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Abstract— This paper proposes a novel a
channel 3D lidar data for safety in a phy
Interaction (pHRI) scenario. To achieve {
experiments were conducted to mimic a
environment. Data was collected from a
participants while performing pre-determin
workspace with the robot. A perception pip
that leveraged reflectivity images, signal in
images, and point-cloud data from a 3D 1
then used to perform safety based contr
the speed and separation monitoring (SSV
to support the perception pipeline, a sta
detection network was leveraged and fine
is provided along with results of the perce)
based controller.

I. INTRODUCTION

Industry 4.0 has significantly increased the integration
of point rich perception sensors into industries including
manufacturing, supply chain, warehousing, medical fields,
and construction [1]. The integration of these sensors has
expanded the automation capabilities of these fields. A key
sensor technology integrated across these fields has been
lidar. These sensors provide two dimensional and three
dimensional information about the environment around them
and have been used to detect objects, obstacles, and humans
through processes and tasks going on in the workspace
around them [2]. With the data provided by lidars, the in-
dustry has been able to implement more complex algorithms
and autonomous approaches within their fields. This includes
the rise of autonomous vehicles, autonomous space vehicle
landings, automated guided vehicles (AGVs), unmanned
areal vehicles (UAVs), and collaborative robotics applications
[3]-[7]. Throughout the past decade, both the algorithms and
sensors have continued to see significant innovations.
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Fig. 1. An image showing different stages of the experiment setup used in
this work. In image “A”, the layout of the robot workspace is shown along
with the exteroceptive sensors used in the setup (encircled in red and white).
In image “B”, the test subject is wearing a motion capture body suit for
acquiring minimum distance associated with the human and robot. In image
“C”, the participant is wearing a reflective vest and reflective hardhat.

Time-of-Flight (ToF) cameras have begun to increase in
depth resolution, it has become easier to calculate depth
for stereoscopic cameras, and millimeter wave radar has
begun to be used for human tracking applications [8]-[11].
Though there has been a diversification in perception options,
lidar remains to be a commonly used sensing method across
industrial and research applications [12]-[15]. In the past
few years, there has been releases of new lidar products lines
which bring new innovations to the perception platform. One
product line example was released by the lidar manufacturer
Ouster. The “OS” series of lidars includes the OSO, OSI1,
0S2, and OSDome. Along with various viewing angles and
data channels, this product line generates four 2D image data
modalities formed from the traditional 3D point cloud the
lidar generates [16]. The four frames are range, signal, Near-
IR (infra-red), and Reflectivity frames. The Range frame
provides a per-pixel ToF distance calculation from the sensor
origin to the pixel in the Range frame. The Signal frame
provides the light return strength per pixel in the frame. The
Near-IR frame provides the light return to the sensor per
pixel that was not generated by the laser emitter local to the
lidar. This frame measurement is similar to a monochrome IR
return from a traditional image sensor. Lastly, the reflectivity
frame provides the reflectivity strength per pixel. This frame
provides key data on the reflectivity of materials and surfaces
in the environment. The significance of Ouster including
these frames in addition to the traditional point cloud is that it
allows existing 2D machine learning algorithms to be directly
applied to the 3D lidar data [16]. Hence, by leveraging the
data provided by the channels, we aim to make the following
contributions:
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1) Develop a lidar based dataset with multiple participants
with varying clothing and body shapes in realistic
shop-floor conditions.

2) Demonstrate a successful use of the data collected by
training a state-of-the-art object detector with valida-
tion and testing.

3) Propose an improved formulation of the algorithm pre-
sented in [17] to compute the directed robot velocity.

II. LITERATURE SURVEY

2D frames of 3D lidar point clouds have been used
in a number of research fields. This includes [18], where
the reflectivity image was used to correct drone odometry.
Additionally, [19] fuses the multiple modalities to increase
3D object detection performance. These alternate frame data
formats have also been used in the automotive field to test
segmentation of humans, vehicles, and other traffic objects
without the use of a traditional CMOS image sensors [20].
In these different applications, there are plenty of previous
works that illustrate a sufficient approach for feature extrac-
tion and data formatting to feed image based classifiers and
algorithms. With the dawn of Industry 5.0, it is imperative
for lidar to maintain compatibility with 2D machine vision
and machine learning algorithms such that lidars match the
performance of other perception systems used across industry
[21]. Industry 4.0 setup the infrastructure of digitally driven
and automated processes, Industry 5.0 pushes researchers
to look deeper at these processes and their impact on the
human individuals who must coexist with this infrastructure.
A key research area that will continue to be a focus area in
Industry 5.0 is Human Robot Collaboration (HRC). In this
field, the pose of the worker, distance from worker to robot,
and trajectories of the human and robot in the workspace are
vital to increasing the safety and comfort of the worker [17],
[22], [23]. Speed and separation monitoring (SSM) is one
of the four major collaborative approaches identified in the
International Organization for Standardization (ISO) standard
ISO/TS 15066:2016 [24]. In the field of SSM research, a
number of different sensor configurations and modalities are
considered including ToF cameras, stereo cameras, mmWave
radars, ultrasonic sensors, and lidars [23]. Lidar was the
primary sensor used in the early years of SSM research
[25]. As innovations in computation and perception have
progressed, the other perception modalities have seen a rise
of use in the field. To track the human in the scene, it is
crucial for the image based perception systems used in an
SSM setup to feed data to convolutional neural networks
(CNNs) [26]. This localization of the human in the frame
enables the computation of minimum distance data needed
for an SSM algorithm. With the Ouster OS-0-32, the lidar
data can also be used to directly feed CNN based algorithms
for human position, and pose tracking.

In this paper, frame based lidar data is directly used to
train a YOLOV9 [27] model in contrast to traditional methods
which require raw 3D point cloud processing and mapping
prior to the input into a neural network. Additionally, the data
captured in this work consists of diverse body shapes and

clothing material in an industrial environment. Furthermore,
the data and model is applied to a simple, generalized SSM
algorithm which outputs a safety distance and an operational
velocity scaling factor. Lastly, the paper explores the viability
of a vertical and horizontal field of view (FoV) lidars for
safety based applications. The dataset, and trained model will
be shared in the future for the research community.

III. METHODOLOGY

This section covers the various components involved in the
experimental process illustrated in Fig. 1. The goal of of the
setup was to explore the usage scenarios for 3D lidars such as
the Ouster OS-0-32 in an industrial shop floor environment.
This environment was comprised of mostly static objects
(workbenches etc.) with a limited number of dynamic objects
(humans & robots) within the lidar FoV.

Lidar Sensor

((Ouster 0S0 3D LiDAR |
Point Cloud

Robot Motion Capture System
[ Robot HW (UR10) ] { OptiTrack Cameras ]

Range Frame
Signal Frame
Near-IR Frame
Reflectivity Frame

Robot State Rigid Bodies + Markers

((ROS-Ethernet Interface ) (ROS-Ethernet Interface | (ROS-Ethernet Interface )

Joint States LiDAR Data Processing

Safety Controller Pre-processing

Frame Transformation

YOLOv9

Speed Commands

Human body geometry

3D data

Fig. 2. Control schema showing the complete system, our communication
is powered by Robot Operating System (ROS).

A. Setup & Calibration

In this step, the focus was on achieving a time synchro-
nization between the heterogeneous data streams emanating
from the lidar sensor, motion capture, and the robot control
box as shown in Fig. 2. Synchronization relied on a local
high speed Ethernet based network that exhibited an average
latency of approximately 0.25 milliseconds (round-trip time).
Therefore, it was assumed that the delta time between the
time of arrival of data packets and the time of origin was
negligible. Finally, an asynchronous time synchronization
on the various streams was performed. The inter-stream
time delta of the synchronization was 5 milliseconds. In
the calibration procedure, the main goal was to obtain the
rigid body transformations of all the sensing data in a
common reference frame. Customized rigid body marker-sets
we developed for the motion capture system. These marker
were affixed to the lidar, pedestal of the robot, and also on
the skeleton tracking body suit worn by a human participant.
This step provided a coarse calibration, however, for a better
estimate of the lidar extrinsics an optimization based point-
set alignment was used as shown in [28].

B. Data Collection and Labeling

Once a synchronized and calibrated setup was achieved,
the incoming data was recorded over the network on a local
disk storage. The following data fields were focus on:
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o Lidar Data at 20 Hz: Point-cloud, Refelectivity, Signal,
Near-Infrared and Stacked images
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Fig. 3. Clean samples of the reflectivity, signal, near-IR, and a depth-wise
stacked image of the first three. The annotation is overlayed on the grayscale
images in black and in green on colored images.

After the data was collected, it was then processed for
labeling and downstream tasks such as low-level image
processing and classification as seen in Fig. 3. The bulk of
processing comprised of pre-processing steps applied to the
lidar point-cloud, and image quadruplet obtained from the
lidar data. First, the lidar point-cloud images were “destag-
gered” as mentioned in the documentation provided by the
manufacturer in [29]. The main idea behind this step was to
remove the time offset from each element of the lidar data
(point-cloud and images). Afterwards, the image quadruplet
was subjected to bit depth down-sampling from 16-bit to
8-bit image data. As the image resolution was 1024 x 32,
the images had to be resized to 1024 x 256 by applying
bi-linear interpolation. The images were then subjected to
auto-exposure adjustment and histogram equalization as part
of pre-processing. The images were then annotated in a semi-
automated fashion with bounding boxes in MSCOCO format
[30]. For semi-automation, the static nature of the environ-
ment was exploited to remove a large number of points by
background removal and applying statistical outlier rejection
on the remaining points. Afterwards, noisy bounding-box
labels were generated by re-projecting the non-stationary 3D
points into the images. Ultimately, the bounding boxes were
hand tuned.

C. Network Training and Inference

The YOLOV9 [27] object detection network was selected
to annotate bounding boxes around the human body shape
in the lidar data (to image quadruplet only). For this step,
two datasets were developed from the data collected during
multiple experiments. The two variants comprised of single-
channel annotated reflectivity images and multi-channel an-
notated images where reflectivity, signal, and near-infrared
images were stacked depth-wise forming a tensor. It must
be noted, that the images in the datasets represented only
a subset of the total data recorded during the experiments.
A larger full version of the dataset will be made available
for the research community. Fine tuning was performed on a
pre-trained variant of YOLOV9 called “YOLOv9-C” that had
fewer parameters than the largest YOLOVY variant called

“YOLOv9-E”. The network was selected due to it’s state-of-
the-art performance and efficiency as shown in [27]. Both
datasets consisted of 14,000 annotated images, the dataset
split was selected as 80% training and 20% validation.
For testing, new dual variants of single-channel and multi-
channel datasets (comprised of unseen data by the network)
were prepared. As safety is one of the key challenges in pHRI
[22], it is important to analyze every labeled and unlabeled
image by the network at inference time to determine its
suitability in a high stakes scenarios. Therefore, the test-set
created was representative of one full trial performed by a
human subject during the experiment, and validated using
the fine-tuned network. For training, the stochastic gradient
descent (SGD) optimizer with a momentum of 0.937 was
selected. The batch size and epochs were chosen to be 16
and 50, respectively.

D. Human point cloud extraction

In this phase of the pipeline, the annotations provided by
the aforementioned network at inference time were used. As
the spatial structure of the lidar frame (comprising of point-
cloud and image quadruplets) allowed for a bi-directional
mapping between the images and the point-cloud. The
bounding-box rectangles were projected into a corresponding
point-cloud and points external to the region of interest were
pruned as seen in Fig. 4. This reduced the total number of
points from 1024 x 32 to approximately 20 x 50 (based on
the largest possible size of the bounding box). Then, plane-
segmentation and DBSCAN [31] clustering were used to
extract the points associated with the human body shape.

Fig. 4. An image showing human shape geometry extraction using a point-
cloud along with a bounding determined from a reflectivity image. Points in
blue represent the human body, points in black are rejected as background.

E. Speed and Separation Monitoring Algorithm

The method towards the implementation of the Speed and
Separation Monitoring (SSM) was derived from [17]. This
work defines the 3D geometrical (in a common reference
frame as the robot) representation of the human operator
in the workspace. A scene graph was constructed with
convex decomposed geometries and closest pair of point
queries between the human and the robot were performed.
The algorithm of choice for such tasks was the “GJK”
algorithm [32] which is widely used for such applications.
The closest pair of points allowed for the computation of the
minimum distance vector. This vector was used to compute
the protective safety distance (threshold or a barrier around
the robot) to trigger the robot stop behavior. As stated in
[24] and [17], the speed and separation monitoring equation
is given by (1).
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Ssafety(tO) - ‘/}Lunmn'(t7'+ts)+‘/robot'tT'+C+Zs+Z7' (1)

Zs & Z, represent the position measurement uncertainties
for human and robot respectively. These values were obtained
from the datasheets of the robot and the exteroceptive sensing
equipment used. C' is the intrusion distance which is defined
by [33]. In essence, it represents the threshold at which an
obstacle is successfully detected. ¢, and ts represent the
control loop processing time and the time required by the
robot to come to a full stop, respectively. These time values
could also be obtained from the robot’s (UR10) datasheet
or empirically estimated. The robot stopping time ¢4, can
also be tuned but should be lower bound by the worst case
stopping time. To achieve jerk free stop behavior, the online
trajectory generation library [34] was used.

As governed by the standard [24], most terms in the
equation can be substituted with constants, the only quantity
which is non-trivial to compute is V,.opot. Thus, Algorithm
1 is proposed to compute the directed velocity of the robot
towards the human based on velocity kinematics of the robot:

Algorithm 1: Algorithm to compute directed V,.opot

Illpllt: Phuman’ P’robota Wmaa:

Routines Used: jacobian,is_valid,normalize
Output: V.5, in direction of the operator

S <~ Phum,an - Probot

Z=1(0,0,1)T

if is_valid(S) then

f = normalize(S)

r=2Zxf
i=fx7
wT, = (gggl)mibot)

hvr = wTh71 ' thwist}
|

Vrobot = Sign(th<Z>) '
return Viopot

ey

else
L return NaN

S is the the human-robot minimum distance vector computed
from the 3D point pair Phyman & Probot- f 7 & U are
normalized vectors representing the right-handed coordinate
system. “T, is a homogeneous transform representing P.opot
along the z-axis (pointing forward) in world (w) coordinates.
“viwist 1 the instantaneous twist directly computed from the
joint velocities q of the robot and jacobian J, 4+ from joint
positions q. It is then represented in matrix form to compute
the twist frame in the direction of the human. Ultimately,
Viobot 18 computed by using the elements along the z-axis as
a signed scalar. Finally, V;.,p0+ can be substituted in (1) to ob-
tain the safety distance, S,qfety. The magnitude of minimum

distance vector || S| and S, fety can be used to compute the
speed scaling commands sent to the robot controller by (2).
As compared to [17], Algorithm 1 presents a more general
formulation that computes the instantaneous directed velocity
using the joint velocities instead of leveraging link velocities.
This approach also bypasses ellipsoid approximations of the
robot geometry as done in [17]. Furthermore, the human-
robot minimum distance is directly computed with respect
to the entire shape geometry of the robot. While in [17], the
minimum distance was computed between the human and
the link centroids of the robot. Furthermore, for computing
the term to scale the robot’s operational speed the following
formulation was used

maz(|| S|l = Ssagety, 0)
Winax

Such that pscqring € [0,1] and W4, is the distance limit
in meters for the robot workspace beyond which sensor
readings are clamped. pscaling can be used to uniformly scale
the joint velocities q of the robot also shown in [17].

2)

Pscaling =

IV. EXPERIMENT
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Fig. 5. Flow diagram of the experiment performed as prescribed by the
authors in [35]

Fig. 5 depicts the experimental configuration of distinct
tasks allocated to both the human and the robot in an assem-
bly line. Specifically, a collaborative robot was responsible
for extracting a component from a pallet and depositing it
onto a conveyor belt. Subsequently, a UR-10 robot retrieved
the necessary component from the conveyor and situated
it within a bin accessible to the human operator, both the
human and UR-10 coexisted within the same workspace.
There were four stations in the shared workspace. The
human worker walked to each of these stations completing
the assembly of a PVC coupling. One of these parts was
provided by UR-10. Once the assembly of a single part was
completed, the human was required to deposit the item at
a designated location and perform an arbitrary task at the
same station. This process was repeated 24 times in one trial.
A lidar captured point clouds and multi-channel imagery
throughout the experiment. Each worker participated in 6
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trials, in 3 of those trials, they were required to wear a
high visibility jacket. Additionally, the entire workspace was
monitored with a motion capture system which possessed 13
cameras that flooded the workspace with 940 nm infrared
light.

V. RESULTS AND DISCUSSION

A. Dataset

The experiment involved 17 participants, 29% of the
participants were of female sex and the remaining 71% were
of male sex. The variety of clothing, fabrics, and colors
worn by participants were recorded. A world-cloud image
to represent this diversity is illustrated in Fig. 6. The most
common clothing color, fabric, and type were black, cotton
and jeans with hoodie, respectively. This gave a minor insight
that clothing worn by operators in shop-floors could also be
dark in color and of cotton material. Hence, a lidar should be
able to detect these materials based on any arbitrary surface
reflectivity exhibited by them.

Participant Distribution
P12(24y)
P7(23y) P“m)

o 1.8- P5(31y)
E P3(28y)
% Pg(1on)
S P14(25y)
— 1.7 P ¢
- 1&@? P2 P13(21y)
<
&0 P10(27y)
[}
T 16-

O3

®Po(27y)

50 75100 125
Weight (kgs)

Fig. 6. A plot and word-cloud showing the participant attribute distribution.
Left: the weight-height and age distribution of the participants. Right: a word
cloud showing a distribution of clothing types, materials and colors.

The weight of the participants ranged from 49 kg to
136 kg, and the height ranged from 1.5 m to 1.85 m as
shown in Fig. 6. It is vital for any learning based model
to be aware of varying body geometries in a shop-floor
environment. The approval for Human subject research was

B. Quantitative Results

The two previously mentioned datasets were used to train
the YOLOV9 object detector in a binary detection mode. The
validation curves during training session are shown in Fig. 8.
During the “multi-channel” training it was observed that the
YOLOV9 network converged faster and exhibited a higher
mAP50-95 validation score.

YOLOV9 Transfer Learning Metrics

-~ === Single Channel 0.7~ “ === Single Channel
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Fig. 8. Plots showing the validation metrics during YOLOV9 fine-tuning

on the datasets prepared namely Single-channel & Multi-channel datasets.

After training the network, inference was performed on un-
seen lidar sequences of 12,500 samples for both variants. In
Fig. 9, it was observed that the “multi-channel” variant per-
formed approximately 1% better than the “single-channel”
variant. However, it was noted that the classifier confidence
during inference was more robust during ‘“‘single-channel”
inference. On analyzing the spread of the confidence values
of the classifiers, it was found that the multi-channel detector
was measurably less certain than the single-channel variant.

Multi—channel

Single Channel

Human Background Human Background
Human 11549 (98%) 184 11685 (99%) 392
Predicted | Background | 207 (2%) NA 67 (1.0%) NA

granted by Rochester Institute of Technology. (Approval
number: 21081267)

After the data collection, pre-processing was applied and
the training and validation sets (for “single-channel” and -
“multi-channel””) were prepared with about 12,000 and 2200
images, respectively. Fig. 7 is an example of images fetched
from the dataset.

Single-Channel YOLOV9 Inference Result
: Qi hed

i R

Confidence
)
>
Confidence
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Sample #
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tﬁnm'i.',_:;‘- Sample #

AR
W5
s R b

Fig. 9. Figures showing inference examples, confusion matrix, and
confidence scatter plots on the test sets.

Fig. 7. Tiled layout of 18 samples randomly drawn from each training
dataset. Left: a snapshot of the single-channeled dataset built with reflec-
tivity images. Right: a snapshot of the multi-channeled dataset built with
depth-wise concatenation of reflectivity, signal, and near-infrared images.

To measure the accuracy of the lidar for pHRI scenarios,
the closest pair of points between the human operator and the
robot were recorded with the lidar and the motion capture
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system as seen in Fig. 10. For the on-robot base mounted
3D lidar, the root mean square error (RMSE) was more than
4 times lower than on-robot time-of-flight sensing rings in
[17]. The margin of error was found to be lower bounded by
3mm as reported by the manufacturer.

Lidar ToF Rings [17]
RMSE (m) | 0.0605 0.25
TABLE I

RMSE COMPARISON FOR LIDAR AND TIME-OF-FLIGHT SENSING RINGS

E Lidar vs Groundtruth

g 9- === Ground Truth
3 —#— Lidar

o P

a

£

E

S 0 5 10 15 20 25

Time (sec)

Fig. 10. Plot showing the minimum-distance comparison between data

acquired from the lidar and motion capture system overlay-ed on top of
each other.

The results from the safety algorithm are presented in
Fig. 11. A 25 second(s) long recording of the results was
analyzed; the directed robot velocity V,.,p,: Was found to
be proportionally tracked by safety distance Sgqfery due
to its linear dependence on the prior. Viyman Was set to
1.6m/s (prescribed by [24]) and the remaining terms in (1)
were construed from the robot’s datasheet. Between 18.5
and 19.0 seconds, the speed scaling term pgcqiing decayed
when the minimum distance ||S|| violated or tended towards
Ssafety. It should also be noted that pscaring Was always
below 0.5, as the human subject was always within 1.5
meters (< Wi,qz) of the robot. Furthermore, even though
there was no smoothing and filtering applied to the data, ||S||
computed from lidar data was smoother than in [17], where
an exponential filter was used. As filtering can introduce time
delay in the controller, which is considered a risk in safety-
centric scenarios. Therefore, leveraging a system (lidar) that
can provide data at high sampling frequencies and low noise
is vital.

C. Qualitative Results

During data collection, it was observed that the response
of the lidar was poorer in certain scenarios where the
participants were wearing significantly darker clothes even
in close proximity to the robot. It was found that the
reflectivity and range images provided by the lidar exhibited
the presence of holes. As a consequence, the point cloud
lacked the 3D information associated with the human’s shape
geometry (points were missing from the point cloud). This
phenomenon is illustrated in a side by side comparison
shown in Fig. 12. It should be noted that in the left half
of the figure, the participant was wearing a high-reflectivity

vest with black cotton garments underneath. Only the points
associated with the reflective vest were reported by the lidar.

Fig. 12.  On left, lidar reflectivity image with holes with its corresponding
3D point-cloud in perspective view. On right, a healthy sample of the
reflectivity image with its 3D point cloud.

Another limitation was observed, wherein the “multi-
channel” variant performed poorly after the floor layout
changed. This limitation is shown in Fig. 13, this can be
explained due to a distribution shift, the network is biased
directly on the metrics associated with the photons scattered
in the environment. The colored patches in the image can also
create ambiguous textures that can confuse the network. It
should be noted, that in this image the participant is wearing
a reflective vest. This can be also be addressed by a higher
resolution lidar such as OS-0-128 where the base resolution
is 1024 x 128, hence the effect of up-scaling will not create
aliasing artifacts.

Fig. 13. A miss-classification performed by the “multi-channel” variant due
to room layout change and ambiguous texture patches in the input image.
The correct bounding box is drawn in a dashed bounding box.

Fig. 14 shows the monotonic nature of the lidar recordings
on the left. This can cause a rolling shutter effect; while
the lidar records at relatively high frequency (at 20 Hz), it
may be susceptible to creating artifacts if an object in the
frame moves fast enough from one point to another before
the entire frame is scanned. This may create a situation where
the moving object appears to have teleported in the recorded
frame. Swiftly moving objects can also appear distorted as
they may have been recorded at staggered intervals.

To hypothesize an explanation for better validation and
inference performance by the “multi-channel” variant, the
structured similarity index metric (SSIM) matrix was used.
As shown on the right hand side in Fig. 14, the relative
SSIM of each image type is significantly below 1.0, there is
a likelihood that the network can extract additional features
from the added channels. If the features were redundant,
the relative SSIM (the matrix elements would diffuse more)
would be closer to 1.0. On the other hand, the Near-IR
channel nominally tends to exhibit higher ambient noise than
other images. This could explain a much lower SSIM value
for Near-IR with respect to reflectivity and signal channels.
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Time series (25 seconds) plots showing the results of the directed robot velocity computation (bottom most in blue) towards the human along

with the minimum distance (top in black), safety distance threshold (second from top in red) computed with the SSM Equation [24] and the speed scaling
factor (third from top in yellow) used for modulating the operational speed of the robot.
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Fig. 14. Left, the timestamps of the sequential readout perform by the

lidar. Right, a matrix showing the relative structured similarity index metric
(SSIM) of the lidar images.

VI. CONCLUSIONS & FUTURE WORK

The on-robot base mounted lidar can significantly out-
perform on-robot time-of-flight sensing rings due to the
3D point-cloud and 2D image data. Furthermore, the bi-
directional 2D < 3D mapping enables for higher level tasks
such as object detection on images and subsequently, region-
of-interest extraction on corresponding point-clouds. This
leads to a more efficient perception pipeline as image based
backend(s) can be used to bootstrap detection networks while
pruning the 3D search space. Also, due to this capability,
we were able to semi-automate bounding box annotation for
our datasets. In the future, this can enable the application of
techniques such as continual learning [36].

The lidar also exhibits some limitations due to the presence
of holes in the image channels which affect the quality
of the point-cloud. Therefore, in a shop-floor it is vital to
wear high-reflective markers such as vest and helmets as
they can alleviate the presence of holes in the lidar data.
Ultimately, we can conclude that the use of the 3D lidar in
close proximity pHRI scenarios is viable, as long as steps
are taken to prevent sensing failures and pitfalls.

For future works, the first step is be to develop a target
network that can directly handle the input sizes provided by
the lidar and is designed to work with 16-bit precision. To
overcome the distribution shift problem, the channel order
can be randomized while also introducing small changes in

the floor layout so that the network becomes more robust.
The changes required would be quite small, as a shop-
floor environment is more static than an outdoor scenario.
Exploring deep learning based image up-scaling techniques
such as [37] and usage of more advanced sensing hardware
(OS-0-128) will also provide us with more reliable inference.
Another downstream task that we are already working is in-
stance segmentation, we are currently working on developing
mask annotation for the lidar images.

For the safety controller, leveraging directed velocity of
the human operator towards the robot will also aid the safety
barrier to be relaxed in situations where the human is moving
away from the robot. As we assume Vj,yman to be a positive
constant, it implies that operator is always moving in the
direction of the robot with a constant velocity. Therefore,
measuring the velocity of the operator in real-time will be
beneficial for robot productivity without sacrificing operator
safety.
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