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Machine learning (ML) algorithms have advanced signi�cantly in recent years, progressively evolving into

arti�cial intelligence (AI) agents capable of solving complex, human-like intellectual challenges. Despite the

advancements, the interpretability of these sophisticated models lags behind, with many ML architectures

remaining “black boxes” that are too intricate and expansive for human interpretation. Recognizing this issue,

there has been a revived interest in the �eld of explainable AI (XAI) aimed at explaining these opaque ML

models. However, XAI tools often su�er from being tightly coupled with the underlying ML models and are

ine�cient due to redundant computations.

We introduce provenance-enabled explainable AI (PXAI). PXAI decouples XAI computation from ML

models through a provenance graph that tracks the creation and transformation of all data within the

model. PXAI improves XAI computational e�ciency by excluding irrelevant and insigni�cant variables and

computation in the provenance graph. Through various case studies, we demonstrate how PXAI enhances

computational e�ciency when interpreting complex ML models, con�rming its potential as a valuable tool in

the �eld of XAI.
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1 Introduction

In recent years, we have witnessed the great success of machine learning (ML) and arti�cial
intelligence (AI) in all facets of daily life. From healthcare diagnostics to �nancial forecasting,
the widespread deployment of AI/ML systems is transforming industries. Unfortunately, most
AI/ML models remain black boxes, and the growing size and complexity of AI/ML models make
those models di�cult for humans to understand or explain. This lack of explainability undermines
transparency and robustness, leading to signi�cant challenges in user acceptance [8, 19] and
regulatory compliance [56, 57].

The need for explainability is particularly pressing in complex AI pipelines, where understanding
how speci�c inputs in�uence outputs can ensure accountability and foster trust. Traditional explain-
able AI (XAI) tools [28, 50] have attempted to bridge this gap. Depending on the objective to explain,
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Fig. 1. A typical explainable AI (XAI) workflow.

there are global XAIs that characterize AI/ML models (e.g., GA2Ms [10] and MMD-critic [31]),
and local XAIs that explain a single model inference output (e.g., LIME [47] and counterfactual
explanation [13, 40, 57]). Depending on the applicability, there are model-speci�c XAIs that are
designed for speci�c models (e.g., LRP [5] and XGNN [61] for neural networks), and model-agnostic

XAIs that apply to all models, (e.g., ICE [23], PDA [62] and SHAP [36]). In this paper, we focus on
local and model-agnostic XAI tools that have the widest applicability.
Figure 1 illustrates a typical scenario in which AI developers can use XAI tools [25, 45]. First,

black-box AI/MLmodels are trained from a training data set, denoted byĀ (®x). After the deployment
or update, the model is ready for service to users. A user gives an input instance ®x and receives a
model inference output Ĝ (®x). Sometimes, especially when Ĝ (®x) is undesirable, the user may ask
the AI developer for explanations of Ĝ (®x).
To explain this output, developers typically take advantage of XAI tools following a sample-

then-inference procedure: the XAI tools repeatedly generate a sample ®x′ in the neighborhood of
the original input instance ®x, run a model inference for a corresponding output Ĝ (®x′), and �nally
compute an explanation E(Ĝ (®x)) based on ®x′ and Ĝ (®x′). The sample-then-inference procedure is
common when using local and model-agnostic XAIs tools.

However, previous XAI tools fall short of practical deployability in two regards. First, existing XAI
tools are often coupled with underlying AI/ML models. The explanations can be misleading when the
output cannot be reproduced [44] (e.g., the model is updated, involves stochastic computations or the
hyperparameters of model inference are modi�ed) as the data creation and transformation within
the model is not recorded. Second, existing XAI tools are ine�cient due to redundant computation.
For example, the di�erences between sampled instances and the original input instance might be
small (e.g., ICE and counterfactual explanation). Consequently, only a small subset of the variables
and computations will change during the process of model inference. The unchanged variables and
computations are irrelevant to the XAI computation but are redundantly computed. However, it
is di�cult to trace the irrelevant variables and computations without knowing the computation
dependencies.

Tomitigate these challenges, we leverage the insight that we can collect data inference derivations,
which allows us to use data provenance [9, 24] for AI/ML models. Although data provenance has
been proposed in di�erent stages of machine learning, including the model training phase [7, 59],
the model inference phase [37, 58] and both phases [51, 54], no prior work addresses the limitations
of local and model-agnostic XAI tools. The “approximate provenance” approach [46, 58] accelerates
provenance-related computation by excluding “insigni�cant” derivations. However, to the best of
our knowledge, no provenance work approximates the explanations derived from the local and
model-agnostic XAI tools.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.



Provenance-Enabled Explainable AI 250:3

Inner Product Act

Weight

Vector 0

Input

Vector

Weight

Vector 1

Softmax Vector

Inner Product Act

Inner Product Act Inner Product Act

Softmax

(b)

Node to Factor

Init NodeMsg

Node 0 ³ Factor 0

Potential

Factor 0

FactorMsg

Factor 0 ³ Node 0

Factor to Node

Scale

Subgraph

Probability

Node 0

(a)

Subgraph

NodeMsg

Node 0 ³ Factor 0

Fig. 2. Examples of PXAI provenance.

In this paper, we develop a local and model-agnostic XAI tool that we call provenance-enabled
explainable AI (PXAI). To decouple XAI tools from the original AI/ML models, we develop a
provenance model that acts as a comprehensive log of the model inference process, tracking the
creation and transformation of all data within the model. For example, Figure 2 presents simpli-
�ed provenance graphs that track the loopy belief propagation [41] of a probabilistic graphical
model [32] (a), and the forward pass of a multi-layer perceptron (b). In these provenance graphs,
round vertices represent various variables, including inputs (yellow), model parameters (purple),
intermediate results (orange), and outputs (green). computation dependencies are recorded by
edges, while operator vertices (blue) specify the computational operations performed. By con-
structing provenance alongside model inference, PXAI ensures a comprehensive and transparent
documentation of the inference pipeline.
Provenance enables dependency analysis, which accelerates XAI computation by excluding

redundant computations. A user provides a model to PXAI, which builds and maintains the relevant
provenance graph. When a user requests the explanations of a model inference output, PXAI
queries the provenance graph by backward tracing to remove the computation dependencies of
other outputs and forward tracing to show how an input feature contributes to other variables.
PXAI optimizes for cases in which such traces are large by creating an approximate subgraph
that approximates the outputs and explanations derived from the original graph (i.e., the XAI-
approximate property). Based on the aforementioned data structures and algorithms, PXAI enables
explainable and e�cient model inferences.

To demonstrate the e�cacy of PXAI, our experiments across several case studies show that PXAI
signi�cantly lowers the performance overhead compared to the original XAI (i.e., ICE) computation
by up to 5 orders of magnitude. As a result, PXAI enables e�cient explanations across models and
provides a promising direction for local and model-agnostic XAI tools.
Our main contributions include the following:

(1) We de�ne and develop a provenance model that tracks the creation and transformation of
all data within AI/ML models.

(2) We develop provenance-enabled model inference, which reproduces model inference
results and excludes irrelevant variables and computations. Additionally, we propose XAI-
approximate and develop provenance-enabled approximate subgraph searching meth-
ods, which exclude insigni�cant variables and computations without violating the XAI-
approximate property.
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Fig. 3. Examples of a Markov Network (a) and the factorized Markov Network (b). (c) shows the XAI running
time on a PGMapplication, text classification. (d) shows a slice of the PGMof the text classification application.

(3) We design and implement PXAI using C++. We extensively evaluate PXAI through

representative case studies of distinct MLmodels and application domains: probabilis-
tic graphical models (visual question answering [4] and text classi�cation [17]), multi-layer
perceptron (credit score classi�cation [30]), and ġ-means clustering (ML deletion [22]). Our
evaluation results demonstrate that PXAI e�ectively and e�ciently explains black-box AI/ML
models compared to prior approaches.

2 Motivation: Applying Existing XAI tools on a PGM Application

We motivate the need for PXAI using an application of explaining a probabilistic graphical model
and demonstrate the shortcomings of existing XAI tools.

2.1 Probabilistic Graphical Model

The probabilistic graphical model (PGM) [32] is an AI/ML model that uses a graph-based represen-
tation where nodes represent random variables and edges represent probability dependencies to
encode complex probability distributions. There are two types of graphs, a directed graph (Bayesian
Network) and undirected graph (Markov Network). Both graphs “break up” the probability distribu-
tion into smaller pieces (termed factors), then de�ne the joint probability as the product of factors.
For example, Figure 3 (a) presents a Markov Network that consists of four nodes. Notably, in Markov
Networks, each fully connected subgraph (e.g., node A, B, C and node B, D) forms a factor, and the
joint probability of this Markov Network is de�ned as P(ý, þ,ÿ, Ā) = 1

Ė
č1 (ý, þ,ÿ) č2 (þ, Ā) where

the factor č is a user-de�ned function (termed potential function) and Ė is a scalar.
The model inference of probabilistic graphical models normally refers to a process that computes

the marginal probability distribution of an unknown node when conditioned on the known nodes,
whose probabilities are evidenced. A common and e�cient solution is to convert a PGM to a factor
graph [32], a bipartite graph that interconnects a set of factor nodes (e.g., č1 and č2) to a set of
variable nodes (e.g., Figure 3 (b)), then run a belief propagation [35] [21] for Bayesian Networks or
loopy belief propagation [41] for Markov Networks.

2.2 Running Example

We use a running example of text classi�cation [17] from Alchemy [1, 18], an open-source AI
software that implements probabilistic graphical models. The goal of this application is to classify
the topic of a document given a series of input features of what words or hyperlinks appear in the
document. Alchemy builds a Markov Network that consists of known nodes as input features and
unknown nodes as outputs, then estimates the probability of each topic of each document using
model inference algorithms.
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As it is challenging to explain the model inference outputs computed from complex belief
propagations, we run XAI tools on this application. In particular, we run the individual conditional
expectation (ICE) algorithm [23] to estimate the in�uences of all input features on one output.
Following the sample-then-inference procedure, we change the value of an input feature, then
run loopy belief propagation, one by one. To evaluate the performance, we sample from testing
data containing more than 50k input features. Figure 3 (c) shows Alchemy’s total run time (orange
curve) and the loopy belief propagation run time (red curve) with respect to di�erent sample sizes.
Both curves grow super-linearly, which means that it will take more than 30 hours to �nish the ICE
computation on the whole testing data set.
We now consider why the XAI computation is ine�cient:

Challenge C1 (Irrelevant Changes): Figure 3 (d) presents a slice of the PGM of this application.
The yellow circles represent known nodes, the green circles represent unknown nodes, and the red
circle represents the output Ĝ (®x) to explain, which is labeled by topic(“Research Project”,306).
In this �gure, a small group of solid nodes and edges represents a subgraph where the values of
intermediate computation results di�er when the value of the rightmost known node Į is changed.
That indicates there are irrelevant variables and computations when running model inference.
Challenge C2 (Insigni�cant Changes): The size of a known node represents its in�uence on
Ĝ (®x) estimated by ICE. The larger node indicates the larger in�uence. In this case, only two input
features have higher in�uences than 0.01, and the in�uences of most input features are lower than
0.0001. That indicates that, given an output to explain, there are insigni�cant input features and
corresponding computations.
Intuition: In summary, challenges C1 and C2 drive the development of PXAI, emphasizing that
computational e�ciency can be signi�cantly enhanced by omitting irrelevant and insigni�cant
variables and intermediate computations.

3 PXAI Overview

We now present an overview of PXAI’s design and application in Figure 4. The upper part of this
�gure shows how AI developers can use PXAI to compute explanations for users, and the lower part
of this �gure presents PXAI’s design and work�ow. AI developers train and deploy ML models as
an AI service to users. After giving an input instance ®x to the model, the user asks for explanations
of a model inference output Ĝ (®x). Instead of taking advantage of existing XAI tools, we design and
develop provenance-enabled explainable AI (PXAI) that accomplishes the following design goals:

• Goal G1 (Decoupling): PXAI should decouple the XAI toolkit and reasoning capabilities
from the original AI/ML model to enable a generalizable approach across models.
• Goal G2 (E�ciency): PXAI should improve the computational e�ciency of XAI tools to
enable practical and timely explanations.

The goals are accomplished through the following stages:
Provenance Maintenance When a user gives an input instance ®x, PXAI builds and maintains
a provenance graph during the process of model inference that computes the output Ĝ (®x). For
example, Figure 4 presents a provenance graph (the upper left graph) that is denoted byă = (Ē , ā).
The provenance graph is a directed acyclic graph that records the values and the computation
dependencies of the model inference outputs Ĝ (®x) and ĝ(®x) that are represented by green rounds
(e.g., the probabilities of unknown nodes in a PGM). The outputs rely on several intermediate
variables that are represented by orange rounds, and originate from the input features represented
by yellow rounds, as well as model parameters by purple rounds. Between the variables, there are
vertices (blue rectangles) that represent the operators (e.g., Sum,Mul) connecting the input variables
and output variables. We formally de�ne and describe PXAI’s provenance model in Section 4.1.
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Fig. 4. Overview of PXAI’s design and application.

PXAI decouples XAI computations from the original model (goal G1) because the provenance
graphs record all information required by XAI tools. Both the model outputs and explanations can
be derived from the provenance graphs instead of from the models.
Based on the provenance graphs, PXAI improves the computation e�ciency of XAI tools (goal

G2) as follows:
Provenance QueryWhen a user requests the explanations of a model inference output Ĝ (®x), PXAI
allows AI developers to trace the full computation dependencies of Ĝ (®x) (i.e., a backward trace). For
example, in Figure 4, the lower right graph presents the backward trace from Ĝ (®x), which is denoted
by ă (Ĝ (®x)). That backward trace is a subgraph ofă that excludes the computation dependencies
of other outputs, such as ĝ(®x); therefore, it improves the computation e�ciency of XAI (addressing
challenge C1). In addition, PXAI supports a forward trace that traces how a variable (e.g., an input
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Table 1. Vertex classes and descriptions.

Vertex class Description

Variable De�nition: A vertex that represents a variable in a process of ML model

inference

Properties: ID, value, contribution, derivative
Subclasses: Input vertex, Parameter vertex, Derived vertex, Output vertex

Operator De�nition: A vertex that represents an operator in a process of ML model

inference

Properties: ID, params
Subclass examples (user-de�ned): Sum vertex,Mul vertex, Inv vertex, Exp
vertex, Scale vertex, ReLU vertex, Sigmoid vertex, NearestCentroid vertex

Table 2. Edge classes and descriptions.

Edge class Description

Variable-to-Operator De�nition: An edge that represents that a variable is one of the

inputs of an operator

Properties: ID, contribution, derivative

Operator-to-Variable De�nition: An edge that represents that a variable is an output of an

operator

Properties: ID

feature Į1) contributes to other variables. We provide formal descriptions and several examples in
Section 4.1.
Provenance-Enabled Approximate Subgraph Searching Sometimes the backward trace result
is too large or too dense, which leads to a large XAI computation overhead. To mitigate this, PXAI
searches for an approximate subgraph, denoted by ă∗ (Ĝ (®x)). For example, the lower left graph
in Figure 4 presents an approximate subgraph of ă (Ĝ (®x)). The approximate subgraph improves
the computation e�ciency of model inference and XAI by excluding insigni�cant variables and
computation dependencies (addressing challenge C2).
We say that the approximate subgraph is XAI-approximate when the outputs and explanations

derived from the approximate subgraph are approximate to the outputs and explanations derived
from the original graph. We provide formal de�nitions of the approximate subgraphs and the
algorithms of provenance-enabled approximate subgraph searching in Section 5.
Provenance-Enabled Model Inference Following the provenance query and provenance-enabled
approximate subgraph searching, PXAI computes the explanations E(Ĝ (®x)) that are derived from
ă (Ĝ (®x)), or the approximate explanations E∗ (Ĝ (®x)) that are derived from ă∗ (Ĝ (®x)) to the output
Ĝ (®x).
Similar to previous XAI tools, PXAI adopts XAI features (e.g., feature attributions and coun-

terfactual explanations) to compute explanations following the sample-then-inference procedure.
However, during the inferring phase, PXAI improves the computation e�ciency by excluding
irrelevant variables and computations (addressing challenge C1). For example, in ă (Ĝ (®x)) from
Figure 4, when a sample of the input instance only di�ers in one input feature Į1, repeating the
computation not involving Į1 is not necessary and can be avoided. We provide the algorithms of
provenance-enabled model inference in Section 4.2.
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4 PXAI Provenance Model

We formally de�ne a provenance model that tracks the creation and transformation of all data within
AI/ML models. We develop a provenance-enabled model inference approach that accelerates XAI
computations by avoiding irrelevant computations of model inference.

4.1 Definitions

PXAI’s provenance graph, denoted by G = (V , E), is a directed acyclic graph (DAG) where the
vertices represent variables and operations, and the edges represent computation dependencies of
model inference. The provenance graph maintains variable values, contributions and derivatives of
vertices and edges. Based on the provenance graph, we can analyze the derivations of a variable
(i.e., backward trace) and how a variable contributes to other variables (i.e., forward trace).

Table 1 shows the de�nitions and descriptions of the vertex classes. Each vertex Ĭ ∈ Ē belongs
to either the Variable vertex or the Operator vertex. Among the Variable vertex subclasses, the
Input vertex and Parameter vertex respectively represent input features and parameters of AI/ML
models—they are the provenance graph’s root vertices that do not have ancestry vertices. The
Derived vertex represent the intermediate computation results in ML models—they are the internal
vertices that have both ancestry and child vertices. The Output vertex represent the outputs in ML
models—they are leaf vertices in the provenance graph that do not have child vertices. Subclasses of
theOperator vertex di�er in operator types (e.g., summation, multiplication, inverse, exponentiation
and scaling).
Table 2 shows the de�nitions and descriptions of the edge classes. Each edge ě ∈ ā belongs to

either the Variable-to-Operator (V2O) edge class or the Operator-to-Variable (O2V) edge class.
The provenance model allows only one O2V edge for each operator (i.e., each operator only has
one output), and allows multiple V2O edges for each variable (i.e., each variable can contribute to
multiple variables through an operator).

In Table 1 and 2, the Variable vertices and V2O edges are associated with properties contribution
and derivative that play pivotal roles in approximate subgraph searching. We formally de�ne them
here as follows:

De�nition 4.1 (contribution). A contribution, denoted by Con, of a Variable vertex Ĭ or a V2O
edge ě is the di�erence between an output Ĝ (®x) and the output when the vertex or edge is excluded
from the provenance graph:

Con(ě) = Ĝ (®x) − Ĝ (®x|ă \ ě) (1)

Con(Ĭ) = Ĝ (®x) − Ĝ (®x|ă \ Ĭ) (2)

De�nition 4.2 (derivative). A derivative, denoted by Der, of a Variable vertex Ĭ is the partial
derivative of an output Ĝ (®x) of Ĭ , and the derivative of a V2O edge ě is the partial derivative carried
by ě (chain rule):

Der(ě) =
ĉ

ĉĬě
[Ĝ (®x)]

ĉĬě

ĉĬĩ
(3)

where Ĭě represents the end vertex of ě and Ĭĩ represents the source vertex of ě .

Der(Ĭ) =
∑

ě∈ā+ (Ĭ)

Der(ě) (4)

where ā+ (Ĭ) represents the set of out edges of Ĭ .

Based on the provenance graph, we can retrieve the computation dependencies of a vertex
through backward and forwarding tracing, which we formally de�ne as follows:
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Algorithm 1 Provenance-enabled Model Inference

1: functionModelInference(ă, ĩ, Ĭ_set)

2: ă ′ ← ∅

3: ă (ĩ) ← backward trace from ĩ

4: for Ĭ ∈ Ĭ_set do

5: ă̂ (Ĭ) ← forward trace from Ĭ

6: ă ′ ← ă ′ ∪ (ă (ĩ) ∩ ă̂ (Ĭ))

7: Change values of Input vertices in Ĭ_set

8: Ĝ ′ (®x) ← compute the value of ĩ in ă ′

9: return Ĝ ′ (®x)

De�nition 4.3 (backward trace). A backward trace result of a vertex Ĭ , denoted by ă (Ĭ), is
a subgraph of ă that records all derivations of Ĭ . Starting from Ĭ , a backward trace traverses
the provenance graph by recursively calling Ĭ .predecessors() until it reaches an Input vertex or
Parameter vertex.

De�nition 4.4 (forward trace). A forward trace result of a vertex Ĭ , denoted by ă̂ (Ĭ), is a subgraph
of ă that Ĭ contributes to. Starting from Ĭ , a forward trace traverses the provenance graph by
recursively calling Ĭ .successors() until it reaches a Output vertex.

Figure 5 (a) presents a backward trace example of an output Ĝ (®x). Figure 5 (b) presents a forward
trace example of an input Į . In the �gures, the solid rounds and red arrows represent the vertices

and edges in ă (Ĝ (®x)) and ă̂ (Į).

4.2 Provenance-Enabled Model Inference

Based on the provenance model, we develop a provenance-enabled model inference approach to
accelerate XAI computation. The key intuition is that when the values of some input features are
changed by XAI tools, not all variables within the provenance graph necessarily need to be updated.
Figure 5 shows an example. Given an output Ĝ (®x) to explain, an XAI tool generates a sample
®x′ where only one input feature Į di�ers from the original input instance ®x. By overlapping the
backward trace from a source Output vertex and the forward trace from the Input vertex Į , we
�nd that only the subgraph shown in Figure 5(c) should be updated, and the values of adjacent
vertices of the subgraph can be directly utilized.
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Algorithm 2 Fast Provenance-Enabled Model Inference

1: function FastModelInference(ă, ĩ, Ĭ_set)

2: if ĩ is an Input vertex or Parameter vertex then
3: if ĩ is in Ĭ_set then

4: Change ĩ .value

5: return s.value

6: if ĩ .input_set ∩ Ĭ_set = ∅ then

7: return s.value

8: Ģ ← ∅

9: Ĭopt ← ĩ .predecessors()

10: for each Ĭ ∈ Ĭopt .predecessors() do

11: if Ĭ is not visited then

12: Ģ .append(FastModelInference(ă, Ĭ, Ĭ_set))

13: else

14: Ģ .append(Ĭ .value)

15: ĩ .value← Ĭopt.compute(Ģ )

16: return ĩ .value

Our approach of provenance-enabled model inference is formalized in Algorithm 1. The inputs
of this algorithm include a provenance graphă , the Variable vertex ĩ (standing for “source”) for the
algorithm to infer (e.g., an output of an ML model Ĝ (®x)), and Ĭ_set, a set of Input vertices whose
values have been changed. We �rst initiate an empty graph as the subgraph to update ă ′ (Line
2). Then, we perform a backward trace from ĩ (Line 3). Next, for each variable Ĭ in Ĭ_set, we do a
forward trace from Ĭ and compute an intersection between the backward trace subgraph ă (ĩ) and

the forward trace subgraph ă̂ (Ĭ). The subgraph to update is unionized by the intersection subgraph
(Lines 4–6). Finally, we change the values of vertices in Ĭ_set (Line 7), compute and update all
variables in ă ′, including the output variable Ĝ ′ (®x) as the provenance-enabled model inference
result (Line 8).

To optimize the performance of provenance-enabled model inference, we add “shortcuts” from a
Variable vertex to all Input vertices that contribute to the vertex as a property of Variable vertices:
input_set. For example, in Figure 5(a), we record that all �ve Input vertices contribute to theOutput
vertex of Ĝ (®x) during the backward trace from Ĝ (®x).

Taking advantage of the shortcuts, we design a fast provenance-enabled model inference al-
gorithm, shown in Algorithm 2. The algorithm is a backward depth-�rst search (DFS) algorithm
that recursively traverses each vertex in the provenance graph. We �rst de�ne two termination
conditions of DFS traversing:

• Condition 1. The current vertex ĩ is either Input vertex or Parameter vertex that do not
have predecessors (Lines 2–5). If ĩ is in the Ĭ_ĩěĪ , we change its value (Line 4).
• Condition 2. No vertex in Ĭ_set is in ĩ .input_set (Lines 6–7). It indicates ĩ does not depend
on the input features whose values have been changed; therefore, we do not need to update
its value.

We initiate an empty list Ģ (Line 8) and get the Operator vertex Ĭopt that is the predecessor of
ĩ (Line 9). Then, we iteratively visit each predecessor of Ĭopt, recursively run Algorithm 2 once a
predecessor is not visited, and append the returned values to Ģ (Lines 10–14). The operator vertex
updates ĩ .value based on Ģ (Line 15).
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(a)

Dense graph

(b)

Many input features

Fig. 6. Examples of least contribution prune and least derivative prune.

5 Approximate Subgraph

Based on PXAI’s provenancemodel, provenance-enabledmodel inference improves the computation
e�ciency of XAI tools by excluding irrelevant variables and computation dependencies.

However, the performance e�ciency of provenance-enabled model inference is susceptible to the
density of the provenance graph and the number of input features whose values are changed.
For example, Figure 6(a) shows a dense provenance graph where each input vertex is connected to
all derived vertices. Figure 6(b) shows a provenance graph where the values of many input vertices
are updated. In each case, the overlap between the backward and forward trace is only slightly
smaller than the whole provenance graph, and the improvement over the original AI/ML model
inference is limited.
Inspired by prior approaches in approximate provenance [46, 58], we explore an approach that

excludes insigni�cant input features and computation dependencies to further improve PXAI’s
performance. We �rst formally de�ne an approximate subgraph that is XAI-approximate. We also
introduce two heuristics-bsaed provenance-enabled approximate subgraph searching algorithms.

5.1 Definitions

The goal of approximate subgraph searching is to simultaneously minimize the size of the subgraph
and minimize the di�erence between approximate explanation E∗ (Ĝ (®x)) that is derived on the
approximate subgraph, and the original explanations E(Ĝ (®x)) that is derived on the original
provenance graph (i.e., XAI-approximate). The intuition behind XAI-approximate is that both the
outputs and derivatives on the approximate subgraph should be approximate to the original graph
within a neighborhood of an input instance.

The intuition is demonstrated in Figure 7. In this �gure, the x-axis represents an input feature,
and the y-axis represents corresponding output of an ML model. The approximate curve in Figure 7
(a) performs the worst because it fails to approximate outputs or derivatives. In Figures 7 (b) and
(c), the approximate curves either fail to approximate the derivatives or the outputs. In the end,
the approximate curve in Figure 7 (d) is the best approximation concerning both outputs and
derivatives.
We formally de�ne an approximate subgraph as follows:

De�nition 5.1 (approximate subgraph). Given a provenance graph ă = (Ē , ā), an instance of
input ®x, and the corresponding output Ĝ (®x), the approximate subgraph ă∗ (Ĝ (®x)) is a subgraph of
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(a) (b) (c) (d)

Approximate curve Original curve

Fig. 7. Examples of Ĝ (Į) approximation.

ă (Ĝ (®x)) that minimizes the following objective:

ă∗ (Ĝ (®x)) = argmin
ă ′ (Ĝ (®x) ) ∈ă (Ĝ (®x) )

Ă Ĉ1 (Ĝ
′ (®x), Ĝ (®x),Π®x) +

ÿ Ĉ2 (▽Ĝ ′ (®x),▽Ĝ (®x),Π®x) +

Ā |ă ′ (Ĝ (®x)) |

(5)

In Equation 5, the optimization objective consists of three terms: Ĉ1 and Ĉ2 represent the losses
that evaluate the approximation of outputs and derivatives, and |ă ′ (Ĝ (®x)) | represents the size of

the subgraph. In addition, Π®x denotes the neighborhood of ®x, ▽Ĝ (®x) =
[

ĉĜ (®x)
ĉĮ1

...
ĉĜ (®x)
ĉĮĤ

]

, the

partial derivatives of the output of the input features (i.e., derivatives), and Ă , ÿ , Ā are user-speci�c
parameters that balance three terms. In our practical implementation, we typically con�gure the
three parameters to be equal, foregoing a detailed exploration of parameter optimization.
We approximate Ĉ1 and Ĉ2 by uniformly drawing random samples ®x′ ∽ Π®x around the input

instance ®x:

Ĉ1 (Ĝ
′ (®x), Ĝ (®x),Π®x) =

1

Ċ

∑

®x′∽Π®x

|Ĝ ′ (®x′) − Ĝ (®x′) | (6)

Ĉ2 (▽Ĝ ′ (®x),▽Ĝ (®x),Π®x) =
1

Ċ

∑

®x′∽Π®x

∥▽Ĝ ′ (®x′) − ▽Ĝ (®x′)∥2 (7)

where Ċ denotes the number of samples. In Equation 6, Ĉ1 is de�ned as the mean absolute di�erence
between the approximate outputs and the original outputs. In Equation 7, Ĉ2 is de�ned as the mean
Euclidean distance between the approximate derivatives and the original derivatives.
Taking advantage of Ĉ1 and Ĉ2, we evaluate to what extent an approximate subgraph is XAI-

approximate as follows:

De�nition 5.2 ((Ċ, ą, Ĩ )-approximate). An approximate subgraphă∗ (Ĝ (®x)) and the approximate
explanation E∗ (Ĝ (®x)) derived on ă∗ (Ĝ (®x)) are (Ċ, ą, Ĩ )-approximate when the provenance-enabled
model inference results Ĝ ∗ (®x′), ®x′ ∽ Π®x, satisfy Ĉ1 f Ċ , Ĉ2 f ą and ∥®x′ − ®x∥2 f Ĩ .

Additionally, we de�ne a special case of (Ċ, ą, Ĩ )-approximate when the radius Ĩ of the neighbor-
hood Π®x is 0 (i.e., in Equation 6 and 7, Ċ = 1, Ĉ1 and Ĉ2 only depend on ®x):

De�nition 5.3 ((Ċ, ą)-approximate). An approximate subgraph ă∗ (Ĝ (®x)) and the approximate
explanation E∗ (Ĝ (®x)) derived on ă∗ (Ĝ (®x)) are (Ċ, ą)-approximate when the provenance-enabled
model inference result Ĝ ∗ (®x) satis�es Ĉ1 f Ċ and Ĉ2 f ą.
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(a) (b)

Least contribution prune Least derivative prune

Fig. 8. Examples of the least contribution prune and the least derivative prune.

5.2 Provenance-Enabled Approximate Subgraph Searching

Although an approximate subgraph provides a more e�cient approach for provenance-enabled XAI,
searching for a globally optimal solution to the problem de�ned in Equation 5 is intractable. Based on
PXAI’s provenance model, we introduce two provenance-enabled approximate subgraph searching
algorithms: provenance pruning, which is model-agnostic; and input subset searching, which
is designed for probabilistic graphical models.

5.2.1 Provenance Pruning. Provenance pruning takes advantage of two properties of vertices and
edges in PXAI’s provenance model: contribution and derivative. The intuition behind this algorithm
is that we heuristically prune the least “important” edges, therefore, minimizing the impact of
pruning.
Figure 8 presents two strategies of provenance pruning: the least contribution prune and the

least derivative prune. In Figure 8(a), the leftmost edge, connecting from a Derived vertex Ĭ to the
Output vertex Ĝ (®x), has the least contribution, which indicates that pruning this edge a�ects the
output the least. In Figure 8(b), the rightmost edge, connecting from a Input vertex Į , has the least
derivative, which indicates that pruning this edge a�ects the derivative of the output of Į the least.
To simultaneously minimize the impact on the outputs and derivations, we design a mixed strategy
of the least contribution prune and the least derivative prune based on a new metric, the importance

of edges:

De�nition 5.4 (importance). The importance of an edge, denoted Imp(ě), is de�ned as:

Imp(ě) = Ă |Con(ě) | + ÿ |Der(ě) | (8)

where Con(ě) is de�ned in Equation 1,Der(ě) is de�ned in Equation 3, and Ă and ÿ are user-speci�c
weighting parameters.

We present the provenance pruning approach in Algorithm 3. The inputs of this algorithm
include ă (ĩ), the backward tracing result from a source vertex ĩ , Ċ , ą, Ĩ , that are three parameters
de�ned in De�nition 5.2 and 5.3, and ġ , a user-speci�c parameter that determines how many edges
to prune in one iteration. In each iteration, we �rst update the contributions and derivatives of edges
in ă∗ (ĩ) (Line 5). Next, we compute a list Ģ of importances (Equation 8) ofģ edges (Line 6). Then,
we get the top-ġ edges from Ģ in ascending order (i.e., the least important ġ edges), and prune the
edges (Lines 8–9). In the end, we check whether the pruned subgraph satis�es (Ċ, ą, Ĩ )-approximate.
If so, we continue pruning; otherwise, we stop and return the approximate subgraph from the
previous iteration (Lines 10–13).

5.2.2 Input Subset Searching. Input subset searching reduces the problem de�ned in Equation 5
to a problem that searches for the optimal subset of Input vertices. Instead of pruning an exist-
ing provenance graph (e.g., provenance pruning in Section 5.2.1), input subset searching builds
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Algorithm 3 Provenance Pruning

1: function ProvenancePruning(ă (ĩ), Ċ, ą, Ĩ, ġ)

2: ă∗ (ĩ) ← ă (ĩ)

3: while ĪĨīě do

4: Ē , ā ← ă∗ (ĩ)

5: ∀ě ∈ ā, update Con(ě) and Der(ě)

6: Ģ ← [Imp(ě1), ..., Imp(ěģ)]

7: ă ′ ← ă∗ (ĩ)

8: for each ě ∈ top-ġ (Ģ, ġ ,order=ascending) do

9: ă ′ ← ă ′ \ ě

10: if ă ′ satis�es (Ċ, ą, Ĩ )-approximate then

11: ă∗ (ĩ) ← ă ′

12: else

13: Break

14: return ă∗ (ĩ)

Markov Network

Known node
Unknown node

Input vertex
Derived vertex
Output vertex

Fig. 9. An example of the PXAI provenance graph of a probabilistic graphical model.

approximate subgraphs based on the input subsets through backward trace and forward trace
similar to Algorithms 1 and 2. Although it is relatively easier than searching the optimal subgraphs,
enumerating all possible subsets of Input vertices is still intractable. To solve this problem, we
design a heuristic searching algorithm for probabilistic graphical models that takes advantage of
the graphical structures.
The intuition behind this algorithm is that, in a probabilistic graphical model, the probability

inference result of an unknown node is mostly impacted by its adjacent neighbors (e.g., Markov
blanket [49] and local Markov property [20]). For instance, Figure 9 shows a factorized Markov
Network (in the bottom plane) and a simpli�ed provenance graph (in the upper plane) that records
the variables and computation dependencies in the process of loopy belief propagation. In the
provenance graph, Input vertices correspond to the known nodes, Derived vertices correspond to
the factor nodes, and the Output vertex corresponds to the unknown node in this Markov Network.
In the Markov Network, compared to other known nodes (dotted yellow circles), the adjacent
known nodes (solid yellow circles) directly contribute to the unknown node (solid green circle).
Therefore, the corresponding Input vertices should be taken into account by the input subset
searching algorithm earlier.
We present the input subset searching approach in Algorithm 4. We use a priority queue to

heuristically search for the subset of Input vertices that lead to the smallest loss in Equation 5.
We initialize the approximate subgraph ă∗ (ĩ) (Line 2), the optimal loss L∗ (Line 3), and a set of
PGM nodesN_set (Lines 4–5). Next, we initialize a priority queue Ħħ of 3-tuples, and in each tuple,
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Algorithm 4 Input Subset Searching

1: function InputSubsetSearching(ă (ĩ))

2: ă∗ (ĩ) ← ∅

3: L∗ ←∞

4: Nĩ ← the PGM node that corresponds to ĩ

5: N_set← {Nĩ }

6: Ħħ ← ∅

7: Ħħ.push((N_set, ∅,∞))

8: while Ħħ is not empty do

9: N_set,ă,L ← Ħħ.pop()

10: if L < L∗ then

11: ă∗ (ĩ) ← ă

12: L∗ ← L

13: for each Nğ in N_set’s adjacent known nodes do

14: N_set′ ← N_set.insert(Nğ )

15: if N_set′ has not been visited then

16: ă ′ ← build subgraph of ă (ĩ) based on N_set′

17: L′ ← compute loss of ă ′ using Equation 5

18: Ħħ.push((N_set′, ă ′, L′))

19: return ă∗ (ĩ)

Table 3. A list of PXAI’s Provenance Maintenance APIs.

API Description

addVariable(ID,V,T) Add a Variable vertex to the provenance graph. V stands for value of

this variable. T stands for the vertex subclass (e.g., Input)

addOperator(ID,T,P) Add an Operator vertex to the provenance graph. T stands for the

vertex subclass (e.g., Sum), P stands for a list of parameters of this

operator (e.g., the base number of Exp operator)

addEdge(S,E) Add an edge that connecting two vertices. S and E stand for the IDs
of the source vertex and the end vertex.

the elements represent N_set, provenance subgraph and loss (Lines 6–7). While Ħħ is not empty,
we pop the 3-tuple that has the smallest loss L (Lines 8–9), then check whether it is the current
optimal solution (Lines 11–12). Next, for each adjacent known node Nğ of N_set, we extend N_set
by incorporating Nğ , and build a new set N_set′ (Lines 13–14). If it has not been visited, we build
subgraph ă ′ of ă (ĩ) based on a subset of Input vertices that correspond to PGM known nodes in
N_set′. Based on ă ′, we compute the corresponding loss L′ using Equation 5, and �nally push
them to Ħħ (Lines 15–18). To avoid enumerating all subsets, we add an early termination condition
that Ħħ’s size can not surpass a certain threshold.

6 Implementation

PXAI is programmed in C++. We implemented classes and subclasses of vertices and edges that are
de�ned in Table 1 and 2. We implemented a class of provenance graphs, as well as the provenance
tracers on top of the Boost Graph library [2]. PXAI provides a list of provenance maintenance
APIs, which are shown in Table 3, for AI developers to call in their model inference codes (e.g.,
belief propagation of probabilistic graphical models and the forward pass of neural networks).
Each vertex and edge is unique and is identi�ed by the ID. PXAI allows developers to de�ne new
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hasImg(ID,<cars=,<on=,<road=)

hasImg(ID,<planes=,<are=,<parked=)

hasImg(ID,<white=,<color=,<plane=)

What is the building in the

background?

Input Question:
hasQ(ID,<building=,<is=,<what=)

hasQ(ID,<background=,<building=,<what=)

hasImg(ID,<horse=,<in=,<field=)

hasImg(ID,<horse=,<color=,<crown=)

Input Images:

(a)

(b)

sim(<terminal=,=planes=)

Word Similarities:

sim(<building=,=in=)

word(ID,<terminal=)

Words:

word(ID,<stadium=)

word(ID,<barn=)

Model inference with 

PXAI provenance

ans(ID,<terminal=)

Answers:

ans(ID,<stadium=)

ans(ID,<barn=)

ans(ID,<church=)
word(ID,<church=)

hasImg(ID,<cross=,<on=,<building=)

sim(<church=,=cross=)

sim(<barn=,=horse=)

Fig. 10. Demonstration of two VQA test cases “terminal” (a) and “church” (b)

r1 w1: hasImgAns(V,Z,X1,R1,Y1) <= word(V,Z) ' hasImg(V,X1,R1,Y1) ' 

sim(Z,X1) ' sim(Z,Y1).

r2 w2: candidate(V,Z) <= word(V,Z).

r3 w3: candidate(V,Z) <= word(V,Z) ' hasQ(V,X,R,Y) '

hasImgAns(V,Z,X1,R1,Y1) ' sim(R,R1) ' sim(Y,Y1) ' sim(X,X1).

r4 w4: ans(V,Z) <= candidate(V,Z) ' hasQ(V,X,R,"WHAT") '

hasImg(V,Z1,R1,X1) ' sim(Z,Z1) '	 sim(R,R1) ' sim(X,X1).

Fig. 11. The VQA program from PSL.

subclasses of Operator vertices so that the developers control the granularity of the provenance
graph. For example, developers can use a Convolution operator, which is coarser, or decompose it
into a series of Mul and a Sum operator, which are �ner.

7 Evaluation

We assess PXAI’s e�ectiveness across diverse ML models through targeted case studies:

• Visual question answering [4] with a PGM (Section 7.1)
• Credit score classi�cation [30] with an MLP (Section 7.3.1)

demonstrates PXAI’s capability to produce comprehensible approximate explanations that are
consistent with the original explanation, and

• Text classi�cation [17] with a PGM (Section 7.2)
• Credit score classi�cation with an MLP (Section 7.3.2 and 7.3.3)
• ML deletion [22] with ġ-means clustering (Section 7.4)

Our evaluation o�er a thorough insight into PXAI, illustrating its utility as an optimization toolkit
in ML work�ows that require �exible and e�cient model updates. In short, our evaluation results
demonstrate that PXAI signi�cantly improves the computational e�ciency of XAI by up to �ve
orders of magnitude, at an acceptable trade-o� involving moderately increased space and time
complexity in provenance computations.
The experiments in Section 7.1 and 7.2 were conducted on a Dell PowerEdge R730 server with

dual Intel Xeon E5-2640 CPUs and 64GB memory using Ubuntu 18.04.6 LTS. The experiments in
Sections 7.3 and 7.4 were conducted in Alibaba Cloud, utilizing an AliServer equipped with 128
Intel(R) Xeon(R) Platinum 8369B CPUs and 2 TB of memory running CentOS.
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(a) (b) (c)

Fig. 12. Ranks of the top-8 most influential Input vertices of the Output vertices: ans("terminal") (a),
ans("barn") (b) and ans("church") (c).

7.1 Case Study 1: Visual�estion Answering (Probabilistic Graphical Model)

Visual question answering (VQA) [4] is an application of a probabilistic graphical model provided
by PSL [6]. Figure 10 demonstrates an overview of two VQA test cases. In this application, we
are given known nodes (i.e., the input features in PGM) from model-modality machine learning
systems:

(1) hasImg captures image information and are extracted by computer vision models, such as
hasImg(ID,"planes","are","parked") of “terminal” in Figure 10 (a).

(2) hasQ contains keywords from a question and are extracted by NLP models, such as hasQ(ID,
"building","is","what") based on a question “What is the building in the background?”

(3) sim estimates the similarities between words and are collected from language models.
(4) word represents the candidate answers with prior con�dence scores.

Combining all inputs, Aditya et al. [4] provide a PSL program in Figure 11 that builds a Markov
Network from four weighted �rst-order logic formulas. In this program, r1 extends more hasImg by
replacing synonyms of keywords of hasImg. Formula r2 indicates that every word can be a possible
candidate for the �nal answer. Formula r3 provides another way of determining a candidate answer
which is derived from similarities of keywords of hasImgAns and hasQ. Finally, r4 combines all
information from images, questions and similarities, then generates the unknown node ans, which
represents the output in PGM.

7.1.1 Explaining Correct Output. In evaluating the "terminal" test case depicted in Figure 10 (a),
the model accurately predicts ans(ID,"terminal"). To explain this output, we applied ICE on
PXAI’s provenance and its approximate subgraphs to evaluate the in�uences of Input vertices on
the Output vertex ans(ID,"terminal"). In Figure 12 (a), the x-axis represents the number of
Input vertices (i.e., the scale of provenance graphs), and the y-axis represents the rank of the most
in�uential Input vertices. It compares the original explanation (the rightmost of the x-axis) with
the approximate explanations, derived from the provenance graph and its (0.01,0.01)-approximate
subgraphs. It is observed that with approximate subgraphs encompassing more than 21 Input
vertices, the top-ranked vertices maintain a similar order to those derived from the original graph.

Among the top-8, sim("terminal","planes") is the most in�uential Input vertex, which is
reasonable because planes are highly correlated with terminals. The most in�uential hasImg tuple is
hasImg(ID,"planes","are","parked"), which provides critical evidence that planes are parked
around the building. Finally, word(ID,"terminal") is also an important Input vertex for the
answer ans(ID,"terminal") as it includes the candidate “terminal”.

7.1.2 Debugging Undesired Output. PXAI’s debugging capability was tested with a misclassi�ed
image of a "church" in Figure 10 (b), where the model wrongly inferred "barn" as the building in

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.



250:18 Zhang et al.

100 200 300 400 500 600 700 800 900 1k
Number of inputs

(a)

0

1

2

3

4

M
od

el
 in

fe
re

nc
e 

tim
e 

(s
)

W/o provenance
W/ provenance
W/ coarser provenance

100 200 300 400 500 600 700 800 900 1k
0

10

20

In
-m

em
or

y
st

or
ag

e 
(M

B) Provenance
Coarser provenance

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0 1k

Number of inputs
(b)

0

5

Ba
ck

wa
rd

 tr
ac

e 
tim

e 
(m

s)

100 200 300 400 500 600 700 800 900 1k
Number of inputs

 (c)

0.001
0.01

0.1
1

10
100

1000

Ru
nn

in
g 

tim
e 

of
 IC

E 
(s

)

ICE on Alchemy (LBP only)
ICE on PXAI PROV graph
ICE on approx subgraph (subset search)
ICE on approx subgraph (prune)

10
0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0 1k

Number of inputs
 (d)

0.01

0.1

1

10

Ru
nn

in
g 

tim
e 

of
 

 a
pp

ro
x 

se
ar

ch
 (s

)

Subset search
Prune

Fig. 13. PXAI performance of provenance maintenance (a), query and storage (b), XAI (c) and approximate
subgraph searching (d) when applied to PGM.

Table 4. Two approximate counterfactual explanations to ans(ID,"church").

Input Expl A Expl B

sim("church","cross") 0.097→ 0.497 0.097→ 0.249

sim("barn","cross") 0.301→ 0.253 0.301→ 0

sim("building","in") 0.135→ 0.147 0.135→ 0.152

sim("is","on") 0.144→ 0.148 0.144→ 0.168

the background. To investigate the misprediction, we applied ICE to both the incorrect output
ans(ID,"barn") and the correct ans(ID,"church") using PXAI on the provenance graph and its
(0.01,0.01)-approximate subgraphs. The results are illustrated in Figure 12 (b) and (c), where we
show that once the number of Input vertices exceeds 24, the rankings of the approximate subgraphs
are consistent with the original provenance graph (the rightmost of the x-axis).
We identi�ed that sim("church","cross") is the most in�uential Input vertex of ans(ID,

"church") and sim("barn","cross") is also among the top-8 for ans(ID,"barn"). In the word-
similarity data set, we notice that the word “barn” has a higher similarity with “cross” (0.301)
compared to the one between “church” and “cross” (0.097), which is counter-intuitive and suspicious.
Next, we ran counterfactual explanations on approximate subgraphs for intuition on how to debug
this output. Table 4 shows two approximate counterfactual explanations (Expl A and B) in which
values of only four Input vertices aremodi�ed. These counterfactual explanations demonstrated how
altering the probability of sim("church","cross") could e�ectively shift the model’s prediction
toward the correct answer. For example, increasing the similarity score of sim("church","cross")
by 0.4 in one counterfactual scenario (Expl A) signi�cantly improved the likelihood of the desired
outcome.

7.2 Case Study 2: Text Classification (Probabilistic Graphical Model)

We �rst evaluate PXAI’s performance using the motivation case study text classi�cation [17]
presented in Section 1. The Alchemy [1] provides a MLN program that consists of 5365 weighted
�rst-order logic formulas and a testing data set that consists of 50617 HasWord input features and
2153 Links input features. We systematically sampled subsets of this dataset in increments of 100,
ranging from 100 to 1000 instances, adhering to a �xed 3:7 proportion of Links to HasWord inputs
to ensure diversity in feature representation.

7.2.1 Provenance Maintenance and �ery. First, we measure the overhead of provenance mainte-
nance. We compare the running time of model inference (i.e., loopy belief propagation) without
provenance and with provenance. The evaluation results are shown in Figure 13 (a). We observe that
the running times increase linearly as the number of input features increases. Provenance mainte-
nance executes in a constant time and does not a�ect the asymptotic complexity and scalability. In
addition, we note that the performance of provenance maintenance can be optimized by adopting
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Fig. 14. PXAI performance of provenance maintenance and query (a), storage (b), XAI (c) and approximate
subgraph searching (d) when applied to MLP.

coarser provenance where the Sum andMul operators are replaced by coarser operators, such as
sum of multiplications (i.e., the factor-to-variable message passing in belief propagation [52]).

In analyzing PXAI’s in-memory storage demands and the provenance query overhead, Figure 13
(b) depicts a linear increase in storage requirements for both the detailed and coarser provenance
graphs corresponding to the rise in input features. Subsequently, we calculated the average runtime
for backward tracing from all Output vertices across di�erent input feature counts. The outcome,
represented by the orange and brown curves, also demonstrates a linear escalation with growing
input features. Notably, the additional time incurred by the provenance query is minimal (measured
in milliseconds), signi�cantly less than the time taken for model inference, owing to PXAI’s ability
to omit irrelevant variables and calculations.

7.2.2 XAI Acceleration. To evaluation PXAI’s ability to accelerate XAI, we compute the average
running time of ICE computation (i.e., computing the in�uences of all input features for an out-
put), approximate subgraph searching and ICE on approximate subgraphs of all Output vertices.
Figure 13 (c) compares the running time of ICE on Alchemy as a baseline (blue curve), PXAI’s
provenance graph (orange bars), approximate subgraphs from input subset searching (purple bars),
and approximate subgraphs from provenance pruning (green bars). Compared to the baseline, PXAI
imposes signi�cantly lower overheads by approximately 5 orders of magnitude, and the computation
is more e�cient on the the approximate subgraphs. Figure 13 (d) shows the average running time
of input subset searching (purple bars) and pruning (green bars). All approximate subgraphs satisfy
(0.01,0.01)-approximate. Pruning is more time-consuming due to the expensive computation of
contributions of the edges. However, as shown in Figure 13 (d), pruning creates smaller approximate
subgraphs for large sample sizes.

7.3 Case Study 3: Credit Score Classification (Multi-Layer Perceptron)

We next apply PXAI to a Multi-Layer Perceptron (MLP) using a case study: credit score classi�cation.
This case study, drawn from a Kaggle competition [30], targets the prediction of creditworthiness
based on �nancial attributes. After preprocessing, which includes data cleaning, one-hot encoding,
and data scaling, the �nal dataset comprises 46 input features representing various �nancial
indicators, such as “Monthly In-hand Salary” and “Number of Loans”. The task is to classify
individuals into one of three credit score categories: “Good”, “Standard”, and “Poor”. In the upcoming
sections, we conduct a comprehensive evaluation of PXAI. The assessment includes qualitative
analysis (Section 7.3.1) of approximate explanations and quantitative analysis (Sections 7.3.2 and
7.3.3) of PXAI runtime performance.

7.3.1 Explaining Output of Poor Credit Score. Credit score classi�cation has been managed by
automated decision-making systems, speci�cally ML models. Recipients of these systems may
occasionally require explanations for the decisions made. For example, Figure 15 presents a snapshot
of the �nancial attributes of an individual who has been automatically categorized as having a
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Fig. 15. An example of credit score classification explanations.

"Poor" credit score by an MLP model. And we aim to address the question: “Why the credit score is
not good?” by utilizing ICE with PXAI.
Figure 15 (a) and (b) show the top-6 in�uential input features, assessed via normalized ICEs, in

relation to the "Good" credit score output. This evaluation is conducted using both the original
provenance graph and a (0.1, 0.1)-approximate subgraph where 50% of edges have been pruned.
Negative in�uences are represented by magenta bars, whereas positive in�uences are illustrated
by green bars. It is demonstrated that �ve out of six input features (denoted in black text) remain
included in the approximate explanation, and the top-3 input features do not change in the approx-
imate explanation. The �ndings highlight that PXAI’s approximate provenance method is capable
of generating reasonable explanations.

7.3.2 Provenance Maintenance and �ery. To evaluate the scalability of PXAI when applied to
MLP, we conducted the training and subsequent evaluation of the PXAI on a series of MLP models
with varying depths. Speci�cally, MLPs with 2, 4, 6, 8, and 10 layers were analyzed, each consisting
of 1024 neurons per layer. First, we evaluate the running time of the MLP model with and without
the inclusion of PXAI’s provenance maintenance. The performance are summarized in Figure 14
(a) where the provenance maintenance introduces approximately 40%+ overhead. Furthermore,
the execution time for backward tracing from the Output vertices back to Input vertices o�ers
evidence of PXAI’s scalability.

Next, we investigate the space complexity of PXAI, in comparison with the original MLP models,
by measuring the in-memory storage requirements for provenance data as more features are
processed through the graph. Figure 14 (b) shows the decomposed provenance storage, and the
scaling of model parameters. Speci�cally, the provenance consists of model parameter data, which
is nearly equivalent to the model itself, derivative data, and graph data, including vertices and
edges. The results indicate that PXAI introduces a linear storage overhead.

7.3.3 XAI Acceleration. To evaluate PXAI’s ability of XAI acceleration, in this subsection, we
compute the average time of ICE computations, identify and utilize approximate subgraphs, and
execute ICE on these subgraphs. The performance comparison is visualized in Figure 14 (c) and
reveals the time e�ciency of PXAI’s approximate methods compared to a baseline of ICE on the
original, non-approximated MLP structure. As depicted in Figure 14 (c), the execution time on the
original provenance graph (orange bars) aligns closely with the established baseline (blue curve),
which is reasonable given the minimal presence of irrelevant computations in MLP inference (See
Figure 6). Notably, the employment of approximate subgraphs facilitates at most 4x acceleration,
notwithstanding a one-time overhead attributed to the approximate subgraphs searching, which is
presented in Figure 14 (d). In this �gure, the searching time grows linearly as the number of layers
increases.
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Fig. 16. PXAI performance of provenance maintenance (a and c), query (b and e), and ML deletion (c and f)
when applied to ġ-means clustering.

Algorithm 5 ġ-means Deletion on Provenance Graph

1: function K-MeansDeletion(ă , Ĥ)

2: ÿğ ← ∅ ² The set of clusters to update

3: for ğ ← 1 to ă.iteration do

4: Ĭ_Ħ ← ă.getVertex(Ĥ, ğ) ² The vertex of point Ĥ

5: Ĭ_ę ← Ĭ_Ħ.successors() ² The centroid of point Ĥ

6: Remove the edge from Ĭ_Ħ to Ĭ_ę ² Delete the point

7: ÿğ .insert(Ĭ_ę)

8: for Ĭ_ę ∈ ÿą do

9: Update Ĭ_ę .values through backward trace

10: for Ĭ_Ě ∈ Ĭ_ę.successors() do

11: Update Ĭ_Ě .values[Ĭ_ę .ID]
12: if The nearest neighbor changes then

13: Add/remove the edges

14: Add corresponding centroid vertices to ÿğ+1

15: if converged then return

16: if ! converged then

17: Continue to run the original ġ-means algorithm

7.4 Case Study 4: ML Deletion (k-Means Clustering)

Continuing our evaluation of PXAI, we delve into ML deletion with a focus on ġ-means cluster-
ing [22]. ML deletion seeks to e�ciently updating a trained model subsequent to the removal
of data points from the training dataset. The provenance-based approach promises performance
enhancements in this context without any approximation of ML deletion. The provenance-enabled ġ-
means deletion algorithm, outlined in Algorithm 5, is designed to minimize irrelevant computations
. The algorithm works by identifying the data point’s associated centroid and the distances to the
centroids, then updating the centroid’s value, distances, and its dependent data points’ assignments,
through provenance tracing.
To conduct a thorough evaluation, we leveraged the widely recognized MNIST Database of

Handwritten Digits [14]—a benchmark challenge in the �eld of machine learning. Our experimental
analysis proceeded in a twofold manner. First, we quanti�ed the scalability of provenance mainte-
nance, query performance, and ġ-means deletion as a function of the point number (the number of
clusters is set 10). The results are presented in Figure 16 (a)-(c). Next, we extended our analysis to
examine the e�ects of cluster numbers on the same performance metrics (the number of points is
set 2000). The results are presented in Figure 16 (d)-(f).

To assess the overhead costs associated with provenance maintenance, we track and compare the
execution times of ġ-means clustering with and without provenance. In Figure 16 (a) and (d), PXAI
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Table 5. Applicability of PXAI to ML models (# stands for unessential and not suitable,G# stands for essential
but not suitable, H# stands for unessential but suitable,  stands for essential and suitable).

ML
models

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Linear
Tree-
based

Naive
Bayesian

PGM Clustering
Model-
based

Model-
free

Linear
regression

Logistic
regression

Neural
network

Decision
tree

Random
forest

Bayesian
network

Markov
network

ġ-means GMM
Deep

Q-learning
Q-learning

PXAI
applicable

H# H#  # G# #    G#  #

Table 6. Applicability of PXAI to XAI tools (# stands for not applicable and  stands for applicable).

XAI
Post-hoc Ante-hoc

Feature attribution Counterfactual explanation Surrogate-based Henricks
et al. [27]LRP [5] ICE [23] SHAP [36] PDA [62] Wachter et al. [57] Tolomei et al. [55] LIME [47] Anchor [48]

PXAI applicable #     #   #

incurs less than 15% overheads. In addition, Figure 16 (b) and (e) show a linearly growth of PXAI’s
memory utilization. We did not measure provenance query because Algorithm 5 are performed on
the whole provenance graph.

Our primary goal with this case study, as demonstrated in [22] (c) and (f), is to evaluate the e�ec-
tiveness of a provenance-aware ġ-means deletion algorithm (orange bars) compared to retraining
the ġ-means model from scratch after data point removal (blue curves). The algorithm’s e�ciency
stems from its ability to target only the computation paths a�ected by the deletion, thereby reducing
the overall calculation load. In Figure 16 (c), the running times of both the baseline and PXAI grow
linearly. PXAI enables more than 5x accelerations of ġ-means deletion. In Figure 16 (f), the execution
time of PXAI initially increases and then decreases, in contrast to the rapidly escalating running
time of the baseline. Notably, at a cluster count of 100, PXAI achieves a substantial 35x acceleration
compared to the baseline. This e�ciency gain is attributed to the fact that as the number of clusters
grows, a larger proportion of clusters and data points become irrelevant to the ML deletion process
and are consequently bypassed via provenance tracking.

8 Discussion

Applicability to other ML models Beyond the case studies presented in Section 7, we now
consider the applicability of PXAI to other ML models. Table 5 outlines the mainstream ML
landscape. We consider the interpretability of ML models and assess PXAI’s suitability in terms
of intermediate computation. We �nd that PXAI is not essential for inherently interpretable ML
models, including (but not limited to) linear regression, logistic regression, and decision trees,
because their decision-making processes are already transparent. We also �nd that PXAI is not
suitable for ML models that do not generate intermediate computational results during inference,
such as Gaussian Mixture Models (GMMs) and Q-learning algorithms.

We discuss PXAI’s applicability in Table 6, encompassing categories of various XAI tools. PXAI
is applicable to all XAI tools that follow a sample-then-inference procedure, such as ICE [23] of
feature attribution and counterfactual explanations [57]. Some XAI tools, such as LRP [5], are
computationally e�cient; however, they are model-speci�c (e.g., for neural networks). Ante-hoc
XAI tools, such as Henricks et al. [27], are designed as inherently interpretable ML models and do
not require PXAI.
Scope of Novelty Our goal with PXAI is not to create a novel XAI algorithm but rather to
improve the computational e�ciency of existing XAI algorithms. For example, the objective
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of XAI-approximate is not to enhance the explainability of AI/ML models, but rather to reduce
computational overhead while maintaining minimal deviations from the original explanations.
Developer E�ort PXAI currently requires an ML developer to instrument their source code with
the appropriate API calls in Table 3 to maintain adequate provenance collection. Although existing
provenance tools can track data derivation in source code, such as noWork�ow [43] or in binary
executables, scuh as BEEP [33] and OmegaLog [26], we leave automated provenance tracking in
ML applications as future work.
Scalability Challenges In recent years, neural networks have scaled to encompass over one billion
parameters, as evidenced by the development of large language models (LLMs). When applied
to large-scale neural networks with complicated architectures, despite the linear computational
overhead associated with provenance maintenance as demonstrated in Section 7, PXAI encounters
the following challenges.

(1) Storage overhead: Currently, PXAI supports only in-memory provenance, which may
become exceedingly large and unsuitable for large-scale neural networks. However, there
have been extensive study on provenance storage and optimizations in database, such as
Chapman et al. [11], Hu et al. [29] and Ding et al. [16], providing a comprehensive view of
potential solutions to this challenge.

(2) Parallel acceleration: The inference of large-scale neural networks often relies on par-
allel acceleration using GPUs. At present, PXAI does not implement parallel acceleration,
including batch inference, which presents a limitation. Future work could incorporate parallel
acceleration techniques to enhance PXAI’s scalability.

9 Related Work

Reuse of intermediate computation results Clipper [12] caches model inference results to
improve the throughput of training. Pretzel [34] converts machine learning pipelines into “model
plans”, which reduces the model inference latency by reusing the parameters and computations
between similar model plans. These approaches do not implement provenance or lineage and are
highly coupled with speci�c ML systems (e.g., ML.Net, Tensor�ow and Ca�e) that generate machine
learning pipelines.
Some prior work has implemented data provenance/lineage for data reuse. nbsafety [38]

traces the lineage of intermediate states of the “cells” in Jupyter Notebook to detect and avoid
unsafe interactions from the notebook users. KeystoneML [54] and HELIX [60] optimize iterative
executions ofmachine learningwork�ows, including preprocessing, model training, model inference
and post-processing, by reusing computation results from previous iterations. These approaches
are coarse-grained; therefore, they cannot trace �ne-grained (i.e., pipeline-level) computation
dependencies required by XAI tools. LIMA [42] builds a �ne-grained lineage inside ML systems,
but its performance is susceptible to the density of lineage. In contrast, PXAI decouples XAI tools
from AI/ML systems/models, implements a �ne-grained provenance model, and further accelerates
XAI by searching approximate subgraphs.

AI/ML security and interpretation Data provenance improves AI/ML security by tracing the
data in model training. For example, Song and Vitaly [53] design a black-box auditing method that
determines whether a user’s data are used to train a text-generative model. Baracaldo et al. [7]
uses data provenance to track the origin and transformation of data points in the training data
set to �lter “poisonous” data. PrIU [59] tracks the provenance of the data for incremental training
of logistic regression and linear regression models so that the training error can be identi�ed.
However, these approaches focus on model training instead of model inference.
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Data provenance helps interpret or debug model inference results. noWorkFlow [43] collects
provenance that captures all computational steps and data leading to an output from Python scripts.
LAMP [37]’s �ne-grained provenance model records computation dependencies for graphical ML
model inference (i.e., PageRank), adopts automatic di�erentiation to explain model inference results,
and uses provenance to decouple the intensive derivative computation from the models. Deep
learning frameworks also builds computational graphs, such as PyTorch [3]. In contrast, PXAI
o�ers a more general approach applicable to various AI/ML models. It enhances the computational
e�ciency of model-agnostic XAI tools through provenance-enabled model inference and the
introduction of XAI-approximate.
Some studies, such as those by Deutch et al. [15], Milo et al. [39], and P3 [58], have leveraged

provenance and approximate provenance to explain inference results within DataLog and ProbLog
programs. In contrast, PXAI expands the scope to encompass a broader array of ML models.

10 Conclusion

In this paper, we introduced PXAI, a local and model-agnostic XAI tool, following a sample-then-
inference procedure. To decouple XAI from AI/ML models, we create a provenance model that
tracks the creation and transformation of all data within AI/ML models. To exclude insigni�cant
variables and computations without a�ecting the explanations, we de�ne and design searching
algorithms for approximate subgraphs that are XAI-approixmate. Our evaluation shows that PXAI
derives reasonable explanations and that PXAI signi�cantly improves the computation e�ciency
of XAI tools.

Acknowledgments

The authors would like to thank the anonymous shepherd and reviewers for their helpful comments
and feedback, which improved this work. This material is based upon work supported by the
National Science Foundation under Grant No. CNS-1704189.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.



Provenance-Enabled Explainable AI 250:25

References

[1] [n. d.]. Alchemy - Open Source AI. http://alchemy.cs.washington.edu/alchemy1.html

[2] [n. d.]. The Boost Graph Library (BGL). https://www.boost.org/doc/libs/1_80_0/libs/graph/doc/index.html

[3] [n. d.]. Overview of PyTorch Autograd Engine. https://pytorch.org/blog/overview-of-pytorch-autograd-engine/

[4] Somak Aditya, Yezhou Yang, and Chitta Baral. 2018. Explicit Reasoning over End-to-End Neural Architectures for

Visual Question Answering. In AAAI.

[5] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, andWojciech Samek.

2015. On pixel-wise explanations for non-linear classi�er decisions by layer-wise relevance propagation. PloS one 10, 7

(2015), e0130140.

[6] Stephen H. Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. 2015. Hinge-Loss Markov Random Fields and

Probabilistic Soft Logic. Journal of Machine Learning Research 18 (2015), 109:1–109:67.

[7] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, and Jaehoon Amir Safavi. 2017. Mitigating Poisoning Attacks on

Machine Learning Models: A Data Provenance Based Approach. In Proceedings of the 10th ACM Workshop on Arti�cial

Intelligence and Security (Dallas, Texas, USA) (AISec ’17). Association for Computing Machinery, New York, NY, USA,

103–110. https://doi.org/10.1145/3128572.3140450

[8] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado,

Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020.

Explainable Arti�cial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.

Information Fusion 58 (2020), 82–115. https://doi.org/10.1016/j.in�us.2019.12.012

[9] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. 2001. Why and where: A characterization of data provenance.

In International conference on database theory. Springer, 316–330.

[10] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. 2015. Intelligible Models for

HealthCare: Predicting Pneumonia Risk and Hospital 30-Day Readmission. In Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (Sydney, NSW, Australia) (KDD ’15). Association for

Computing Machinery, New York, NY, USA, 1721–1730. https://doi.org/10.1145/2783258.2788613

[11] Adriane P. Chapman, H. V. Jagadish, and Prakash Ramanan. 2008. E�cient provenance storage. In Proceedings of the

2008 ACM SIGMOD International Conference on Management of Data (Vancouver, Canada) (SIGMOD ’08). Association

for Computing Machinery, New York, NY, USA, 993–1006. https://doi.org/10.1145/1376616.1376715

[12] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gonzalez, and Ion Stoica. 2017. Clipper:

A Low-Latency Online Prediction Serving System. In 14th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 17). USENIX Association, Boston, MA, 613–627. https://www.usenix.org/conference/nsdi17/

technical-sessions/presentation/crankshaw

[13] Susanne Dandl, Christoph Molnar, Martin Binder, and Bernd Bischl. 2020. Multi-objective counterfactual explanations.

In Parallel Problem Solving from Nature–PPSN XVI: 16th International Conference, PPSN 2020, Leiden, The Netherlands,

September 5-9, 2020, Proceedings, Part I. Springer, 448–469.

[14] Li Deng. 2012. The mnist database of handwritten digit images for machine learning research. IEEE Signal Processing

Magazine 29, 6 (2012), 141–142.

[15] Daniel Deutch, Amir Gilad, and Yuval Moskovitch. 2015. Selective provenance for datalog programs using top-k

queries. Proc. VLDB Endow. 8, 12 (aug 2015), 1394–1405. https://doi.org/10.14778/2824032.2824039

[16] Hailun Ding, Juan Zhai, Dong Deng, and Shiqing Ma. 2023. The Case for Learned Provenance Graph Storage

Systems. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 3277–3294.

https://www.usenix.org/conference/usenixsecurity23/presentation/ding-hailun-provenance

[17] P. Domingos and D. Lowd. 2009. . https://doi.org/10.2200/S00206ED1V01Y200907AIM007

[18] Pedro Domingos and Daniel Lowd. 2019. Unifying logical and statistical AI with Markov logic. Commun. ACM 62, 7

(2019), 74–83.

[19] Jaimie Drozdal, Justin Weisz, Dakuo Wang, Gaurav Dass, Bingsheng Yao, Changruo Zhao, Michael Muller, Lin Ju, and

Hui Su. 2020. Trust in AutoML: exploring information needs for establishing trust in automated machine learning

systems. In Proceedings of the 25th International Conference on Intelligent User Interfaces (Cagliari, Italy) (IUI ’20).

Association for Computing Machinery, New York, NY, USA, 297–307. https://doi.org/10.1145/3377325.3377501

[20] Patrick Forré and Joris M Mooij. 2017. Markov properties for graphical models with cycles and latent variables. arXiv

preprint arXiv:1710.08775 (2017).

[21] Víctor Garcia Satorras and Max Welling. 2021. Neural Enhanced Belief Propagation on Factor Graphs. In Proceedings

of The 24th International Conference on Arti�cial Intelligence and Statistics (Proceedings of Machine Learning Research,

Vol. 130), Arindam Banerjee and Kenji Fukumizu (Eds.). PMLR, 685–693. https://proceedings.mlr.press/v130/garcia-

satorras21a.html

[22] Antonio A. Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. 2019. Making AI Forget You: Data Deletion in

Machine Learning. Curran Associates Inc., Red Hook, NY, USA.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.



250:26 Zhang et al.

[23] Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin. 2015. Peeking inside the black box: Visualizing statistical

learning with plots of individual conditional expectation. journal of Computational and Graphical Statistics 24, 1 (2015),

44–65.

[24] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance Semirings. In Proceedings of the Twenty-Sixth

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (Beijing, China) (PODS ’07). Association

for Computing Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/1265530.1265535

[25] David Gunning and David Aha. 2019. DARPA’s explainable arti�cial intelligence (XAI) program. AI magazine 40, 2

(2019), 44–58.

[26] Wajih Ul Hassan, Mohammad A. Noureddine, Pubali Datta, and Adam Bates. 2020. OmegaLog: High-Fidelity Attack

Investigation via Transparent Multi-layer Log Analysis. Proceedings 2020 Network and Distributed System Security

Symposium (2020). https://api.semanticscholar.org/CorpusID:211268590

[27] Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Je� Donahue, Bernt Schiele, and Trevor Darrell. 2016. Gen-

erating visual explanations. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,

October 11–14, 2016, Proceedings, Part IV 14. Springer, 3–19.

[28] Andreas Holzinger, Randy Goebel, Ruth Fong, Taesup Moon, Klaus-Robert Müller, and Wojciech Samek. 2022. xxAI-

beyond explainable arti�cial intelligence. In xxAI-Beyond Explainable AI: International Workshop, Held in Conjunction

with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers. Springer, 3–10.

[29] Die Hu, Dan Feng, Yulai Xie, Gongming Xu, Xinrui Gu, and Darrell Long. 2020. E�cient Provenance Management

via Clustering and Hybrid Storage in Big Data Environments. IEEE Transactions on Big Data 6, 4 (2020), 792–803.

https://doi.org/10.1109/TBDATA.2019.2907116

[30] Kaggle. [n. d.]. Credit Score Classi�cation. https://www.kaggle.com/datasets/parisrohan/credit-score-classi�cation

[31] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. 2016. Examples are not enough, learn to criticize! criticism for

interpretability. Advances in neural information processing systems 29 (2016).

[32] Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles and techniques. MIT press.

[33] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack Provenance via Binary-based Execution

Partition. In 20th Annual Network and Distributed System Security Symposium, NDSS 2013, San Diego, California,

USA, February 24-27, 2013. The Internet Society. https://www.ndss-symposium.org/ndss2013/high-accuracy-attack-

provenance-binary-based-execution-partition

[34] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico Santambrogio, Markus Weimer, and Matteo

Interlandi. 2018. {PRETZEL}: Opening the black box of machine learning prediction serving systems. In 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 18). 611–626.

[35] H-A Loeliger. 2004. An introduction to factor graphs. IEEE Signal Processing Magazine 21, 1 (2004), 28–41.

[36] Scott M Lundberg and Su-In Lee. 2017. A uni�ed approach to interpreting model predictions. Advances in neural

information processing systems 30 (2017).

[37] Shiqing Ma, Yousra Aafer, Zhaogui Xu, Wen-Chuan Lee, Juan Zhai, Yingqi Liu, and Xiangyu Zhang. 2017. LAMP: Data

Provenance for Graph Based Machine Learning Algorithms through Derivative Computation. In Proceedings of the

2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017). Association for

Computing Machinery, New York, NY, USA, 786–797. https://doi.org/10.1145/3106237.3106291

[38] Stephen Macke, Hongpu Gong, Doris Jung-Lin Lee, Andrew Head, Doris Xin, and Aditya Parameswaran. 2021.

Fine-Grained Lineage for Safer Notebook Interactions. Proc. VLDB Endow. 14, 6 (feb 2021), 1093–1101. https:

//doi.org/10.14778/3447689.3447712

[39] Tova Milo, Yuval Moskovitch, and Brit Youngmann. 2020. Contribution Maximization in Probabilistic Datalog. In 2020

IEEE 36th International Conference on Data Engineering (ICDE). 817–828. https://doi.org/10.1109/ICDE48307.2020.00076

[40] Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. 2020. Explaining machine learning classi�ers through diverse

counterfactual explanations. In Proceedings of the 2020 conference on fairness, accountability, and transparency. 607–617.

[41] Kevin Murphy, Yair Weiss, and Michael I Jordan. 2013. Loopy belief propagation for approximate inference: An

empirical study. arXiv preprint arXiv:1301.6725 (2013).

[42] Arnab Phani, Benjamin Rath, and Matthias Boehm. 2021. LIMA: Fine-Grained Lineage Tracing and Reuse in Machine

Learning Systems. In Proceedings of the 2021 International Conference on Management of Data (Virtual Event, China)

(SIGMOD ’21). Association for Computing Machinery, New York, NY, USA, 1426–1439. https://doi.org/10.1145/3448016.

3452788

[43] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire. 2017. noWork�ow: a tool for collecting,

analyzing, and managing provenance from python scripts. Proc. VLDB Endow. 10, 12 (aug 2017), 1841–1844. https:

//doi.org/10.14778/3137765.3137789

[44] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer, Florence d’Alché Buc,

Emily Fox, and Hugo Larochelle. 2021. Improving Reproducibility in Machine Learning Research (a Report from the

NeurIPS 2019 Reproducibility Program). J. Mach. Learn. Res. 22, 1, Article 164 (jan 2021), 20 pages.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.



Provenance-Enabled Explainable AI 250:27

[45] Atul Rawal, James McCoy, Danda B. Rawat, Brian M. Sadler, and Robert St. Amant. 2022. Recent Advances in

Trustworthy Explainable Arti�cial Intelligence: Status, Challenges, and Perspectives. IEEE Transactions on Arti�cial

Intelligence 3, 6 (2022), 852–866. https://doi.org/10.1109/TAI.2021.3133846

[46] Christopher Ré and Dan Suciu. 2008. Approximate lineage for probabilistic databases. In PVLDB. 797–808.

[47] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i trust you?" Explaining the predictions

of any classi�er. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data

mining. 1135–1144.

[48] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-precision model-agnostic explanations.

In Proceedings of the AAAI conference on arti�cial intelligence, Vol. 32.

[49] Matthew Richardson and Pedro Domingos. 2006. Markov Logic Networks. Mach. Learn. 62, 1-2 (Feb. 2006), 107–136.

[50] Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher J. Anders, and Klaus-Robert Müller. 2021.

Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications. Proc. IEEE 109, 3 (2021),

247–278. https://doi.org/10.1109/JPROC.2021.3060483

[51] Sebastian Schelter, Joos-Hendrik Böse, Johannes Kirschnick, Thoralf Klein, and Stephan Seufert. 2017. Automatically

tracking metadata and provenance of machine learning experiments. In NeurIPS 2017. https://www.amazon.science/

publications/automatically-tracking-metadata-and-provenance-of-machine-learning-experiments

[52] Parag Singla and Pedro M Domingos. 2008. Lifted First-Order Belief Propagation.. In AAAI, Vol. 8. 1094–1099.

[53] Congzheng Song and Vitaly Shmatikov. 2019. Auditing data provenance in text-generation models. In Proceedings of

the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 196–206.

[54] Evan R Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J Franklin, and Benjamin Recht. 2017. Keystoneml:

Optimizing pipelines for large-scale advanced analytics. In 2017 IEEE 33rd international conference on data engineering

(ICDE). IEEE, 535–546.

[55] Gabriele Tolomei, Fabrizio Silvestri, Andrew Haines, and Mounia Lalmas. 2017. Interpretable predictions of tree-

based ensembles via actionable feature tweaking. In Proceedings of the 23rd ACM SIGKDD international conference on

knowledge discovery and data mining. 465–474.

[56] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection regulation (gdpr). A Practical Guide, 1st

Ed., Cham: Springer International Publishing 10, 3152676 (2017), 10–5555.

[57] Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2017. Counterfactual explanations without opening the black

box: Automated decisions and the GDPR. Harv. JL & Tech. 31 (2017), 841.

[58] Shaobo Wang, Hui Lyu, Jiachi Zhang, Chenyuan Wu, Xinyi Chen, Wenchao Zhou, Boon Thau Loo, Susan B. Davidson,

and Chen Chen. 2020. Provenance for Probabilistic Logic Programs. In Extending Database Technology. 145–156.

[59] Yinjun Wu, Val Tannen, and Susan B Davidson. 2020. Priu: A provenance-based approach for incrementally updating

regression models. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 447–462.

[60] Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, and Aditya Parameswaran. 2018. HELIX: Holistic

Optimization for Accelerating Iterative Machine Learning. Proc. VLDB Endow. 12, 4 (dec 2018), 446–460. https:

//doi.org/10.14778/3297753.3297763

[61] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. 2020. XGNN: Towards Model-Level Explanations of Graph Neural

Networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining

(Virtual Event, CA, USA) (KDD ’20). Association for Computing Machinery, New York, NY, USA, 430–438. https:

//doi.org/10.1145/3394486.3403085

[62] Luisa M. Zintgraf, Taco S. Cohen, Tameem Adel, and Max Welling. 2017. Visualizing Deep Neural Network Decisions:

Prediction Di�erence Analysis. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,

April 24-26, 2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=BJ5UeU9xx

Received April 2024; revised July 2024; accepted August 2024

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 250. Publication date: December 2024.


	Abstract
	1 Introduction
	2 Motivation: Applying Existing XAI tools on a PGM Application
	2.1 Probabilistic Graphical Model
	2.2 Running Example

	3 PXAI Overview
	4 PXAI Provenance Model
	4.1 Definitions
	4.2 Provenance-Enabled Model Inference

	5 Approximate Subgraph
	5.1 Definitions
	5.2 Provenance-Enabled Approximate Subgraph Searching

	6 Implementation
	7 Evaluation
	7.1 Case Study 1: Visual Question Answering (Probabilistic Graphical Model)
	7.2 Case Study 2: Text Classification (Probabilistic Graphical Model)
	7.3 Case Study 3: Credit Score Classification (Multi-Layer Perceptron)
	7.4 Case Study 4: ML Deletion (k-Means Clustering)

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

