary se-
quences often share more similarity with other TPSs
producing different products within a plant order than
with those responsible for the same activity in another
species, suggesting that primary sequence alone may be
insufficient to predict the terpenoid product pro-
file [63].

Members of multiple TPS subfamilies
catalyze formation of the same product
Despite the occurrence of TPS genes in all major line-
ages of land plants, canonical TPS genes of class I, class
IT, and class II/I were found to be entirely absent from
all analyzed green algae [64] which was further
supported by a recent analysis of green algae tran-
scriptomes (158) and genomes (31) [**32]. Across land
plants, however, distinct subfamilies of TPSs from TPS-
a to TPS-h have been characterized and they are sepa-
rated based on phylogenetic similarities that can be seen
in their overall protein structures and domain architec-
tures (Table 1, Figure 1B and 2) [19]. However, only
members of the TPS-c subfamily, which harbors class 11
ent-CPP synthases (CPSs) and class II/I dual activity
CPS, and kaurene synthase (KS) (CPSKS), universally
occur in land plants [**32,65]. Interestingly, while
members of TPS-c are primarily implicated in phyto-
hormone biosynthesis, this subfamily has been dramat-
ically expanded in non-seed plants where the function of
many of these proteins remains unknown [19,**32]. In
the moss Calohypnum plumiforme (hypnum moss), a novel
ent-kaurene synthase—like protein (CpKSL1/CpISPS)
belonging to the aforementioned group that also clusters
closely with members of TPS-¢/f and TPS-h (Figure 1b
and 2), was characterized as an isoprene (Cs) synthase
even though it lacks sequence similarity to canonical
isoprene synthases, which generally belong to the TPS-b
subfamily [11,**66]. Moreover, CpKSL1 contains the
characteristic DDxxD motif and a/B domains [**66]
resembling the architecture of TPS-a, b, g, d1, and some
TPS-e/f members, all of which, like CpKSL1, display
class T TPS activity [19,67] (Table 1 & Figure 2).
Despite only limited sequence similarity with other
isoprene synthases and the lack of the four conserved
residues in vascular plant isoprene synthases that pre-
dict the probability of isoprene synthase activity (i.e.
isoprene score) [11], CpKSL1 has a similar active site
structure to poplar isoprene synthase, implicating the
involvement of other amino acids in catalysis [**66].
The occurrence of isoprene emission in mosses [68],
which lack members of the TPS-b subfamily [**32],
may emphasize the additional roles of TPS-c or
MTPSLs beyond primary metabolism [**66]. Even
within higher plants, isoprene-producing enzymes
belonging to the TPS-b subfamily do not always group
together with the monophyletic clade of isoprene
synthases found in rosids and, like in hops, might have
other biochemical functions [11,69]. The widespread

occurrence and sequence divergence of isoprene
synthases, across plant lineages and TPS subfamilies,
further highlights the importance of isoprene produc-
tion and likely supports the relevance of this compound
in plant communication and stress response, while also
highlighting the overlapping biochemical activities of
phylogenetically unrelated TPSs [70,71].

TPS functional promiscuity: one enzyme,
multiple products

Product promiscuity is frequent throughout TPSs
[44,72—74]; however, most members of the angiosperm-
specific TPS-b subfamily produce a single monoterpene
product. In addition, single-product hemiterpene,
sesquiterpene, and diterpene synthases (diTPSs) as
well as promiscuous TPSs utilizing multiple prenyl
diphosphate substrates belong to this subfamily. Some
single-product diTPSs within the TPS-b subfamily
include Eremophila lucida (shining poverty bush)
EITPS31 [75] and Tripterygium wilfordii (thunder god
vine) TwTPS27 [76], which catalyze class I diTPS re-
actions to form (3%,7Z,11Z)-cembratrien-15-ol from
NNPP and an abietane-type diterpene, miltiradiene,
from CPP, respectively. An example of an ‘extremely
promiscuous’ member of the TPS-b subfamily is Colgu-
hounia coccinea (Himalayan mint shrub) CcTPS1, which
was found to accept GPP, FPP, GGPP, and GFPP to form
a suite of corresponding terpenoids in vitro, although in
planta, the monoterpene and sesterterpene products
were not detected [77] (Figure 3). Therefore, subcel-
lular localization of such promiscuous TPSs and avail-
ability of prenyl diphosphate substrates in the
corresponding cellular compartment will determine the
product profile which could vary based on plant species,
tissue type, and developmental stage [10,78]. The
promiscuity within the TPS-b subfamily is further
illustrated in Lathyrus odoratus (sweet pea) where both
LoTPS4 and LoTPS7 catalyze, respectively, the for-
mation of 5 and 11 monoterpenes from GPP, as well 6
and 13 sesquiterpenes from FPP [79]. Surprisingly, they
also catalyzed a similar series of reactions when cisoid
substrates NPP and (Z,Z2)-FPP were supplied [79].
Analogous TPS promiscuity within . odoratus extends
to LoTPS3 and LoTPS8, members of TPS-a, as well as
LoTPS12, which belongs to the TPS-g subfamily.
LoTPS3 uses both cisoid and transoid 10-carbon and 15-
carbon prenyl diphosphates, while Lo TPS8 prefers cis
prenyl diphosphates, and LoTPS12 accommodates only
all #rans substrates. In addition, each TPS also exhibits
product promiscuity yielding multiple terpene products
from the accepted prenyl diphosphate substrates [79].

Product promiscuity is not surprising given the TPS
mechanism often involves a reactive carbocation inter-
mediate and non-specific charge migration within the
active site that can be quenched at multiple positions
[18,39,80]. Therefore, the resulting substrate and
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product specificity is largely driven by stabilization of
the carbocation intermediate by amino acids within the
active site [*81] and is guided by coordinated amino
acid pairs spanning the N-terminal and C-terminal do-
mains [*82]. While the majority of studies surrounding
product selectivity have focused on residue changes
within the active site, recently it has been shown that,
depending on the nature of TPSs, interdomain con-
nectivities can also contribute to the product output and
can be a more essential driving force than connectivities
within the catalytic domain [*82]. In closely related
TPSs, single-nucleotide polymorphisms (SNPs) can
lead to amino acid changes favoring different end
products [*81,83,%84,85]. These SNPs may have a
dramatic influence on the terpenoid bouquet produced
by a plant or specific tissue, not only by changing the
product profile of a TPS through amino acid
substitutions but also by altering the promoter region
which affects the transcriptional regulation of the
corresponding genes in response to various cues [83] or
by promoting variable splicing variants to yield distinct
TPS transcripts from a single gene [86].

In recent years, the importance of 7P§ promoter regions
and regulation by transcription factors (TFs) has
become more apparent. In addition, some plant ge-
nomes contain 7PSs within biosynthetic gene clusters
that allow coregulation of gene expression [87], high-
lighting the importance not only of 7P§ sequence and
corresponding protein structure but also of the sur-
rounding genome architecture for the encoding genes
[88]. While epigenetic studies have demonstrated the
effect of histone modifications in regulation of other
specialized metabolic processes [89—92], such work in
relation to terpene synthase expression is limited [93].
However, it is evident that alterations in the accessi-
bility of genes to transcriptional machinery play a key
role in the spatiotemporal expression of genes involved
in terpenoid biosynthesis [88,94]. Beyond typical stress-
responsive T'Fs, a growing list of those that directly
regulate 7PS expression and terpenoid biosynthesis
have been characterized [93,95]. For example, in Lifium
‘Siberia’ (an Oriental hybrid lily), LiNAC100, a plant-
specific ‘no apical meristem (NAM), ATAF1,2, cup-
shaped cotyledon (CUC2)’ (NAC) TE activates
linalool synthase expression by directly binding its pro-
moter region [96]. In Lavandula angustifolia (English
lavender), another TE LaMYC7, directly binds to the
promoter region of caryophyllene synthase (La7PS76)
to induce its expression in glandular trichomes in
response to methyl jasmonate [97]. Interestingly,
LaMYC7 specifically interacted with the promoter
region of only LaTPS76, even though the L. angustifolia
genome also encodes another caryophyllene synthase,
LaTPS§26. Such specific control of 7PS expression may
present one mechanism of transcriptional regulation of
multiple copies of closely related 7PS§ genes
[*73,98,99]. Retention of multiple 7PS§ copies could be
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supported by positive selection, as seen in Phoebe bournei
(a member of the Lauraceae), where defense against
pathogens in aerial and root tissues likely resulted in
multiple gene duplicates for members of 7PS§-« and
TPS-b subfamilies totaling 34 and 28 members,
respectively [*100]. Together, forming 13 clusters in the
genome, members of 7PS-a were preferentially
expressed in the aerial tissue, whereas 7PS§-6 members
were expressed in roots [*100]. Furthermore, numerous
duplication events of 7PS-« subfamily members in the
chicory genome, as well as of 7PS-« and TPS-4 sub-
families in Wurfbainia villosa (a member of the Zingi-
beraceae) and celery, enhanced terpene biosynthesis in
these species [*73,101,102]. These duplications
enabled fine-tuned 7PS expression through differential
modifications in promoter regions that interact with
various sets of TFs under constantly shifting metabolic
contexts [*73,101,102].

Conclusions and open questions

The ever-increasing understanding of TPSs is essential
for metabolic engineering aimed at improving yields of
high-value terpenoid products and provides funda-
mental knowledge into the biosynthesis of such a
structurally and functionally diverse group of com-
pounds. There is no doubt that the diversity of terpe-
noid products is, in part, driven by the great diversity of
TPSs throughout the plant kingdom. Remarkably, for a
long time, #rans-prenyl diphosphates were the only
known physiological substrates for short-chain TPSs,
and over recent years, a substantial body of literature
suggests that cisoid substrates are frequently occurring
and accepted by numerous plant TPSs [10,16,75].
Further investigation into the mechanistic details fa-
voring TPS activity with #rans- versus cs-prenyl di-
phosphates will reveal the molecular constraints for
driving such reactions. It is interesting that with the
exceptional promiscuity of TPSs in vitro, many of the
products are not found in planta. Such a result could be
primarily due to the different localization of the en-
zymes and corresponding prenyl diphosphate sub-
strates, which makes identification of TPS localization
and the availability of substrates in the same compart-
ment of paramount importance for determining the
biological significance of in vitro findings. In addition,
transcriptional and epigenetic regulation of 7PS
expression could further contribute to in planta product
profiles; unfortunately our knowledge about these reg-
ulatory processes is still limited. The discrepancy be-
tween in planta and in vitro terpenoid profiles can also
be the result of further modification of TPSs’ products
by endogenous enzymes, as exemplified in the meta-
bolism of sesquiterpene volatiles in maize [103,104].
Finally, it is possible that recent 7PS§ duplication and
neofunctionalization, which have not yet been opti-
mized in biochemical properties and expression profile,
can contribute to the absence of their products in
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planta. Even then, the product promiscuity of TPSs
could be subject to positive selection as a mechanism to
avoid resistance of pathogens and herbivores to a single
initially potent compound and favor an endogenous
combinatorial approach, while simultaneously main-
taining highly specific TPSs for essential signaling and
primary metabolic roles.
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