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Background: Analyses of elastic scattering with the optical model (OMP) are widely used in nuclear reactions.

Purpose: Previous work compared a traditional frequentist approach and a Bayesian approach to quantify un-
certainties in the OMP. In this study, we revisit this comparison and consider the role of the likelihood used in
the analysis.

Method: We compare the Levenberg-Marquardt algorithm for x? minimization with Markov Chain Monte Carlo
sampling to obtain parameter posteriors. Following previous work, we consider how results are affected when x?/N
is used for the likelihood function, N being the number of data points, to account for possible correlations in the
model and underestimation of the error in the data.

Results: We analyze a simple linear model and then move to OMP analysis of elastic angular distributions
using a) a 5-parameter model and b) a 6-parameter model. In the linear model, the frequentist and Bayesian
approaches yield consistent optima and uncertainty estimates. The same is qualitatively true for the 5-parameter
OMP analysis. For the 6-parameter OMP analysis, the parameter posterior is no longer well-approximated by
a Gaussian and a covariance-based frequentist prediction becomes unreliable. In all cases, when the Bayesian
approach uses 2 /N in the likelihood, uncertainties increase by V'N.

Conclusions: When the parameter posterior is near-Gaussian and the same likelihood is used, the frequentist and
Bayesian approaches recover consistent parameter uncertainty estimates. If the parameter posterior has significant
higher moments, the covariance-only frequentist approach becomes unreliable and the Bayesian approach should
be used. Empirical coverage can serve as an important internal check for uncertainty estimation, providing red

flags for uncertainty analyses.

I. INTRODUCTION

Nuclear reactions and the reaction theory used to in-
terpret them are crucial in a variety of applications of
nuclear science. Because the interpretation of measure-
ments depend on the theoretical models, significant ef-
fort has been put into developing methodology for the
quantification of their uncertainties. Most of the work
has been focused on quantifying parametric uncertain-
ties [TH1I] that results from fitting models to data with
experimentally reported uncertainties. Over the past sev-
eral years, the paradigm for optimization and uncertainty
quantification (UQ) has evolved. Previously, the stan-
dard approach involved least-square optimization (i.e.,
minimizing x?) and propagation of uncertainty through
estimation of a covariance matrix (referred to here as
frequentist approach). In the last few years, Bayesian
methods have become more prominent. The shift is
due both to the philosophical approach underpinning
Bayesian methods and because these methods provide
information about the full parameter space, as sampled
through direct Monte Carlo methods [12].

In reaction theory, this progression has been performed
systematically. A decade ago uncertainties on reaction
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observables, such as cross sections were typically esti-
mated by qualitative comparison of observables gener-
ated by two candidate phenomenological potentials or
two few-body approximations, e.g. [1]. Then, a frame-
work for propagating uncertainties from parametric co-
variance matrices that included theoretical correlations
was developed [2]. In elastic scattering, these theo-
retical correlations arise from the construction of the
cross section as a sum over Legendre polynomials [13].
When taken into account in the optimization procedure,
both the optimum and the resulting uncertainty intervals
change. Similarly, were the full correlations on the exper-
imental data—which are rarely reported—accounted for in
the likelihood function used for optimization, the result-
ing optimum and uncertainty estimates would chang

A comparison between frequentist and the Bayesian
approaches was performed in Ref. [4] for the optical
model, a widely used model in nuclear reactions. Pa-
rameters of the model were fit to the elastic scattering
angular distribution for a given projectile-target combi-
nation at a given beam energy and the resulting para-
metric uncertainties were propagated to cross sections for
one-neutron transfer reactions. The frequentist approach
involved least-squares fitting using SFRESCO, a widely

I These types of differences have been shown in e.g. [14] but have
not necessarily been studied in the context of the two optimiza-
tions frameworks that we are discussing here.
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used reaction code that includes least-squares optimiza-
tion tools [15]. The Bayesian method involved Markov
Chain Monte Carlo sampling with the Metropolis algo-
rithm [L16]. In that work, it was found that uncertainties
produced with the Bayesian implementation were larger
than those using the standard frequentist approach.
There are at least two aspects of that study that con-
tribute to this surprising finding. The first has to do
with degeneracies in parameter space: a single elastic
scattering measurement—one target-projectile combina-
tion at one incident energy—is sufficient only to constrain
the real and imaginary volume integrals of the poten-
tial used. Because the potential included both imaginary
surface and imaginary volume Woods-Saxon terms, each
with a depth, radius, and diffuseness, fitting at a single
scattering energy was insufficient to break the degener-
acy between imaginary terms. The authors addressed
this in their frequentist treatment by fixing several pa-
rameters during the optimization, which therefore did
not enter into the calculation of the parameter covari-
ance matrix, see e.g. [2, [17]. In the Bayesian approach,
the authors instead applied priors that enforced physi-
cality of the parameters, and allowed all parameters to
vary. The second contributing factor is the choice of the
likelihood function, which was not consistent in the two
approaches. Since the intent of that work was to connect
with the standard procedures in the field, in the frequen-
tist approach, the standard x? minimization was used
(see e.g. [2L [3]). However, for reasons discussed below,
the Bayesian approach used x2/N for the likelihood in-
stead, where N is the number of points in a data set. In
the present work, we will revisit the frequentist/Bayesian
comparison considering first a simple linear problem and
various likelihood functions and then we will add com-
plexity to the problem to illustrate how the comparison
may yield different results, including where a Bayesian
treatment provides advantage for scattering problems.
The outline of this manuscript is as follows. In Sec. [[I]
we detail the statistical considerations of this paper, in-
cluding Bayes’ theorem, the role of the likelihood in the
specific case of elastic scattering, and how correlations in
the experimental data impact the optimization and un-
certainty quantification. In Sec. we compare the fre-
quentist and Bayesian optimizations in detail, perform-
ing a one-to-one comparison with a toy model; the toy
model is followed up with an example of typical optical
model application for the interpretation of elastic scatter-
ing experiments in Sec. [[V. Finally, we draw conclusions

in Sec. [Vl

II. STATISTICAL CONSIDERATIONS

In this section, we summarize the key elements in the
frequentist and Bayesian approaches when applied to an
optical model (see [2 [18] for more details). In an opti-
cal model analysis, elastic scattering angular distribution
data él%, depending on scattering angle 8, are used to cal-

ibrate the model. For simplicity in notation, we will use
o(6) to represent the angular distribution 42.
Frequentist approach: The frequentist likelihood func-
tion minimizes the squared difference between experi-
mental data and the corresponding optical model pre-

diction for n model parameters, x:

& = 3 [espl®) o (0,2 1
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where N is the number of data points, gexp(6;) is the ex-
perimental cross section at angle 0;, oy, (6;, ) is the the-
oretical cross sections at angle 6;, and Aoexp(6;) is the
experimental uncertainty on the measurement, Uexp(Qi).
Equation is simply a weighted least-squares approx-
imation that assumes that the data covariance matrix
contains experimental errors (on the diagonal) and noth-
ing else, as is typical in previous scattering-data analyses.
Optimization may be performed by a variety of classical
algorithms, including gradient descent, simulated anneal-
ing, or Levenberg-Marquardt [19} 20].

Once an optimum is reached, uncertainties about that
optimum can be obtained by calculating moments of the
parameter distribution. Typically, only the second mo-
ment — the covariance — is assessed, which can be done by
numerical estimation and inversion of the Hessian matrix.
By truncating the moment expansion at the second mo-
ment, we assume x is well-represented by a multivariate
Gaussian distribution about the optimum. Uncertainties
on the observables can be calculated by sampling from
this multivariate Gaussian and propagating sampled pa-
rameter sets to the observable of interest. Inherently,
uncertainty quantification from the x? minimization as-
sumes a unimodal distribution of the parameters. If
the distribution has significant higher moments or other
modes that are not included in uncertainty estimation, it
can lead to unrealistic uncertainty estimates in observ-
ables.

Finally, the analyst may choose to rescale the parame-
ter uncertainties by invoking a “goodness-of-fit” metric,
x?2/d, where d is the number of independent degrees of
freedom d = N — n. (While the concept of an “indepen-
dent degree of freedom” is fraught in a non-linear model,
in the present analysis we will assume that each param-
eter is independent to simplify comparison of the uncer-
tainty quantification approaches we investigate). This
degree-of-freedom normalization guarantees that, if the
data uncertainties can be relaxed to be relative rather
than absolute, the parameter optimum will yield a per-
fect fit of the data, up to the data uncertainty: x2/d = 1.

Bayesian approach: Markov Chain Monte Carlo, the
Bayesian method considered here, samples parameter
space via multiple independent walkers. Bayes’ theo-
rem [21] is:

p(D|H, M)p(H|M)

PUIDA) = (D)

(2)



Here p(H|M) is the prior distribution, the information
known about the parameter distribution H of a spe-
cific model M before seeing the data D; P(D|H, M) is
the likelihood, which assesses the probability of observ-
ing data D, assuming model M and a given parameter
set; p(D|M) is the Bayesian evidence; and p(H|D, M) is
the posterior distribution providing updated information
about the parameter values after information from the
data are included. Because the Bayesian evidence typi-
cally includes an integral over the entire parameter space
of the model, this integral is often numerically challeng-
ing or even impossible to compute. Thus, implementa-
tions of the Bayesian framework often use Markov-Chain
Monte Carlo (MCMC), which does not require comput-
ing the Bayesian evidence, to draw posterior-distribution
samples. Note that if the Bayesian evidence p(D|M) is
not computed, then the Bayesian approach can no longer
provide an absolute probability of a given parameter vec-
tor, only the relative probability between samples, as the
MCMC posterior is no longer normalized.

In MCMC analysis, the multivariate weighted-least-
squares likelihood is [22]:

1
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p(D|H, M) = exp [-x%/2] . (3)

Here n is the dimensionality of the model parameters,
and N is the number of data points, with x? the same as
in Eq. . If only relative likelihoods are required, the
normalizing factor may be dropped:

p(D|H, M) = exp [-x*/2] . (4)

Correlations: In principle, both experimental and the-
oretical correlations exist and should be taken into ac-
count explicitly in the likelihood function:

X2 = [UeXP(ei)_Uth(eivm)]C_l[UeXP(ai)_Uth(inx)]T (5)

where C is a combination of the experimental and theo-
retical covariance matrices. This correlation-cognizant
approach — generalized-least-squares — is not broadly
used in scattering analyses because C is not known in
most scattering problems, so the weighted-least-squares
approach Eq. is the most commonly employed. It
represents the extreme case of no correlations between
angles (uncorrelated experimental uncertainties and no
theory uncertainties or correlations).

In previous studies in direct reaction theory [1H11], a
different likelihood function was used for Bayesian anal-
yses only:

p(D|H, M) = exp [-x*/(2N)] , (6)

where 2 is defined as in Eq. . The original motivation
for including the 1/N factor was the acknowledgement of

model correlations [2]. Assuming the experimental er-
rors are accurate (they include not only statistical but
all systematic errors), the 1/N weighting ensures that
when two data sets o4, (0) are included in an optimiza-
tion, one with twice as many angles than the other, both
contribute equally to the optimization, based on the un-
certainties that were assigned by the experimental group
that performed the measurement (see [23] for a more ex-
tended discussion). The 1/N factor was used to repre-
sent an assumption of perfect correlation between angles
for a given experimental angular distribution — that is,
if the cross section is measured at one angle, the en-
tire angular distribution can be extracted. While this is
true for, e.g., Rutherford scattering, realistic correlations
for optical-potential-driven scattering lie somewhere be-
tween the uncorrelated weighted-least-squares case [Eq.
(1)] and the “perfectly correlated” x?/N case. Alterna-
tively, rescaling the likelihood by 1/N is equivalent to
increasing each uncertainty Aex,(6;) by a factor of v/N.
In other words, it is an assertion that the experimentally
reported uncertainties are too small by a factor of v/N.
The impact of rescaling the likelihood by N is the topic
of Sec. [[IIl and Sec. [V

III. RESULTS FOR A LINEAR TOY MODEL

With the above statistical framework in mind, we
present several examples relevant to recent UQ studies
in nuclear physics. First, we show that for linear models
calibrated to linear data with Gaussian noise, frequentist
and Bayesian treatments will recover the same paramet-
ric uncertainty estimates, and we demonstrate that un-
certainty estimates recovered from either method scale
with the likelihood function used in the calibration.

Consider the following toy problem: an analyst is pre-
sented with noisy experimental data and wishes to train
a linear model to estimate the relationship present in the
data. The true function used to create these data is:

y=2-05z+6

5 ~ N(0,0.01), Q

where A indicates a normal-distributed random variable
with the mean 0 and variance 0.01. The experimental in-
dependent variable x has N = 25 points in a grid ranging
from -1 to 1.

We consider four possible approaches for calibrating
the model parameters and assessing parameter uncer-
tainties. In all approaches the same linear model was
used:

y=mx+b, (8)
with the parameters m and b initialized to zero.

e The first calibration (which we refer to as LM-x?)
uses a standard least-squares likelihood function
Eq. and the Levenberg-Marquardt (LM) algo-
rithm [19, 20] for parameter optimization. This



algorithm blends the Gauss-Newton method with
gradient descent and is representative of frequentist
optimization approaches discussed in recent publi-
cations [IH4]. In this work, we used the LM imple-
mentation provided by the LMFIT python3 module,
version 1.2.2 [24].

e The second calibration (which we refer to as
MCMC-x?) uses a standard least-squares likelihood
function Eq. and Markov-Chain Monte Carlo
(MCMC) for parameter optimization. Here, we
used the python3 MCMC library EMCEE [25] with
the default Goodman-Weare stretch-move proposal
distribution and flat priors spanning the range of
physical plausibility, in keeping with [4]. We note
that our results were largely insensitive to MCMC
hyperparameter and proposal distribution changes,
provided that at least 5000 steps were taken follow-
ing a burn-in period. Walkers were initialized with
a small amount of Gaussian noise € ~ 10~* about
zero, enabling the stretch-move proposal step.

e For the third calibration (which we refer to as LM-
x?/d), we take the results of the first approach
and rescale the parameter uncertainty estimates
Az post-facto by x?/d, where d= N — n are the
degrees-of-freedom. This goodness-of-fit rescaling
approach was used in [4] to perform frequentist cal-
culations.

e For the fourth and last calibration (which we refer
to as MCMC-x?/N) we use MCMC as in the second
calibration above, but with a modified likelihood
function as in Eq. (6)). This approach was used in
Ref. [4] as the example of Bayesian methodology.

Figure [1] shows the results from each of these calibra-
tion approaches on our toy linear model. All models
recover the true parameters used to generate the data,
but uncertainty estimates differ. We first compare the
first and second method (blue and red shaded regions),
which have the same likelihood but a different optimiza-
tion method. LM-y? and MCMC-x? recover consistent
uncertainty intervals, with slight differences due to nu-
merical truncation in the Hessian matrix estimate (LM-
x?) and statistical noise from the finite number of Monte
Carlo samples (MCMC-x?). Our finding is that for this
linear case, the results are insensitive to the choice of op-
timization approach: MCMC and LM return statistically
indistinguishable uncertainty estimates.

Next we consider the influence of modifications to the
standard likelihood. The third method LM-x?/d recovers
a slightly larger, though still consistent, uncertainty in-
terval, a consequence of the goodness-of-fit metric, x2/d,
being slightly larger than 1. That the goodness-of-fit is
close to unity is an indicator that the model form and
experimental data span a consistent underlying distribu-
tion, guaranteed in this case by the toy problem con-
struction. Most importantly, the fourth method MCMC-
x%/N yields an uncertainty estimate that is VN ~ 4.5
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FIG. 1. Uncertainty estimates from four different calibration
approaches are compared for a linear toy model. “LM-y2”
refers to the Levenberg-Marquardt approach, using the nom-
inal (—x?/2) log-likelihood function. “MCMC-x?" refers to
Markov-Chain Monte Carlo, using the nominal log-likelihood
function. “LM-x?/d” refers to the Levenberg-Marquardt ap-
proach using the nominal log-likelihood function, but with
the final uncertainty estimates rescaled by the reduced chi-
square at the optimum. “MCMC-x?/N” refers to Markov-
Chain Monte Carlo, but rescaling the nominal log-likelihood
function by 1/N, where N is the number of experimental data
points. For each model, the band represents the 95% uncer-
tainty interval. For the training data, the line length repre-
sents +10 experimental error.

times larger than the other distributions. This is because
the likelihood function has been “softened” by N = 25,
equivalent to increasing all experimental uncertainties by
V/N. The consistency of the frequentist and Bayesian,
non-informative-prior approaches when using the same
likelihood function, and the inconsistency when using dif-
ferent likelihood functions, is a general feature for linear
models with an arbitrary number of data points or pa-
rameters. However, the same may not be not true for
nonlinear models depending on the initialization condi-
tions, as the likelihood surface may no longer be convex
everywhere and multiple minima may be possible. We
now turn to a non-linear model more relevant to nuclear
reactions.

IV. RESULTS FOR THE OPTICAL MODEL

To test a nonlinear example relevant to reaction theory,
we revisit the optical model calibration study of Ref. [4]
using the four approaches discussed in Sec. [[II. In this
section we present results for °Zr(n,n)?°Zr angular dis-
tributions at 10 MeV, using real data from Ref. [20]
and including all N = 36 points in the angular distri-
bution. In addition, we also performed calculations for
other cases considered in Ref. [4], namely “8Ca(p,p) data
and 2%®Pb(p,p) data at 16 MeV, and will comment on



those following our analysis of the Zr data.

A. Five-parameter optical model

As in Ref. [4], we consider a simplified Becchetti-
Greenlees (BG) optical model potential [27], fitted to
single-nucleon differential elastic scattering data. As ex-
plained in the Introduction, because of degeneracy be-
tween the imaginary volume and imaginary surface po-
tential terms, calibrating an optical potential with a sin-
gle elastic scattering data set usually requires fixing po-
tential parameters to lift the degeneracy. In Ref. [4],
the authors fixed the imaginary volume depth, radius,
and diffuseness parameters when applying frequentist
methodology. For our first example, we will fix these
parameters and also the imaginary surface diffuseness,
yielding a 5-parameter simplified Becchetti-Greenlees
model. Thus only two potential terms are included in
the optimization: the real volume term and the imag-
inary surface term. We allow the three parameters of
the real volume potential to vary (V, r, a) as well as the
depth and radius of the surface term, (W, r,). This 5 pa-
rameter model is effective at reproducing the scattering
data for both the LM and the MCMC calibration meth-
ods — that is, x?/d ~ 1 at the optimum. To compute
scattering cross sections, we use the optical-potential li-
brary TOMFOOL |[22].

The results for the same four calibration approaches
introduced earlier are presented in Figs. [2] and [3] The
posterior distributions for LM-x? and MCMC-x?, shown
in the diagonal of corner plot Fig. (a), indicate that
LM recovers the same parameter optimum and marginal
uncertainty estimates as MCMC when the same likeli-
hood is considered and the same set of parameters var-
ied. Correlations between depth and radius parameters
are consistent with the expectation that it is the volume
integral of the potential, rather than the potential pa-
rameters themselves, that are constrained by data. In
Fig. b) we show a corner plot comparing calibration
approaches 3 and 4. Calibration approach 3 (LM-x2/d)
produces uncertainty estimates that are consistent with
approaches 1 and 2 in panel a), a consequence of the
fact that this five-parameter model is able to accurately
reproduce these data and the “goodness-of-fit” rescaling
is small. The fourth approach, MCMC-y?/N, produces
uncertainty estimates that are several times larger than
the other approaches.

To compare with the training data, we compute the
95% uncertainty intervals for the elastic angular distribu-
tions (Fig. [3). As noted already, the red and blue shaded
regions are fully consistent, even though this model is
non-linear. The much-larger uncertainty for approach 4
is consistent with the results in [4], where MCMC un-
certainties were found to be always larger than those ob-
tained with the frequentist approach. As in the toy lin-
ear model presented above, the inconsistencies between
approach 4 and the other approaches is due to the ad-

—— MCMC-x?
—— LMy

A

5?6 Q‘» 59% b.b ‘5\%'\6 '\:\l\ \"\% '\:\q \‘}Q S)%Q Qg;\lﬁ Q@Q Qt\elﬁ‘)'\o 0‘:“? Q}Q Q(';o ";'\0 \“P \_"1’ '\"‘? \:‘»(’
V (MeV) r (fm) a (fm) W, (MeV) rs (fm)
® . 2
e —— MCMC-x%/N
= e 2
E 1 N N — IM-x%/d
= > \
‘
o
v @3 | T
=
o
o
(SN rt“\f\ Q
£ 2 ﬁ
)
K
£
S0
KN
o
SN N R RGN SRR
a (fm) W, (MeV) rs (fm)

FIG. 2. Corner plots [28] showing parameter distribution es-
timates from four calibration approaches applied to a simpli-
fied 5-parameter Becchetti-Greenlees optical model. Panel a)
shows results for the unscaled approaches “LM-x2” and
“MCMC-x?”. Panel b) shows results for the goodness-of-fit
a(gjusted “LM-x?/d” and for the likelihood-rescaled “MCMC-
X / N”.

ditional scaling factor in the likelihood function, not to
improved fidelity of MCMC sampling.
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FIG. 3. Cross section uncertainty estimates from four dif-
ferent calibration approaches for a simplified 5-parameter
Becchetti-Greenlees optical model. Label convention is the
same as in Fig.

B. Six-parameter optical model

In certain non-linear problems, Bayesian calibration
does have an important functional advantage over un-
certainty estimation via covariance — but only when the
likelihood surface around the parameter optimum has
significant moments beyond the covariance. To demon-
strate this, we modify the previous example to a six-
parameter Becchetti-Greenlees model by allowing the
imaginary surface diffuseness to vary.

Figure a) shows the parameter posteriors and the
correlations for approaches 1 and 2 applied to this six-
parameter model, and Fig. Ié-_ll(b) shows the corresponding
results for approaches 3 and 4. The Bayesian model re-
veals that, in the vicinity of the optimum, the newly en-
abled imaginary surface diffuseness and the imaginary
surface depth have a complex, non-linear relationship
(see blue banana shapes in Fig. [4a)). In calculating the
Hessian matrix to estimate uncertainties, the frequentist
approach approximates this curved posterior distribution
as Gaussian. This is a poor approximation that leads
to an overestimate of the cross section uncertainty (red
band in Fig. . If additional, imaginary-volume param-
eters are relaxed in the model, the degeneracy becomes
so severe that the Hessian matrix cannot be numerically
estimated. Figure [5| shows how LM-y?/d can predict in-
appropriately large uncertainty estimates if the posterior
distribution deviates from Gaussian. In this case, LM-x?
and LM-x?/d require making assumptions that are not
fulfilled by the parameter posteriors, so they will yield
distorted parameter uncertainty estimates. As before,
the blue band and the dashed blue lines continue to dis-
agree by a similar amount as in Sec. approximately
VN , due to the rescaling of the likelihood function. The
mismatch seen in Ref. [4] are due to the different scaling
factors used in the frequentist vs. Bayesian likelihood,
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FIG. 4. Corner plots [28] showing parameter distribution es-
timates from four calibration approaches applied to a sim-
plified 6-parameter Becchetti-Greenlees optical model. Label
convention is the same as in Fig.

compounded by the use of a different number of model
parameters when comparing the frequentist and Bayesian
approaches. Given that each of the four calibration ap-
proaches yields a different uncertainty estimate in the
six-parameter case, how should we assess their plausibil-
ity? To answer this question, we turn to the empirical
coverage for each approach.
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FIG. 5. Cross section uncertainty estimates from four dif-
ferent calibration approaches for a simplified 6-parameter
Becchetti-Greenlees optical model. Label convention is the
same as in Fig.

C. Empirical coverages in the optical model

A sanity check for any method is that the predicted
uncertainty interval spans a fraction of the underlying
training data consistent with the uncertainty. For exam-
ple, for a 68% uncertainty interval to be meaningful, it
should span roughly 68% of the data. Empirical cover-
age diagrams formalize this idea by quantifying the frac-
tion of experimental data that fall within the estimated
model uncertainty intervals. Fig. [f] shows empirical cov-
erages for approaches 1, 2, and 4, with results for the 5-
parameter model in panel a) and the 6-parameter model
in panel b). Ideal empirical coverage is represented by
the gray dashed diagonal.

We first consider the simpler 5-parameter BG calibra-
tion (Fig. [f[a)), a case where the parameter distribu-
tions are well-approximated by a multivariate Gaussian
such that LM and MCMC produce near-identical results.
As expected, the empirical coverage obtained for LM-y?
and MCMC-x? (blue circles and orange triangles, respec-
tively) are the same, allowing for small statistical uncer-
tainty due to Monte-Carlo sampling in the MCMC result.
Most importantly, they align with the diagonal, indicat-
ing that 1/N rescaling leads to overestimation of uncer-
tainty (the green squares lie well above the diagonal).

Finally, we consider the 6-parameters BG fit
(Fig. @(b)) Again, the empirical coverage indicates that
the uncertainties derived from MCMC-x?/N are overes-
timated no matter the uncertainty interval. When no
normalization is added, LM-x? and MCMC-x?, cover-
ages are slightly below the diagonal ideal at the lowest
uncertainty intervals and slightly above at the highest
uncertainty intervals. Such deviations can indicate that
one or more of the assumptions required for the statis-
tical treatment — that there are no outliers, no model
defects, no off-diagonal terms in the data covariances —
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FIG. 6. Empirical coverages from three calibration ap-

proaches are compared. Panel (a) shows results for the 5-
parameters BG fit and panel (b) show results for the 6-
parameters BG fit.

may not be true. However, small deviations from the di-
agonal as in panel a) should be expected as an artifact
of having a small number (N=36) of data points with
which to populate the empirical coverage.

We note that in calculating these empirical coverages,
the experimental uncertainty for each point is added to
the model’s parametric uncertainty in quadrature (con-
trary to what was done in [4], where only the paramet-
ric uncertainty was considered for the empirical coverage
estimate). Because the experimental uncertainties are
small compared to the parametric uncertainty, this dif-
ference does not affect the results at a qualitative level; if
the approach from Ref. [4] is used instead, the MCMC-x?
result remains near the diagonal, while the MCMC-x2/N
result sits well above.

In the optical potential analysis thus far, we have con-
sidered only the neutron scattering data on “9Zr from
Ref. [4]. In Ref. [4], analyses were conducted on several
data sets spanning multiple targets, including proton and



neutron scattering on “8Ca, the main focus of their empir-
ical coverage figures. For comparison, we have performed
the same analysis described here for the “®Ca(p,p) and
the 208Ph(p,p)2"®Pb cases and computed the correspond-
ing empirical coverage. Our results from this analysis
are consistent with those in [4] (we note that these are
two independent implementations of MCMC and of the
underlying scattering code). The agreement is due to
serendipitous cancellation between the 1/N factor in the
likelihood and the fact that the experimental uncertain-
ties are likely larger than the purely statistical experi-
mental uncertainties reported. In the *®Ca example, the
best-fit of the model is only able to reproduce the exper-
imental data at a level about four times larger than the
experimental data uncertainties — that is, Xgpt ~ 16. If
the likelihood is rescaled by 1/N, with N = 23 for the Ca
case, there is a fortuitous cancellation between the un-
derestimated uncertainties and the inclusion of a factor
of v/ N = 4.8 in the likelihood function for MCMC, caus-
ing the MCMC-x2/N empirical coverage to lie near the
diagonal. Conversely, the MCMC-x? and LM-x? results
yield low empirical coverages, indicating that the exper-
imental uncertainties may be underestimated, the model
may be insufficiently flexible to reproduce data, or both.
While we have no general remedy for possibly underesti-
mated experimental uncertainty, data correlations, and a
overly simply nuclear model, we hope that awareness of
these challenges will clarify the limitations of our models.

V. CONCLUSIONS

In this study we revisit the frequentist/Bayesian com-
parison of [4] considering first a simple linear problem and
then add complexity to the problem to illustrate how the
comparison may yield different results, including where
a Bayesian treatment provides advantage for scattering
problems. Following previous work [4], we also consider
results using a renormalized x2/N in the definition of the
likelihood function (with N being the number of data
points) to account for possible correlations in the model
and underestimation of the error in the data.

Uncertainty intervals obtained in the frequentist ap-
proach (Levenberg-Marquardt algorithm for x? mini-
mization) and the Bayesian approach (using Markov
Chain Monte Carlo sampling to obtain parameter poste-
rior distributions) are fully consistent for a linear model.
In that case, renormalizing the x? by 1/N results in an
overestimation of uncertainty by a factor of v/N, which
is equivalent to increasing the error on the training data
by V'N.

To compare directly with recent reaction-theory anal-
yses, we considered a simplified optical model applied to

the elastic angular distributions for the scattering of neu-
trons off ?°Zr at 10 MeV, either in a 5-parameter fit or a
6-parameter fit. For the 5-parameter fit, the frequentist
and Bayesian approaches again recover the same param-
eter optimum and uncertainty intervals in the angular
distributions, like in the linear model, despite the fact
that the 5-parameter optical model is highly non-linear.
For this case, the parameter posterior is well-described
by a Gaussian and therefore a covariance-only frequen-
tist approach is reliable. The same is not true for the
6-parameter analysis of neutrons off °°Zr at 10 MeV. In
this case, the parameter posterior has additional non-
Gaussian structure, and the covariance-based frequentist
prediction becomes unreliable and a Bayesian analysis
warranted.

We also considered two different definitions for the like-
lihood, one using the standard x? and another with the
renormalized x2/N. The addition of this 1/N factor was
applied by several recent reaction-theory analyses to ef-
fect an increase of parameter uncertainty estimates, in-
cluding any from correlations not accounted for in the
weighted-least-squares likelihood. With this factor in-
cluded, the uncertainties obtained in the cross sections
increase systematically by v/N. To assess the plausibil-
ity of this choice, we turn to the empirical coverages.
While for the “9Zr application, the correct empirical cov-
erages are obtained when the standard x2 is used, for
the *Ca case discussed in [4] the empirical coverages ob-
tained with the standard y? are underestimated, a prob-
lem that is serendipitously addressed by the 1/N factor.
This study demonstrates that, in general, the 1/N fac-
tor should not be used in the x?. Instead, an empirical
coverage test should be performed and used to assess the
need for relaxing the weighted-least-squares likelihood to
a more general likelihood that can account for model un-
certainties, experimental error underestimation, or cor-
relations.
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