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We use two di↵erent methods, Monte Carlo sampling and variational inference (VI), to perform
a Bayesian calibration of the e↵ective-range parameters in 3He-4He elastic scattering. The param-
eters are calibrated to data from a recent set of 3He-4He elastic scattering di↵erential cross section
measurements. Analysis of these data for Elab  4.3 MeV yields a unimodal posterior for which
both methods obtain the same structure. However, the e↵ective-range expansion amplitude does not
account for the 7/2� state of 7Be so, even after calibration, the description of data at the upper end
of this energy range is poor. The data up to Elab = 2.6 MeV can be well described, but calibration
to this lower-energy subset of the data yields a bimodal posterior. After adapting VI to treat such
a multi-modal posterior we find good agreement between the VI results and those obtained with
parallel-tempered Monte Carlo sampling.

I. INTRODUCTION

Two-body scattering calculations are ubiquitous in nu-
clear physics. Very often their output is compared with
experimental data, and the parameters of the two-body
interaction inferred, so the scattering can be extended to
a di↵erent energy regime or embedded in another con-
text: three-body scattering, fusion reactions, etc.

�2 minimization has been the workhorse for this infer-
ence for many years. However, a (naive) �2 metric is only
valid if the uncertainties on the data points are uncorre-
lated, and theoretical uncertainties do not contribute sig-
nificantly to the problem’s error budget. Strictly speak-
ing, �2 minimization also fails to provide information
about parameter uncertainties, although the shape of the
�2 surface around the minimum can be examined to mit-
igate this issue. Bayesian methods have recently been
used to address all these issues with scattering-parameter
inference based on �2-minimization [1–4]. These meth-
ods have been used in di↵erent scattering formalisms:
optical potentials, nucleon-nucleon scattering in Chiral
E↵ective Field Theory, and R-matrix.

The multi-dimensional posterior probability density
function (pdf) of the scattering parameters is typically
examined through Markov chain Monte Carlo (MCMC)
sampling. However, this can be computationally de-
manding. The computational requirements can be signif-
icantly reduced by the use of scattering-calculation emu-
lators of either the black-box or intrusive variety [5–8]. In
this paper we explore a complementary pathway, based
on variational inference (VI) [9–11].

In VI it is assumed that the posterior pdf takes a par-
ticular functional form, i.e., is part of a “family” of pos-
teriors. The parameters of the pdf are computed by min-
imizing an objective function that is a surrogate for the
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distance of the variational form from the true posterior.
VI is often conducted with a mean-field family, which as-
sumes an uncorrelated product of distributions describes
the model parameters’ pdfs. A mean-field family of Gaus-
sians was recently used to infer the pdfs of liquid-drop-
model parameters from nuclear-mass data [12]. In this,
or indeed any study that uses the mean-field Gaussian
family, the parameters that specify the family are the
means and variances of the uncorrelated Gaussians. But
correlations between model parameters are also impor-
tant, so here we extend the mean-field family to a family
that parameterizes a general covariance matrix between
the parameters of our scattering problem. The varia-
tional calculation now seeks to minimize the objective
function in a 2d + d(d� 1)/2-dimensional space, but, as
we shall see, variational inference is still markedly faster
than MCMC sampling.
As a test case for the e�cacy of VI we selected a halo ef-

fective field theory (EFT) fit to 3He-4He scattering data.
The scattering amplitude in this case is straightforwardly
related to the estimated parameters, since they are just
the s- and p-wave e↵ective-range-theory parameters. But
it is critical that we can extract them reliably from data
on elastic scattering, as they are key inputs to calcula-
tions of the capture reaction 3He(4He,�)7Be.
This reaction produces 7Be in the Sun, after which it

undergoes either a proton or electron capture reaction,
both of which yield solar neutrinos at the upper end of
the solar neutrino energy distribution [13].Understanding
the low energy elastic scattering of 3He and 4He thus has
an important impact on the understanding of the solar
pp-II and pp-III chains.
Solar fusion occurs in energy regimes where it is appro-

priate to use nuclei as the degrees of freedom. This moti-
vates the use of a systematic EFT based on 3He and 4He
degrees of freedom. In Ref. [14] halo EFT was used to ex-
tract low-energy ERPs from 3He-4He scattering data [14].
These low energy parameters then have implications for
solar fusion and neutrino production rates. Crucially,
EFT comes with its own uncertainty quantification, since
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EFT calculations are carried out up to a finite order in
the EFT expansion, and the error associated with omit-
ted terms can be estimated. The EFT parameters may
thus be extracted in a fit that includes the impact of
model uncertainty on the inference.

In this paper we benchmark results using the same
EFT, data, and MCMC methodology as employed in
Ref. [14] against VI results. Section II explains what
variational inference is and how it works. Section III in-
troduces the data of Ref. [15] that we use for our fits, and
also reviews the aspects of halo EFT that are needed to
construct the likelihoods and priors we employ. Those
likelihoods and priors, suitably combined, produce the
Bayesian posterior of the EFT parameters, as we explain
in Sec. IV. In Sec. VA we perform MCMC sampling for
an EFT-parameter posterior conditioned on the data of
Ref. [15] over a majority of the range of that experiment
(0.7  Elab  4.3 MeV). However, the EFT, if not aug-
mented by at least one resonance state, cannot describe
the upper half of this energy range. We therefore restrict
our fit to Elab  2.6 MeV, and discover that the poste-
rior is multi-modal. This necessitates the use of parallel
tempering in our Markov Chain Monte Carlo. Our VI
approach also requires an extension in order to produce
multi-modal posteriors. We describe these extensions of
our methods and display and compare the posteriors they
produce in Sec. VB. We then provide a summary of our
results in Sec. VI. An appendix explains other, less e↵ec-
tive, ways to deal with multi-modality in this posterior.

II. VARIATIONAL INFERENCE

Variational inference is an optimization-based ap-
proach to approximating posterior distributions. It is
thus an alternative to the sampling-based MCMC ap-
proaches. The main idea is to approximate the target
posterior distribution with a member of a simpler, more
tractable family of distributions.

The first step is to posit a family of distributions Q in-
dexed by variational parameters �. The family should be
flexible enough to capture the shape (and potential cor-
relations) of the target posterior distribution, but simple
enough that the optimization process is e�cient [10].

The family member that best approximates the tar-
get distribution is then determined using an optimiza-
tion process. The optimal member q⇤ of Q is determined
by minimizing the Kullback-Leibler (KL) divergence as
a function of �. The KL divergence is defined as

KL(q(✓|�)||p(✓|D)) =Eq [ln q(✓|�)]

� Eq [ln p(✓, D)] + ln p(D), (1)

where p(✓|D) is the target posterior distribution of un-
known parameters ✓ given the data D and Eq denotes an
expected value with respect to the density q.

In practice, the marginal data likelihood p(D), the
model evidence, is not a computationally tractable quan-
tity. Instead, one maximizes an equivalent objective

function called the evidence lower bound (ELBO):

ELBO(�) = Eq [ln p(✓, D)]� Eq [ln q(✓|�)] . (2)

Since Eq. (2) is equivalent to Eq. (1) up to an overall
minus sign and a term that does not depend on �, the
optimal distribution q⇤ that maximizes the ELBO min-
imizes the KL divergence [10]. In this way, we restate
the posterior approximation problem as an optimization
problem. In principle, ELBO can be minimized using
any optimization approach, however, it is common prac-
tice to use stochastic gradient ascent (SGA) algorithm
for its speed and scalability. SGA updates the variational
parameter � at the tth step according to

�t+1  �t + ⇢tL̂(�t), (3)

where L̂(�) is an unbiased estimate of the ELBO gra-
dient. Such an estimate can be readily obtained using
autodi↵erentiation as long as both the joint distribution
p(✓, D) and q(✓|�) are di↵erentiable in ✓. For L̂(�),
a typical practice is to construct a simple Monte Carlo
estimator using the samples from a variational distribu-
tion [9].

A. Choice of variational family

The most popular variational family, the mean-field
variational family, assumes that the unknown model pa-
rameters ✓ = (✓1, . . . , ✓m) are mutually independent. A
general member of this family thus takes the form

q(✓|�) =
mY

j=1

qj(✓j |�j). (4)

The functional form of each individual qj is up to the
practitioner, however, the form of qj(✓j) will a↵ect the
optimization e�ciency and the resulting fidelity of the
posterior approximation. Typical choices are the inde-
pendent Gaussian variational family for real-valued pa-
rameters and the log-normal or Gamma variational fam-
ily for non-negative parameters. With the right choice of
particular qj ’s, the posterior’s means should agree well
with the true posterior. However, the major flaw of the
mean-field family is that it assumes a decoupled covari-
ance structure, i.e., zero correlation between the param-
eters being inferred. The resulting variational approx-
imation underestimates the uncertainties in the case of
correlated parameters [10].
A simple remedy to this flaw of a mean-field family is

to posit a full rank Gaussian variational family:

q(✓|�) = N (✓|µ,⌃), (5)

where � is now(µ,⌃), i.e., it includes the mean vector
and a positive definite covariance matrix.
Variational families are an active area of research and

many other flexible variational families exist. We refer
the reader to the work of [16] for a detailed discussion on
variational families and their implementation.
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B. Implementation details

To guarantee the positive-definiteness of the covariance
matrix ⌃ for the Gaussian variational family (5), we pa-
rameterize the covariance matrix in terms of its Cholesky
decomposition as a product of a lower triangular matrix
with positive diagonal entries L and its transpose. Ad-
ditionally, all the strictly positive variational parameters
� were transformed as

�̃ = log(e� � 1) (6)

to avoid constrained optimization.

When it comes to the practicalities of ELBO minimiza-
tion via SGA (3), choosing an optimal learning rate ⇢t
can be challenging. Ideally, the rate should be low when
the Monte Carlo estimates of the ELBO gradient are un-
stable (high variance) and high when the estimates are
stable (low variance). The elements of the variational
parameter � can also vary significantly in scale, requir-
ing the learning rate to accommodate these varying, of-
ten small, scales. The rise of stochastic optimization in
machine learning has spurred the creation of numerous
algorithms that provide element-wise adaptive learning
rates. We use the Adaptive Moment Estimation (Adam)
algorithm [17], which is known for its popularity and ease
of implementation.

III. DATA AND SCATTERING MODEL

A. Experimental data

The data used in this analysis comes from the elastic
3He-4He scattering experiment performed at TRIUMF
by Paneru et al. [15]. This experiment impinged a 3He
beam, with an energy ranging from 0.7 to 5.5 MeV, on
a 4He gas target contained in the SONIK target cell.
The detector array covered an angular range of 30� <
✓CM < 139�. Table I lists the number of di↵erent angles
at which data was obtained for each of the ten beam
energies chosen (two runs used Elab = 2.624 MeV). It
also specifies the (fractional) common-mode error (i.e.,
the normalization uncertainty) in the cross section for
each energy. The data values and their point-to-point
uncertainties are represented in Fig. 1. Full details can
be found in Ref. [15].

The quantityNdata represents the total number of data
included in the analysis. Table I contains the number of
measurements at each energy. We perform analysis on
two di↵erent subsets of the data; 0.706-2.624 MeV and
0.706-4.342 MeV. The values of Ndata are 293 and 398
respectively. NE represents the number of energy bins
(panels shown in Fig. 1) we are including in the analysis.
NE

✓ represents the number of angles within a particular
energy bin.

B. Parameterization of scattering amplitude

Halo EFT for this problem reproduces the modified
e↵ective-range expansion [14, 18, 19]. The parameters we
seek to estimate are thus the e↵ective-range parameters
(ERPs) for low-energy 3He-4He elastic scattering.
The di↵erential cross section is given by

d�

d⌦
= |fc|

2 + |fi|
2. (7)

The non-spin-flip amplitude fc includes a “Rutherford
amplitude” that represents pure-Coulomb scattering of
the two nuclei. The rest of fc, as well as the spin-flip
amplitude fi, can be expanded as a sum of partial waves
[20]. We thus have:

fc = �
⌘

2k
csc2(✓/2) exp

�
i⌘ log(csc2(✓/2))

�

+
1

k

1X

`=0

exp(2i↵`)P`(cos ✓)

⇥


`+ 1

cot �+` � i
+

`

cot ��` � i

�
(8)

fi =
1

k

1X

`=0

exp(2i↵`) sin ✓
dP`(cos ✓)

d cos ✓

⇥


1

cot ��` � i
�

1

cot �+` � i

�
. (9)

Here ↵` is the di↵erence of Coulomb phase shifts, ↵` ⌘

�l � �0, ✓ is the scattering angle in the center of mass
frame, �±` the `th phase shift of the ± scattering channel,
and P` is the `th Legendre polynomial. In this analysis,
we only consider s- and p-wave amplitudes and so trun-
cate the sums in Eqs. (8) and (9) at ` = 1.
Hamilton, Overbö and Tromberg [21] showed that the

e↵ective range function is real, analytic, and holomor-
phic in the physical energy sheet, cut along the negative
real axis. It is also regular at the origin (k = 0) so there
is a well defined Taylor expansion at the corresponding
energy [22]. They also showed how to modify this ex-
pansion to account for long ranged interactions such as
the Coulomb interaction. We make use of the modified
e↵ective range expansion (ERE) which lets us calculate
the phase shifts via:

k2`+1(cot �±` � i) =
2kc
e�⇡⌘

"
�(`+ 1)2k2`c K±

` (k)

(`2 + ⌘2)|�(`+ i⌘)|2

�
k2`H(⌘)

|�(1 + i⌘)|2

#
(10)

with

H(⌘) =  (i⌘) +
1

2i⌘
� ln(i⌘). (11)
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and ⌘ = z1z2↵µ
~k the Sommerfeld parameter.

Our model parameters come from the e↵ective range
function K±

` (k) given as

K±
` =

1

2k2`+1
c


�

1

a±`
+

1

2
r±` k

2 +
1

4
P±
` k4 +O(k6)

�
.

(12)
The coe�cients of the powers of k2 are the e↵ective range
parameters (ERPs). The ERPs of interest for this analy-
sis are 1

a0
, r0,

1
a±
1

, r±1 , and P±
1 . The ERE amplitude must

have a pole at the momenta corresponding to the bound
state energies B = k2bs/2µ, and so the right-hand side of
Eq. (10) is zero when analytically continued to k = ikbs.

There are two shallow p-wave bound states in the 3
2

�
and

the 1
2

�
channels (1.5866 and 0.43 MeV respectively)[23].

This constraint reduces the number of sampling param-
eters, since it relates 1

a±
1

to the bound state momenta

k±bs, and the other ERPs of that channel [14]. Similarly,
we can relate r±1 and P±

1 to the asymptotic normaliza-
tion coe�cients (C±

1 )2 through the derivative evaluated
at the bound state energy [14].

Halo EFT is a systematic expansion of the scattering
amplitude in powers of Q ⌘ max{p, q}/⇤B . In Halo EFT
the di↵erent contributions of the e↵ective-range theory
amplitude are organized in a hierarchy of importance.
The convergence pattern of the EFT is consistent with
the ordering presented in [14]. In what follows we work
with the EFT amplitude at next-to-next-to-leading or-
der, NNLO, O(Q2). Theory uncertainties are thus of a
relative size ⇠ Q3. Their impact on the posterior pdf can
be included through a theory covariance matrix, as will
be described further in Sec. IV.

One e↵ect that causes the breakdown of the EFT is
the existence of an f-wave resonance at 5.22 MeV in the
lab frame [23]. We have not included the physics of this
resonance in our analysis. For this reason, we do not
expect the EFT to make accurate predictions for energies
approaching 5.22 MeV.

We also model the portion of the systematic un-
certainty of the experimental data that is associated
with uncertainties in the beam current and target den-
sity. These uncertainties are completely correlated across
all the data taken at a particular energy; they are a
“common-mode error”. We account for them by intro-
ducing additional parameters fi that multiply the theo-
retical prediction at energy Ei [4, 24]. The fi’s are as-
signed (Gaussian) priors based on the expected size of
this common-mode error, as reported in Ref. [15], and
repeated in the third row of Table I.

IV. BAYESIAN PDFS

We adopt a shorthand notation to represent the sam-
pled parameters. The vector ✓ = (a,f) where a is a
1 ⇥ 6 dimensional vector of ERPs and f is a 1 ⇥ NE

dimensional vector of normalization coe�cients. NE is

the number of energy bins considered in the analysis and
NE

data is the number of data points in the energy bin E.
The joint posterior distribution we wish to obtain is

p(✓|D, I) =
p(D|✓, I)p(✓|I)

p(D|I)
/ p(D|✓, I)p(✓|I). (13)

Here p(D|✓, I) is the likelihood function and p(✓|I) is
the prior on the parameters ✓. p(D|I) is the model ev-
idence, also sometimes called the “marginal likelihood”.
In practice, this piece of the right-hand side of Bayes’
theorem functions as a normalization, and does not af-
fect the shape of the pdf for the parameters ✓.
We define the likelihood function via

p(D|✓, I) =
1q

(2⇡)Ndata det⌃
exp

✓
�
�2

2

◆
(14)

where

�2 =
NEX

j,k=1

NE
dataX

l,m=1

(yj,l � fjy(Ej , ✓l,a)) [⌃
�1]jl,km

⇥ (yk,m � fky(Ek, ✓m,a)) . (15)

We consider two di↵erent choices for the covariance
matrix ⌃.

• A version ⌃ ⌘ ⌃exp that accounts only for the
point-to-point experimental uncertainties:

⌃exp
jl,km = �2

jl�jl,km. (16)

• A covariance matrix which includes an additional
term, that accounts for theory uncertainties. Ref-
erence [2] showed that the next-order (in this
case O(Q3)) pieces of the EFT amplitude can be
marginalized over. In the simplest case this yields
a theory covariance matrix of the form:

⌃th
jl,km = (yref)jl(yref)kmc̄2Q3

jlQ
3
km, (17)

withQ the EFT expansion parameter and c̄ the rms
value of the EFT expansion coe�cients. In what
follows we take the hyperparameters Q and c̄2 that
appear in ⌃th as fixed, basing the adopted values,
⇤B = 1.014fm�1 and c̄ = 0.7, on the analysis of
the convergence pattern of the EFT carried out in
Ref. [14]. Once theory uncertainties are included
the full covariance matrix is ⌃ ⌘ ⌃th + ⌃exp.

Turning our attention now to the prior p(✓|I), this pdf
has two distinct pieces. The first pertains to the e↵ective-
range theory parameters, and the second is related to the
normalization parameters. We take these to be indepen-
dent prior pdfs:

p(✓|I) = p(a|I)p(f |I). (18)
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FIG. 1. Di↵erential cross section data of Paneru et al. relative to the Rutherford cross section versus detector angle. Each
panel corresponds to the beam energy indicated in it [15].

The priors for the e↵ective range parameters are taken
to be truncated normal distributions

p(a|I) =
dY

i

N (µi,�
2
i )T (ai, bi), (19)

with

T (a, b) =

(
1 [a, b]

0 otherwise.
(20)

These truncated normal distributions encode the notion
that the ERPs r0 and P±

1 are natural when measured in
units of the breakdown scale ⇤B . The ERT parameters
corresponding to terms of positive mass dimension in the
amplitude are not natural, and have enhancements or
suppressions, as detailed in Ref. [14]. This too is captured
by the priors. The hyperparameters of the prior pdf for
the ERT parameters are given in Tab. II.

Meanwhile, the prior for the normalization parameters
fi are taken to be

p(f |I) =
gY

i

N (1,�2
fi)T (0, 2). (21)

Here the �2
fi
s are the variances of associated with the nor-

malization uncertainty at each energy that was reported
in Ref. [15]. They are listed in Tab. I.

V. RESULTS

In this section we compute four di↵erent posterior pdfs
for the ERPs and the normalization parameters, using
both VI and various MCMC techniques. Once analysis
is completed, a comparison of posterior distributions will
indicate the level of agreement between the two methods.
The choice of MCMC methods has two motivations:

the high dimensionality of the problem, and the desire to
obtain a full pdf for the model parameters. Once the log-
posterior function (or log-prior and log-likelihood func-
tions separately in the case of ptemcee) is coded, MCMC
is easily implemented using the prebuilt python packages
emcee[25] and ptemcee[26].
We performed four versions of the analysis. The first

uses only the experimental covariance matrix and an-
alyzes the Paneru et al. [15] data up to Elab = 4.342
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TABLE I. Number of data points in each energy bin and the variances for each of the Gaussian priors of the normalization
coe�cients. See Eq. 21 for the full prior.

Elab (MeV) 0.706 0.868 1.292 1.759 2.137 2.624 2.624 3.598 4.342 5.484

N
E
data 17 29 45 46 52 52 52 52 53 53

�fi 0.064 0.076 0.098 0.057 0.045 0.062 0.041 0.077 0.063 0.089

TABLE II. Truncation bounds, means, and variances of the Gaussian priors for each of the e↵ective range parameters. Equa-
tion (19) shows the full prior on the e↵ective range parameters.

Parameter 1
a0

r0 (C+
1 )

2
P

+
1 (C�

1 )
2

P
�
1

a -0.02 -3.0 5.0 -6.0 5.0 -6.0
b 0.06 3.0 25.0 6.0 25.0 6.0
µ 0.025 0.8 13.84 0.0 12.59 0.0
�
2 0.015 0.4 1.63 1.6 1.85 1.6

MeV. It is described in Subsec. VA. We also present a
version of this analysis where we evaluated the �2 (15),
and hence the likelihood, using the full covariance ma-
trix ⌃exp + ⌃th. In Subsec. VB we analyze data over
a smaller energy range, where the EFT we used to ob-
tain the scattering amplitude is reliable. This yields a
bimodal posterior pdf for the ERPs and so necessitates
some modification of our approach to variational infer-
ence of the posterior. In parallel to the results of Sub-
sec. VA, Subsec. VB reports both an analysis of the
low-energy portion of the data of Ref. [15] that uses just
the experimental covariance matrix as well as one where
we combine the experimental uncertainties with the the-
oretical ones by taking ⌃ ⌘ ⌃exp + ⌃th.

A. Unimodal results using higher-energy data

In this subsection we present results from analysis of
the SONIK dataset with energies ranging from 0.7 to 4.3
MeV. At first we do not consider the theory uncertainties.

Table III shows the �2/dof of the model at the maxi-
mum a posteriori (MAP) value solution for our parame-
ters from [14], compared to the scattering data. For this
we have used �2 with both ⌃ ⌘ ⌃exp and ⌃ ⌘ ⌃exp+⌃th.
As expected, given that the EFT does not include the res-
onance at Elab = 5.22 MeV, the �2 becomes large as Elab

approaches that energy.
The physics model is therefore very unlikely to be cor-

rect throughout the entire energy regime. However, the
problem of posterior computation still has a unique an-
swer. We can use that answer to assess the usefulness
of VI for posterior computation in a situation where we
have a sizable amount of data. We emphasize, though,
that the posteriors of the estimated parameters discussed
in this subsection do not reflect a realistic result for
the physics model under consideration. They are pre-
sented as the outcome of a technical exercise in compar-
ing MCMC parameter estimation to VI parameter esti-
mation.

TABLE III. The �
2 per degree of freedom of the model at

the MAP value solution for our parameters from [14]. The
reported values were computed using Eq. 15 with the appro-
priate covariance matrix.

Emax (MeV) �
2
/dof �

2
/dof

(⌃ ⌘ ⌃exp) (⌃ ⌘ ⌃exp + ⌃th)

0.706 1.2320 1.1925
0.868 1.2306 1.1863
1.292 1.7751 1.6773
1.759 1.9463 1.8748
2.137 2.1392 2.1234
2.624 2.3837 2.3410
3.598 4.8966 3.4682
4.342 19.9067 10.4666

We first use the Python package emcee to generate a
Markov chain of samples that represents the posterior
distribution of the ERPs and the normalization parame-
ters. Our production run had 50, 000 burn-in steps, and
ran for a total of 300, 000 sample steps, with 30 walk-
ers. To start the sampling, we draw random starting
positions from the priors for each walker. The sampler
evolves through the burn-in steps to reach equilibrium.
Upon completing burn-in, the sampler then begins the
sample acquisition process by storing chains of samples
for each walker. The sampling method was emcee’s de-
fault stretch move and the autocorrelation time was 287.
The sampling was done with a standard computer and
took approximately 4 hours to complete the burn-in and
sampling.
To generate the VI results we utilized the Adam opti-

mizer from the pytorch library [27]. The learning rate
was set to 5 ⇥ 10�3, and the number of optimization
steps was 30, 000. This method took less than 10 minutes
to complete. Once we obtain the optimized variational
parameters, we then draw samples from the variational
family.
The joint posterior density obtained using these two

methods is shown in Fig. 2. It is unimodal. The MCMC
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result is shown in blue and the VI result in orange.
The two methods produce remarkably consistent results:
Tab. IV compares the percent di↵erences of the medians
and standard deviations between the VI and the MCMC
approach. The two-dimensional distributions, as quanti-
fied by the correlation coe�cients, also agree very well.
Perhaps this is not surprising, given that MCMC reveals
this posterior to be well approximated by a multi-variate
Gaussian, and this is the family we have used for the VI.
We remark in passing that the agreement is, predictably,
not nearly as good if the “mean-field” (i.e. uncorrelated)
VI family is employed here.

TABLE IV. The percent di↵erences (⌘ |x1 �x2|/x̄ ⇤ 100%) of
the 68% equal tail credible intervals obtained for the ERPs
using VI and ptemcee without including the theory covariance
in the likelihood.

Parameter 16% Quantile 50% Quantile 84% Quantile

A0 0.35% 0.34% 0.36%
r0 0.14% 0.02% 0.10%
(C+

1 )2 0.02% 0.49% 1.07%
P

+
1 0.12% 0.45% 0.76%

(C�
1 )2 0.13% 0.34% 0.99%

P
�
1 0.08% 0.97% 1.65%

The second calculation using the data set up to Elab =
4.3 MeV included the theory covariance. It had the same
number of burn-in, sample steps, and walkers. To in-
clude the theory covariance we use ⌃ ⌘ ⌃th + ⌃exp in
Eq. (15). The run with the theory covariance had an
autocorrelation time of 383. This run also completed in
approximately 4 hours.

This joint posterior density is shown in Fig. 3, with
the same color scheme as in Fig. 2. Once again VI and
MCMC agree very well. This time the posteriors for the
ERPs are broader, and the correlations are somewhat
di↵erent to that found in the previous analysis. But the
conclusion is that VI has no problem with the more com-
plex correlation structure of the data that results when
theory uncertainties are considered.

TABLE V. Percent di↵erences of the 68% equal tail credible
intervals obtained for the ERPs using ptemcee and VI when
the theory covariance is included in the likelihood.

Parameter 16% Quantile 50% Quantile 84% Quantile

A0 2.42% 2.77% 3.09%
r0 0.06% 0.23% 0.43%
(C+

1 )2 0.93% 1.04% 1.23%
P

+
1 0.03% 0.69% 1.17%

(C�
1 )2 1.09% 0.64% 0.69%

P
�
1 3.98% 0.31% 1.38%

B. Bimodal results using only lower-energy data

Preliminary analysis of cross section data from Elab =
0.7 to 2.6 MeV using emcee produces bimodal distribu-
tions, with the bimodality being driven by two possi-
ble solutions for the pair of shape parameters {P+

1 , P�
1 }.

This bimodality was also observed in the analysis of
Poudel and Phillips [14]. It appears to result from the
inability of lower-energy cross section data to distinguish
the roles of the two p-wave channels that have di↵erent
total angular momentum. This bimodality at best pro-
duces a very long autocorrelation time in emcee, and at
worst results in the MCMC sampling being poorly con-
verged and unreliable.
In order to handle the bimodal distribution we modi-

fied our sampling approach and used the ptemcee sam-
pler instead [26]. ptemcee uses the parallel tempering
Monte Carlo technique which is better equipped to han-
dle multimodal distributions [? ]. Sample chains gener-
ated with ptemcee produced much lower autocorrelation
times than emcee in this application.
We mirror the analyses done in Sec. VA and do two

runs, one with and one without the theory covariance.
In the case where the likelihood did not include the
theory covariance matrix, the autocorrelation time de-
creased from 287 to 2 while when we use the likelihood
including theory covariance it decreased from 383 to 2.
Because ptemcee produces chains with much lower au-
tocorrelation times, we do not need as many steps as we
employed with emcee.
For both ptemcee analyses we used 10, 000 burn-

in steps, and 50, 000 sample steps and sampled
across 8 di↵erent inverse temperatures with values of
{1, 0.917, 0.841, 0.771, 0.707, 0.5, 0.353, 0.25}. Figures 4
and 5 show the joint posterior densities without and with
the theory covariance respectively.
As alluded to earlier in this section, the VI approach

requires a modification to allow for multimodal posteriors
as the full rank Gaussian variational family (5) is not flex-
ible enough to describe multimodality directly. The VI-
based multimodal posterior distributions in Figs. 4 and 5
were obtained using the Black Box Variational Bayesian
Model Averaging (BBVBMA) algorithm [28]. The BB-
VBMA posterior variational distribution is a mixture dis-
tribution, where each mixture component is a full rank
Gaussian produced by the standard VI approach (as de-
scribed in Section II) with random initialization. Each
mixture weight is consequently proportional to the result-
ing ELBO value. The resulting multimodal approxima-
tions are based on a mixture of 1000 VI approximations
computed independently and in parallel on a computer
cluster. We refer the reader to Ref. [28] for full details of
BBVBMA.
The posteriors presented here are bimodal due to the

two possible solutions for the pair of shape parameters
{P+

1 , P�
1 }. These two parameters are anticorrelated as

shown in the bottom row, fourth column of both Figs. 4
and 5. The results generated by ptemcee tend to be
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FIG. 2. Joint posterior density of ERPs from analyzing Elab = 0.676 MeV to 4.342 MeV data without including the theory
covariance. The blue distribution was generated by sampling with emcee, and the orange is the distribution from VI.

broader than those from VI. The distribution obtained
through ptemcee provides samples bridging between the
two modes, while VI does not.

Tables VI and VII show the percent di↵erences be-
tween the ERP quantiles obtained with ptemcee and
VI without and with the theory covariance respectively.
There are a few large discrepancies between the quan-
tiles: the di↵erences in inference in the two approaches
are most noticeable for the parameters in which bimodal-
ity appears. In the analysis without the theory covari-
ance, we see a percent di↵erence of 21% in the 16% quan-
tile of P+

1 , while in the 84% quantile for P�
1 we have a

70% di↵erence. Meanwhile, the analysis with the the-
ory covariance has percent di↵erences of �69% and 23%
in the 16% and 50% quantiles of P�

1 , although the quan-
tiles and univariate distribution for P+

1 are in remarkable
agreement across the methods in this case.

In general the univariate distributions agree well be-
tween VI and ptemcee for parameters that do not exhibit

bimodality. There are moderate di↵erences in the 16%,
50%, and 84% quantiles of A0 but A0’s median is a small
number. We conclude that VI performs well for the uni-
modal parameter distributions even though the overall
distribution is bimodal.

TABLE VI. Percent di↵erences of the 68% equal tail credible
intervals for the ERPs without including the theory covari-
ance for the Elab = 0.676– 2.624 MeV analysis.

Parameter 16% Quantile 50% Quantile 84% Quantile

A0 0.01% 0.10% 0.10%
r0 0.46% 0.61% 0.73%
(C+

1 )2 4.26% 1.72% 0.53%
P

+
1 21.41% 0.73% 0.35%

(C�
1 )2 0.84% 1.17% 1.58%

P
�
1 1.18% 17.41% 70.63%
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FIG. 3. Joint posterior density of ERPs from analyzing Elab = 0.676 MeV to 4.342 MeV data with the theory covariance. The
blue distribution was generated by sampling with emcee, and the orange is the distribution from VI.

TABLE VII. Percent di↵erences of the 68% equal tail credible
intervals for the ERPs with the theory covariance included for
the analysis up to Elab = 2.624 MeV.

Parameter 16% Quantile 50% Quantile 84% Quantile

A0 30.75% 15.06% 7.04%
r0 2.90% 0.28% 2.24%
(C+

1 )2 0.53% 0.46% 1.61%
P

+
1 2.17% 0.23% 0.84%

(C�
1 )2 0.60% 0.32% 0.28%

P
�
1 -69.37% 23.75% 0.32%

VI. SUMMARY

Inferring parameters of scattering models from large
data sets is a common nuclear-physics problem. Here we
have shown that Variational Inference (VI) can expedite
this parameter estimation. The two sets of scattering

data we examined in Sec. V had 398 and 293 data points
respectively, and the VI posterior was obtained in a frac-
tion of the time needed for the sampling. We found es-
sentially perfect agreement between the VI result for the
posterior of the 3He-↵ e↵ective-range expansion parame-
ters and the posterior obtained using Monte Carlo sam-
pling when the parameter posterior pdf was unimodal.
A critical ingredient of the success of the variational in-

ference was that the VI family, i.e., the parameterization
of the posterior, was flexible enough to allow for corre-
lations. An accurate description of correlations between
parameters is critical for reliable Uncertainty Quantifica-
tion.
VI requires that we assume a parameterization of the

posterior. Here we used a multivariate Gaussian. Other
families, e.g., a multi-variate t-distribution, can be im-
plemented.
Analyzing the subset of data from Ref. [15] for Elab 

2.6 MeV produced a bimodal posterior. We used parallel



10

FIG. 4. Joint posterior density of ERPs from analyzing the data of Ref. [15] from Elab = 0.676 MeV to 2.624 MeV without the
theory covariance using both ptemcee and VI. The blue distribution was generated by sampling with ptemcee, and the orange
is the distribution from VI.

tempered Monte Carlo Markov Chains in order to sample
this posterior thoroughly; the autocorrelation time for
standard MCMC sampling was almost prohibitively long.
Long autocorrelation times are often a signal of multi-
modality.

In the case of VI the multi-modality mainfested as a
sensitivity of the solution to the Evidence Lower Bound
Optimization (ELBO) to its starting position. We lever-
aged this feature of VI to obtain di↵erent optima for the
ELBO, and then combined the inferred distributions us-
ing the ELBO estimate of the Bayesian evidence. This
modified VI approach produced posteriors that were in
good agreement with those found using parallel tempered
MCMC.

Source code for generating the emcee and ptemcee re-
sults is available at https://github.com/AndriusBurn/
3he_alpha_mc_sampling. The source code used for gen-
erating the VI results is available at https://github.

com/kejzlarv/VBI_Pytorch_3HEscattering.

Appendix A: Other ways to combine single-peak
results

While performing the analysis discussed in Sub-
sec. VB, we investigated di↵erent methods where we
could reliably combine two single-peak results in a way
that preserved the relative peak heights and shapes of
the two modes. In this appendix we discuss two alterna-
tive methods we considered as well as the caveats that
go along with them. Both methods discussed here follow
a model comparison strategy; we treat samples obtained
from one peak (✓A) model A, and the samples obtained
from the other peak (✓B) model B. The relative peak
heights are thus determined by the ratio of the marginal
likelihoods.

https://github.com/AndriusBurn/3he_alpha_mc_sampling
https://github.com/AndriusBurn/3he_alpha_mc_sampling
https://github.com/kejzlarv/VBI_Pytorch_3HEscattering
https://github.com/kejzlarv/VBI_Pytorch_3HEscattering
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FIG. 5. Joint posterior density of ERPs from analyzing the data of Ref. [15] from Elab = 0.676 MeV to 2.624 MeV with the
theory covariance included. The blue distribution was generated by sampling with ptemcee, and the orange distribution from
VI.

1. Harmonic Mean Estimator

The harmonic mean estimator was introduced in
Ref. [29] which showed how using samples from the poste-
rior one could approximate the marginal likelihood. We
can start by examining the quantity

⇢ = EP (✓|D,I)


1

L(✓)

�
⌘

Z
P (✓|D)

L(✓)
d✓ (A1)

where L is the likelihood function, and ✓ is a sample
drawn from the posterior. This is the expectation of the
reciprocal likelihood with respect to the posterior. We
can relate this to the marginal likelihood. Through ap-
plying Bayes’ theorem to the posterior in Eq. (A1), we
have

⇢ =

Z
1

L(✓)

L(✓)P (✓|I)

P (D|I)
d✓ =

1

P (D|I)
. (A2)

The harmonic mean estimator is given by

⇢̂ =
1

N

NX

i=1

1

L(✓i)
(A3)

where L is the likelihood function, and ✓i is a sample
drawn from the posterior. We can take our samples from
each of the peaks and compute corresponding ⇢̂A and ⇢̂B
and then take the ratio to obtain the relative height of
the peaks.
This method however yields inconsistent and often

times incorrect results. We can recast understand its
failure from the perspective of importance sampling. For
importance sampling to be e↵ective, we would need the
sampling distribution to be broader than the target dis-
tribution. In this case, we are drawing from the posterior
distribution which is narrow when compared to the prior.
For this reason, we are not obtaining e↵ective samples
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and this method fails.

2. Overlap Normalization

Suppose we have two peaks in a posterior distribution
that have a slight overlap between them. We can then
use a uniform prior to perform sampling for each peak
separately. If we then construct the priors so there is
a small overlap between them—one that coincides with
the overlap between the peaks we can cross-normalize the
two sets of samples.

FIG. 6. An illustration showing the overlapping region set by
the two priors. The solid blue lines are the truncation cuts of
the two priors, and the shaded region is the overlap region.

An illustration of this is shown in Fig. 6. In the overlap

region, the samples from the two runs are drawn from the
same posterior distribution. We can exploit the unique-
ness of the underlying distribution within this region to
obtain the relative peak heights.
Suppose there are NA total samples in set ✓A, and NB

total samples in set ✓B , with NA,ol and NB,ol the number
of samples appearing in the overlap region. Without loss
of generality, we may assume NA,ol > NB,ol. We can
determine a relative peak height ratio of

r =
NB,ol

NA,ol
. (A4)

With this target ratio, we can then thin the appropriate
set of samples such that after thinning we have

NB,thinned

NA,thinned
= r. (A5)

Although both numbers of samples have been given the
“thinned” subscript, it is su�cient to only thin one of
the two sets of samples. Once the thinning is done and
the ratio of the total thinned samples is the target ratio
r, we can then combine the two sets of samples to obtain
the full joint posterior distribution with the appropriate
relative peak heights.
While this method can be useful, it is not always possi-

ble to have a clear overlap region. The overlap region can
often be very small, and the number of samples in this
region is often very low. This can lead to a very noisy
estimate of the relative peak heights. Normalizing the
peaks using this method yields posteriors that closely re-
semble the ones obtained from ptemcee. But, ultimately
choosing ptemcee proved more e↵ective in our case.
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