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Abstract—This study investigates the potential of augmented

reality (AR) to enhance users’ ability to predict the position of a

robotic tool when it enters their blind spot. Augmented reality is

increasingly utilized in industrial settings to improve situational

awareness and user interfaces. In this experiment, participants

performed tasks involving the prediction of the tool’s posi-

tion using both conventional methods and AR displays. The

Situational Awareness Global Assessment Test (SAGAT) was

employed to evaluate the effectiveness of the AR display as a

user interface and its impact on users’ awareness. Results reveal

improvements in several metrics when using AR, including

a reduction in average perception error and an increase in

subjective confidence levels. Additionally, the AR display led

to a higher percentage of correct responses in predicting the

direction the tool of the robot was moving when the worker

had no direct line of sight to it. These findings suggest that AR

displays have the potential to enhance situational awareness

and improve the current state of user interfaces in industrial

environments.

I. INTRODUCTION AND RELATED WORKS

In recent years, manufacturing needs have greatly changed,
driven by the market’s demands for quickly produced, low-
cost, and easily customizable products [1]. Standard produc-
tion lines and traditional robotic systems no longer satisfied
these evolving demands, which required a more responsive
and systematic approach [1], [2]. The need for flexibility in
the production process resulted in an alternative to traditional
factory floors [3], as manufacturing industries worked to
create a synergistic working environment using the different
skill sets of humans and robots. In this interdependent at-
mosphere, robots perform straightforward ”non-value-added”
manual work with reliability, precision, and strength, and the
perception, intuition, and flexibility of a human are utilized
to perform the “value-added” work demanded in the so-
called fourth industrial revolution [4], [5]. This symbiotic
solution became the new focus of industrial robotics and has
inspired new concepts such as human-robot collaboration
(HRC) and technologies such as collaborative robots [2],

*This material is based upon work supported by the National Science
Foundation under Award No. DGE-2125362. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

1Melis Sahin is with the Departments of Biomedical and Electrical
Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
mxs1801@case.edu

2Karthik Subramanian is with the Department of Electrical and Micro-
electronic Engineering, Rochester Institute of Technology, Rochester, NY
14623, USA kxs8997@g.rit.edu

3Ferat Sahin is with the Department of Electrical and Microelectronic
Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
feseee@rit.edu

[6], [7]. HRC refers to the collaborative processes in which
robots and humans work together to achieve common goals
in a shared workspace, and the ISO 10218-2:2011 standard
defines collaborative robots as robots designed for direct
interaction with a human within a limited collaborative
workspace [8]. These ideas of a human and a robot safely and
efficiently sharing a workspace and task have become widely
accepted in many industries as a promising way to achieve
productivity increases [3], [7], [9]–[13]. This collaboration
applies not only in manufacturing, but in other fields such
as healthcare and warehousing [14], and comes with many
new considerations.

A. Percieved Safety of Workers in HRC

While physical safety always remains a crucial consid-
eration, ensuring the ”perceived” safety of the human par-
ticipants in HRC is equally as significant. Workers tend to
view a cobot teammate as a unique social entity, with the
power to affect their psychological states [15]. Consequently,
participants’ perceived safety depends on their enhanced
vigilance and awareness of robot motion, in the attempt to
avoid unpleasant emotions [16]. This hyper-vigilance greatly
affects the efficiency of an HRC system which depends on
a variety of complex factors, including the operator’s trust,
comfort, awareness, and perceived safety of the robot as well
as their cognitive load [2], [17]. Many of these concerns are
exacerbated by the lack of efficient human-robot commu-
nication. In a typical human-human interaction, the parties
can use cues such as body language to anticipate each other’s
behavior and tend to interact in higher-level communication
of intentions [18], [19]. Such implicit and explicit expression
is essential for fluent human-robot collaboration [19], and the
successful design of these communication methods is one
of the main objectives of the field of HRC [10]. However,
in dynamic environments, where humans and robots move
around continuously, the robot is not in the field of vision
of the human the majority of time. In addition, the bustling
nature of many fields such as manufacturing and healthcare
means that there are often high noise levels that interfere
with this robot-human communication.

B. Situational Awareness

One possible metric to determine the perceived safety
of the worker is to assess their situational awareness when
working with robots. While trust, comfort, and cognitive load
are important elements to consider, human-robot interaction
studies analyzing collaboration have determined that the key
component to task fluency is the awareness and anticipation
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of intention by human and robot agents [16]. The abilities
to perceive (Level 1), comprehend (Level 2), and project
(Level 3) elements in the environment are referred to as the
different levels of situation awareness (SA) [20], and are
paramount for effective decision-making in dynamic systems
[21], [22]. The Situation Awareness Global Assessment
Technique (SAGAT) is widely regarded as the best method
for the measurement of SA [4], [22]

C. Situational Awareness Global Assessment Test
The technique, as outlined by Endsley [23], usually con-

sists of three main components:
• Baseline Task: Individuals perform a task or scenario

of interest related to their domain, such as monitoring
a system or completing a procedure.

• Interruption: At a random critical point during the task,
all informational elements of the system are removed
from the field of vision, and the subject must stop all
relevant activities. This interruption is typically sudden
and unexpected, representing a real-life scenario that
requires immediate attention.

• Questioning: Participants are then asked a series of
targeted questions related to their perception of the
current state of the task or elements of their situation at
that time. Questions may focus on details about the en-
vironment, status updates, or the potential implications
of the interruption, each assessing the different levels
of situational awareness.

The purpose of SAGAT is to evaluate how individuals
understand their surroundings and their situational aware-
ness, despite interruptions or unexpected changes. It helps
determine their ability to gather, process, and comprehend
information relevant to the task at hand, and determines
the quality of the informational system [20]. This method
provides an objective assessment of operator SA, as it allows
for detailed information to be evaluated against reality since
the ground-truth facts can be compared to the responses at
the time of interruption.

D. User Interfaces
The method of communication of relevant information

between robots and their human coworkers is the ”user
interface”. This is simply how the robot conveys important
details and intentions necessary for collaboration and can
include auditory, visual, or haptic responses [3]. Generally,
visual and auditory interfaces prevail as these systems pro-
vide clear sensory inputs that humans utilize to quickly form
an accurate perception of their environment [10]. Proper
user interfaces should be both easy to interact with and
enable comprehension of the current system behavior [6], and
provide essential situational awareness to adapt and allow
for informed decision-making during uncertain and dynamic
situations [6], [24].
In robot development, the most common user interface for

expressing visual and auditory cues involves a video feed
from the robotic platform [18] through display screens [3].
Other visual-modality-based work, summarized in Sonawani

and Amor [25], focuses on discrete visual signals, combi-
nations of colors and intensities, projection mapping using
onboard projectors, and object-aware projection techniques.
However, while these methods may present more flexibility
for users to view information in different forms [18], they
are not the most efficient method of conveying information.
These visual, yet static methods require the frequent diver-
sion of the worker’s attention and constant surveillance of
their environment to make operational decisions. According
to Scholtz [18] and Ruiz et al. [26], computer-based displays
are unable to show all necessary information on a single
display, have decreased situational awareness due to visual
contact loss, and fail to account for environments where com-
puter access is difficult, such as factory settings [5]. These
consequences greatly increase the likelihood of collisions and
decrease the efficiency of task performance [27]. This risk
can be even greater for individuals who are hard of hearing
(HOH), deaf, or working in HRC environments with a high
noise floor, such as manufacturing factory settings. They lack
the auditory cues necessary to assess their surroundings while
their vision is diverted. Factory machinery produces approx-
imately 92-96 decibels of noise [28], and heavy construction
equipment sound levels range from 80 to 120 decibels [29].
For HOH, deaf, or industry workers, the prototypical user
interfaces of static visual feeds and auditory advisories can
be catastrophically dangerous and hinder productivity. Future
direction should focus on providing a more comprehensive
understanding of the scene in a way that is easy to use and
intuitive for the operator to understand, without relying on
these measures [7].

E. Augmented Reality

Virtual reality is the creation of an entirely virtual envi-
ronment where the user can interact with computer-generated
objects. It has been used in the field of collaborative robotics
research primarily for the simulation of HRC environments
for safe testing and training [5], [30]. In between physical
reality and complete immersion lies a continuum of mixed
reality, blending the physical and digital worlds [2]. This
creates an enhanced perception of the user’s environment
which has been introduced to the HRC world as augmented
reality (AR). AR’s blend of physical and digital avoids the
restrictions of traditional means and provides systemic infor-
mation simultaneous to human activity. Technical advance-
ment in AR devices has led to the availability of powerful
and reasonably priced devices for market use, opening an
accessible pathway for research [31]. As a result, applications
of AR technologies have been of increasing interest in HRC
in recent years as a means of organizing and providing
information about a robot to its human collaborators [3],
[25], [30].
Providing relevant information about the robot’s operation

has been thoroughly explored, for example, displaying the
task being performed [32], [33], or the robot’s current
position and future motion [34], [35]. Augmented reality
aids in effective decision-making since the clear and constant
visualization of task and environmental data allows human
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workers to gain insights into the task and heightens their
situational awareness [24], [25]. As emphasized by Matsas
and Vosniakos [16], the immersive tool of augmented real-
ity provides a platform to most easily facilitate situational
awareness at all three levels but it has not been applied to
HRC situations where the robot operates outside the human’s
vision and cannot convey auditory cues.

F. Microsoft Hololens 2

The HoloLens 2 is a unique mixed-reality headset de-
veloped by Microsoft, that creates an immersive perception
of the user’s physical environment through the overlay of
holographic images onto transparent lenses. Its field of view,
spatial mapping, gesture recognition, and eye-tracking capa-
bilities allow for diverse applications in industries like man-
ufacturing, healthcare, education, gaming, and engineering
[36]. A crucial component of seamlessly integrating digital

Fig. 1: Microsoft Holo Lens 2 outfitted with IR markers for
motion capture.

content into the physical world is Microsoft’s Unity World
Locking Tool. As outlined in Microsoft’s documentation, the
tool utilizes fixed spatial anchors in the real world to keep
digital content and virtual objects in a fixed location relative
to the physical environment. This allows for “world-locked
experiences” where digital elements remain in the same
spatial position over time, maintaining the spatial continuity
necessary for collaborative experiences [37].

G. Digital Twin Generation

Industry 4.0 requires critical components such as cyber-
physical systems (CPS) and digital twins to adapt to emerg-
ing technologies [38]. CPS utilizes computerized replicas
of physical objects, or ‘digital twins’, to integrate virtual
and physical environment assets [39]. In Choi et al., the
combination of deep learning and digital twin generation
enables real-time measurement of safety distances and en-
hances task assistance and effective collaboration [40]. In
other works that use AR glasses, the digital twin, providing a
synchronized virtual representation of the real robot, plays a
crucial role in enhancing safety and providing the participant
with a preview of the robot’s actions during HRC [41], [42].

H. Contributions

This research aims to investigate the usage of augmented
reality in increasing situational awareness in human-robot

collaboration when the human’s vision of the robot is ob-
scured and auditory cues are undetectable. This work inves-
tigates a heads-up display application using the Microsoft
HoloLens 2 and a situation that simulates a manufacturing
environment with a high noise floor. The study uses the
SAGAT method to analyze and evaluate the impact of the
application on situational awareness and the confidence of
human participants. We focus on the analysis of applications
without auditory cues, such as factory and hard-of-hearing
workers, using motion capture and digital twin creation to
present spatial information and evaluate the participant’s
perception of their surroundings with augmented reality. This
is a preliminary study with 10 participants, intended to gather
exploratory data to determine the viability of such an AR
system for the improvement of HRC environments.

II. METHODOLOGY

The overarching goal of these experiments is to evaluate
the impact of using augmented reality to provide positional
information of the end-effector of a robot during a collabo-
rative task and assess the change in the human participant’s
situational awareness.
To analyze participant situational awareness, this exper-

iment uses a UR-10 collaborative robot, OptiTrack motion
capture system, the Microsoft HoloLens 2, and the SAGAT
method as outlined in the flowchart to determine the human’s
estimate of the relative location of the robot end-effector and
compare it to the ground truth.

A. Experimental Setup and Design
The physical setup imitates an automated assembly line

scenario, consisting of four stations labeled A-D, a conveyor
belt, a Sawyer robot, a UR10 cobot, 13 motion capture
cameras, and 3-piece parts, positioned as shown in Fig. 3A.
The task of the human participant is to walk from station to
station, gathering each piece from stations A-C and placing
the assembled part in station D, as shown in Fig. 3B, where
they must answer a short questionnaire on an android tablet.
This occurs as the UR-10 robot moves the second piece
from the conveyor belt where it was deposited by Sawyer
to the second bin, creating an overlapping HR workspace as
shown in Fig. 4. An adjustment to the experiment requires the
human participant to rearrange the stacking order of two 3D-
printed blocks located at each station, which are all oriented
to direct the individual’s attention and vision away from the
UR10 robot.
The entire workspace is visible to the Motion Capture

system and a Digital twin of the environment is modeled
with Unity game engine and deployed on the HoloLens 2.
To accurately reflect the physical location of the robot in the
virtual plane, the HoloLens 2 system’s Unity world-locking
tool is used to assign virtual coordinates to the robot base
through the virtual projection of a pre-established mold of
the robot which is matched to reality using fiducials (QR
codes) around the room, shown in Fig. 5.
The informational augmented reality display presents the

angular position of the end-effector of the UR-10 robot
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Fig. 2: Flow Chart of Positional Information and Processing.

Fig. 3: Example of Participant Performing the Task

Fig. 4: Overview of the Shared Human-Robot Task [43]

relative to the head position of the wearer of the Hololens 2
device. This is done in the form of a chevron arrow which
rotates in a fixed position in the center of the display, as
shown in Fig. 6.
This requires reliable projection and determination of

spatial data from the physical to the virtual space to allow
calculations and visualization. An angle ωr, representing the
relative angle projected onto the flat plane of the ground (x-y
plane) from the participant’s head to the location of the robot
end-effector must be determined. To do this, we used the
transform obtained from the Human head pose as the local
reference frame where the forward direction of the Human
heading vector εH where the x-axis represented by Hx and
their left direction is the y-axis represented by Hy . This can
be obtained both using the motion-capture system or through
the unity game engine. We can then find the relative vector

Fig. 5: Using Fiducials to align digital and real worlds.

from the tool to the local frame of the Human head, this is
represented by εT . This information is also available through
both systems. The relative angle projected on the ground plan
can then be obtained by using the atan2(Tx, Ty) function.
A visual representation of this is shown in Figure 7.
By tracking the head position of the user, and the position

of the end-effector in the virtual world, we can compute the
necessary rotation values which inform the rotation of the
chevron to point towards the robot on the viewable plane.
Built-in Unity functions combine the vectors of the forward
of the head, left-side of the head, and direction from the head
to the end-effector in 3D space to create a rotation matrix and
obtain quaternions, which are representations of rotations in
3D space. Using these operations the physical information is
converted into the real-time on-screen directional indicator.
Based on the Situation Awareness Global Assessment

Technique (SAGAT), the participant must cease all activity
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Fig. 6: Display visible to Human Worker through the HoloLens 2 application.

Fig. 7: Calculation of ωr which is the projection of the
relative angle between the Human and robot tool on the x-y
plane.

related to the part assembly at random intervals and fill out
a survey from a tablet carried in a pouch on their person
[20]. This survey contains pre-determined questions about
the position of the UR-10 robot, intending to assess the
comprehension (Level 2), and projection (Level 3) levels
of situational awareness, as shown in Fig. 8. Questions
regarding Level 1 have not been included as any assessment
of SA-2 and SA-3 requires adequate Level 1 perception
[20]. The robot is temporarily halted at unspecified intervals
independent of the human’s pause to eliminate cognitive
prediction of the end-effector affecting the results. The
participant answered these questions by dragging the blue
dot or the purple arrow, and submitting a confidence score
of their responses. This data is time stamped and stored to
be later compared with the ground truth obtained from the
motion-capture system.
Along with their responses, participants indicate their

confidence in their answers on a ’Likert’ scale from 0-5,
with 0 representing low confidence. Upon completion of the
survey, the participant resumes their task, and the operator
resumes the experimental conditions. Participant responses
are meticulously recorded and compared with ground truth
data, the collection and assessment of which are discussed
later.
To simulate more accurate automated factory settings, each

participant wears a pair of earbuds designed to provide 26
decibels of sound reduction to eliminate auditory perception
of the robot. Therefore, to indicate the pause of the experi-

Fig. 8: Questions on Levels 2 and 3 of SA presented to the
Participant.

ment, the visual display of the headset is changed to that of
a red box, as shown in Fig. 8. It should be noted that there
are different active-state displays for the two types of trials,
with Augmented reality (AR) and No Augmented Reality
(NAR). One provides the discussed real-time visualization
of the UR-10 robot’s end-effector position relative to the
participant’s head position as seen in Figure 6. On the other
hand, the NAR experiment has no activity other than the
freeze stimulus showing up when needed.

Fig. 9: Stimulus for a Freeze request by showing a red box.

The actual location of the end-effector must be obtained
in a way that could be compared to their perceived response
from the SAGAT questionnaire. To determine the true loca-
tion of the robot relative to the participant’s head position, we
utilized the OptiTrack Flex 13 motion capture system. The
system uses 13 cameras positioned around the workspace and
is calibrated using the projection of a rigid body from the
helmet. This allows the motion capture system to determine
the position of the person, more specifically their head in
the helmet, relative to the workspace. Since the base of the
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robot is fixed, using the base link position of the robot from
motion capture, we can also determine the position of the
tool of the robot in the universal reference frame.
The participant’s responses are time-stamped when col-

lected, which allows us to assess the accuracy of the par-
ticipant’s subjective estimate of the location of the robot’s
end-effector relative to their body. This requires the trans-
formation of the 2D indicator location on the tablet screen
to a ground-plane estimate of the projection of the path from
the participant’s head to the location of the end-effector. The
pixel size of the indicator relative to the workspace repre-
sentation on the app allows a realistic degree approximation
of their response in the real world as shown in Figure 7.
Using similar projection processes and equations as the

ground plane analysis used for the AR display, and the
time stamp of each recorded response, we can find accurate
relative data between the human and the robot at every
moment in both the real and virtual worlds. This enables
this system to be able to run without the motion capture
system in a real-world application scenario.

B. Data Collection

The comprehensive experiment comprises six trials, three
completed with the AR app enabled, and three without the
additional informative display. Importantly, the sequence of
these trials is randomized. Collected responses from the
SAGAT queries are saved with the exact standardized time
stamp when they were submitted, and this is used to draw
ground-truth positional data at that point in time from the
motion capture system. The approval for Human subject
research was granted by Rochester Institute of Technology
(approval number: 21081267).

C. Hypothesis and Metrics
1) The Augmented Reality display provides an advantage

that allows workers to estimate the position of the
tool more accurately. Associated Metric: ’Error in
Perception’

2) While using Augmented Reality, when the robot is
not directly visible to the workers, they can determine
the direction in which the tool moves more correctly.
Associated Metric: ’Percent Correct’

3) The workers feel more subjectively confident that they
know the current position of the tool of the robot
when utilizing Augmented Reality. Associated Metric:
’Subjective Reported Confidence’

4) The workers spend less time reporting the SAGAT
Level 2 and 3 responses when given an Augmented
Reality display. Associated Metric: ’Time taken to
respond to SAGAT questions’

III. RESULTS AND DISCUSSION

The experiment involved 10 participants, each assigned
to one of two experimental conditions: Augmented Reality
(AR) and No Augmented Reality (NAR). The participants’
demographic characteristics. All were of normal hearing, 75
percent were men, 25 percent were women, 75 percent were

graduate students, and 25 percent were undergraduates. All
reported that they were familiar with technology, but did not
have a lot of familiarity with robots as used in this task.
Figures 10-13 showcase worker performance in the two

types of trials over the described metrics. The bar charts
depict the average performance of the participants over the
two types of trials and the error bars show the range of their
performance. It can be seen that except for Participant 5, all
participants were able to tell the position of the tool of the
robot more accurately when provided with the Augmented
Reality display. Similarly, all but one participant were better
at determining the direction the tool of the robot was moving
in when. All participants felt more confident in reporting
the position or the direction of the robot with Augmented
Reality. Most participants spent less time answering the
questions when using Augmented Reality.
Figure 14 shows Contour Plots of Multivariate Gaussian

Distributions for AR and NAR tasks for the best-performing
participant, the worst-performing participant, and the data of
all the participants combined. The x-axis represents worker-
reported confidence values and the y-axis represents the error
in the user-reported angular position of the robot tool.
Based on the visualization, it is clear that the maximum

probability density occurs when higher confidence is re-
ported. In addition, the worst, best, and all participants all
show lower error difference values using Augmented Reality
vs not using it.
Table 1 shows the statistical significance of each of these

metrics.
The T-statistic indicates if there is a significant difference

in metrics between the compared groups AR and NAR.
Higher magnitudes of T signify larger differences between
groups. However, the P-values lower than 0.005 indicate
strong evidence against the null hypothesis, suggesting that
the observed difference is not due to chance.
Based on the data in Table 1, we can say that there

is a significant difference in ability of worker to correctly
estimate the position and the direction of the robot tool
when it is in their blind spot and they feel more subjectively
confident when using Augmented Reality. However, there is
not enough evidence to suggest that they are able to answer
the questions about the position and direction of the tool
quicker when they have Augmented Reality vs when they
do not.

TABLE I: Statistical Significance of Metrics

Metric T-statistic P-value

Average Perception Error -3.5871 0.002106
Percent Correct 2.4179 0.02643
Mean Confidence 4.0171 0.008085

Mean Response Time -1.7847 0.09115

IV. FUTURE WORK AND CONCLUSION

The findings and limitations of this preliminary study
create many possible potential avenues for future research
to broaden our understanding of user experience in HRC
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Fig. 10: Average Perception Error by Par-
ticipant and Experiment Type.

Fig. 11: Percent correct by Participant and
Experiment Type.

Fig. 12: Mean Confidence Level by Par-
ticipant and Experiment Type.

Fig. 13: Mean Response time by Partici-
pant and Experiment Type.

dynamics and enhance the design and implementation of
these scenarios in real-world applications. It can be seen
from the data that Augmented Reality provides an advantage
to workers by enabling more accurate estimation of the tool
position of the robot without visual or auditory cues.
Although outside the scope of this paper, which focuses

on augmenting situational awareness, we also collected sub-
jective responses from each participant following the Russel
Circumplex Model of Emotion [44] and NASA-TLX [45]
to assess differences in valence and arousal, and cognitive
workload caused due to the use of the augmented reality.

(a) Participant with the least performance: Ability to
predict tool position correctly

(b) Participant with the best performance: Ability to
predict tool position correctly

(c) All Participants: Ability to predict tool position correctly

Fig. 14: Contour Plots of Multivariate Gaussian Distribution
for AR and NAR Tasks

We are currently continuing experiments with a much larger
and broader sample size, including individuals of a broader
age range who are non-engineers, or hard-of-hearing. We
intend to compare their perception models and human-robot
interaction experiences. In addition, the replication of this
system in a more accurate industrial setting may reveal
practical challenges and opportunities for augmented reality
in HRC. This system may require a risk assessment for AR-
equipped collaborative automated settings [46]. Although
promising, further and more extensive testing is needed
to present AR displays with positional information as an
acceptable improvement to HRC in industrial settings.
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