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ABSTRACT Cloud computing has been a prominent technology that allows users to store their data and
outsource intensive computations. However, users of cloud services are also concerned about protecting
the confidentiality of their data against attacks that can leak sensitive information. Although traditional
cryptography can be used to protect static data or data being transmitted over a network, it does not
support processing of encrypted data. Homomorphic encryption can be used to allow processing directly
on encrypted data, but a dishonest cloud provider can alter the computations performed, thus violating
the integrity of the results. To overcome these issues, we propose PEEV (Parse, Encrypt, Execute, Verify),
a framework that allows a developer with no background in cryptography to write programs operating on
encrypted data, outsource computations to a remote server, and verify the correctness of the computations.
The proposed framework relies on homomorphic encryption techniques as well as zero-knowledge proofs to
achieve verifiable privacy-preserving computation. It supports practical deployments with low performance
overheads and allows developers to express their encrypted programs in a high-level language, abstracting
away the complexities of encryption and verification.

INDEX TERMS Cloud computing, homomorphic encryption, private and verifiable computation, zero-
knowledge proofs.

I. INTRODUCTION (such as financial information and health records). Likewise,

Cloud computing has been rapidly growing and adopted
by many organizations to outsource heavy computations to
high-performance servers that are provided through services
maintained and operated by third parties. This removes
the burden of creating and maintaining costly computing
infrastructure for an organization. Also, it provides people
and businesses with increased productivity, speed and effi-
ciency, and cost savings [57], [59], [67]. However, end users
keep voicing concerns about their sensitive data, as cloud-
level threats can put their privacy at risk. In this case,
a cloud user cannot fully trust a cloud provider; for example,
since the client’s data are stored and processed on the
cloud’s servers, a curious service provider could read the
user’s data. This can potentially lead the service provider to
learn secret information about individuals and organizations
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a curious provider can use their clients’ data for online
advertising [58]. In addition, cloud computing is susceptible
to a variety of cyberattacks including network attacks and
account hijacking [21], [36], [51].

While numerous research efforts have been proposed
to counter cloud attacks [19], [38], [44], deploying these
defenses in practice is limited and doesn’t fully prevent a
curious provider from reading the client’s data. A potential
solution to mitigate these issues is using modern cryptog-
raphy: end users can encrypt their data using algorithms
like AES and upload it to remote cloud servers. However,
this method is only suitable for protecting static data, which
limits usability and prevents the server from performing any
meaningful computation on the outsourced data. But what
if end users need to process their data after being uploaded
to the cloud and also preserve their privacy? In this case,
traditional cryptography cannot help.
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To address this challenge of privacy-preserving computa-
tion on the cloud, we need to employ advanced cryptography
that allows a cloud provider to perform computations directly
over encrypted data without revealing the underlying sensi-
tive plaintexts. A promising solution is Fully Homomorphic
Encryption (FHE), which allows performing meaningful
computations over encrypted data without decrypting it;
specifically, the decryption of a processed FHE ciphertext
equals the output of an equivalent computation over plaintext
data. For example, suppose that a user has two plaintext
values, x and y, and a function F' as in Equation 1:

z=F(x,y)=x+y (1

Here, we assume that the values x and y are confidential,
and the user does not have the computational resources to
compute the function F locally. If the user does not trust
a cloud provider with her data in plaintext, FHE offers a
viable solution. The client can outsource the computation
of F by homomorphically encrypting x and y to x" and
y" and introducing an equivalent homomorphic function F”,
as shown in Equation 2:

d=F'Y)=x"+y @)
and by decrypting 7/, we get x + y, as shown in Equation 3.
Decrypt(Z) =z=x+y 3)

Essentially, as shown in Equation 4, FHE ensures that a
computation over a homomorphic ciphertext is equivalent to
the same computation over the original plaintext.

F(plaintext) = Decrypt(F'(ciphertext)) 4)

Although FHE offers a paradigm-shift in privacy-
preserving computation, it has considerable difficulties
that hinder developers from creating scalable and reliable
trustworthy cloud services. These difficulties include the
correct setup of encryption parameters, translating plaintext
data into ciphertext data, and converting a program that
operates on the plaintext data into a version that supports
ciphertext data. While there are several homomorphic
encryption implementations available [5], [41], [62], they
are not trivial to use without a thorough understanding
of the cryptographic primitives. On top of that, writing
and maintaining a consistent program flow is challenging,
especially considering these libraries offer different APIs
and some of the common programming primitives (e.g.,
loops) are not directly supported. In addition to the
low-level homomorphic libraries, state-of-the-art compilers
have emerged that translate a program written in a
high-level language into its FHE equivalent [12], [29], [30],
[31], [54], [71].

Therefore, FHE has become a powerful new tool for
running computations over encrypted data. However, one
major challenge still remains: how can the users be assured
that the encrypted computation was performed faithfully?
Indeed, a client cannot be sure that all steps of the outsourced
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function were correctly followed; for example, when a client
sends ciphertexts x’ and y’ to the cloud and request to
compute F’(x’,y'), an untrusted cloud server can cheat and
compute another arbitrary function G’(x’,y’). In this case,
the user receives and decrypts the resulting ciphertext, and
instead of getting the sum x + y, she may get the difference
x — y. Verifying that the outsourced computation was
performed faithfully is a serious concern for applications that
involve critical data, such as medical applications informing
decisions on patients’ health. Equally important, Machine
Learning as a Service (MLaas), which refers to cloud-based
services that run pre-trained machine learning models on
demand, has become increasingly popular in the business
sector [33], [64]. An untrusted MLaaS provider can violate
the integrity of a computation, leading to drastically incorrect
results.

To address this challenge, the research community has
focused on creating techniques to verify an outsourced com-
putation without leaking any sensitive data. One prominent
method is zero-knowledge proofs (ZKPs), which are verifica-
tion protocols that allow one party (called prover) to convince
another party (called verifier) that a mathematical statement is
valid without revealing any additional information other than
the correctness of the statement [28]. ZKPs have gained much
attention and improved over the years due to their importance
in verifiable computation [39], [48], [53], [70].

In the cloud computing paradigm, the prover is the cloud
server, the verifier is the end user, and the statement to
be proved is the computation over the encrypted values.
In simple terms, the process works as follows: the user
uploads both the encrypted data and the function that needs to
be executed directly over the encrypted data. The cloud then
performs the computation, generates the computation’s proof,
and sends the encrypted result along with the proof back to the
user. The user then verifies this proof and proceeds to decrypt
the result if the proof is validated. Otherwise, the encrypted
result is discarded.

The presented framework combines the power of fully
homomorphic encryption and zero-knowledge proofs, cre-
ating a trustworthy computing framework, dubbed PEEV,
that enables both private and verifiable computation. In this
context, a user can delegate the execution of a program
processing FHE ciphertexts to a remote server, while also
verifying the integrity of the computation using ZKPs.
Notably, a user does not need extensive knowledge of
cryptography in order to write a program that will be executed
homomorphically by the cloud; instead, the user writes the
program in a high-level language, which makes it easier for
developers, instead of using the low-level APIs provided by
FHE libraries.

A key component in our approach is the translation of
a high-level program into an FHE-compatible arithmetic
circuit. Such a circuit is a blueprint that defines the encrypted
inputs and the computation to be executed. It is no surprise,
however, that creating an arithmetic circuit from high-level
code is an intricate process, as it involves multiple steps,
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from analyzing the program flow and eliminating branches,
to unrolling loops, and optimizing the code (e.g., removing
variables that do not contribute to the final result). PEEV
offers a comprehensive framework that automates key parts
of the process: reading and executing an arithmetic circuit
in FHE, initializing and setting the encryption parameters,
generating and verifying the execution proof, and decrypting
the result. Overall, our contributions can be summarized as
follows:

1) Introducing PEEV, a verifiable privacy-preserving
computation framework that combines the power
of zero-knowledge proofs and fully homomorphic
encryption for secure outsourcing to the cloud.

2) Design of a novel parser (YAP) that automatically
translates high-level code into optimized low-level HE
programs.

3) A novel intermediate representation, Operations List
(OpL), for FHE, featuring an easy to understand syntax,
and compatibility with different HE library targets.

The rest of the paper is organized as follows: Section II
discusses prior works addressing the problem of verifiable
computation, while Section III provides a background
on homomorphic encryption schemes and libraries, zero-
knowledge proofs, and compilers for HE and ZKPs.
Section IV introduces the proposed approach for achieving
verifiable privacy-preserving computation on encryption
data, while Section V describes the implementation details
of the framework. Section VI presents the experimental
results over representative benchmarks. Finally, a discussion
of practical considerations and the concluding remarks are
presented in Sections VIII and IX, respectively.

Il. RELATED WORK
In 2012, the authors of [2] introduced a cryptographic
primitive called delegatable homomorphic encryption (DHE)
that allows one party to delegate the computation of a circuit
with encrypted data to an untrusted party. This work was
somewhat limited, as it could only handle functions that took
one encrypted input. Moreover, the DHE architecture has
four parties involved in the process: a sender who wants
to delegate a computation; a receiver who publishes public
keys for the senders to prepare the encrypted inputs; a
trusted authority that assigns computational resources to the
evaluator; and the evaluator, who is responsible for executing
the computations. Conversely, PEEV can execute circuits
with an arbitrary number of user inputs, and a trusted third
party is only involved for issuing the ZKP keys for the cloud
and the client. Another limitation of DHE is that it does
not provide confidentially on the user’s input/output data,
i.e., they are provided as clear text. Moreover, the class of
functions that can delegated are limited. However, PEEV
provides confidentiality on the user’s input and the server
output with various classes of functions.

Another related cryptographic primitive is a homomorphic
encrypted authenticator (HEA) [40] that was proposed in
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2014. The HEA enables the construction of verifiable homo-
morphic encryption that allows confirming an outsourced
computation on encrypted data. Nevertheless, homomorphic
authenticators still remain not practical because they are
computationally expensive [1], [42]. On the contrary, our
framework can be practically adopted thanks to the fast
performance of the adopted primitives. HEA requires that the
programs and the data to be authenticated be labeled, thus it
provides no usability for the user. Meanwhile, PEEV requires
the user to only write the program in a high-level language,
and the framework handles the remaining steps.

In 2014, Fiore et al. proposed an efficient construction
for verifiable computation (VC) that enabled authenticating
computations on encrypted data [23]. Its efficiency came
from a homomorphic hashing technique, which could verify
the computations on ciphertext data at the same cost as
plaintext data. Nevertheless, the initial generic construction
introduced efficiency issues when the FHE ciphertext space
does not match the message space supported by the VC
scheme. Another downside of this construction is that it is not
an outsourcing of a computation, but a function query. This
means that a user can have an encrypted input x, send it to a
remote server, and receive F'(x). However, PEEV allows the
user to outsource her own circuit with any number of inputs
to a remote server. Furthermore, PEEV uses Zero-Knowledge
Protocols to verify the correctness of the computations, but
the work presented by Fiore et al. used homomorphic hash
functions, which are slower than ZKPs.

Similarly, vFHE [46] proposed a methodology for intro-
ducing a blind hash to preserve integrity encrypted compu-
tation. However, the construction is only applied to matrix
multiplication with non-invertible matrices, whereas PEEV is
generic and can be applied to arbitrary algorithms. Although
the vFHE work addresses the integrity issue on encrypted
computations, it offers no usability for the user. Specifically,
a user will have to handle the details of the hash functions
along with the circuit execution. Conversely, our framework
offers a higher usability level that allows users to only write
a high-level program without the headache of adjusting the
computations and the hashing operations.

The authors of [8] proposed schemes that enabled verifying
HE computations of constant multiplicative depth. Their
main goal was to allow verifiable and private delegation
of computation with three properties: privacy, integrity,
and efficiency. In addition, they introduced a protocol
based on homomorphic hash functions that allows choosing
homomorphic encryption parameters flexibly. Although this
model is efficient, it needs a random oracle to become a
non-interactive protocol. Meanwhile, the choice of Rinocchio
in PEEV offers support for non-interactive proofs. Another
difference is that PEEV allows private verifiability, instead
of assuming public verifiability. Thus, in PEEV, only the
user of the cloud service is able to verify the correctness of
the computations. However, in a public verifiability setting,
anyone can verify the correctness of the computations. Private
verifiability is a more convenient setting in PEEV, since
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the cloud user solely outsources her own computation to a
remote server instead of the cloud which offers a specific
computation to the public.

In 2018, Luo et al. proposed a methodology for ensuring
the decryption correctness for BGV ciphertexts [47]. The
authors proposed an interactive ZK protocol to generate
proofs. However, one limitation of interactive ZKPs is
the additional communication overhead introduced, since it
requires an interaction between the prover and the verifier.
Conversely, PEEV leverages non-interactive ZKPs, which
overcomes this issue; hence, it is more efficient in terms of
the amount of data exchanged over the network. Another
significant drawback of the work proposed by Luo et al. is
that a prover can still deceive the verifier; that is, there is
no guarantee that the output produced by the prover is the
correct result expected by the verifier. However, in PEEV,
it is impossible for a prover to deceive the verifier. Even if
the prover alters the circuit or changes the proving key, the
verification process will detect an invalid proof.

Recent works for providing integrity with homomorphic
encryption include verifying FHE computations by utilizing
trusted execution environments (TEEs) [18], [55], [68],
as well as verifying the integrity of a computation based
on MAC:s [13], [43]. Nevertheless, these approaches rely on
different approaches than PEEV, which enables both integrity
and confidentiality using FHE and ZKPs.

The concept of privacy-preserving also appears in different
applications and contexts. For example, the work proposed
in [45] used Elliptic Curve Cryptography and Paillier
cryptosystem to introduce a reputation updating scheme
vehicular networks. In addition, the authors of [52] proposed
a scheme that allows to securely query outsourced encrypted
data on location-based services. This scheme efficiently uses
the Geohash algorithm to reduce the computations overhead
and to speed up the query on large datasets.

Another important aspect that contributes to PEEV’s
benefits over existing frameworks is its support for system
usability. Unlike the aforementioned frameworks, PEEV
enables users to express computations in a high-level lan-
guage, enhancing usability. Consequently, our work bridges
the gap between theory and practice. Although previous
works are well-defined and offer concrete solutions to
the problem of verifiable computations on encrypted data,
their complexity may render them unattractive to end-
users. Table 2 shows a comparison between our proposed
framework and other existing frameworks.

Ill. BACKGROUND

A. HOMOMORPHIC ENCRYPTION SCHEMES
Homomorphic encryption is akin to traditional cryptography,
but with the additional ability to perform computations
directly on ciphertexts. Various homomorphic encryption
schemes have different computational capabilities. In partic-
ular, HE schemes are categorized into three classes: partially
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homomorphic schemes, leveled homomorphic schemes, and
fully homomorphic schemes.

o Partial HE (PHE). These schemes support unlim-
ited evaluations of one type of operation, such as
addition or multiplication. Although they are easy to
integrate into existing codebases and are generally
computationally efficient, their applications are limited,
such as for access control [61]. Examples of PHE
include the unpadded RSA, ElGamal, and Paillier
cryptosystems [50].

o Leveled HE (LHE). More powerful than PHE, LHE
supports evaluating circuits with both addition and
multiplication but with limited depth. The security of
LHE schemes depends on the learning with errors
(LWE) [60] and ring learning with errors (RLWE) [49]
problems. As a result, performing computations on
encrypted data leads to noise growth. If the noise reaches
a certain limit, it can result in incorrect decryption of the
output for deep circuits, especially those implementing
algorithms involving a large set of multiplications.
In particular, the noise grows slightly with each addition
operation, whereas it grows substantially with each mul-
tiplication operation. Likewise, as circuits get deeper,
evaluating them becomes more expensive because they
require larger parameters to accomodate the noise
requirements. This results in more costly additions
and multiplications. Examples of LHE schemes are
the Brakerski-Gentry-Vaikuntanathan (BGV) [10], the
Brakerski/Fan-Vercauteren (BFV) [22], and the Cheon-
Kim-Kim-Song (CKKS) [15] cryptosystems.

o Fully HE (FHE). This variant supports evaluating
arbitrary circuits by allowing unbounded addition and
multiplication and is an extension of LHE with boot-
strapping. The latter is the mechanism that stands behind
the robustness of FHE; it reduces the noise level within
a ciphertext, hence allowing more computations to be
carried out on the data [26]. Nevertheless, bootstrapping
is a very costly technique, being over an order of
magnitude slower than other HE operations. Even with
proposed optimizations [14], [27], [37], it still adds
noticeable computational overhead relative to LHE
schemes. Therefore, in the case of circuits with limited
depth, an LHE scheme is a better option compared to an
FHE scheme. As such, this work focuses on LHE.

B. HOMOMORPHIC ENCRYPTION LIBRARIES

Given the powerful capabilities of homomorphic encryption
and the increasing demand of privacy-preserving computing,
many open-source HE libraries have been proposed. These
libraries implement different schemes, and each one exhibits
its own API for executing operations on encrypted data. A few
prominent examples are discussed below:

« Blyss SDK. Blyss is a private information retrieval
library, built on top of an HE backend. It is written
mainly in Rust and JavaScript.
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o« TFHE. Written in C++, TFHE provides fast boot-
strapping based on the CGGI cryptosystem [16], [17].
It operates on Boolean circuits, where plaintext data are
encoded into binary and the ciphertext is generated by
encrypting the plaintext bit-by-bit. Another implemen-
tation of CGGI is TFHE-rs, which is written in Rust
and supports encodings for both integer and Boolean
arithmetic [72].

o FINAL. A cryptographic implementation written in
C++ that provides FHE based on the LWE problem
and NTRU cryptosystem. FINAL exhibits optimized
bootstrapping which makes it more efficient than the
TFHE library [9].

o HElib. HEIlib implements the BGV and CKKS
schemes [34]. The developers of the library introduced
optimizations for evaluating homomorphic operations.
However, the bootstrapping and execution times remain
high, which makes it unsuitable for executing arbitrary
circuits.

« Lattigo. An HE library based on RLWE and written
in the Go language, it implements the BFV, CKKS,
and BGV schemes. Additionally, Lattigo supports
multi-party homomorphic encryption [41].

o SEAL. Microsoft released its own HE library called
SEAL [62]. It supports the BGV and BFV schemes for
performing additions and multiplications on encrypted
integers, and the CKKS scheme for performing addi-
tions and multiplications on encrypted real numbers.
SEAL provides a simple API for writing leveled
homomorphic encryption. Although it is not suitable for
deep circuits involving a large number of computations,
it is optimized for applications that include a finite
number of arithmetic operations for several reasons:
its simplicity compared to other libraries, the fact that
it is written in C++ with no required dependencies
(rendering it easy to compile and deploy in different
environments), and its fast performance for arithmetic
operations. For these reasons, we chose to use SEAL as
the HE back-end for this work.

C. ZERO KNOWLEDGE PROOFS

ZKPs represent a major innovation in applied cryptography
and are used extensively in blockchains and cryptocur-
rency [63]. They were first introduced in 1985 [28] and
enabled conveying a claim without revealing any additional
information about that claim other than its correctness
or incorrectness. A zero-knowledge protocol has three
properties, described below:

o Completeness. If the claim is true, and the prover and
verifier are honest, the verifier will accept the proof.

o Soundness. A dishonest prover cannot trick the verifier
into accepting an invalid claim.

o Zero-knowledge. The proof leaks nothing about the
claim, thus, a verifier learns nothing about the claim
beyond its validity or invalidity.

VOLUME 12, 2024

Besides the aforementioned properties, a ZKP has three
basic elements:

o Witness. This is the secret data that a prover assumes
knowledge of.

o Challenge. This is a sequence of queries generated by
the verifier to confirm the prover’s claim.

« Response. This is a sequence of answers generated by
the prover as a response to the challenge issued by the
verifier.

From these three elements (Witness, Challenge, and
Response), it is clear that the prove-verify process is similar
to a sequence of questions and answers. In fact, this structure
describes the interactive ZKP. In this scenario, the prover
and the verifier establish a back-and-forth communication
channel with queries from the verifier and answers from
the prover. As a result, this interactive nature limits the
usage of the ZKPs as they are time-consuming and introduce
a significant communication overhead, which makes ZKPs
impractical for some applications.

Conversely, a non-interactive ZKP (NIZK) was first
proposed by Blum et al. in 1988 [6]. In this scheme, the prover
has a secret key for generating a proof, and the verifier has
another key for verifying the proof. In this way, there is no
need for an interactive session between the prover and the
verifier, making ZKPs more practical.

There are three common types of NIZK systems: zk-
SNARK, zk-STARK, and Bulletproofs. These are discussed
below:

o zk-SNARK. This stands for Zero-Knowledge Succinct
Non-Interactive Argument of Knowledge and was first
introduced in [4]. It requires a trusted setup to publish
a proving key and a verification key. These two keys
are public parameters, which are generated only once
for each circuit. A zk-SNARK system has the following
properties:

— Zero-knowledge. The proof leaks nothing about
the witness, so a verifier learns nothing beyond its
validity or invalidity.

— Succinctness. The proof is small and can be
verified quickly and easily.

— Non-interactive. The system does not require
multiple rounds of interaction between the prover
and the verifier.

— Argument of Knowledge. The prover generates a
proof that is sound, and it is impossible for a prover
to generate a valid proof for an invalid witness.

o zk-STARK. This stands for Zero-Knowledge Scalable
Transparent Argument of Knowledge, introduced in
Ben-Sasson et al. [3]. A zk-STARK is similar to
a zk-SNARK' but overcomes the problem of trusted
setup. Besides the zero-knowledge and the argument of
knowledge properties, zk-STARK has the following two
properties:

— Scalable. This property makes STARKs more
favorable over SNARKS, as it is faster at proving
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large proofs than SNARKSs. Given a large witness,
proof generation and verification grow slightly with
STARK; unlike SNARK, they grow linearly.

— Transparent. This property means STARK does
not need a trusted setup; it generates its parameters
based on publicly available randomness.

o Bulletproofs. This protocol generates short proofs
(logarithmic in the witness size) without the need
for a trusted setup environment. However, Bullet-
proofs’ verification process is more time-consuming
than SNARK verification. Bulletproofs are efficient for
cryptocurrencies; thus, it is very suitable for systems that
require secure transactions and distributed and trust-less
blockchains [11].

D. FHE AND ZKP COMPILERS

Researchers in the cryptography community have been
working extensively to create compilers and frameworks
that facilitate the creation of FHE systems and other related
applications. These compilers aim to translate a high-level
language program written over plaintext data into an
equivalent encrypted version. This encrypted version could
be an implementation using the primitives provided by HE
libraries. Likewise, in case of ZKP systems, compilers create
an R1CS (Rank-1 constraint satisfiability) system. The R1CS
captures a computation and transforms it into a set of matrices
and vectors that can be used by proof systems. Such tools
have several advantages: by simplifying the code-writing
process, a developer does not need an in-depth knowledge of
cryptographic primitives, code optimization, and managing
key setup, encryption, and decryption. A selection of state-
of-the-art compilers are discussed below.

o Circom is a compiler with its own language used for
defining arithmetic circuits for ZKP applications. It is
written in Rust and provides developers with an easy-to-
use interface for generating R1CS files. The authors of
Circom implemented three zk-SNARK systems: snarkjs,
wasmsnark, and rapidSnark.

o CirC is a compiler infrastructure, written in Rust,
that supports translating a high-level language into
circuits [56]. CirC can compile code written in C,
ZoKrates, or Circom into circuits for Satisfiability
Modulo Theories (SMT), Multi-Party Computation
(MPC), or RICS. One of the powerful features of CirC
is that it compiles different high-level languages into
an optimized Intermediate Representation (IR). Then,
the IR is translated to the target circuit. Although CirC
supports different front-end languages, it works best
with a modified version of the ZoKrates language, called
Z#, supporting different constructs such as loops and
arrays.

o T2 is a cross-compiler and a benchmark suite [31]. The
main goal of T2 is to explore and compare different HE
libraries, including HElib, Lattigo, PALISADE, SEAL,
and TFHE, using an extension of the TERMinator
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Suite [54]. The authors use their own domain-specific
language to write unified code that can be compiled to
several different HE libraries, ensuring a fair comparison
between benchmarks.

« HELM is a privacy-preserving framework for pro-
cessing data in the encrypted domain with FHE [30].
HELM compiles arbitrary programs written in Verilog
into homomorphic circuits. The authors accelerated the
execution of circuits by introducing a scheduler that
allows the processing of encrypted data in parallel and
employing rigorous logic optimization techniques.

o Concrete is a CGGI compiler that compiles programs
written in Python into their FHE equivalent [71].
Concrete supports a large set of Python operators,
in addition to its compatibility with the NumPy library.
Despite the extensive work devoted to developing this
library, it is not mature yet; it has several limitations,
such as not supporting control flow statements (e.g., if
or while loops), not supporting floating point inputs or
outputs, and a small bit width of encrypted values.

IV. VERIFIABLE PRIVACY-PRESERVING COMPUTATION
The goal of this work is to add an integrity component
to privacy-preserving computation, thus enabling verifiable
privacy-preserving computation (VPPC), by introducing the
PEEV framework. In this regard, a client who is outsourcing
a computation to a potentially dishonest server can verify the
validity of the computation without revealing any sensitive
information.

Figure 1 depicts our proposed approach. To outsource a
computation, the client must define the arithmetic circuit to
be executed on the server and encrypt the circuit’s inputs.
The client then sends the arithmetic circuit along with the
encrypted input, R1CS and the evaluation key to the server.
The server executes the circuit using the evaluation key,
generates the proof using the proving key, and sends the
proof along with the encrypted result to the client. The client
verifies the proof using the verification key, and if it is valid,
accepts the computation and decrypts the result. If the proof
is invalid, the client discards the result.

Our VPPC model is characterized by a four elements tuple
(Setup, ProbForm, Eval, Conc):

— Setup(P) — (E.Params, V.Params, OpL) - This is a
procedure that takes our program P, written in a high-
level language, and outputs the encryption parameters,
E.Params, the verification parameters V.Params, and
the compiled program, Operations List (OpL).

— ProbForm(OpL, V.Params) — (C, V.Prov, V.Ver, E.
Eval, E.Dec) - This procedure is fed with the com-
piled program, OpL, and the verification parameters,
V.Params. It outputs the encrypted arithmetic circuit
C to be executed, the proving key V.Prov for proof gen-
eration, the verification key V.Ver for proof verification,
and the evaluation key E.Eval for evaluating the circuit.
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FIGURE 1. Client-Server Communication: The client creates the arithmetic circuit, R1CS, and evaluation key, encrypts the input, and
sends them to the server. The server runs the computation, generates the proof, and sends the result and the proof back to the

client. The client checks if the proof is valid and decrypts the result.

- Eval(C, V.Prov, V.Ver, E.Eval) — (y, p) - This is
the procedure that will be performed by the server and
outputs the encrypted result, y, and the proof, p.

— Conc(V.Ver, E.Dec, y, p) — Res - The user runs this
procedure to verify the proof, p, using the verification
key, V.Ver. If the proof is valid, the procedure returns the
result, Res, decrypted using the decryption key, E.Dec.
Otherwise, Res is returned as None.

A. CLIENT-SIDE OPERATIONS

For a client to delegate a computation to a remote server,
two steps have to be completed first: circuit creation and
encrypting the circuit’s input. Creating an arithmetic circuit
is the process of writing the program that will be executed
homomorphically on a remote server. A major challenge is
that writing these programs in HE libraries is not trivial, as it
requires the user to define each primitive operation explicitly
and track each operation’s input and output. The user can end
up hard-coding the circuit, leading to potentially thousands
of lines of code for even relatively simple algorithms.
Moreover, introducing optimizations or updates to the code
involves modifying all subsequent lines and other parts of the
program since most operations are dependent on each other.
Furthermore, incorporating the creation of the R1CS into the
program will lead to larger, unoptimized code, so that writing
HE programs by hand becomes an infeasible process.

To overcome this issue, PEEV lets the user write her
HE program in a high-level language, which is quite
easy for developers to optimize, maintain, and define their
computations. In this way, our methodology offers several
benefits, such as:

o The user will write more readable code that includes
common programming structures such as while loops.

o The user can write programs in fewer lines of code
compared to a low-level encrypted implementation.

« Optimizing the code or making future modifications can
be done rapidly and in a straightforward manner.

« Eliminating the complexity of tracking each operation’s
input and output and the creation of the RICS needed
for verifiability.
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isr0 1= 11 :
Srl o= 2 :
16 — (1142) ———>$r2 := $r0 + $rl |
isr3 1= 16 :
$rd4 := $r3 - Sr2 '

FIGURE 2. YAP flattens the equation 16 — (11 + 2) into a sequence of
operations. The OpL lists every single operation in a single line, and
subsequent lines are dependent on previous lines.

o The user does not need to manually initialize any HE or
ZXKP parameters.

Towards that end, we introduce our domain-specific
parser, called YAP, that translates a user’s program into an
intermediate representation called Operations List (OpL).
Specifically, the OpL represents the user’s program in a
form that HE libraries can easily parse. The syntax of the
OpL contains no complex structures (i.e., functions, classes,
and loops), but rather a sequence of operations. The OpL
consumes the user’s input and lists all the required operations
to compute the final output. Figure 2 illustrates an example
of how YAP flattens a simple equation that can be written in
almost any high-level language into an OpL.

The only task an end-user has to perform is to write the
desired high-level program, and PEEV handles all necessary
steps automatically, including the generation of the OpL,
setting of encryption and evaluation parameters, encrypting
the input, creating the arithmetic circuit, as well as verifying
the proof and decrypting the result after receiving it from the
cloud. Initializing the required zk-SNARK keys requires a
trusted setup, where the user sends their R1CS to a trusted
third party that generates the proving key for the cloud and
the verification key for the user.

B. SERVER-SIDE OPERATIONS

After receiving the arithmetic circuit, R1CS, and the
encrypted inputs from the user, the server allocates the
hardware resources required for the circuit execution. Also,
for executing the circuit, the cloud must have the target HE
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Key Generation
Algorithm

i Verification key Proving key

FIGURE 3. The cloud user inputs the R1CS to the ZKP key generation
algorithm. The key generation process requires a trusted environment,
which can be achieved through a third-party who offers a trusted setup.
The algorithm outputs two keys: one for the cloud to generate the proof,
and the other for the client to verify the proof. Any changes made to the
R1CS should reflect new keys.

and ZKP libraries. For instance, PEEV employs SEAL and
zk-SNARK. After the homomorphic evaluation of the circuit
finishes, the cloud uses the proving key to generate a proof,
given the circuit and its R1CS.

Notably, an untrusted cloud will not be able to violate
the integrity of the computation. Suppose a cloud provider
modified the arithmetic circuit and the R1ICS provided by
the user (e.g., instead of doing addition between two values,
doing multiplication); in this case, the cloud will generate an
invalid proof, which will be detected on the client side. This is
because the proving and validation keys are functions of the
R1CS created by the client. When the user inputs her copy
of the R1CS to the verification function, the proof will fail to
verify the computations defined by the R1CS.

As shown in Figure 3, the client passes the R1CS definition
to the ZKP key generation algorithm, which outputs a
verification key for the user to verify the proof and a proving
key for the cloud to generate the proof. If the R1CS is changed
after key generation, the proving key will not generate a valid
proof. Since PEEV uses a zk-SNARK proof system, the key
generation algorithm requires a trusted setup environment,
which could be acquired through a trusted third party.

We note that the user does not share any keys that
would allow the cloud to violate the confidentiality of the
computation; the user only sends the evaluation key to the
server to enable the server to execute the circuit. Similarly,
the proving key, which is generated by a trusted third
party, doesn’t allow the server to violate the integrity of the
computation since it is based on the user-provided RICS.
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Unlike the ZKP keys, SEAL does not need a trusted third
party, thus the encryption keys are generated by SEAL.

C. THREAT MODEL

PEEV considers two main entities: the client and the
cloud provider. The client has confidential data X along
with a function f, and wants to execute f over X such
that f X — Y. Meanwhile, the cloud provider is
assumed to have the computational resources required for
executing the function f on the input data, and is the
sole computational party for all FHE evaluation operations
(excluding encryption and decryption). In the context of zero
knowledge proofs, the cloud acts as the prover while the client
is the verifier. The threat model assumes a dishonest and
curious cloud provider; meaning that the server can alter
the computations (integrity violation) needed by the client
and is incentivized to learn information about the user data
(confidentiality violation). Integrity guarantees are derived
from the Rinocchio SNARK system; the client rejects the
result received from the cloud if she fails to verify the proof
provided by the cloud. At any point, if the cloud alters the
computations defined by the user’s function, an invalid proof
will be generated and the client will not accept it. Likewise,
data confidentiality is assured through the adoption of the
BGYV FHE scheme, which is based on the Ring Learning With
Errors (RLWE) problem. A cloud provider will not be able to
learn anything about the data provided by the client except its
size.

D. SECURITY CONSIDERATIONS

This subsection provides a discussion on the security and
reliability of PEEV. Specifically, the security argument
of PEEV is attributed to a hard class of mathematical
problems, namely ideal lattices. Furthermore, PEEV inherits
its reliability in verifying the correctness of computations
from the secure encoding and representation of these
computations in a structure that is resilient against forgery.
Overall, both the BGV encryption scheme and the Rinocchio
ZKP encapsulate the security and reliability assumptions
of PEEV. Hence, by inheriting the security assumptions of
the BGV scheme and Rinocchio, we can argue that PEEV
is a secure framework. To simplify this analysis, we have
abstracted some details from the original papers of the
Rinocchio ZKP [25] and the BGV scheme [10]; for more
comprehensive information about both schemes, we refer the
reader to the original papers.

1) BGY HOMOMORPHIC ENCRYPTION SCHEME

Encryption schemes inherent their security from hard math-
ematical problems that are computationally infeasible to
solve. The BGV scheme reduces its security on the Learning
With Errors (LWE) and Ring Learning With Errors (RLWE)
problems. In particular, LWE is the problem of differentiating
between uniform linear equations and random equations that
have been garbled with small amount of noise. RLWE is a
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variant of the LWE, but it is dedicated for polynomial rings
over finite fields. The authors of the BGV scheme describe
both the LWE and RLWE in a generalized form as the General
Learning with Errors (GLWE) problem, which is defined as
follows:

Definition 1: GLWE:

o Let n be an integer dimension, let d be a value of power
of 2, let g be a prime integer such that ¢ > 2, let
R = Z[x]/x? + 1 be a polynomial ring with degree d
and R; = R/qR is a polynomial ring with coefficients in
(—q/2, q/2], and x = x (1) be a noise distribution. All
of these parameters are functions of a security parameter
A

o The GLWE requires distinguishing between these two
distributions:

1) (a;, by) « R’,}“, i.e., sampling a tuple consisting
of the vector a; and the element b; uniformly from
the ring R mod q of size n + 1.
2) s < R, (a;, b)) < RZ‘H by uniformly sampling
a; < R}, e; < x, and setting b; =< a;, s > +e;.
The GLWE problem assumption is that solving this
problem is unfeasible. Typically, if we setd = 1, we get
the LWE problem, but if we set n = 1 we get the RLWE
variant.

The BGV scheme is secure under the IND-CPA assump-
tion (i.e., indistinguishability under chosen ciphertext attack),
which is defined as a challenge between an oracle (a party
that can perform encryption) and an attacker who has a set
of plaintext and can query the oracle. The challenge works as
follows:

o The attacker sends two plaintexts My, M to the oracle

to encrypt them.

o The oracle encrypts both My and M; into Cy and Cj.
Then, it randomly selects one of the ciphertexts and
sends it to the attacker.

o The attacker wins the challenge if they can determine
what plaintext the received ciphertext encrypts with a
probability better than 50%.

Based on the above definition of the basis of the BGV
scheme, the fundamental encryption is realized by the 4-
element tuple (Setup, KeyGen, Enc, Dec):

— Setup(1*) - A procedure that takes the security
parameter A and generates the parameters set, A =
(R.d, n, q, x,N) such that R is the ring, d is the degree,
n is the dimension, ¢ is the modulus, x is the noise
distribution, and N = n x polylog(q).

— KeyGen(A) - This procedure takes the parameters set
A and runs two sub-procedures: one for the secret key
generation and another for public key generation. The
secret key is represented as s = (1, t) € RZH, where t
is a vector sampled from x”. Meanwhile, the public key
is generated by feeding s and A to its sub-procedure to
output the public key A = (b|| — B) € R) *"*D Bisa
matrix sampled uniformly from Rg *n'b = Bt+2e, and
e is a noise vector sampled from .
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— Enc(A, A, m) - This is the encryption procedure that
takes the parameters set, A, the public key, A, and a
message vector m. The ciphertext vector is computed by
setting ¢ = m + r’ xA e RZ‘H, where r is a column
vector sampled from R}2V .

— Dec(A, s, ¢) - This is the decryption procedure that
takes the parameters set A, the secret key s, and
the ciphertext vector ¢ to recover the plaintext m by
computing the dot product between the ciphertext vector
and the secret key vector.

2) RINOCCHIO ZKP
The structure of Rinocchio relies on securely encoding the
inputs of the circuit in a way that allows correctly proving
and verifying a computation. Overall, Rinocchio uses two
building blocks: Quadratic Ring Programs, which is a system
of equations to represent the computations, and a secure
encoding scheme over rings.

A verifiable computation model is defined by a tuple of
three procedures (Setup, Comp, Verify):

— Setup(1*, F) - This procedure takes a security param-
eter A and a function to execute F, and outputs: a
proving key P, a verification key V, and an encoding of
the function’s input [. In Rinocchio, this procedure is
defined by two functions: the first is used to generate
a public key and a secret key, and the second for
generating an encoding of the function and a verification
key.

— Comp(P, F) - This procedure takes the proving key P
and allows the remote server to compute the encoded
function [. It outputs an encoding of the output Y.

— Verify(V, Y) - This is a verification procedure that takes
the secret verification key V and the server’s output Y and
returns either 1 indicating the acceptance of the result (a
correct computation) or O indicating the rejection of the
result (an incorrect computation).

The security of this model is represented by a challenge,
denoted as H, between an adversary, A (the cloud provider),
and a verifier, V (the cloud user). The challenge asserts that
given a proving key, P, and a verification key, V, which are
generated based on the security parameter A and the function
F, the adversary A cannot alter the computation of F', generate
a proof using P, and produce an output Y such that the verifier
accepts the result Y by verifying it with V. This challenge is
expressed as Pr(HX[VC, F,\] = 1) = o, where VC is the
computation performed by the server, and o is a negligible
value.

Rinocchio has a structure called Quadratic Ring Programs
(QRP) to characterize the satisfiability of arithmetic circuits.
In a nutshell, QRP is a building block that allows for the
representation of an arithmetic circuit and the definition of
the inputs and outputs of the gates. A solution to the QRP is
expressed in Equation 5, which states that given a gate with
the right input polynomial V(x), the left input polynomial
W(x), and the output polynomial Y (x), one must find the
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target polynomial #(x) that divides (V(x) - W(x) — Y (x)).
1O)|(V(x) - W(x) — Y (x)) 5

Constructing a secure SNARK using a QRP requires a
secure encoding scheme to represent the polynomials. The
encoding scheme works by generating a public key and a
secret key based on a security parameter. The secret key
allows mapping the polynomials to an encoded form, while
the public key is used for evaluating the encoded polynomials
of the circuit.

3) PEEV SECURITY

Putting it all together, PEEV is a secure VPPC framework
as long as the underlying assumptions of the BGV scheme
and the secure encoding of Rinocchio hold. Specifically,
if there exists an adversary A who can compute a solution
to the LWE or RLWE problem, then A would break the
security assumptions of the BGV scheme, and thus PEEV.
Nevertheless, this is a contradiction, since LWE/RLWE are
assumed to be intractable, so BGV and PEEV are therefore
secure. Likewise, if we assume the instantiation of Rinocchio
with polynomial rings or the QRP structure is vulnerable, then
PEEV would also insecure; however, this is a contradiction
since Rinocchio is provably secure. In short, the security
assumptions cascade from LWE and RLWE to the BGV
scheme, and from the BGV scheme to PEEV; similarly, the
security of the QRP cascades to the Rinocchio protocol and
is inherited in PEEV.

V. IMPLEMENTATION DETAILS

A. VERIFIABLE FHE

For enabling private computation, we implement PEEV using
SEAL’s implementation of BGV as a back-end. The SEAL
library has several advantages that make it a suitable choice
for this work. Some of these advantages are:

o It provides a simple, mature API compared to other
libraries, which makes integrating it with other frame-
works more feasible.

o SEAL is implemented in C++, which can be faster
compared to counterparts in languages like Python.
Besides, C++ is a versatile language used to develop
a wide variety of applications, including database
systems, embedded systems, and banking applications.

o It supports different operating systems and environ-
ments, including Linux, Android, MacOS, and iOS.

o SEAL enables batching for encoding multiple messages
into a single ciphertext, which can increase the HE
throughput by several orders of magnitude for certain
types of applications.

o Performing arithmetic operations in SEAL is faster than
performing the same operations in other libraries such
as TFHE, which operates on bits.

For enabling verifiable computation, Rinocchio is used
as the back-end ZKP system [25]. Rinocchio is a SNARK
that allows verifying ring-based computations. It offers

94682

improved performance compared to other systems, and is
more FHE-friendly because it supports lattices, which are
also the mathematical foundations of FHE schemes [65].

B. TRANSLATING HIGH-LEVEL LANGUAGES INTO
CIRCUITS

One of our goals is to allow developers with limited or no
in-depth knowledge of cryptography to write programs that
can be executed securely on remote servers and verify the
computations. In order to do so, we introduce YAP, which
is a novel parser that takes a program written in a high-level
language and transforms it into OpL. The OpL is then used
to create the arithmetic circuit and its R1CS.

Compiling high-level languages is not a trivial process, as it
includes comprehending the program flow and transforming
complex structures (such as functions and loops) into a
simple sequence of primitive operations. Besides that, the
compiler should not simply translate every line of code into
its corresponding operation; it should optimize the output
by removing unusable code blocks and ignoring unused
variables or operations that do not contribute to the final
result.

We adopt the CirC compiler to take part in this translation
process. CirC can compile a modified version of the
ZoKrates language called Z# into circuits used for SMT and
ZKP. Specifically, we take advantage of the intermediate
representation (IR) of CirC. YAP consumes this IR and
transforms it into OpL. Processing the IR is a challenging
process, as it includes a lot of auxiliary information that does
not relate to our application (e.g., metadata). YAP processes
the IR as follows:

o Eliminating unwanted blocks such as metadata and
prime numbers that are used as moduli.

« Unfolding nested operations into a single operation per
line.

« Converting binary values to integers.

o Mapping the index of a value into the variable holding
that value.

« Converting array contents into variables, where each
variable preserves its value and identity with respect
to its source array. Hence, accessing an array index is
equivalent to accessing the value of the variable of that
index.

« Storing the intermediate results between operations.

After getting the OpL, the next step is creating the HE
program that performs the computations defined in the
OpL in the encrypted domain using SEAL. To achieve
this, the PEEV framework includes two basic components:
the first is the Initializer class, and the second is the
Circuit class. The Initializer sets the parameters required for
Rinocchio and SEAL. Furthermore, it creates the required
objects for wrapping up the parameters and the encoding
objects for enabling batching. The Circuit class handles the
creation of the circuits, the creation of RICS, encrypting
the values, performing ciphertext maintenance operations
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def main(u32 a, u32 b) -> u32: ("2 (bvadd '0 '1)) YAP
return a + b ('3 (bvadd '1 '2))
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FIGURE 4. Workflow of our verifiable privacy-preserving computation model. Starting with ZoKrates code, the program is converted
to CirC's IR, before YAP transforms the IR to OpL. Then, PEEV uses the OpL to generate the arithmetic circuit and the R1CS. After
executing the circuit, a proof is generated and verified. Finally, if the proof is valid, PEEV decrypts the result.

such as relinearization, and providing the front-end for
executing the operations on encrypted data. Remarkably,
the relinearization is a necessary step in homomorphic
computation that solves a key issue when multiplying
two ciphertexts. After ciphertext multiplication, the product
ciphertext will be approximately 50% larger in size and
can no longer be decrypted under the original secret key.
Relinearization will map the larger product ciphertext back
to the original ciphertext size and also result in a valid
ciphertext encrypted under the original key [22]. In addition,
the Circuit class provides necessary functions for generating
and verifying ZKPs and returning the decrypted result.

Figure 4 summarizes the workflow of our proposed
approach. The user writes the program in a high-level
language, then CirC compiles it and generates the IR, before
YAP parses the IR into OpL, and finally the OpL is used to
create the arithmetic circuit and its R1CS definitions. Next,
the Rinocchio key generation algorithm generates a proving
and a verification key based on the R1CS. After executing the
circuit, the cloud uses the proving key to generate the proof.
Finally, the cloud user verifies the proof using the verification
key and decrypts the result of the circuit.

PEEV employs the BGV scheme to perform leveled HE
operation. This enables executing circuits with limited depth,
but at the same time, providing faster running times. This
makes our system more practical for applications that involve
a finite number of additions and multiplications. For the
experimental evaluation (next section), we use a polynomial
modulus degree of 2'% and plaintext precision of 30 bits
in SEAL, which yields 128 bits of security. Meanwhile,
Rinocchio uses a polynomial modulus degree of 2'! and
plaintext precision of 30 bits (also 128 bits of security). PEEV
uses such a large polynomial modulus degree for SEAL to
allow more complicated encrypted computations.

Putting it all together, the three components for PEEV
(the BGV scheme, the Rinocchio ZKP, and the CirC
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language) have been judiciously selected. Specifically, each
of component offers several advantages that make them ideal
candidates for designing a VPPC framework. On one hand,
the Rinocchio ZKP enables compatibility with the BGV
scheme, which leads to improved performance and low com-
putational overhead. On the other hand, the CirC high-level
language enables end users to effortlessly express their
computations. Additionally, the intermediate representation
of CirC allows for seamless translation into the corresponding
FHE and ZKP backends.

VI. EXPERIMENTAL RESULTS

To evaluate PEEV, we employ benchmarks that involve
different sets of mathematical operations such as addition,
subtraction, and multiplication, including computing the
Fibonacci sequence for 8, 16, 32, and 64 iterations, square
matrix multiplication for 2 x 2 and 3 x 3 matrices, the sum of
squares for integers in range 1 to 8, 1 to 16, and 1 to 32, chi-
squared, the summation of 8, 16, 32, and 64 values, vector
dot-product of 8, 16, and 32 values, the squared Euclidean
distance of 8, 16, and 32 values, the factorial forn =5, 8§, and
12, and the Hamming distance of 4, 6, and 8 values.

Additionally, we have implemented three common
machine learning algorithms, including the logistic regres-
sion inference for three data points of 4, 8, and 10 features,
the cubic spline regression given 4 and 8 data points, and
the perceptron training algorithm for three data points with
4 features for one iteration.

PEEV was evaluated using a Windows laptop equipped
with a 6th generation Intel i5 processor at 2.30 GHz
and 16 GB of RAM. PEEV is designed for general-purpose
use and our implementation is available as open-source
software on GitHub.! Likewise, users can write and com-
pile their custom programs using the YAParser, which is

1 https://github.com/TrustworthyComputing/PEEV-verifiableFHE
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also available as open-source software on GitHub.> Both
repositories include instructions for installing and running the
framework.

The factorial and Hamming distance programs use dif-
ferent parameters from other programs. For the factorial,
we employ larger parameters to support larger plaintext
precision in SEAL and avoid overflow; we set the polynomial
modulus degree to 2! and the plaintext bit size to 32 bits
in this case. Meanwhile, the Hamming distance program
uses a polynomial modulus degree of 2'! with plaintext
precision of 20 bits for Rinocchio, and a polynomial modulus
degree of 215 with plaintext modulus value of 13 for SEAL.
The Hamming distance uses a small plaintext modulus
value and a large polynomial modulus degree to support
computing the equality check operation (e.g., x == y);
this operation requires exponentiation of the encrypted
difference between two values to the value of the plaintext
modulus —1; this yields 1 if the two values are not equal
and O otherwise. Notably, the multiplicative depth of the
equality operation scales linearly with the plaintext modulus,
necessarily requiring a smaller precision for efficient LHE
operations. Also, we disabled batching for the Hamming
distance program, as it requires the plaintext modulus to
be a prime number congruent to 1 modulo 2 x N, where
N is the polynomial modulus degree. Similarly, the logistic
regression, the cubic spline, and the perceptron programs
use another set of parameters to support larger plaintext and
deeper circuits; they use a plaintext bit size of 42 bits for both
SEAL and Rinocchio and a polynomial degree 2! for SEAL.

Table 1 summarizes the execution times of PEEV evaluated
across 32 different benchmarks. The OpL to Circuit column
presents the time required for parsing the OpL file into SEAL
and encrypting the values; meanwhile, the Circuit&RICS
Generation column lists the time required for creating the
arithmetic circuit and its R1CS definition. The Rinocchio
Keys Generation column shows the time needed for gener-
ating the proving and verification keys given the R1CS of a
program, whereas the Circuit Execution column shows the
time needed for performing the arithmetic operations over
encrypted data and getting the final result. The time required
for generating the proof, verifying it, and decrypting the
result are listed in the Proving, Verifying, and Decryption
columns, respectively. Finally, the last two columns show
the total running times needed for the client and the server
to execute each part of a program. Typically, a client
converts the OpL into a circuit (OpL to Circuit), generates
the R1CS (Circuit&R1CS Generation), verifies the results
(Verifying), and decrypts the result (Decryption). Meanwhile,
the server will perform the outsourced computations (Circuit
Execution) and generate the proof (Proving). We assume
that a third party that maintains a trusted environment
handles the ZKP key generation process (Rinocchio Keys
Generation).

2https:// github.com/TrustworthyComputing/ YAParser
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Figure 5 visualizes the running times (ms) on a logarithmic
scale of each benchmark. The most expensive component of
the entire process is the proof generation; for Fibonacci v64,
3 x 3 matrix multiplication, sum v64, vector dot product v32,
and factorial v12, proof generation takes more than 3 seconds.
However, it takes about 6 seconds for the Euclidean distance
v32 and the hamming distance v8. The time needed for
executing each circuit is short, which reflects the benefits
of SEAL as a HE back-end; the longest execution time is
about 3 seconds for the factorial program for 12 encrypted
values. The execution time of the Hamming distance program
is orders of magnitude longer than other programs due to the
fact that batching needed to be disabled to enable feasible
equality. For the logistic regression, the cubic spline, and the
perceptron programs the proof generation takes time less than
the execution of the circuit; this is due to larger plaintext size.

We remark that the squared Euclidean distance can serve as
the basis to perform privacy-preserving facial recognition [7].
Meanwhile, both logistic regression and perceptrons are
well-suited for binary classification tasks, while cubic spline
regression can model non-linear functions.

Overall, our list of benchmarks, where each benchmark
is evaluated at different problem sizes, shows diversity of
the applications that can be implemented in PEEV. For
instance, the logistic regression model is tested on 4, 8§,
and 10 data points, with each variant exhibiting distinct
execution times. Moreover, the diversity of the experiments
is reflected not only in the programs themselves but also in
the set of parameters used for encryption. Our experiments
are repeatable in different settings and environments using
the open-source code of PEEV.

Our experimental results demonstrate how PEEV exhibits
optimized performance for key applications: for instance,
the Hamming distance benchmark is widely used in error
detection and correction algorithms [20], machine learn-
ing algorithms such as clustering [66], and cryptography.
We remark that the judicious selection of PEEV’s compo-
nents plays an important role in achieving fast execution
times; in particular, the compatibility between Rinocchio
and the BGV scheme leads to a harmonious computational
model. Besides performance optimizations, PEEV not only
allows repeatable experiments in different settings but also
supports evaluating arbitrary programs, beyond our list of
benchmarks.

VII. DISCUSSION

Our experimental results provide insights on the time required
for each step. Overall, with respect to integrity, the two most
expensive steps are the proving step, which is performed on
the server side, and the verification step, which is performed
on the user side. For example, consider the sum of squares
program with 32 values; if PEEV omits the proving step,
the server will only execute the circuit, reducing the server’s
time to 1329 ms. Similarly, on the user side, omitting the
verification step will decrease the user’s total time to 2127 ms.
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TABLE 1. Execution times of PEEV across different sets of programs that include mathematical operations such as additions, subtractions, and
multiplications (all times are in milliseconds). The last two columns show the total time needed for the client and the server, respectively. All the
benchmarks use a plaintext bit size of 30 bits, a polynomial modulus degree of 2! for Rinocchio, and 2'# for SEAL, except factorial that uses a plaintext
bit size of 32 bits and a polynomial modulus degree of 25 for SEAL, and hamming distance that uses a plaintext modulus value of 13 and a polynomial
modulus degree of 215 for SEAL. Logistic regression, cubic spline, and perceptron use 42 bits for the plaintext size.

OpL to Circuit&R1CS | Rinocchio | Circuit . o - Client Server
Program Circuit Generation Keygen Execution Proving Verifying Decryption Time(ms) | Time (ms)

fibonacci v8 94 133 7 124 56 22 181 131

fibonacci v16 94 11 225 16 365 138 27 270 381
fibonacci v32 166 22 679 52 1507 724 24 936 1559
fibonacci v64 124 12 942 75 3161 1267 29 1432 3236
mmul 2x2 504 37 314 413 768 282 24 847 1181
mmul 3x3 1343 79 972 1260 3685 1346 25 2793 4945

sum sqrs v8 508 32 217 306 381 144 20 704 687
sum sqrs v16 983 61 432 616 1223 468 24 1536 1839
sum sqrs v32 1985 119 917 1329 3371 1295 23 3422 4700

[ chi squared [ 419 [ 30 235 [ 415 [ 416 161 22 632 831 ]

sum v8 317 24 153 7 137 63 23 427 144

sum v16 571 38 244 13 465 183 24 816 478
sum v32 1111 66 574 31 1335 524 24 1725 1366
sum v64 2110 123 956 53 3354 1341 27 3601 3407

dot product v8 575 67 271 360 478 178 23 843 838
dot product v16 999 59 438 627 1248 474 24 1556 1875
dot product v32 1979 112 932 1329 3304 1266 28 3385 4633
euc. distance v8 529 36 346 323 833 355 22 942 1156
euc. distance v16 1131 93 898 693 2146 802 24 2050 2839
euc. distance v32 1999 117 1434 1357 6208 2307 23 4446 7565
factorial v5 699 50 114 1233 71 35 82 866 1304
factorial v8 1016 69 134 1890 121 73 89 1247 2011
factorial v12 1790 120 246 3038 228 133 138 2181 3266
ham. dist. v4 3245 205 744 8148 2878 922 85 4457 11026
ham. dist. v6 4403 285 1377 12283 4971 1696 85 6469 17254
ham. dist. v8 5762 348 1602 14776 6890 2658 85 8853 21666
logistic reg. v4 2629 215 937 5250 1473 560 89 3493 6723
logistic reg. v8 5294 278 1065 8930 4193 1749 87 7408 13123
logistic reg. v10 6115 323 1583 10671 5583 2064 86 8588 16254
cubic spline v4 2651 158 598 5550 1862 764 84 3657 7412
cubic spline v8 4772 274 1343 11234 5384 2005 87 7138 16618

[ perceptron [ 3672 [ 222 1159 [ 8278 [ 4408 1668 84 5646 12686 ]

As for SEAL keys generation, the overhead is negligible and
can be performed locally at the user side.

Remarkably, PEEV does not incur a large communication
overhead. There is no interactive communication between
the client and server (i.e., the client does need to send
and receive messages to and from the server in real-time).
Instead, the client sends a circuit and encrypted data to a
server, and later the server responds with the result and the
proof.

The proof size is 26,542,080 bits (approximately
3,318 KB) for all programs, since Rinocchio proofs are
constant size by design. Conversely, the ciphertext size
depends on the number of values in the circuit and the
polynomial modulus degree. For instance, the Fibonacci
program uses a polynomial size degree of 2!4  which,
according to SEAL documentation, yields coefficients of size
438 bits. Therefore, for Fibonacci v64, the ciphertext size is
438 x 64 = 28,032 bits (approximately 3.5 KB).

In our analysis, the only three steps that are not explicitly
measured are the compilation time, which is negligible, the

VOLUME 12, 2024

SEAL key generation is also negligible, and the time for
sending the data from a host to a server, which depends on
the network conditions and the size of the data. In practice,
given large amounts of data, the transmission from a host to a
server happens incrementally, since the data is not transferred
all at once.

With respect to baseline computation costs, this is typi-
cally assessed without the additional privacy and integrity
measures provided by homomorphic encryption and ZKP
protocols. In such cases, evaluations are performed on
unencrypted arithmetic circuits, and thus, computations are
carried out in the plaintext domain rather than in the space
of polynomial rings, leading to faster execution times. Alas,
such baseline evaluations do not provide any privacy: since
all the computations are exposed to the cloud provider,
there is no guarantee that user data will remain secure.
Likewise, without enabling integrity, there is no guarantee
that the computations are performed faithfully. As reported
in our experiments, executing the sum of squares benchmark
with PEEV over 32 values requires 1,329,000 microseconds
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FIGURE 5. Execution times of each operation in the benchmark: The vertical axis shows the time in milliseconds, while the horizontal axis corresponds to
each benchmark set.
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TABLE 2. A comparison between our proposed system, PEEV, and the seven most recent similar works reveals that PEEV is the only general-purpose
framework addressing verifiability, homomorphic data encryption, and usability through a high-level front-end.

Work Purpose HE Verification High-level front-end
PEEV General-purpose Leveled - BGV Rinocchio YES
HELM [30] General-purpose Fully - CGGI N/A NO
ArctyrEX [32] General-purpose Fully - CGGI N/A YES
GALA [73] Neural networks Leveled - BFV N/A NO
REDsec [24] Neural networks Fully - CGGI N/A NO
Zilch [53] Verifiable computations N/A zk-STARK YES
[35] SVM training Partial - Paillier Cryptosystem | Verification tags NO
pvCNN [69] CNN Leveled HE Grothl6 NO

(Table 1). Conversely, running the same computation without
encryption and integrity protections on the same machine
requires 903 microseconds. As expected, running the pro-
gram on plaintext values without protections is faster than
its encrypted counterpart. Nevertheless, this corresponds to a
trade-off between execution overhead vs. security: disabling
the privacy and integrity verification exposes user data to
the cloud server, which may not be an option in most
scenarios.

Table 2 presents a comparison between PEEV and
multiple similar frameworks. As shown in the table,
PEEV is a general-purpose framework that employs a
leveled HE scheme and supports verifiable computation
using the Rinocchio ZKP. Additionally, PEEV features
a high-level front-end to enhance usability. In contrast,
HELM [30] is a general-purpose framework utilizing a
fully HE scheme, and its main limitation is the absence
of a verification mechanism and a high-level front-end.
Similarly, ArctyrEX [32] is a general-purpose framework
that tarhet a fully HE scheme and offers a high-level front-
end, but also lacks a verification mechanism. GALA [73]
and REDsec [24] are specialized systems for running
encrypted neural networks. Specifically, GALA employs a
leveled HE scheme, whereas REDsec utilizes a fully HE
scheme; unlike PEEV, neither GALA nor REDsec offers a
verification method or a high-level front-end. The work of
Zilch [53] concentrates on verifiable computations solely on
public data, and it is not employing any HE schemes to
enable confidentiality. Zilch incorporates a zk-STARK ZKP
system in its backend and provides a high-level front-end.
The work in [35] introduces a privacy-preserving learning
scheme exclusively for the support vector machine (SVM)
model. This SVM training scheme utilizes a partial HE
scheme and verification tags to verify computations. Lastly,
pvCNN [69] is a specific-purpose scheme for convolutional
neural network (CNN) models; pvCNN employs a leveled
HE scheme (referred to by the authors as L-FHE), and
the Grothl6 verification protocol, but lacks a high-level
front-end.
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VIIl. PRACTICAL CONSIDERATIONS

The proposed methodology can readily scale to any problem
size, however thresholds arise from both the SEAL HE
backend as well as Rinocchio. Although SEAL can execute
very deep circuits with enough noise budget to assure
accurate results with very high probability, Rinocchio is
more restrictive. The benchmarks introduced in the previous
section exploit the maximum parameter set compatible with
Rinocchio, which corresponds to a polynomial modulus
degree of 2!, Increasing this value further leads to incorrect
results.

IX. CONCLUSION AND FUTURE WORK

This paper introduces the PEEV framework for verifiable
privacy-preserving computations. PEEV allows end users
to write programs that process encrypted data without
having extensive knowledge of cryptography, while also
enabling computations performed by a remote server to be
verified. We use the BGV scheme to encrypt and process
the end user’s data, as well as zk-SNARKSs for generating
proofs; in particular, PEEV employs Microsoft SEAL as
its homomorphic encryption back-end and Rinocchio as
its ZKP system. To realize PEEV, we introduce the novel
bespoke YAP parser that enables translation from a high-level
language into the OpL intermediate representation. The OpL
syntax is characterized by its simplicity and readability,
which makes it easy to parse in different FHE libraries, as well
as extend with new operations. To evaluate the efficiency of
our system, we employ 32 encrypted programs, and report
low performance overheads both for encrypted computation
and proof generation.

Some open challenges for future work include enabling
PEEV’s back-end to execute circuits of arbitrary size. One
way to address this challenge is by splitting a larger circuit
into smaller ones and aggregating the results. Another chal-
lenge involves accelerating the evaluation times, which could
be addressed by parallelizing the computations performed by
PEEV.
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