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Abstract—Artificial-intelligence-powered edge devices are inspiring interest in always-on, intelligent, and self-powered visual

perception systems. Due to the high energy cost of converting raw data and the limited computing and energy resources available,

designing energy-efficient and low bandwidth CMOS vision sensors is vital as these emerging systems require continuous sensing and

instant processing. This paper proposes a low-power integrated sensing and computing engine, namely APRIS, including a novel

software/hardware co-design technique. This method provides a highly parallel analog multiplication and accumulation-in-pixel

scheme, which realizes low-precision quantized weight neural networks to mitigate the overhead of analog-to-digital converters and

analog buffers. Moreover, in order to reduce the size and power consumption, we propose the implementation of an approximate ADC

in the readout circuit. Our system utilizes eight memory banks to increase computation parallelism, which has a dramatic effect on its

speed and efficiency. Moreover, the proposed structure supports a zero-skipping scheme to reduce power consumption further. Our

circuit-to-application co-simulation results demonstrate a comparable accuracy for our platform to the full-precision baseline on various

object classification tasks while reaching an efficiency of ∼3.48 TOp/s/W.

Index Terms—Approximate computing, processing in-sensor, ReRAM, multilayer perception.

I

1 INTRODUCTION

EDGE AI has rapidly evolved into an integral part of
modern technological ecosystems, fundamentally re-

shaping the way we process data and interact with our
digital environment. The significance of this technology
cannot be overstated, as it pushes the boundaries of tra-
ditional cloud-based AI, moving towards more localized,
low-latency, and power-efficient solutions. The advent of
Edge AI has brought forth a paradigm shift that promotes
processing at or near the data source, often directly within
the sensors themselves. This transformation, largely driven
by the surge in Internet of Things (IoT) devices, has been
essential in dealing with the data deluge that these devices
generate. As we stand on the cusp of a world teeming with
billions of interconnected smart devices, the need for edge
processing has become increasingly crucial. These changes
have ushered in the era of sensor-based processing, where
sensors not only capture data but also have the intelligence
to process it. This emergence of processing near and in
the sensor has significant implications for privacy, speed,
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bandwidth, and energy consumption. By processing data
locally, the need to transmit vast quantities of raw data to
the cloud is eliminated, resulting in more efficient use of
network resources and a substantial reduction in latency.
The ability of sensors to process data on the edge increases
the responsiveness of real-time applications, making them
more effective and reliable. From autonomous vehicles and
drones to smart home systems and wearable technology,
processing at the edge enhances the functionality of these
applications.

However, there are significant obstacles to the tractabil-
ity of the processing requirements of artificial intelligence
tasks in terms of computational and storage resources. By
removing “power and memory wall” bottlenecks, efficient
methods have been developed in both the software and
hardware domains. Algorithm-focused methods have ex-
tensively examined the application of quantized parame-
ters and pruned/compressed networks [1], [2], which have
helped decrease computational complexity and model size.
From a hardware perspective, efficient mechanisms have
been exploited to mitigate the bottlenecks of von Neumann
computing models caused by separate memory and pro-
cessing blocks. This setup presents significant challenges,
such as lengthy memory access latency, limited memory
bandwidth, and energy-intensive data transfers that limit
edge device efficiency and operational time [3], [4]. As a
potential solution, researchers have extensively investigated
Processing-in-Memory (PIM) architecture, which has been
widely studied in [3], [5], [6]. Inspired by the PIM concept,
smart image sensors with preprocessing capability [4], [7]–
[10] have been studied extensively. This exploration has
led to new sensor paradigms, like Processing-Near-Sensor
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(PNS), where an on-chip processor accelerates digital pixel
outputs near the sensor. Building on PNS and PIM tech-
niques, two promising alternatives are Processing-in-Sensor
(PIS), which operates on pre-Analog-to-Digital Converter
(ADC) data [8], [11]–[13], and a hybrid PIS-PNS platform
[14] that enhances vision sensor functionality and elimi-
nates redundant data output. In [15], all the computations
are performed in the analog domain. The authors in [16]
replaced ADC with a novel component to implement the
spike neural network (SNN) within the sensor. Generally,
PIS units process images before transmitting raw data to the
on-chip memory unit for processing by a PNS unit. This data
transfer in traditional designs (from CMOS image sensors
to memory) creates a severe bottleneck and significantly
reduces feature extraction speed. Therefore, incorporating
coarse-grained computation within a sensor can decrease
power consumption for data conversion from photocurrents
to pixel values, enhance data processing speed, and mitigate
the memory bottleneck issue [4], [14].

In this paper, to make continuous sensing and instant
processing suitable for resource-limited sensor devices, ad-
vancements from both algorithm and hardware architecture
perspectives are deployed. In summary, our major contribu-
tions in this paper can be listed as follows: 1) We introduce
two weight grouping approaches that provide an effective
performance regarding accuracy loss. Further improvement
is achieved by applying a 5-bit quantization method, which
massively reduces the required storage and computational
resources in the inference path with minimum performance
degradation compared to the full precision model; 2) We
develop a PIS architecture, namely APRIS, based on a set
of innovative microarchitectural and circuit-level schemes
optimized to process the 1st-layer of quantized-weight MLP
with weights stored in our recently fabricated and exper-
imentally measured non-volatile resistive random-access
memory (ReRAM) components that offer energy-efficiency
and speed-up. Using ReRAM computational sub-arrays and
an ultra-low power activation function, a highly parallel
analog multiplication and accumulation-in-pixel scheme are
provided, which mitigate the overhead of analog-to-digital
converters and analog buffers; 3) We present a solid bottom-
up evaluation framework and a PIS assessment simulator
to analyze the whole system’s performance. Our framework
extensively assesses APRIS’s performance, energy efficiency,
and accuracy in different data precisions and datasets. Ap-
plying these approximations results in an extensive reduc-
tion in energy and area while an acceptable accuracy is
achieved.

2 BACKGROUND

2.1 Multilayer Perceptron

Artificial Neural Networks (ANNs) have revolutionized
predictive applications, particularly in the field of im-
age recognition, with Multilayer Perceptron Neural Net-
works (MLPs) and Convolutional Neural Networks (CNNs)
emerging as highly effective architectures. MLPs, renowned
for their simplicity and lower computational requirements
compared to CNNs, are particularly suitable for intelligent
edge devices. Moreover, MLPs generate smaller spatial fea-
tures in their initial layers than CNNs, minimizing the need

for transferring large amounts of data to remote servers
or the cloud if enabled localized computations within the
sensor. In this work, we focus on MLPs for image classi-
fication tasks, as they offer dense connectivity and a large
number of learnable parameters, making them suitable for
processing high-dimensional inputs like images. However,
the presence of a substantial number of learnable parame-
ters in MLPs results in a significant memory footprint and
high computational demands, posing challenges when de-
ploying models in resource-constrained environments such
as mobile devices or embedded systems. Furthermore, the
abundance of parameters increases redundancy and makes
generalization to unseen data more difficult [17]. To over-
come the computational and storage limitations of MLPs,
a range of approximate computing paradigms has been
investigated, including pruning [18], quantization [19], and
weight sharing [20]–[22]. These paradigms aim to balance
model accuracy and efficiency, making them particularly
beneficial for resource-constrained devices and real-time
performance requirements.

2.2 Processing Near/In Sensor

Integrating computing with sensor arrays can diminish off-
chip data transmission and ADC bandwidth. Such a setup
promotes power efficiency and yields higher sampling rates
and superior data acquisition resolution. Efficient strategies
for executing embedded signal/image processing and com-
puter vision algorithms directly on-chip, before off-chip data
transfer, include near-sensor and in-sensor processing, PNS,
and PIS architectures, respectively.

The PNS architecture is a design used in image pro-
cessing, where processing occurs close to the sensor, either
on the same chip or nearby, before transferring data to an
external processor. The PNS unit accepts raw data from
the sensor, carrying out essential calculations or processing
before dispatching the data to the main system. This design
finds its use in scenarios where data is harvested from mul-
tiple sources/sensors. PNS diminishes the volume of data
transferred off-chip and processed, enabling superior signal
processing and vision performance. As per the reference
[23], the CMOS imager is equipped with dual-mode delta-
sigma ADCs designed to handle the first convolutional
(conv.) layer of binary-weight neural networks (BWNNs).
RedEye [24] carries out convolution using charge-sharing
tunable capacitors. By sacrificing precision for energy sav-
ings, this design curtails energy consumption. This system
employs a custom image sensor integrated with a low-
power digital signal processor to execute image process-
ing tasks. In [4], vertically stacked column-parallel ADCs
and processing elements are adopted and used to conduct
spatiotemporal image processing. To lower the power con-
sumed by the ADC, [9] transforms photocurrents into pulse-
width modulated signals, subsequently processed by a ded-
icated analog processor. Conversely, PIS includes processing
capabilities directly within the sensor. This configuration
allows sensors to carry out essential calculations or process-
ing before dispatching the data to the main system. One
of the most significant benefits of PIS is the potential for
increased precision and accuracy in vision results. This is
achieved by enabling complex image processing functions
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to be performed directly within the sensor itself [25]. This
direct approach mitigates the need for data transmission
to a separate processor, reducing the potential for data
loss or degradation. Furthermore, PIS offers on-chip mem-
ory capabilities, enabling data to be stored and processed
on-chip [26]. This can significantly reduce data transfer
times and increase overall processing efficiency, which is
particularly beneficial in applications where data needs to
be collected rapidly, such as in industrial automation and
security systems. The PIS platform MACSen, as discussed
by Xu et al. [8], is a prime example of the benefits of PIS.
MACSen integrates multiply-accumulate (MAC) operations
directly into the image sensor, utilizing double sampling
to process the first conv. layer of BWNNs. This allows for
efficient real-time processing of visual data at the point of
acquisition without the need for additional power-hungry
devices. However, this method suffers from high power
consumption and a significant overhead due to the SRAM-
based design.

Although PNS can offer more flexibility and scalability, it
may also be more complex and costly to implement [9], [27],
[28]. PIS may be more compact and efficient but might be
more restricted in processing capabilities [10], [29], [30]. PNS
is a suitable choice for lower-end processing needs, whereas
PIS is preferable for applications requiring more advanced
algorithms. In CMOS image sensors, either of these architec-
tures can diminish data transfer and processing overhead,
thus boosting computing efficiency.

3 PROPOSED HW/SW CO-DESIGN APPROACH

3.1 Proposed Weight Compression Approaches

Herein, a novel compression approach, particularly for an
MLP network, is introduced. Specifically, the focus is on
compressing the first layer of the network, which contains
a substantial portion of the overall weight parameters. Our
proposed method revolves around the concept of parameter
sharing among multiple interconnected nodes in a neural
network. By leveraging this approach, we effectively curtail
the number of unique parameters necessary for training,
storage, and computation. We refer to this technique as
“grouping” and represent the group size by g. Subsequently,
we employ quantization, which imposes a constraint on
the parameters, compelling them to assume 5-bit integer
values, thereby further diminishing memory requirements.
Through the synergistic utilization of these techniques, we
successfully mitigate the intrinsic limitations of MLPs, en-
suring their efficient deployment on resource-constrained
devices while ensuring minimal performance degradation.

3.1.1 Weight sharing approaches

The initial compression strategy in our proposed approach
involves grouping, aka weight sharing. This step entails
organizing multiple nodes within a network so that all
nodes within a group share the same weight or parameter
value. By implementing this grouping strategy, a signifi-
cant reduction in the number of parameters to be trained
and stored is achieved, leading to faster computations and
decreased memory requirements. Figure 1 depicts a 2-
layer MLP network comprising four nodes in the input
layer, six nodes in the hidden layer, and two nodes in the

output layer. Each hidden node performs multiplication and
accumulation operations on all input nodes to produce an
output. The non-activated output of the first hidden node
(hj) can be represented as follows:

yj = bj + (w1j .p1 + w2j .p2 + w3j .p3 + w4j .p4) (1)

where bj is the bias term associated with hj hidden node
and wij is weight associated with the pi input node con-
nected with hj hidden node. Two approaches can be em-
ployed to group the weights, as illustrated in Fig. 1 (b) and
(c). The first approach involves grouping weights associated
with multiple hidden nodes connected to an input node, as
shown in Fig. 1 (b). By grouping six weights from the p4
node connected to g number of hidden nodes, where g = 6
represents the group degree, the equation simplifies to:

yj = bj + (wG1 .p1 + wG2 .p2 + wG3 .p3 + wG4 .p4)

wGj =
1

g
Σg

i=1
wji

(2)

In the second approach, weights associated with multi-
ple input nodes connected to a hidden node are grouped
together, as depicted in Fig. 1 (c). In this scenario, four
weights related to the four input nodes connected to a
hidden node are assigned the same value. By grouping the
weights in this manner with a group size of g = 4, the
equation simplifies to:

yj = bj + wGj (p1 + p2 + p3 + p4)

wGj =
1

g
Σg

i=1
wij

(3)

ReRAM-based weight representations of two grouping ap-
proaches are depicted in Fig. 2, where by using Approach 2,
one ReRAM can be shared among several inputs.

3.1.2 Validation

A performance comparison between the two approaches for
various datasets and group degrees is presented in Fig. 3.
The graph clearly illustrates that Approach 1, in most cases,
maintains a consistently high performance across a wide
range of group degrees. In contrast, the performance of Ap-
proach 2 experiences a sharp decline after a comparatively

Figure 1: (a) A 2-layer MLP network. Two group sharing
methods and their matrices, (b) multiple hidden nodes con-
nected to an input, where the number of groups equals the
input nodes, and (c) multiple inputs connected to a hidden
node and the number of groups equal to the number of
hidden nodes.
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Figure 2: ReRAM-based weight representations of two
grouping approaches, (a) method 1, and (b) method 2, where
one ReRAM can be shared among several inputs.

smaller group size, with some exceptions. The circles in the
graph represent various group degrees considered to ensure
comparable results between the two grouping strategies.
The reason behind this discrepancy lies in the fundamental
differences between the two approaches. In Approach 1,
although multiple weights are assigned the same value, each
input pixel retains its unique parameter value. As a result,
the network is able to effectively learn from all individual
input features, leading to superior performance. On the
other hand, Approach 2 combines multiple input pixels and
assigns them a single parameter value. Consequently, the
network is required to learn multiple input features with a
single parameter, resulting in a diminished learning capac-
ity. As the group size increases, the network’s ability to learn
further deteriorates, causing a rapid decline in performance
beyond a certain group size. Although Approach 2 may lack
flexibility in terms of group size, it offers several hardware-
related benefits, as depicted in Fig. 2 and Table 1, which
summarizes the comparison of the number of operations
among the baseline and the two approaches. It is evident
that both approaches entail an equal number of operations
and are smaller than the uncompressed method. However,
referring to Fig. 2(a), it can be observed that in Approach
1, each pixel needs to be multiplied by a specific weight.
Consequently, the design of the architecture for Approach 1
necessitates a separate weight and hardware for each pixel,
resulting in a higher number of interconnections and tran-
sistors within the sensor area, which is perceived from Fig. 2.
This increased density in Approach 1 leads to a significant
reduction in the fill factor of the design. Upon analyzing
this figure, it is evident that in Approach 2, the individual
elements i1−4 can be amalgamated and connected to a single
weight, allowing for the utilization of a single hardware
component to perform the multiplication operation on them
collectively.

Table 1: Computational and hardware cost analysis of three
approaches.

Method Mul Sum Accuracy
Sensor area

overhead
Normal m× n× h m× n× h best n

Method 1 m×n×h
g

m×n×h
g

better n

Method 2 m×n×h
g

m×n×h
g

good n
g

m and n are the pixel array dimension, h is the number of first layer
hidden nodes, and g is the group number.

3.1.3 Quantization

In the next step, we apply quantization to the shared
weights in each group, representing the weights as 5-
bit in the sign system, which results in integers in the
range of [−15, 15]. This quantization reduces the bit-width
of the weights, further reducing the model’s memory re-
quirements and computational complexity. To quantize the
weights, we use a range-based linear quantization [35],
where we first scale the full-precision (FP) weights by a
scaling factor (qx), which is calculated as qx = 2

n
−1

maxxf−minxf

, where n is the number of bits to use for encoding, which
in our case is 5. We then multiply the weights to this scaling
factor (qx) and then quantize to the nearest integers in the
desired range.

3.2 Proposed APRIS Architecture

The ultra-low-power sensor integrating sensing and com-
puting to realize TinyML applications, namely APRIS, is
proposed and illustrated in Fig. 4. It takes pre-trained MLP,
including the quantized grouped weights. Thus, to make it
a generic architecture, designers should consider the group
size at design time to satisfy both accuracy and efficiency
metrics. The APRIS architecture consists of an array of pro-
posed pixels ( 1 ), compute add-ons (CA) ( 2 ), a controller,
memory components ( 3 ), and a readout circuit ( 4 ). This
architecture is designed to implement the first layer of MLP
networks in the analog domain effectively. To perform the
remaining layers, the results are then converted to digital
using a digital deep learning accelerator (DLA) ( 5 ).

In order to reduce the number of wights in the first layer
and also generate a more efficient structure, the proposed
Approach 2 is utilized, which is expressed by Eq. 4 The
parameter g is the number of pixels that are in the same
group and is determined by the application. For example,
for a simpler dataset, a higher number for g, or group
degree. Since the output of each pixel is current, the sum-
mation can be performed readily by connecting the outputs
of each pixel group together, the parenthesis on the right
side of = in Eq. 4. To complete a MAC operation, the weight
multiplication can be executed by the proposed compute
add-on (CA). If the size of a pixel array is m × n, by using
this technique, rather than m×n CAs for each pixel, we only
need +m×n

g
, CAs. This method also yields an advantage by

connecting the output of pixels in a group, allowing us to
uncouple CAs from the pixel area and place them before the
ADCs and near memory, resulting in a higher fill factor. It
should be mentioned the proposed architecture needs more
bus lines to transfer data to a CA, which is defined using
m
g

. Based on the equation, the best value for g is m. In this
case, there is no need for any additional bus line to transfer
data. Hereafter, for simplicity, we consider a size of 32× 32
for the pixel array.

p1.w1 + p2.w2 + ...+ pg.wg = w.(p1 + p2 + ...+ pg) (4)

3.2.1 Pixel array

The pixel array is composed of 32×32 proposed pixels. The
transistor-level and layout demonstrations of one pixel are
shown in Fig. 5(a) and (b), respectively. One of the important
parameters in designing CMOS imagers is the fill factor,
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(a) (b) (c) (d)

16 64 16 64 4 8 1628

Figure 3: Accuracy on (a) MNIST [31], (b) Fashion-MNIST [32], (c) SVHN [33], and (d) CBCL Face [34] datasets leveraging
two weight-sharing approaches.

Figure 4: The proposed design flow and the APRIS architec-
ture.

which refers to the percentage of each pixel area that can be
used to collect light, i.e., the photosensitive part. The main
difference between this structure and widely used pixels is
in the row selector, where in conventional image sensors,
the values of pixels are read row by row, while in MLP
networks, all the pixels should contribute simultaneously.
Thus, there is no need for the row selector. Due to the
structure of the proposed pixel, a transistor and a control
line are removed, resulting in a higher fill factor.

The proposed sensor’s dimensions, which include all
buses and interconnections, measure 60λ × 60λ, with a fill
factor of approximately 0.556. Notably, removing just one
additional metal line in each pixel (row controller) results
in an increasing fill factor of around 0.62, an increase of
10%. This improvement is for the g = 32, which is the best
case. However, in our current work, we are considering a
different g, specifically set to eight. Consequently, connect-
ing all groups of pixels to the CA’s now requires four bus
lines, which introduces an overhead that further decreases
the fill factor of the pixel area to approximately 0.42. In
previous studies, the number of buses in each column was
substantially higher. For example, in [8], [12], the number
of interconnections in each column was determined by the

Figure 5: The proposed (a) structure of the pixel, including
three transistors, and (b) its layout.

product of m × s, where m and s representing the number
of pixel array rows and the number of nodes in the first
hidden layer, respectively. We can assert the proposed pixel
array has the best area in comparison to similar standard
architectures [12], [29]. The number of buses to a CA in each
column of the pixel array equals 32

g
. On the other hand,

based on Fig. 2(b), each group of sensors needs a bus to
transfer their current to a CA. In this case, we can save more
area by increasing the number of sensors in each group,
which can be determined based on accuracy and power
consumption trade-off. We consider the group number to
be eight, meaning four lines in each column of the pixel
array to the output are required. The functionality of eight
connected pixels is conducted using the HSPICE simulator
for a 45nm CMOS technology, and their transient vector
is shown in Fig. 6. In this figure, green vectors are the
inputs, and blue ones are the outputs. The Rst signal is used
to charge the pixels’ internal capacitor. In 1 , the sensor’s
capacitor charges to VDD after that, in 2 , when this signal
equals zero, the discharge signal becomes one, and the value
of the pixel based on light intensity is evaluated. In the last
step in 3 and 4 , the current of sensors stays constant on
the current line (CL).

3.2.2 Compute add-on

This component is responsible for performing MAC oper-
ations between pixel values and their weights. The current
for each group of the pixel array is connected to one CA.
This component converts the current to voltage and also
produces the same negative voltage using analog op-amps,
as shown in Fig. 7 (a). One of the amplifiers is in inverting
mode. The amplifiers’ outputs, depicted in Fig. 6, are Neg
(v) and Pos (v), corresponding to negative and positive
voltages, respectively. These amplifiers not only isolate the
CL line from the memory section but also can amplify the
input signals. APRIS supports the sign system for storing
the weights. In this presentation, the most significant bit
of the weights determines whether the weight is positive
or negative, 0 or 1, respectively. This sign bit is stored on
an SRAM and connected to a multiplexer in CAs, and its
output is connected to the ReRAM crossbar array. Based on
the value of the weight, positive or negative voltages are
connected to the Out signal in 3 and 4 , illustrated in Fig 6,
respectively.

In our architecture, zero skipping is integrated as an
intrinsic input feature. Since APRIS utilizes resistors and
currents for computation, an input value of zero naturally
does not generate any current, leading to no power con-
sumption in those instances. Additionally, as all operations
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Figure 6: Transient simulation of eight pixels and one com-
pute add-on

within a single patch of our architecture occur concurrently,
there is no need for individual detection of zero inputs,
simplifying the process and boosting efficiency.

3.2.3 Memory components

The memory part of APRIS contains both volatile (SRAM)
and non-volatile (ReRAM) components. If we consider that
weight precision is b-bit (here b = 5), only one bit, which is
the sign bit, is stored in SRAM memory, and the remain-
ing b − 1 bits are held in ReRAMs. ReRAM’s resistance
changes in a continuous range based on the width of the
write voltage. Therefore, we divide the resistance range of
ReRAM into 16 points and find the appropriate voltage
width for each of them. This writing process only needs
to be carried out once. In the ReRAM part, we use a x × y

memory crossbar where x is the number of first hidden layer
nodes, and y is the total number of pixels divided by the
g. The ReRAM crossbar comprises our recently fabricated
and experimentally measured ReRAM device that stores
data in varying resistive states by creating and rupturing a
conductive filament within the metal oxide insulator. Figure
8 (inner image) illustrates a Transmission Electron Micro-
graph (TEM) of our fabricated TiN/Ta/TaOx/TiN ReRAM
device integrated with CMOS n-channel Field-Effect Tran-
sistor (nFET) in 65nm CMOS technology to realize a 1T1R
unit cell as a primary storage element in the proposed
APRIS. In the set phase, the conductive filament connects
the top and bottom electrodes, leading to a Low Resistance
State (LRS), whereas, in the reset phase, the filament breaks,
and the resistance of the device increases, yielding a High
Resistance State (HRS), as shown in Fig. 8 (inner schematic).

Figure 7: The proposed (a) compute add-on and biasing
considerations and (b) op-amp structure.

Figure 8: Box-and-Whisker plot showing the variability of
45 retention runs at different resistance levels. Inlet show-
ing the comparison of the confidence interval of retention
to median resistance. Linear trendline represents expected
variability at specific resistance values.

Here, we propose a promising device-to-system level co-
design approach to understand better the theoretical limits
on the number of distinct weight levels that ReRAM devices
can obtain using a large retention experiment. To reduce
HRS variability, we adopt a read-write-verify approach to
achieve resistance in a specific window. A total of 45 re-
sistance levels are captured, where each resistance state is
held for 10,000 seconds, with reads taken every 100 seconds.
The variability of each resistance level is plotted in Fig. 8,
where an increasing resistance leads to an increase in the
variability of the read current. This is further emphasized in
Fig. 8’s inlet that shows the clear resistance levels confidence
interval, i.e., variability, and the linear trend that shows an
Adj. R-squared value of 0.984. This trendline can be used
to estimate the total theoretical number of distinct weight
levels at 1.5 IQR (Interquartile Range) to be at least 32
when ranging the resistances from 3-500 kΩ. Therefore, 16
high-confidence experimental resistance states are selected
to serve as the 4-bit memory states for APRIS. This results
in a total quantization of 5 bits. To increase the parallelism,
the weights are distributed into multiple memory banks,
where each bank consists of an independent ADC to mea-
sure the final voltage. Herein, the memory banks are set
to 16. As a result, we have 16× speed up in compared to
one memory bank and ADC. With this technique, the total
number of ReRAM cells is the same, while the number of
ADCs increased to 16.

3.2.4 Readout circuit

All the operations in the first layer of MLP are in the analog
domain; therefore, in the last part of the architecture, data
should be converted to the digital domain to perform the
remaining layers using a digital deep learning accelerator
(DLA). Accordingly, an approximate ADC, as shown in
Fig. 9, is proposed and positioned at the end of each memory
bank. The proposed ADC includes a resistor and a capacitor
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Figure 9: The proposed readout circuits: (a) an ADC and (b)
a comparator.

as a substitute for using large resistance divination to gener-
ate reference voltages. The transient vector of the proposed
ADC is depicted in Fig. 10. In this figure, the voltage of
the capacitor is charged to VDD through the Rst signal, and
after that, it gradually discharges through the resistor (Ref
signal). During discharge time, Clk signal is responsible for
pre-charge the comparator to compare the reference voltage
Ref with the input voltage In and stores the result in a shift
register. The frequency of Clk is ×256 faster than the Rst
clock; therefore, each time reset occurs, we can measure
256 values and store them in the shift register. It should
be mentioned the RC circuit, depicted in Fig. 9(a), generates
only positive voltage, which means the output of the ADC
for negative inputs is always zero. Due to this, the ReLU
activation function is inherently embedded in our ADC.
Conventional ADCs use a priority encoder to convert the
comparator outputs to a digital value, while in our design,
thanks to using an AND gate and a modified 1-bit SRAM,
the bulky priority encoder is replaced by a basic encoder.
In the reset phase (Rst = 0), the value of the SRAM (B

signal) sets to VDD; thus, the output of the AND gate is
determined by the other input (A) and passes through the
shift register. This step repeats until we get the first “1” in
the AND’s output. One cycle after writing “1” in the shift
register (MSB), the MSB sets B to zero. Because inputs B of
the AND is zero, regardless of input A, the output is always
zero. With this technique, we can guarantee that only one
bit in the shift register is ‘1’, and the rest of them are equal
to zero. As a result, there is no need for a priority encoder.
The proposed ADC is much smaller but slower compared to
conventional ADC, e.g., flash ADC. In the proposed ADC,
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A(V)

In (V)

Ref (V)

B(V)
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0
Time (µs)

2 3 41 5
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Figure 10: Transient simulation waveform of proposed
ADC.

256 clock cycles are required to produce a digital value.
Thus, we increase the number of memory banks in order
to increase parallelism. Note that the transient results only
exhibit the MSB bit, not the entire shift register’s bits.

4 EVALUATION RESULTS

4.1 Framework & Methodology

The proposed evaluation framework is created through a
bottom-up methodology, as shown in Fig. 11. At the de-
vice level, the proposed ReRAM device is fabricated, and
the switching data and resistance levels are experimentally
extracted to be used in a Verilog-A model. At the circuit
level, we implement the APRIS’s array and computational
peripheral circuitry in NCSU 45nm technology in HSPICE.
To exploit APRIS, the 1st-layer weight parameters need to
be quantized while the remaining layers are processed with
the off-chip processors. We train a PyTorch to extract the
1st-layer weights at the application level. At the architec-
ture level, a Python-based behavioral APRIS model is then
developed, taking input from the circuit level with these
quantized weights based on a previous simulator (NVSIM
[36]) to model the timing, energy, and area. This tool offers
flexibility in array configuration and peripheral circuitry
design. Based on the circuit level results, it can alter the
configuration files (.cfg) with different array organizations
and add-ons and report performance. After the 1st-layer of
convolutions, the results are captured and used in the Py-
torch model to process the 2nd-to-last and to report accuracy.

4.2 Performance Evaluation

Table 2 presents a comprehensive comparison of the struc-
tural and performance features of recent in-sensor/near-
sensor designs. Each design has a distinct target applica-
tion, as indicated in the table. However, to ensure a fair
comparison, we estimated the power consumption and per-
formance of computing units when performing the same
task of processing the 1st-layer of a CNN. Our observations
are summarized below: (i) The only designs that support
a fully parallel and fast entire-array computation scheme
are APRIS and the accelerators mentioned in [8], [11], [25],
[29], [37]; (ii) APRIS and the designs in [7], [8], [11], [25],
[29] incorporate integrated memory components. Among
these designs, our design and [10], [25], [29] are the only
ones that utilize NVMs for normally-off and instant comput-
ing. Moreover, thanks to the proposed multi-level ReRAM,

RI

IS

Figure 11: The proposed bottom-up evaluation framework.
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APRIS is the only platform that supports up to 5-bit (4+1-bit
SRAM) weight precision; (iii) APRIS achieves remarkable
power saving compared to several designs, e.g., compared
to [37], it consumes about two orders of magnitude less
power, making our designs one of the most power-efficient
designs available; (iv) In terms of efficiency, the CNN ac-
celerator with 8-bit support mentioned in [37] achieves a
rate of 3.37 TOp/s/W. On the other hand, AppCiP [29]
with 2-bit weight precision achieves a higher efficiency of
4.12 TOp/s/W. Herein, our design achieves a comparable
computation efficiency (∼3.48 TOp/s/W). We also simu-
lated the APRIS at the circuit level, including peripheral
circuitry, using the IBM 65nm CMOS10LPe PDK in Cadence
to achieve the performance parameters using our bottom-
up evaluation framework. APRIS consumes 0.0038 mW and
achieves a power efficiency of 2.01 TOp/s/W. Detailed
breakdown of area and power consumption of APRIS is
shown in Fig. 12. We observe that the majority of power
and area consumption is attributed to the ReRAM crossbar
component. This finding highlights the crucial importance
of our grouping technique, which significantly reduces the
ReRAM crossbar size, leading to enhanced efficiency and
overall performance improvements.

Figure 12: Area and power breakdown of APRIS.

4.3 Accuracy

Datasets: Our model was extensively evaluated using four
publicly available datasets: MNIST [31], FMNIST [32],
SVHN [33], and CBCL Face [34]. The MNIST dataset is a
standard benchmark for image classification consisting of
70,000 28 × 28 grayscale images of handwritten digits (0-
9), split into 60,000 training images and 10,000 test images.
Like MNIST, Fashion MNIST (FMNIST) has ten classes
but is more challenging than MNIST, focusing on fashion-
related classification. SVHN (Street View House Number)
includes over 60,000 32 × 32 color images, commonly used
for digit recognition tasks. CBCL Face is used for face
recognition, including 2,429 19×19 grayscale images of faces
and 4,548 non-face object images, including various lighting
conditions. Table 4 summarizes the key information from
these datasets. Notably, our approach, APRIS, only supports
grayscale images, so RGB SVHN samples were first con-
verted to grayscale before being fed into the networks.
NN Architecture: Our study demonstrates the efficacy of
our proposed methodology in addressing image classifica-
tion tasks across the aforementioned datasets. Specifically,
we constructed two distinct multilayer perception architec-
tures, one with five hidden layers (MLP5) and the other

with four hidden layers (MLP4). Notably, these architectures
were designed as fully-connected networks, characterized
by an initial hidden layer comprising 512 nodes. Following
this, each subsequent layer’s nodes were halved until the
output layer was achieved. Remarkably, the number of
trainable parameters in the first hidden layer constituted
a minimum of 70% of the overall network parameters.
Detailed specifications of the architectures, including the
number of nodes and parameters per layer, inference time
and size, are provided in Table 5. These architectural con-
figurations enabled a comprehensive exploration of the
network’s capacity to extract discriminative features and
facilitate accurate classification.
Training Details: The PyTorch framework served as the
cornerstone of our experimentation, facilitating network
creation, training, and testing processes. To optimize our
models, we employed the stochastic gradient descent (SGD)
optimization technique. Our initial learning rate was set at
0.001, which underwent a reduction by 10% after 60 epochs
to enhance convergence. The training was conducted using
a batch size of 32, and all networks underwent training
for 100 epochs to ensure sufficient convergence. In order
to identify the most effective model, we preserved the best-
performing checkpoint based on its validation set perfor-
mance and subsequently evaluated and reported its perfor-
mance on the test set. Our methodology involved the par-
titioning of the collective set of learnable weights residing
within the initial layer of the network into distinct groups.
While we quantized the first-layer weight parameters and
mapped them into the 16 distinct resistive values obtained
from Fig. 8 in the inference process, throughout the training
process, we employed FP weights and utilized the ReLU
activation function. During each iteration of training, we
implemented a weight clipping mechanism [43] to confine
the weights of individual nodes within a prescribed range
of (−c, c). By setting the value of c to 0.05, we effectively
attenuated the influence of outlier weight values, thereby
bolstering the numerical stability of the training procedure,
w′ ← clip(w,−c, c). Following the completion of a full
epoch, we proceeded to compute the average weight value
encompassing all nodes within a given group, assigning
this computed value to all nodes within the group. We
then performed post-training quantization (PTQ) of the first
hidden layer into integer values between −15 and 15. As
an alternative, quantization-aware training (QAT) [44] can
be exploited in order to minimize accuracy loss. However,
leveraging APRIS, the experimental results show that the
primary factor influencing accuracy loss is the group size.
The difference in performance for proper group size (the
group size that gives an acceptable accuracy) is negligible,
regardless of the quantization method employed PTQ or
QAT. In addition, because of the inflexibility in current
implementations of QAT to choose custom layers and bit-
precision for quantization, we utilized PTQ in our method.
Results: A summary of the evaluation results across the
four diverse test sets is presented in Table 3. The FP column
presents the performance outcomes achieved by employing
full-precision (FP) weights with varying degrees of weight
sharing in the initial hidden layer. Conversely, the 5-bit
column exhibits the results obtained by subjecting the FP
model to 5-bit quantization. Notably, the values highlighted
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Table 2: Performance comparison of various PIS/PNS/PIP units.

Designs
Technology

(nm)
Purpose Precision Comput. Scheme Memory NVM

Pixel Size
(µm2)

Array Size
Power
(mW)

Efficiency
(TOp/s/W)

[38] 180 2D optic flow est. NA row-wise Yes No 28.8×28.8 64×64 0.029 0.0041

[9] 180
edge*/blur/sharpen/

1st-layer CNN
1∼8-bit row-wise No No 7.6×7.6 128×128

sensing: 77
processing: 91

0.777

[4] 60/90 STP† NA row-wise Yes No 3.5×3.5 1296×976
sensing: 230

processing:363
0.386

[8] 180 1st-layer BNN 1-bit entire-array Yes No 110×110 32×32 0.0121 1.32
[7] 180 edge*/TMF‡ NA row-wise Yes No 32.6×32.6 256×256 1230 0.535

[25] 65 1st-layer BNN 1-bit entire-array Yes Yes 55×55 128×128
sensing: 0.025

processing: 0.0088
1.745

[11] 180 1st-layer BNN 1-bit entire-array Yes No 35×35 32×32 0.00014 - 0.00053 9.4-34.6
[39] 65 2 - 64 Conv/ROI** 8-bit row-wise No No 9×9 160×128 0.042 - 0.206 0.15 - 3.64
[37] 180 1st-layer CNN 8-bit entire-array No No 10×10 128×128 0.45 - 1.83 1.41 - 3.37
[29] 45 1st-layer CNN 2-bit entire-array Yes Yes 38×38 32×32 0.00096 - 0.0028 1.37 - 4.12

APRIS 45 1st-layer MLP 5-bit*** entire-array Yes Yes 3.2×3.2 32×32 0.0022 3.48
APRIS 65 1st-layer MLP 5-bit*** entire-array Yes Yes 3.2×3.2 32×32 0.003 2.01

∗Edge extraction. †Spatial Temporal Processing. ‡Thresholding Median Filter. **Region Of Interest. ***4-bit ReRAM + 1-bit SRAM (denotes the
sign).

Table 3: Summary of quantitative performance comparison of our approach on four test sets.

MLP5 MLP4
MNIST FMNIST SVHN CBCL Face MNIST FMNIST SVHN CBCL Face

Group
Size

FP 5-bit FP 5-bit FP 5-bit FP 5-bit FP 5-bit FP 5-bit FP 5-bit FP 5-bit
0 97.85* 97.88 89.38* 89.3 83.78* 82.19 97.75* 93.21 98.05* 97.96 89.48* 89.11 84.37* 83.35 97.77* 93.35
2 97.93 97.94 89.22 88.65 83.79 80.57 97.8 92.6 98.01 98.09 89.17 88.64 84.13 82.51 97.8 93.04
4 98.14 98.08 88.15 87.85 80.88 75.87 97.47 90.26 98.03 97.97 88.42 88.15 82.16 79.57 97.35 91.6
8 94.67 94.54 84.38 82.36 68.38 56.33 95.67 88.48 95.52 95.55 83.41 81.95 69.76 61.44 95.62 87.58

16 90.47 89.54 59.53 46.07 52.24 36.79 93.16 92.61 92.68 91.49 59.34 49.4 53.83 40.27 92.98 91
32 73.09 65.44 46.15 38.44 38.45 24.22 92.48 86.84 74.86 73.04 46.54 40.81 39.77 27.94 92.35 80.39
64 71.44 57.27 43.65 39.89 38.34 23.92 92.56 86.32 75.11 65.8 45.28 33.04 39.11 23.44 92.46 82.21
128 64.74 55.72 35.28 30.54 33.41 20.29 92.9 88.93 66.54 46.69 38.28 34.16 36.8 23.34 92.41 84.51
256 36.02 16.91 27.81 30.69 23.55 13.31 92.71 90.31 34.01 20.64 24.94 24.51 23.72 13.53 91.56 83.38

∗ The full-precision (FP) baseline result without grouping and quantization.

Table 4: Summary of dataset information.
# Samples

Dataset
Train Val Test Total

# Classes Resolution ImageType

MNIST [40] 50,000 10,000 10,000 70,000 10 28×28 Greyscale
FMNIST [32] 50,000 10,000 10,000 70,000 10 28×28 Greyscale
SVHN [41] 65,931 7,325 26,032 99,289 10 32×32 RGB
CBCL Face [42] 5,581 698 698 6,977 2 19×19 Greyscale

Table 5: Summary of Network Specifications.
Networks MLP5 MLP4
Layers I II III IV V I II III IV
# Node 512 256 128 64 10 512 256 128 10
# Param 401,920 131,328 32,896 8,256 650 401,920 131,328 32,896 1,290
Total Param 575,050 567,434
IT∗ (µs) 8.738 7.388
Model Size 5.166 KB 2.635 KB

∗Inference time.

with green backgrounds denote the baseline performance
attained when utilizing FP weights without any weight
sharing. Furthermore, the values marked with an orange
background represent the preferred group degree for each
classification task, representing the degree of weight shar-
ing that minimizes performance loss when employing our
approach. For the MNIST classification task, employing a
group degree of 16 yields acceptable performance, resulting
in a meager 7.6% accuracy loss compared to the baseline
performance while concurrently reducing the number of pa-
rameters by an impressive 93.75%. Similarly, in the FMNIST
classification, a group degree of 8 manifests as the proper
choice, yielding an accuracy loss of 8.1% while reducing
parameters by 87.5%. Furthermore, in the context of SVHN
classification, both the FP and 5-bit approaches showcase
optimum performance with group degrees of 4 and 2,
respectively, resulting in a negligible accuracy loss of 3%
for each approach. Surprisingly, the presence of imbalanced
samples in the CBCL Face datasets introduces challenges

when applying weight grouping techniques, leading to
fluctuating results. Consequently, even when employing a
group degree as high as 256 ( 99.6% reduction in weights)
in the CBCL face classification, an appropriate performance
loss of 11% is achieved. These outcomes underscore the flex-
ibility of our approach in accommodating diverse degrees of
weight sharing while minimizing accuracy degradation.

The comparison of classification accuracy between
APRIS and the state-of-the-art is summarized in Table 6,
where all the designs quantized the 1st-layer convolution.
The results show that the APRIS architecture without the
grouping scheme provides higher accuracy than almost all
the previously published PNS and PIS designs.

Table 6: Accuracy (%) comparison on MNIST, FMNIST,
SVHN, and CBCL Face dataset.

Approaches Configurations MNIST FMNIST SVHN CBCL Face
MACSen [8] 1-bit MLP 91.20 82.30 – –
PISA [25] 1-bit CONV 95.12 – 90.35 –
MR-PIPA [10] 2-bit CONV 97.26 85.68 91.05 92.30
TizBin [26] 2-bit CONV 97.38 85.68 91.05 92.30
AppCiP [29] 3-bit CONV – – 96.49 98.30
APRIS (Ours) I∗ 5-bit MLP 97.88 89.30 82.19 93.21
APRIS (Ours) II∗∗ 5-bit MLP 89.54 82.36 80.57 90.31

∗without and ∗∗with grouping.

5 CONCLUSION

The paper introduces a low-power integrated sensing and
computing engine called APRIS, incorporating a novel soft-
ware/hardware co-design approach. APRIS enables highly
parallel analog multiplication and accumulation-in-pixel,
facilitating low-precision quantized weight neural networks
while minimizing the need for ADC and analog buffers.
The system includes an approximate ADC in the readout
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circuit to reduce area and power consumption. With eight
memory banks for enhanced computation parallelism and
a zero-skipping scheme to decrease power consumption,
the system achieves comparable accuracy to a full-precision
baseline for object classification tasks with an efficiency of
3.48 TOp/s/W.
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