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Abstract

Navigating uncertainty is a critical challenge in all fields of science, especially when translating
knowledge into real-world policies or management decisions. However, the wide variance in
concepts and definitions of uncertainty across scientific fields hinders effective communication. As
a microcosm of diverse fields within Earth Science, NASA’s Carbon Monitoring System (CMS)
provides a useful crucible in which to identify cross-cutting concepts of uncertainty. The CMS
convened the Uncertainty Working Group (UWG), a group of specialists across disciplines, to
evaluate and synthesize efforts to characterize uncertainty in CMS projects. This paper represents
efforts by the UWG to build a heuristic framework designed to evaluate data products and
communicate uncertainty to both scientific and non-scientific end users. We consider four pillars
of uncertainty: origins, severity, stochasticity versus incomplete knowledge, and spatial and
temporal autocorrelation. Using a common vocabulary and a generalized workflow, the framework
introduces a graphical heuristic accompanied by a narrative, exemplified through contrasting case
studies. Envisioned as a versatile tool, this framework provides clarity in reporting uncertainty,
guiding users and tempering expectations. Beyond CMS, it stands as a simple yet powerful means
to communicate uncertainty across diverse scientific communities.

© 2024 The Author(s). Published by IOP Publishing Ltd
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1. Introduction

As society gains greater appreciation of the impacts
of human activities on ecosystems and climate (IPCC
2023), it is imperative that the scientific community
characterize the knowns and unknowns in our under-
standing of Earth’s systems. To build that understand-
ing, scientists utilize a wide-range of observational
systems (e.g. satellites, surface measurements, exper-
imental manipulations) and models both to monitor
human activities and to gain insight into the eco-
logical, physical and biogeochemical processes they
affect.

Despite remarkable scientific progress in Earth
system science, imperfections always exist in both
the observations and models upon which our under-
standing is based. No observation (measurement)
is made without error (ISO/IEC 2008), and models
are simplified abstractions of complex physical and
biological systems, making their outputs inherently
uncertain (Walker et al 2003, Harmon et al 2015,
Fisher and Koven 2020, Blyth et al 2021). As a res-
ult, scientists studying Earth systems must account for
modeling and observational uncertainties to appro-
priately attribute a level of confidence in their results.
These scientific uncertainties must be then framed
within broader forms of uncertainty to form the basis
for decisions with real-world consequences (Kwakkel
et al 2010, Tak et al 2015, Gaudard and Romerio
2020). Finally, these considerations are not unique to
Earth system science, but are shared challenges across
a wide range of disciplines whenever uncertain-
ties in data, models, or data-model fusion products
are used, and are especially relevant to any phys-
ical, biological, or social-science discipline wrestling
with spatial and/or temporal variability (Cassenti and
Kaplan 2021).

As a microcosm of the diversity of research in
Earth system science and beyond, the NASA Carbon
Monitoring System (CMS) program (Hurtt et al
2022) regularly grapples with the practical chal-
lenges of characterizing uncertainty. CMS projects
are selected competitively from PI-driven propos-
als (rather than dictated by NASA), and although
anchored in the study of carbon, this grassroots ele-
ment of the sponsored CMS research results in a
diversity of projects across different Earth System
Science subdomains (e.g. land, atmosphere, ocean).
As a NASA-sponsored activity, many CMS projects
involve data from Earth-observing satellites, but most
also incorporate independent observations or mod-
els. Most projects involve characterization of carbon-
cycle-relevant processes or states in specific places and
times, often represented as maps, but do so at spa-
tial scales ranging from the site to the globe and at
temporal scales spanning minutes to centuries (Hurtt
et al 2022). Despite this variety, all projects must
include explicit plans to quantify uncertainty in any
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data, model, fused model-data products, or find-
ings. Because of this explicit requirement, CMS has
helped speed the maturation of tools and approaches
to quantify uncertainty, particularly for spatially-
explicit carbon-related products (Dokoohaki et al
2021, Hurtt et al 2022).

Recognizing the potentially broad relevance
of these advances, the CMS Uncertainty Working
Group (UWG) was formed to review and synthesize
approaches for handling uncertainty. The group was
composed of representatives from the broad spec-
trum of sub-fields within CMS, including statisti-
cians, remote sensing scientists, ecosystem modelers,
atmospheric scientists, data scientists, and others.
Through regular meetings, the group evaluated and
assessed representations of uncertainty across CMS
projects associated with group members. Articulating
uncertainty concepts across disciplinary boundaries
proved challenging, however. Although all CMS data
products must represent some form of uncertainty,
rarely is that estimate of uncertainty complete: dif-
ferent subfields have different expectations about
what forms of uncertainty are tractable to represent,
and even within a subfield, different projects include
or omit possible sources of uncertainty. Evaluating
these across projects was made even more challen-
ging by the variability in terminology used across
and within fields, as has been found in other contexts
(Fischhoff and Davis 2014, Bevan 2022). It became
clear that any attempt to review uncertainty across the
diversity of CMS projects would first require devel-
opment of a common lens: a conceptual framework
through which discipline-specific approaches could
be evaluated.

Development of such a framework would also
address two other components specific to CMS, but
also more broadly relevant in the discussion of uncer-
tainty. First, with substantial collaboration across
projects within CMS, outputs from one project are
frequently used as inputs by other projects. Because
these projects frequently span disciplines, differences
in representation of uncertainty can lead to chal-
lenges in appropriate use. This is similar to the chal-
lenges faced by any user intending to make use of
uncertainty information from an external source.
Second, CMS requires that projects work with relev-
ant stakeholders as they develop products (Hurtt et al
2022). Communication of uncertainty is critical for
decision-making (Brown et al 2020, Meddens et al
2022), and any insights derived from CMS projects
could be broadly relevant to other uses of uncertainty
products to guide decisions.

Communicating and interpreting uncertainty are
recognized as central goals in science, but concepts of
uncertainty vary widely (Kwakkel efal 2010). In a gen-
eral sense, uncertainty can be viewed as ‘any deviation
from the unachievable ideal of completely determ-
inistic knowledge of the relevant system’ (Walker
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et al 2003). The term uncertainty is itself poly-
semous, however, with interpretations and defini-
tions evolving over the course of its emergence in the
scientific literature (Bevan 2022). Many frameworks
for characterizing uncertainty exist, largely emerging
from policy analysis, decision support, and integrated
modeling (Ibid.). Three broad themes emerge: uncer-
tainty can arise at multiple points in the production
of knowledge; it has different levels or severities; and
it includes both uncertainty inherent in the stochasti-
city of a system (aleatoric uncertainty) as well as
uncertainty that arises from incomplete knowledge or
representation of the system (epistemic uncertainty).
Despite robust scholarship on the topic, distinctions
between and among various flavors of uncertainty are
challenging to characterize (Dankers and Kundzewicz
2020), and adoption of consistent approaches has
remained elusive (Kwakkel et al 2010, Bevan 2022).

To develop a conceptual framework of uncer-
tainty within CMS, we can find inspiration in these
existing frameworks, but the specifics of CMS pro-
jects provide additional challenges. A primary dis-
tinction emerges from the core requirement in the
CMS program that uncertainty be quantified for
every product. In essence, CMS projects must make
claims about the severity of uncertainty, one of the
three core pillars of uncertainty, but little guidance
is provided about the other two: how to character-
ize where in the production of knowledge that uncer-
tainty emerges, and whether that claim of uncertainty
includes or omits important knowledge of the sys-
tem. Additionally, when products developed within
one CMS project serve as inputs to other CMS pro-
jects, the downstream projects must make informed
decisions about how to incorporate the uncertainty
into their own calculation of uncertainty. A key com-
ponent of this process is determining how to appro-
priately aggregate or disaggregate uncertainty in space
or time. Finally, any effort to capture and communic-
ate uncertainty must be generalized enough to allow
each subfield to map its own concepts of uncertainty
to it.

This paper represents a multiyear effort of the
CMS UWG to build a conceptual framework to char-
acterize and communicate uncertainty in quantified
data products. Due to the central role of stakeholder
interactions in CMS, we initiate an exploration into
the relevance of uncertainty representations and char-
acterizations to stakeholders and end users. We aim to
discern whether and how these uncertainties should
be communicated. Building on existing scholarship,
we then articulate a conceptual framework and a
descriptive heuristic, intending to enhance the com-
munication of uncertainty both within and beyond
the carbon science community. Finally, we illustrate
the practical application of our framework by provid-
ing two in-depth examples and several brief ones,
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offering insights into reviewing uncertainty repres-
entation in projects affiliated with CMS and beyond.

2. Stakeholder feedback

Within CMS, the roles of data users and stakehold-
ers are essential for improving product relevance
and applicability. To comprehensively grasp the per-
ception and utilization of uncertainty information
among data users, we surveyed both external and
internal users about uncertainty. Forty individuals
responded, with nine self-identifying as end users of
the information, 25 as researchers or scientists who
used CMS data in their work, and six as either poli-
cymakers, private sector users, or consultants. Most
respondents self-identified as being in either the gov-
ernment or academic sector, with 15% identifying as
non-government or private sector. Here, we summar-
ize the high-level themes.

Examining the overarching themes, a significant
majority of surveyed users consider uncertainty to
be an important component of the data they use
(figure 1(a)). Roughly one-third use a summary of
reported uncertainty in their own reporting, more
than one-third use uncertainty directly in their ana-
lysis, and about a fifth formally use uncertainty in
error propagation. Second, it was clear that commu-
nication of uncertainty could be better: one-fifth of
respondents said that it was unclear how uncertainty
information was generated, that it was difficult to
interpret or use, or that they could not see the value
added in the uncertainty information. Finally, of the
respondents who used uncertainty (figure 1(b)), the
majority require the information at pixel (i.e., grid
cell) scale, but many also require the information in
aggregated form (e.g., state or county). Thus, it is
important that uncertainty be represented in a way
that allows both forms of representation for a diverse
group of users.

In a parallel CMS-sponsored study, Meddens
et al (2022) surveyed 69 attendees of an Operational
Lidar Inventory (OLI) meeting held in Olympia,
WA in March 2020. Unlike the respondents to the
CMS stakeholder survey, more OLI meeting attendees
were from the forest industry or consulting sectors
(41%) than from academia (25%), state/tribal agen-
cies (20%) or federal agencies (14%). These natural
resource professionals were queried on their pref-
erences in geospatial data products used to mon-
itor and manage forests across large landscapes.
Concerning uncertainty, the majority of participants
wanted estimates to be ‘very precise’ (RMSE <25%),
while a minority would settle for ‘precise’.

Although these were informal qualitative surveys,
both studies illustrate that consumers of carbon-
related products consider uncertainty important and
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If you have used CMS or other carbon cycle data products in
your research or decision-making, how important was it that it
reports uncertainty?

@ I won’t use a data
product unless it reports
uncertainty
Very important
Somewhat important
Useful to see but I will
use the data regardless

If you develop or use CMS or carbon cycle data products
which scale of uncertainty do you tend to prefer or provide?

@ Pixel-level

Summarized for the entire
product

Other
Ensemble samples
® Images or scene-scale

None - I don't use or provide
uncertainty informaiton with
my products

Figure 1. High-level summary of respondents to a NASA CMS stakeholder survey on uncertainty. (a) Respondent answers when
asked how important uncertainty information was to them when they evaluate whether to use a data product. In a subsequent
question, 66% of respondents said that uncertainty information was very important in their decision to use the data, whereas
just10% responded that it had only minimal influence. (b) Respondent answers when asked which scale of uncertainty was
preferred. Other answers included combining these scales—both pixel level and summary information or extracting the pixel
level data into a polygon or other application-specific area. Respondents also emphasized that uncertainty reporting depends on

the application and user needs.

useful. Recognizing the wide variations in the defin-
itions and notions of uncertainty across discip-
lines (see also Bevan 2022), effective communication
necessitates identifying core principles that under-
lie these concepts. Understanding the imperative
nature of uncertainty information in designing data
products becomes crucial for influencing decision-
making processes.

3. Terminology and conceptual basis

As with any effort focused on uncertainty, the initial
challenge lies in establishing a common conceptual
basis and reconciling terminology (Bevan 2022). This
is particularly challenging within the broad scope of
CMS research projects that range from the statist-
ical estimation of total biomass in a single forested
ecosystem at a single point in time to physical mod-
eling of global patterns of atmospheric CO, flux at
sub-daily time-steps. To encourage interdisciplinary
thinking, we have endeavored to use concepts and
terms in their broad rather than specific sense, and
provide a means to link these back to discipline-
specific terms (table 1). We urge readers to relax strict
sub-disciplinary definitions in favor of finding the
conceptual similarities across disciplines.

We begin with a research goal common to nearly
all CMS projects: characterizing some aspect of car-
bon in a specific place and time, often in the form of
a geographic map. This structure is driven by both
the applied nature of the program and the required
involvement of stakeholders to use CMS products.
It sets our goal apart from scientific efforts to dis-
cover physical laws or biological processes through
experimentation or lab manipulation. In essence,
our focus is on making claims about carbon-related
quantities—for example, carbon density or carbon

flux—in real-world situations, for which the true
value is likely unsampled and therefore unknown for
a given location or point in time.

We refer to these quantitative claims in specific
places and times as ‘predictions. Although the term
prediction has specific connotations in statistics and
prognostic modeling, here we emphasize the generic
notion of making a quantitative claim in any situ-
ation where the true value is not known. For example,
a claim about carbon in an unmeasured spatial loc-
ation is conceptually analogous to making a claim
about carbon in an as-yet-unmeasurable future time.
Similarly, a statistical estimate derived from samples
can be broadly considered a prediction of what the
true population parameter might be, and is relevant
for a specific, bounded place and time. Broadly con-
ceived, the core of most of our research projects can
be conceptualized as a ‘prediction process’ whose goal
is to produce claims about carbon-related quantities
within defined spatial or temporal extent.

As a common conceptual basis, we posit a flex-
ible and generic workflow to capture the prediction
process (figure 2). While many projects feature more
complex and interconnected workflows, our goal is to
interpret the components of our simplified workflow
broadly enough to encompass a wide range of projects
within the generalized structure. Three core compon-
ents of the workflow serve as pillars: models, predict-
ors, and observations. We first describe and define
these components (see table 1), and then describe
where uncertainty enters into the ‘prediction process’.

At the heart of the process is a model that trans-
lates predictor variables and/or observations into a
prediction at a specific geographic location and time.
The term ‘model’ implies specific forms in certain
sub-disciplines, but here we adopt its broadest defin-
ition as a representation of how the world works
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Figure 2. A generalized workflow for carbon prediction. At the core of the workflow is a model—either conceptual or
actual—that translates predictors and observations (which could have a spread of possible values, as suggested by the normal
curve symbols) into predictions for a given carbon-related attribute. These predictions can be evaluated directly for error, can be
aggregated into larger spatial or temporal units and summarized, or fed back through a data assimilation framework to adjust the
model. A specific project may only require a subset of the flows shown here, and some projects may require layered or sequential
sets of these flows. The definitions of each category are framed from the perspective of the study or project of interest, recognizing
that predictors and observations are often themselves the result of a separate workflow, which itself may depend on other prior

workflows, etc.

Table 1. Generalized terminology used in this paper and its relationship to related terms found in common parlance or in

discipline-specific cases.

Term used in this

framework Definition

Alternative or discipline-specific related
terms

Carbon-related
attribute
Observation

real-world system

True carbon state or flux characteristics of a

A measurement of the carbon-related

Atmospheric carbon mixing ratio, terrestrial
forest carbon, marine dissolved carbon, etc.
Measurement, data

attribute of interest for a specific place and

time

Prediction

Predictor

Model

A quantitative claim about a carbon-related
attribute for a specific place and time

A characteristic of the real-world system
that is thought to help predict the
carbon-related attribute of interest

A conceptual, statistical, or mechanistic tool
to translate predictors and/or observations

Estimate, output, forecast, hindcast

Ancillary variable, explanatory variable,
driver variable, feature

Linear regression, terrestrial ecosystem
models, atmospheric transport models,

into predictions
Error

prediction or observation
Uncertainty

carbon-related attribute

The difference between the true value of a
carbon-related attribute and either the

A characterization of the spread or
distribution of potential values for the

machine learning
Standard deviation, variability, bias, root
mean square error

Standard error, variance. Inverse or opposite
of: accuracy, confidence, precision.

(table 1). The specific manifestation of a model var-
ies widely by sub-discipline, and may be concep-
tual, empirical, or mechanistic. For example, in sur-
vey sampling of forest carbon, mathematical mod-
els are often held as distinct from the sample-based
approach used to describe characteristics of forest
stands. However, we argue that even that situation
contains an implicit model: an abstraction that guides
the choice of statistical tool to represent the cent-
ral tendency of a group of measurements. A model
may also be an empirical regression or machine learn-
ing model calibrated by linking satellite imagery to

ground-based measurements, or it may be a physical
or mechanistic model of an ecosystem or of the atmo-
sphere whose structure has been inferred from the lit-
erature or from physical laws. In all cases, however, we
conceptualize a model as a tool that translates know-
ledge about certain characteristics of a specific place
and time into a prediction for that place and time of
a desired quantity, which in our case is carbon.
Knowledge about the characteristics of a specific
place and time is captured in two ways: through
observations and through predictors. Again, we
adopt a generalized definition of ‘observation’: a
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measurement of our desired quantity (e.g. carbon
pool, flux, etc), bounded in space and time. In
essence, an observation is often a snapshot of the
real world that provides information about the true
state of the system. Conversely, ‘predictors’ serve as
descriptors of the real world (e.g. temperature, tree
height), different from observations in that they are
not the quantity of interest, but rather are related
quantities that we believe will enhance our ability to
make predictions of that quantity of interest. When
the goal of a carbon prediction process is to create a
map, these predictors are often spatially explicit and
spatially exhaustive: satellite imagery, maps of soil
properties or topography, weather fields, etc.

Once predictions are formulated, they typically
follow one of three trajectories. First, predictions can
be compared with independent observations or with
other model predictions to characterize the over-
all prediction accuracy (a.k.a. model verification or
benchmarking). Second, predictions may be sum-
marized or aggregated for end users, such as policy-
makers, or used as inputs into other modeling frame-
works. Finally, in some modeling structures, the pre-
dictions from one cycle of modeling can be con-
sidered inputs in data assimilation (DA) approaches
that harmonize observations and predictions.

Uncertainty arises because the true nature of
all of these components is not known. Perhaps
most fundamentally, the true value of the desired
carbon-related quantity cannot be known exactly.
Observations attempt to capture the true value, but
as with any measurement, observations include error.
Here, we consider ‘error’ to be the difference between
the reported observation and the unknowable true
value. Because of random and systematic effects, the
observed value could be drawn from any number of
reasonable—but slightly erroneous—values that are
near the true value. Uncertainty characterization is a
best effort to put constraints on the potential ‘wrong-
ness’ of the reported observation. Thus, observation
uncertainty can be conceptualized as a descriptor of
the range or probability distribution of possible error
for an observation. We indicate this graphically as a
distribution of possible values (figure 2). If all random
and systematic effects are well understood and charac-
terized, then the true, unknowable value will fall within
the range of uncertainty.

This concept extends beyond observations to
other components. Predictors have uncertainties
(for example, temperature observations or satellite
imagery) or may themselves be the result of a pre-
diction process from a different discipline (inter-
polated weather or climate data). Similarly, models
may be inappropriately or incompletely specified for
the system of interest. Taken together, the uncertain-
ties in predictors, models, and observations result
in uncertainty in predictions: prediction uncertainty.
Prediction uncertainty is rarely the same for every
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prediction across a spatial and temporal space, and
thus the prediction uncertainty is itself a spatially and
temporally-varying field. While researchers strive to
capture as many potential sources of uncertainty as
possible, in practice doing so may not be tractable.
For example, in the process of constructing a model
to simulate the real world, it may be necessary to omit
certain components to make the model computation-
ally or conceptually manageable. In other cases, there
are competing theories on how to best model a sys-
tem, or which models apply best under different cir-
cumstances. Sometimes the model is thought to be
well understood and fully described, but necessary
predictors are known to be imprecise. In other cases,
the observations are known to be imprecise or incom-
plete. Typically, the researcher engaged in the pre-
diction process knows about these sources of uncer-
tainty, and must make choices about which sources
of uncertainty to include in their prediction uncer-
tainty, but many problems also face unquantifiable
‘unknown unknowns’.

Therefore, when faced with a prediction uncer-
tainty product, users must discern which types of
model, observation, and predictor uncertainty have
been considered—and which types have not. At a
minimum, this helps manage expectations. It is even
more important when multiple products exist for
ostensibly the same quantity, each with their own
uncertainty fields—especially if the range of uncer-
tainty among different products does not overlap. If
the range of uncertainty is meant to indicate where
the true value may lie, then non-convergence may
suggest to a user that the entire enterprise is wrong.
However, if attention is called to the fact that predic-
tion uncertainty can incorporate different sources of
uncertainty, then such disagreement can be under-
stood as a case where the two different ‘flavors’ of
uncertainty are incomplete or possibly wrong, and
where further work is needed to incorporate more
sources of uncertainty. Finally, the description of
sources of uncertainty is critical when the predic-
tion from one research endeavor becomes an input
(either predictor or observation) in a subsequent
research domain. For the downstream user to appro-
priately weigh or incorporate the output from the
upstream project, there must be a frank assessment
of which sources of uncertainty have been considered
and which have not. Efficient and clear communica-
tion of uncertainty from producer to user is essential
in all of these scenarios.

4, Heuristic framework

With these components in mind, we propose a
generalized heuristic framework to accompany any
product’s quantified uncertainty (figure 3). This
framework aims to facilitate producers in describing
not only the quantification but also the entry points of
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Prediction uncertainty

Predictors Models Observations Structure
Initial Model Measurement Spatial
conditions structure error autocorrelation
— \\
Drivers and Model Sampling Temporal
covariates parameters error autocorrelation
- " | ] | | i | —

Topic is not relevant for this type of
carbon prediction process

J

Topic is relevant but
NOT considered in uncertainty estimates

Uncertainty estimates include SOME but
NOT ALL of relevant sources
k | | ] | — | J

Uncertainty estimates include ALL relevant
sources

Figure 3. A heuristic framework to communicate uncertainty. When a research team develops a set of predictions along with their
associated prediction uncertainties, they would also use symbolization to quickly impart which types of uncertainty are not
relevant for their domain, which ones matter but cannot be accounted for in their product, and which ones have been given some
level of treatment. Details of the categories are given in the main text.

uncertainty into the process and the sources that are
considered or omitted in that quantification. Building
on our structure above and borrowing conceptu-
ally from prior frameworks (Alcamo and Bartnicki
1987, Walker et al 2003, Harmon et al 2015, Bevan
2022, Blackhurst and Matthews 2022) we consider
three broad categories where uncertainty can enter:
observations, predictors, and models, each with sub-
categories. Acknowledging that most CMS products
include space and time components, we highlight an
important fourth component of uncertainty: the spa-
tial and temporal structure of the prediction uncer-
tainty fields that result from those source uncertain-
ties. For each source, producers use graphical symbol-
ization to impart which sources of uncertainty are rel-
evant to the problem and the degree to which they are
included in the quantification. We elaborate on these
below.

Predictors (from figure 2) are split into two sub-
components: ‘drivers and covariates’ and ‘initial con-
ditions. Covariates are a broad category of proxy vari-
ables that will be translated into predictions through
the model based on statistical correlations or mech-
anistic relationships. Common examples are satellite
imagery, soil properties, land cover, and political/-
management units. Drivers are dynamic covariates,
such as meteorology, that propel the model through
time. We distinguish all of these from initial con-
ditions, which are limited to the initial estimate of
a quantity of interest that is later modeled dynam-
ically to change through time. A common example
would be initial estimates of carbon pools at the

Earth’s surface used in land models. Predictors may
derive uncertainty both from measurement error, as
with observations, and from the fact that they them-
selves are often the result of a separate prediction
exercise. For example, a model may require gridded
temperature as one of its drivers, and that gridded
temperature surface is itself derived by a separate
research team through a prediction process applied
to weather station measurements. From the perspect-
ive of, for example, an atmospheric inversion exer-
cise (see section 5.2), the prediction uncertainty of the
weather variables (an output of a weather prediction
exercise) becomes predictor uncertainty (an input to
the atmospheric inversion exercise).

The translation of predictors into predicted vari-
ables is controlled by the structure of the model
and by the parameters that control the model, both
of which have uncertainties (Alcamo and Bartnicki
1987). Model structure uncertainty appears in both
the empirical and the mechanistic realms. In the
empirical modeling arena, the choice of parametric
vs non-parametric statistics is critical, as well as the
specific structure of the model within either domain.
In the mechanistic modeling realm, the structure of
the model can be driven by physics and/or biology,
but often choices remain about which mechanisms
are incorporated (or not), or about the scales at which
those mechanisms are represented. In all of these
cases, it is often impossible to know a priori which
model structure is appropriate, or whether the appro-
priateness varies over space, time, or situation, and
thus how to represent uncertainties in model choice.
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Figure 4. Simulated examples of the impact of ignoring autocorrelation in the spatial and temporal domain of a grid-cell product
over time. (a) In a simple simulation of mean carbon pool size in a gridded landscape, if uncertainties at grid cells are assumed to
be spatially-independent, then aggregation to a larger cell will result in an overly optimistic (narrow) estimate of the uncertainty
at the coarser resolution compared to the case where spatial correlation is considered appropriately. (b) If the goal is to estimate
uncertainties in the difference between two estimates over time, then assuming those estimates are temporally independent will
result in unrealistically broad (pessimistic) uncertainty distributions.

Regardless of model structure, the model parameters
that control the behavior of the model have uncer-
tainty. When derived through calibration, they are
affected by the choice of calibration method. When
derived from prior studies or literature or even some
form of direct measurement, it is uncertain whether
a given set of parameters is applicable across the full
domain of the model regime. From the perspect-
ive of incorporating uncertainty into model predic-
tions, a study that perturbs parameters in a single
model to vary predictions would only be considering
parameter uncertainty, while an ensemble modeling
approach that uses distinct mechanistic models, each
calibrated with a single set of parameters, would only
be considering model structure uncertainty. Note that
stand-alone model sensitivity analyses are not strictly
relevant to this heuristic, as their goal is not to develop
predictions but rather to explore model structure.
That said, model sensitivities do serve as inputs into
certain uncertainty propagation methods (LeBauer
et al 2013, Dietze 2017).

The assimilation of observations provides a
means of iteratively updating key components of a
model (e.g. parameters, model state) in an effort to
reduce model prediction uncertainty. The extent to
which the prediction uncertainty is reduced depends
upon the certainty of the observations, and is ulti-
mately limited by the predictor and model uncer-
tainty. An example of DA application adapted to the
heuristic is provided in section 5.2.

When considering observations, we distinguish
between uncertainty arising from the measurements
and that arising from the placement of observations
(the sample design). Measurement error occurs for
all measurements, of course, and can be exacerbated

when attempting to measure carbon-related quantit-
ies in the real world, outside of a controlled lab envir-
onment. Moreover, uncertainty in the observed value
can arise because the spatial and temporal bounds
of a given measurement are sometimes not knowable
with precision. Sampling error refers to the uncer-
tainty that arises when a subset of a population (a
sample) is meant to represent the entire population.
The number of observations used, the means of dis-
tributing them (random or not), and their spatial and
temporal autocorrelation can all be factors that ulti-
mately expand or contract prediction uncertainty.
Finally, because we focus on predictions in a place
and time, we must add a fourth pillar of uncertainty:
the spatial and temporal structure of the uncer-
tainty field itself. Assuming predictions are arrayed
in space and time, the uncertainties in those predic-
tions become additional modeled fields of their own
(an ‘uncertainty surface’), with concomitant spatial
and temporal characteristics. If a given prediction
product is spatially or temporally up- or downscaled
by the next user, the uncertainty surface must also
be scaled. However, calculating the distribution of
uncertainty at a coarser scale requires careful con-
sideration of spatial and temporal autocorrelation. If
uncertainties are assumed to have no spatial auto-
correlation, then offsetting random error across adja-
cent cells will appear to cancel out, resulting in an
overly optimistic (narrow) estimate of uncertainty at
the coarser spatial scale (figure 4(a)). This is partic-
ularly problematic in DA systems, where such nar-
row uncertainty bounds would be given proportion-
ally too much weight in a solution, potentially leading
to erroneous conclusions. Incorporating an assump-
tion of spatially-correlated uncertainty broadens the
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estimate to a distribution that is more representat-
ive of the actual uncertainty at the coarse resolution.
If the interest is estimating change over time, how-
ever, the penalties reverse. If two successive estim-
ates (in time or space) of a quantity of interest have
positively-correlated uncertainties, then much of the
shared uncertainty between two estimates will can-
cel out when calculating the difference from one time
step to another (figure 4(b)). If these correlations are
ignored, then the corresponding uncertainty distri-
butions will be too wide. Thus, in both the spatial and
the temporal cases, it is necessary for a producer to
specify the correlation structure of the unexplained
variation in their predicted spatio-temporal fields.

Our heuristic framework is meant to benefit both
users and producers of predictions and data products.
We envision it as a core component of metadata
accompanying an uncertainty product. For users it
serves as a simple visual mechanism to gauge how
to use any product, and it emphasizes that ‘uncer-
tainty’ means different things for different products.
Moreover, it can help clarify why predictions from
different products may disagree: by explicitly stat-
ing which sources of uncertainty are considered and
which are not, the heuristic helps temper expectations
about the level of agreement among products and
reduce their misuse. For producers of predictions and
data products, the heuristic forces an honest reckon-
ing of strengths and weaknesses in products. Perhaps
most importantly, it can serve as a structural tool to
focus efforts at improvement in products by high-
lighting gaps in the representation of uncertainty.
Beyond graphical heuristics, the framework presen-
ted here can also inform the development of com-
munity conventions for sharing predictions and both
data and metadata about their uncertainties (Dietze
etal 2023).

5. Application

The heuristic framework is envisioned as an organ-
izing structure for two purposes: characterizing pro-
jects for evaluation and comparison, and communic-
ating uncertainty to data users. In the former case,
projects with similar workflows or product deliver-
ables could be characterized using our framework,
and differences in the heuristic could be easily identi-
fied to guide understanding of discrepancies among
projects. In the latter case, a developer of an indi-
vidual project would report both the graphical heur-
istic and an associated description to allow the data
user to determine how to best interpret or use the
uncertainty.

Both efforts require translation of discipline-
specific concepts into the generalized notions of our
framework. Using two examples, we illustrate a nar-
rative approach to link project-specific approaches
to our heuristic framework. The core goal of these
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examples is to map the terms in the figure to
the specific disciplinary case, and then explain or
defend the choices in the heuristic tool: How do
the terms translate into the methods of the par-
ticular study? Why are some categories of uncer-
tainty considered irrelevant (left blank)? When a
category of uncertainty is relevant, but not con-
sidered in the study, what are the constraints that
prevented it from being considered? If the producer
states that a given category is fully or partially con-
sidered, what logic or evidence is available to back that
claim?

5.1. Uncertainty arising from sample design

Our first example comes from ‘design-based’ stat-
istical estimation theory as applied to estimation of
forest carbon stocks. Under design-based estimation,
a sample of observations is measured at locations
under a known probability-based sample design and
an estimator is used to estimate a population para-
meter. The sampling strategy (the combination of the
sampling design and estimator) allows for calculation
of errors in those estimates (Sidrndal et al 1992). Such
approaches have long been used for assessing stand-
ing timber volume in traditional forestry applica-
tions, and this approach remains the standard on
which forest carbon accounting must be based in
the context of international carbon agreements (e.g.
the TREES-2.0 protocol for projects under Reducing
Emissions from Deforestation and Degradation:
www.artredd.org/trees/).

Here, we apply the uncertainty heuristic frame-
work (figure 5) to describe prediction uncertainty
in Menlove and Healey (2020). In this study, the
producers use the design-based approach to estim-
ate forest biomass (and hence carbon) for each of
more than 12000 hexagons covering the lower 48
United States; the hexagons are approximately equal-
area hexagons of 640 km”2 (Menlove and Healey
2020). For the purposes of this example, we trans-
late the term ‘estimation’ used in the traditional par-
lance of design-based theory into the ‘prediction’
concept used in our framework: the goal of estim-
ation is to predict the population-wide statistic of
a particular property (for example, mean biomass
density), which essentially involves making claims for
the many locations for which there are no obser-
vations. The confidence intervals associated with
design-based estimation can be considered the pre-
diction uncertainty. Observations in this study come
from the US Forest Inventory and Analysis (FIA)
program. Because that program is built on a rigor-
ous sampling design to enable design-based estim-
ation (Bechtold and Patterson 2005), we can con-
sider the uncertainty from the Sampling Design to be
both a relevant source of uncertainty and completely
treated (‘Sampling error’ symbol filled and outlined
in figure 5).
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Figure 5. The heuristic framework applied to the study of Menlove and Healey (2020), which derived design-based estimation of
forest carbon from Forest Inventory and Analysis (FIA) for large hexagons across the U.S. As with any design-based estimation,
sampling error drives the uncertainty, but the design of the study raises several other decisions that could affect uncertainty (see

text for details).

It is common in design-based studies to assume
the observations are made without error, i.e. there is
no measurement error. We are translating the defin-
ition of measurement error from observations such
as diameter at breast height to observations which
are modeled from measured observations; in the lat-
ter case measurement error could include the errors
in the measured observations and the modeling pro-
cess. In Menlove and Healey (2020), the observations
of ‘forest biomass’ from the FIA plots are themselves
derived from a modeling process that uses functions
(‘allometric equations’) to translate field measure-
ments of tree type and size characteristics into estim-
ates of carbon or biomass. Because Menlove and
Healey (2020) provide visual renditions of the impact
of the choice of using these different measurement
types, we can consider that measurement uncertainty
is partially treated, but not fully incorporated (‘meas-
urement error’ filled but outlined with a dashed line).

Spatial structure of the error deserves note. Using
the independent samples for the hexagons, Menlove
and Healey (2020) separately produce design-based
estimates for each hexagon, and display these estim-
ates in a map. Because the estimates are mapped, there
may be a tendency to assign some spatial relation-
ship between the estimates. However, in the design-
based paradigm the samples are independent and
the design-based covariance between the estimates
for hexagons is zero, no matter the distance between
hexagons. Thus, the ‘spatial autocorrelation” symbol
is left uncolored.

Many of the other sources of uncertainty are
not relevant. There are no predictor variables, and
because it is intended for a single point in time, tem-
poral autocorrelation is not relevant. We further claim
that model structure and parameters are not relevant,
but the argument could be made that even a design-
based study includes an implicit conceptual model
that may or may not be relevant. This example illus-
trates the translation of terms in the framework into
the specific disciplinary case, providing insights into
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choices made and considerations taken in addressing
uncertainty in the study.

5.2. Uncertainty inferred from predictions and
observations

Our second example comes from the DA domain,
where disagreement between predictions and obser-
vations is used to infer and reduce uncertainties in
the modeling process. In DA, a model is used to
translate predictor variables and their uncertainties
into predicted carbon-relevant values, often for full
spatial surfaces. These predictions are then com-
pared against observations, which may be spatially-
and temporally-sparse, to refine the predictions at
all sites, not solely those with available observations.
Specifically, DA typically makes use of process-based
models and relies on the covariance structure of the
model itself to make inferences about unobserved loc-
ation, times, and carbon cycle variables. Typically, DA
approaches explicitly consider uncertainty in most
components of the modeling process. Because DA
strategies represent the state of the art in handling
uncertainty, they provide an excellent counterpoint
to the design-based estimation of error described in
the prior example.

We apply the uncertainty framework (figure 6) to
Raczka et al (2021), a CMS-supported study of ter-
restrial carbon pools and fluxes in the western United
States. In Raczka et al (2021), the core model is the
Community Land Model (CLM5.0; Lawrence et al
2019), which represents terrestrial ecosystems as hori-
zontally and vertically distributed pools of vegetation,
soil, and water, and uses physical or biological sub-
models to represent the transfer of carbon, nitrogen,
water, and energy. The uncertainty in atmospheric
conditions is used to generate 80 ensemble simula-
tions that quantify the uncertainty in the modeled
fluxes and pools. Observations of above-ground bio-
mass and vegetation leaf-area index, derived from
satellite remote sensing, are used to update import-
ant prognostic variables (i.e. carbon and nitrogen
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Figure 6. The heuristic framework applied to the terrestrial inversion study of Raczka et al (2021). Here, a single instance of a
terrestrial biosphere model (TBM) is perturbed by meteorological data (driver) to predict an ensemble of terrestrial states. Then,
through an Ensemble Kalman Filter (EnKF), these model states are adjusted by observations (with measurement error). This
EnKF approach allows for the spatial and temporal correlation to be accounted for in the adjusted model state.

pools) based on an Ensemble Kalman Filter (EnKF)
approach (Anderson et al 2009). Both observation
uncertainty and initial condition uncertainty are
explicitly considered through the EnKF assimilation
framework and contribute to the updated uncer-
tainty predictions. The uncertainty from atmospheric
drivers influences the land-based uncertainty predic-
tions, but uncertainty from other covariates (such as
plant functional type and soil) was not explicitly con-
sidered. Both model structure (the core CLM model)
and its controlling parameters were not varied nor
contributed to the predicted uncertainty. In order to
compensate for these missing sources of uncertainty,
an adaptive inflation technique (Anderson 2007) is
used to empirically enhance the model uncertainty.
Spatial and temporal autocorrelation in the uncer-
tainty of the output layers are considered through
the EnKF adjustment. Because both data constraints
were spatially exhaustive, sampling error was not con-
sidered relevant for this work. This example high-
lights the explicit consideration of various sources of
uncertainty in a DA study and the methods employed
to address them.

5.3. Other examples

The lens of the heuristic framework can be used
to evaluate or compare other projects. We omit the
graphical depiction and the full narrative in the
interest of brevity and highlight key characterist-
ics of uncertainty that would be illuminated by the
heuristic. In the domain of forest carbon estimation,
for example, Patterson et al (2019) apply a ‘hybrid
estimation’ approach to forest biomass estimation
that blends design and model-based considerations to
improve consideration of uncertainty in calculating
biomass from the GEDI (Dubayah et al 2020) lidar
sensor. The sources of uncertainty considered are the
sampling error of modeled predictions of biomass
at the sampled locations and the modeling error of
the biomass predictions, along with autocorrelation
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of the residual errors. In a CMS study in the west-
ern United States, Kennedy et al 2018 linked field
measurements with remotely-sensed data to predict
forest biomass as a continuous field for many years.
Although several versions of driver and parameter
values were used to estimate uncertainty, many other
model structures or drivers could have been used;
moreover, spatial and temporal autocorrelation were
not considered at all, though these would affect the
structure of the uncertainty fields. Also in the west-
ern U.S., the CMS study by Hudak et al (2020) used
a two-stage modeling approach: the first to link field
data to airborne-lidar estimates of biomass, then link-
ing those with satellite-based estimates, and quanti-
fied uncertainty at both levels using random forest
non-parametric models. The uncertainty layer asso-
ciated with the lidar-based biomass map was not
explicitly propagated to the satellite-based biomass
map; rather, the uncertainties associated with pre-
dictions from both were reported as separate CMS
products. In both of these studies, neither measure-
ment nor allometric errors were explicitly included in
estimates of uncertainty. Saatchi et al (2011) included
measurement error in a suite of uncertainty sources
propagated through a modeling process as they cal-
ibrated nonparametric maximum entropy models
using satellite-derived optical and radar image data
against biomass observations. As with the other stud-
ies above, model structure was not varied, and as with
all prior examples, spatial autocorrelation in uncer-
tainty was not considered. Spatial autocorrelation was
explicitly modeled in Babcock et al (2016), where
hierarchical Bayesian strategies were used to explicitly
solve for spatial dependence of uncertainty terms,
while propagating uncertainties from plots and mod-
els in a small project area involving field, lidar, and
satellite-based measurements.

The uncertainty framework also illuminates how
DA approaches in both atmospheric and terrestrial
modeling continue to advance their representation of
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uncertainty. For example, in another CMS project,
Dokoohaki et al (2021) use terrestrial DA strategies to
develop a proof-of-concept for a national-scale car-
bon cycle reanalysis product, incorporating uncer-
tainties in the parameters and initial conditions
driving their terrestrial biomass model, and expli-
citly modeling the spatial and temporal structure
of prediction uncertainty—effectively covering most
aspects of the heuristic framework. In the realm of
atmospheric modeling, the advent of satellite-based
CO; sounding instruments has provided new options
for improved sampling of the global atmosphere, and
these can then be used in a DA framework to improve
overall uncertainty (Crowell et al 2019, Peiro et al
2022, Byrne et al 2023), again leading to improved
representation of spatial structure of uncertainty that
would be captured in the heuristic. All DA methods
depend highly on the uncertainty structures of the
model and observations, and biases in these (partic-
ularly observations) are not easily handled (Cameron
et al 2022). This potential source of bias in observa-
tions could be represented graphically as an incom-
plete consideration of observation uncertainty (i.e. a
dashed line), accompanied by further description in
the narrative. Therefore, in the case of atmospheric
inversion, some studies have evaluated uncertainties
by comparing optimized fields to independent obser-
vations not used in the original assimilation (Liu et al
2021). In this case, the graphical heuristic would be
similar to other studies, but an accompanying nar-
rative or metadata would illuminate the contrasts in
approach.

6. Discussion and recommendations

Characterization of uncertainty is a central goal in any
scientific endeavor, but the definitions of uncertainty
differ across scientific disciplines (Bevan 2022). The
NASA CMS program incorporates a broad diversity
of scientific fields and requires all products to estim-
ate uncertainty, providing a unique opportunity to
evaluate how uncertainty is handled across fields. This
paper represents an effort by the NASA CMS UWG
to build a conceptual lens through which projects can
be evaluated and uncertainty can be communicated
across projects and to external stakeholders. Our goals
were to find commonality of concepts across discip-
lines, to develop a tool for quickly summarizing and
communicating information about the uncertainties
in different data products, and to acknowledge the
particular need to consider both spatial and temporal
properties of uncertainty.

The resulting heuristic framework borrows from
the substantial body of scholarship characterizing
and communicating uncertainty (Walker et al 2003,
Kwakkel et al 2010, Dankers and Kundzewicz 2020,
Gaudard and Romerio 2020, Bevan 2022, Blackhurst
and Matthews 2022), but adapts and augments those
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concepts to the conditions represented in CMS. Of
the three common pillars frequently recognized in
uncertainty (source of uncertainty, type [stochastic,
epistemic], and severity), the CMS requirement to
quantify uncertainty addressed only one: severity.
But the CMS UWG recognized that quantification
of uncertainty was insufficient by itself. Uncertainty
mismatches between ostensibly similar products and
difficulty propagating uncertainty among projects
exposed fundamental gaps in our representation of
the concept. This required a mechanism to commu-
nicate sources of uncertainty, and the degree to which
some sources of uncertainty are not represented in a
given product. Moreover, we recognized that predict-
ing the when and where of uncertainty also required
addition of a fourth component: the spatial and tem-
poral characteristics of uncertainty. Without consid-
eration of all of these topics, users both inside and
outside the scientific community would have diffi-
culty making sense of our products.

Our heuristic framework complements import-
ant benchmarking and intercomparison projects that
have already been used in carbon cycle science to
quantify uncertainty. For example, the ILAMB pro-
ject (Collier et al 2018) assesses model performance
of Earth system model land representations against
a suite of observational data, providing insight into
model performance. We believe a heuristic like the
one developed here would be highly valuable for such
benchmarking projects: when considering what data
products to use as benchmarks, in communicating
the uncertainties in those product uncertainties to
users, and when selecting skill scores to use when
evaluating models (e.g. the scoring of pixels should
not be treated as independent if the uncertainties
in the benchmark data are highly autocorrelated).
Relatedly, process-based models are frequently used
to predict earth system processes (including the car-
bon cycle) into the future, either under the status quo
or alternative emissions scenarios. Model intercom-
parison projects (MIPs) are also often used to eval-
uate across modeled predictions, with the spread in
model results providing a measure of uncertainty. For
example, the Coupled Climate—Carbon Cycle Model
Intercomparison Project (Jones et al 2016) has been
used to assess uncertainty in the carbon cycle com-
ponent of climate models, while the OCO-2 Flux
Inversion MIP (Byrne et al 2023) has been used
to evaluate carbon sources and sinks derived ‘top-
down’ from atmospheric CO, measurements, includ-
ing those from satellites. The heuristic developed
here is equally valuable when discussing the uncer-
tainties associated with the projections from indi-
vidual models or MIPS. While others have recog-
nized the challenges of interpreting the uncertainty
of a multi-model ensemble, as such models are a
non-random and non-independent sample of pos-
sible models (Tebaldi and Knutti 2007, Sanderson
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and Knutti 2012), less attention is often given to a
full -accounting of the uncertainties within individual
models, and the ‘spin-up’ protocols of many MIPs
often result in complex within-model convolutions
of uncertainties (e.g., parameters, initial conditions,
drivers, and process error) (Raiho et al 2020). In all of
these cases, our framework is not focused on attempt-
ing to score or rank the relative impact of different
sources of uncertainty, but rather to provide a means
of describing which broad categories are considered,
with associated narrative to back up the choices made.
In this way, our work complements within-discipline
efforts to explore quantitatively the relative impacts
of different sources of uncertainty (e.g. Bonan and
Doney 2018, Duarte et al 2021).

More broadly, the explosion of data production
in all domains of science and commerce necessitates
a concomitant attempt to clearly and honestly reckon
with the uncertainties in those data. By encom-
passing such a wide range of predictive frameworks,
we believe the heuristic framework we have proposed
can be used directly or adapted across a wide range of
fields and paradigms.

An important feature of the heuristic is to
highlight what types of uncertainty are not con-
sidered in a given uncertainty product. This distin-
guishes our framework from other efforts to organ-
ize sources of uncertainty in carbon-related projects
(e.g. Blackhurst and Matthews 2022). It leans on the
assumption that the scientists who develop predic-
tions know best the degree of belief they have in their
own understanding (Gaudard and Romerio 2020).
This includes both the factors that are unknow-
able (true epistemic uncertainty) and the known
stochastic factors that could introduce uncertainties
into their products. Of these, they know which of
those are not considered or not tractable when build-
ing predictions of uncertainty. The heuristic tool
can provide three benefits in this domain. First, it
can clarify why uncertainty estimates (or the predic-
tions themselves) may vary from one data product
to the next. As products with ostensibly similar goals
proliferate, it becomes critical to provide users a
means of differentiating them, and, importantly, to
dampen expectations among users that all products
must agree. Second, it provides a venue for produ-
cers to speculate about unknown unknowns—places
where our knowledge of the system is truly incom-
plete. And finally, it can encourage producers of pre-
dictions to critically self-evaluate where and why dif-
ferent sources of uncertainty are not included, and
indeed help point to the areas where improvements
can be made.

A key area where frank assessment is needed is in
possible sources of bias. If an estimate of uncertainty
is attempted by comparing predictions with observa-
tions, any bias in the acquisition of those observa-
tions could lead to misleading conclusions about the
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uncertainty in the system. For example, a calibration-
based modeling strategy can be compared to obser-
vations to provide some insight into uncertainty in
the model structure or parameterization, but if the
observations are sampled in a biased manner, the
representativeness of the uncertainty will be incor-
rect. Similarly, atmospheric inversion techniques (or
estimation theory more broadly) generally assume
unbiased errors in observations (Baker et al 2006),
and if this is not the case, then the assimilation of
uncertainty will be incorrect. Such observation or
sampling bias can be highlighted graphically in the
sampling and measurement portions of the graphical
heuristic, and elaborated in the accompanying nar-
rative. Identification of possible sources of bias can
also provide a path forward to improvement in future
efforts.

Similarly, the explicit calculation of uncertainty
surfaces can provide insight into the spatial and tem-
poral domains where more effort is needed, through
improvement in either observations or models. For
example, the spatial analysis of uncertainty inferred
from atmospheric inversion of satellite-based sound-
ings pointed to the need for improved in situ observa-
tions over tropical Africa (Peiro et al 2022). Similarly,
Feng et al (2021) directly ingested an ensemble car-
bon flux product created by parameter perturb-
ation into a high-resolution regional atmospheric
transport model, and compared the modeled CO,
with aircraft and tower measurements. The uncer-
tainty analysis illustrated sink processes that were not
well-accounted for in the terrestrial biome model.
Alternatively, some studies have tested ensemble
model inversions across a range of drivers, initial con-
ditions, and model structure, and have used rank his-
tograms (Hamill et al 2001) to evaluate the match of
predicted to actual uncertainty, and thereby choose
among ensemble members and best represent uncer-
tainties (Diaz-Isaac et al 2018, Feng et al 2019). The
shape of a rank-histogram (a.k.a. posterior predictive
quantiles or Bayesian p-values) indicates whether the
uncertainty estimates are over- or under-dispersive,
which in turn can provide insight into whether
key processes generating predictive uncertainty are
appropriately represented.

Even if uncertainty is adequately calculated,
passing on to users information about correl-
ated errors (e.g. spatiotemporal autocorrelation)
is a nontrivial problem. From a user’s perspect-
ive, ensemble-based data products that represent
Monte Carlo samples are by far the simplest way
to ensure that uncertainties are propagated correctly.
In this approach, users simply apply their calculation
(e.g. upscaling or differencing) to every ensemble-
member and the distribution across ensemble mem-
bers represents the uncertainty. However, ensemble-
based data products can significantly increase stor-
age requirements and, at the moment, most users
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and producers lack familiarity with such products.
Alternatively, reporting covariance information
about data products can be much more compact,
and in some cases easier to produce, but is signi-
ficantly more challenging to understand how to use
and apply correctly, especially when spatial or tem-
poral covariance is nontrivial. It will also generally
introduce larger approximation errors since assump-
tions about multivariate normality, stationarity, and
anisotropy typically need to be invoked. Despite these
challenges, we assert that consideration of spatiotem-
poral autocorrelation is critical when communicating
prediction uncertainty.

Appropriate specification of spatiotemporal auto-
correlation is also helpful when translating space- and
time-specific predictions into the language of uncer-
tainty used in broader carbon and climate risk assess-
ments. Often, the language in those assessments is
framed as uncertainty in the aggregate. For example,
a community assessment of the global carbon budget
(Friedlingstein et al 2019) reports on bulk estimates
and uncertainties of global flux of carbon among the
five major components of the carbon cycle: emissions
from fossil carbon and land use change, and accu-
mulation in sinks in the atmosphere, land and ocean.
Each separate component is accumulated from space-
and time-specific bookkeeping and modeling efforts,
often using multiple sources, all of which include
their own assessments of uncertainty. The uncer-
tainty framework presented here could inform the
aggregation process. First, it would help clarify which
types of uncertainty are represented or not represen-
ted in the sub-component sources, aiding in the pro-
vision of a roadmap to the community for improve-
ment of estimates. Second, it could draw attention
to the impacts of spatial and temporal autocorrel-
ation in estimates of uncertainty from component
sources. In both cases, the effort focuses on providing
a simple means of communicating uncertainty across
groups in the scientific community. This is particu-
larly important in global synthesis efforts, where a
certain degree of expert opinion is needed to put side-
boards on confidence of results. Clear tools to com-
municate uncertainty among experts will aid in this
effort.

Clear communication of uncertainty is also essen-
tial in the emerging domain of carbon markets and in
the monitoring, reporting, and verification of global
climate agreements. In the agriculture, forestry, and
land use sector, for example, remotely-sensed maps
of deforestation, degradation, and carbon density
can serve as central elements of county- or project-
level carbon mitigation strategies (Bos et al 2019).
However, both economic and compliance arenas
require some measure of the confidence in the find-
ings derived from these maps, and these maps are
rarely accompanied with robust per-pixel estimates of
uncertainty. Moreover, the proliferation of mapping
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products can lead to differing results across maps
ostensibly claiming the same information (Neeti and
Kennedy 2016), and without robust communica-
tion of uncertainty, policymakers and markets have
no way to judge progress. Our framework could be
applied to aid in this work.

More generally, our framework can help stake-
holders navigate any situation where competing geo-
spatial products disagree. Without a sense of source
and completeness of uncertainty components, diver-
gence among those products can lead to mistrust of
all products. By highlighting divergence in compon-
ents used to estimate uncertainty, the framework may
dampen expectations of agreement among products,
allowing users to focus on which types of uncertainty
are more important in their use case, or to find means
to blend together products from different sources to
dampen risk. Moreover, a framework that articulates
discussion among producers and users can lead to
greater understanding and trust among users, and
can clarify for producers which components of uncer-
tainty need to be improved.

Ultimately, we envision our framing being rel-
evant beyond carbon to any discipline dealing with
the quantification uncertainties in data, models, fused
model-data products, or findings, especially when
space and time are important parts of such analyses.
The emergence of spatially- and temporally-explicit
estimates of uncertainty in any discipline will require
similar considerations: source of uncertainty, frank
appraisal of which uncertainties are not considered,
and how to aggregate or disaggregate the uncer-
tainty when ingesting or summarizing it. Although
frameworks for uncertainty have a long pedigree, we
hope that the lessons reflected in the NASA CMS
Uncertainty Heuristic can provide a practical tool to
capture these critical considerations.
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