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We analyze the high moments of the Stochastic Heat Equation 
(SHE) via a transformation to the attractive Brownian 
Particles (BPs), which are Brownian motions interacting via 
pairwise attractive drift. In those scaling regimes where the 
particles tend to cluster, we prove a Large Deviation Principle 
(LDP) for the empirical measure of the attractive BPs. Under 
the delta(-like) initial condition, we characterize the unique 
minimizer of the rate function and relate the minimizer 
to the spacetime limit shapes of the Kardar–Parisi–Zhang 
(KPZ) equation in the upper tails. The results of this paper 
are used in the companion paper [75] to prove an n-point, 
upper-tail LDP for the KPZ equation and to characterize the 
corresponding spacetime limit shape.
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1. Introduction

This paper is motivated by the study of the large deviations and spacetime limit shapes 
of the Kardar–Parisi–Zhang (KPZ) equation. Introduced in [64], the KPZ equation

∂th = 1
2∂xxh + 1

2(∂xh)2 + η, h = h(t, x), (t, x) ∈ (0, ∞) × R (1.1)
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describes the evolution of a randomly growing interface, where η = η(t, x) denotes the 
spacetime white noise. This equation plays a central role in nonequilibrium statistical 
mechanics and has been widely studied in mathematics and physics; we refer to [82,19,
81,21,20] for reviews on the mathematical literature related to the KPZ equation.

This paper and the companion paper [75] use the moments of the Stochastic Heat 
Equation (SHE) to obtain a Large Deviation Principle (LDP) and the corresponding 
spacetime limit shape of the KPZ equation. Recall that the SHE

∂tZ = 1
2∂xxZ + ηZ (1.2)

gives the solution of (1.1) via h := log Z, so the moment generating function of the 
KPZ equation is related to the moments of the SHE. This relation serves as a gateway 
to studying the KPZ equation, since the moments of the SHE are accessible from a 
number of tools, including the delta Bose gas and Feynman–Kac formula. At the one-
point level, this relation has led to fruitful results on the one-point upper tail of the KPZ 
equation [16,11,26,22,71,32].

The goal of this paper is to characterize the multi-point moment Lyapunov exponents

lim
N→∞

1
N3TN

log E
[ n∏
c=1

Z(T t, NT xc)Nmc

]
(1.3)

for all positive powers, Nmc ∈ (0, ∞), and for fixed x1 < . . . < xn ∈ R. Hereafter 
T = TN is the scale of time, and N is the scale of the powers. The only conditions we 
impose on N and T = TN are

N → ∞, N2T = N2TN → ∞. (1.4)

Our results actually hold for any T = TN,A := A/N2 with (N, A) → (∞, ∞); we take 
T = TN to depend only on N for the convenience of notation. Note that (1.4) allows 
TN → 0, TN → 1, and TN → ∞. The second condition in (1.4) underscores what 
we call the clustering behaviors of the attractive Brownian Particles, as explained in 
the paragraph after next. The first condition in (1.4) reduces the task of characterizing 
(1.3) for positive powers, Nmc ∈ (0, ∞), to that of integer powers. Indeed, Nmc ∈ Z>0
translates into mc ∈ 1

N Z>0, which becomes a denser and denser subset of (0, ∞) as 
N → ∞.

Let us briefly describe our methods and results; the full description will be given in 
Section 2. To analyze the moment Lyapunov exponents, we express the integer moments 
of the SHE in terms of a system of attractive Brownian Particles (BPs), which are 
Brownian Motions (BMs) interacting via pairwise attractive drift. The task of analyzing 
the moment Lyapunov exponents turns into proving the LDP for the attractive BPs. 
Theorem 2.3 gives the sample-path LDP for the empirical measure of the attractive 
BPs. Next, we specialize the initial condition into the delta-like initial condition (defined 
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in (2.14)). Theorem 2.4 explicitly characterizes the unique minimizer of the rate function 
(of the LDP for the attractive BPs) under the delta-like initial condition. We call the 
minimizer the optimal deviation. Corollary 2.5 gives the limit of (1.3) under the delta-like 
initial condition. Finally, in Theorem 2.6, we show how the moment Lyapunov exponents 
and optimal deviation are related to the corresponding rate function and limit shape of 
the KPZ equation. The results of this paper are used in the companion paper [75] to prove 
an n-point, upper-tail LDP for the KPZ equation and to characterize the corresponding 
spacetime limit shape.

Under (1.4), the attractive BPs exhibit what we call the clustering behavior. Two 
effects contribute to the evolution of the attractive BPs: the attractive drift and diffu-
sive effect. The drift pulls the particles together, while the diffusive effect spreads them 
out. As will be explained in Section 2.2, under the second condition in (1.4), the attrac-
tive drift dominates the diffusive effect, so the BPs tend to cluster. Theorem 2.4 (also 
Theorem 2.6(b)) shows that, under the delta-like initial condition, the optimal deviation 
consists of a number of clusters and explicitly describes the spacetime trajectories of 
the clusters. In the context of the upper-tail LDPs for the KPZ equation, the clustering 
behavior (of the attractive BPs) corresponds to what is called the noise-corridor effect 
in [75, Sect. 1.3]. Those noise corridors are exactly the trajectories of the clusters.

Our proof does not rely on integrability or explicit formulas. Thanks to the integrabil-
ity of the delta Bose gas, moments of the SHE enjoy explicit formulas. The formulas offer 
a potential path to obtain the limit in (1.3), but they do not seem to provide information 
for proving a localization result like Corollary 2.5(b), which is a crucial technical input 
for the proof in [75]. Still, it is interesting to see if one can obtain the limit in (1.3) also 
from the formulas.

Let us compare (1.4) with two commonly-considered scaling regimes. First, TN =
A/N2, with A < ∞ fixed and N → ∞, corresponds to the Freidlin–Wentzell/weak-noise 
LDP for the KPZ equation. At the level of the attractive BPs, this is the diffusive regime, 
and the LDP is proven in [24] for a general class of rank-based diffusions that includes the 
attractive BPs. The LDP in [24] and the LDP proven here are very different in nature, as 
will be explained in Section 2.2. Next, N = 1 and T → ∞ correspond to the hyperbolic 
scaling regime, in long time, of the KPZ equation, namely hT (t, x) := T −1h(Tt, Tx). This 
is perhaps the most natural scaling regime in long time, while (1.4) allows us to probe 
any deviation much larger than those in the hyperbolic regime. For the hyperbolic scaling 
regime, since N2T = T → ∞, we also expect the clustering behaviors to happen. One 
may seek to generalize our approach to obtain the multipoint, positive-integer moment 
Lyapunov exponents in this regime. This has been achieved by [72], based on exact 
formulas as well as ideas about the optimal clusters from Section 2.3 of this paper.

We end the introduction with a brief literature review. The moments of the SHE 
and its variant have been used to study the intermittency property [34,31,47], large de-
viations, and the density function of the SHE (and its variants) in [18,35,4,16,9,52,45,
37,11,17,26,22,71]. The connection between the delta Bose gas and attractive BPs has 
been used in the physics work [68] to study their relaxation properties and their hy-
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drodynamic limits. The attractive BPs is a special case of diffusions with rank-based 
drifts, or rank-based diffusions for short. We refer to [28,6,80,29,42,5,87,43,83,24,25,
44,84,85,93,94,10,23,86,2,3] and the references therein for the literature on rank-based 
diffusions. Recently, there has been much interest in the LDPs for the KPZ equation 
in mathematics and physics. Several strands of methods produce detailed information 
on the one-point tail probabilities and the one-point rate function. This includes the 
physics works [69,70,54,90,13,55,56,61,65,57,67], the simulation works [38,39,36,40], and 
the mathematics works [11,12,8,26,22,48,71,7,32,30,95]. For the Freidlin–Wentzell/weak-
noise LDP, behaviors of the one-point rate function and the corresponding most probable 
shape(s) for various initial conditions and boundary conditions have been predicted 
[49–51,76,62,77,79,89,91,1,92], some of which recently proven [73,74,33]; an intriguing 
symmetry breaking and second-order phase transition has been discovered in [46,88] via 
numerical means and analytically derived in [54,59]; a connection to integrable PDEs is 
recently established and studied in the physics works [66,58–60] and the mathematically 
rigorous work [96].

Outline

In Section 2, we state the results and present some discussions. In Section 3, we 
introduce some notation, definitions, and tools. Sections 4–6 make up the proof of Theo-
rem 2.3, the LDP for the attractive BPs: We establish properties of the rate function in 
Section 4, prove the LDP upper bound in Section 5, and prove the LDP lower bound in 
Section 6. In Section 7, we specialize the setting into the delta-like initial condition and 
establish results on the moment Lyapunov exponents, stated as Theorem 2.4 and Corol-
lary 2.5. Finally, in Section 8, we prove Theorem 2.6 that relates the moment Lyapunov 
exponent and optimal deviation to the rate function and spacetime limit shape of the 
KPZ equation.
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2. Results and discussions

2.1. Moment Lyapunov exponents, attractive BPs

The first goal of this paper is to prove that the n-point Lyapunov exponent (1.3)
exists and to characterize it, for suitable initial conditions for Z. In (1.3) and hereafter, 
t ∈ (0, ∞), x1 < . . . < xn ∈ R, and m1, . . . , mn ∈ (0, ∞). Throughout this paper we will 
only work with integer moments, so an integer part is implicitly taken whenever needed; 
for example, Nmc := �Nmc� in (1.3). As will be shown in Theorem 2.6(a), the limit of 
(1.3) is continuous in �m ∈ [0, ∞)n. Hence, once we obtain the limit for �N �m� ∈ (Z>0)n, 
the result automatically extends to N �m ∈ [0, ∞)n.

To access (1.3), let us express the moments in terms of the attractive BPs. First, 
by [41, Theorem 5.3], the one-point moment of Z can be expressed as an expectation 
over independent BMs. The same proof there works for multipoint (in space) moments, 
giving, for y1, . . . , yNm ∈ R,

E
[ Nm∏

i=1
Z(t, yi)

]
= EBM

[
e

∑
i<j

∫ t
0 ds δ0(Xi(t−s)−Xj(t−s))

Nm∏
i=1

Z(0, Xi(t))
]
, (2.1)

where X1(s) − y1, . . . , XNm(s) − yNm are independent standard BMs under EBM, and 
the integrals are interpreted as localtimes. Hereafter, m ∈ (0, ∞) is fixed and is taken to 
be m = m1 + . . .+mn whenever we analyze (1.3). The localtimes in (2.1) can be removed 
by transforming EBM into a different law E. Let P and E denote the law and expectation 
under which X1, . . . , XNm evolve as a system of attractive BPs as

dXi(s) =
Nm∑
j=1

1
2sgn(Xj(s) − Xi(s)) ds + dBi(s), Xi(0) = yi, (2.2)

where B1, . . . , BNm are independent standard BMs, and sgn(x) := (x/|x|)1{x�=0}. We 
index the particles so that they are ordered at the start: X1(0) ≤ X2(0) ≤ . . ., and the 
particles can exchange orders as time evolves. By [43], the equations (2.2) have a unique 
strong (pathwise) solution. Start from PBM (under which X1, . . . , XNm are independent 
BMs), apply Tanaka’s formula to Xi −Xj , sum the result over i < j ∈ {1, . . . , Nm}, and 
exponentiate the result. Doing so gives

under PBM, e
∑

i<j

∫ t
0 ds δ0(Xi−Xj) = exp

(
−

∑
i<j

t∫
0

d(Xi − Xj) 1
2sgn(Xi − Xj)

)
(2.3a)

· exp
(

−
∑
i<j

1
2 |Xi(0) − Xj(0)| +

∑
i<j

1
2 |Xi(t) − Xj(t)|

)
. (2.3b)
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Rewrite the sum in (2.3a) as −1
2

∑Nm

i=1
∫ t

0 dXi

∑
j:j �=i sgn(Xi − Xj). As a process in t, 

this term has quadratic variation tNm((Nm)2 − 1)/12; see [16, Eq. (2.1)]. Given this 
property, Girsanov’s theorem asserts that

dPBM

dP ( �X) =
(
right hand side of (2.3a)

)
· eNm((Nm)2−1) t

24 . (2.4)

Let ψgd(�x) := exp(−1
2

∑
i<j |xi − xj |) = exp(−1

4
∑Nm

i,j=1 |xi − xj |). Combining (2.3)–(2.4)
gives

EBM

[
e

∑
i<j

∫ t
0 ds δ0(Xi(t−s)−Xj(t−s))( · )]

= eNm((Nm)2−1) t
24 E

[
ψgd( �X(0))

( · )
/ψgd( �X(t))

]
.

(2.5)

We view both sides of (2.5) as operators that act on a measurable function F ( �X) of 
(Xi(·))i=1,...,Nm such that ψgd( �X(0))F ( �X)/ψgd( �X(t)) is integrable under E.

Remark 2.1. A similar application of Tanaka’s formula was used in [16] to access the 
one-point integer moments of the SHE. The transformation (2.5) can also be derived by 
conjugating the Hamiltonian of the delta Bose gas by its ground state. This is done in 
[68, Eq. (5)–(6)] at a physics level of rigor.

To analyze the attractive BPs, we will mostly work with the (scaled) empirical measure

μN (s) := 1
N

Nm∑
i=1

δXi(T s)/(NT ). (2.6)

Hereafter, we write T = TN , with the understanding that N → ∞ is always taken under 
(1.4). Writing 〈λ, f〉 :=

∫
R λ(dx) f(x) for the action of a Borel measure λ on f, we rewrite 

(2.5) as

EBM

[
e

∑
i<j

∫ Tt

0 ds δ0(Xi(T t−s)−Xj(T t−s))( · )
]

(2.7a)

= exp
(
N3Tm3 (1 − 1

(Nm)2 ) t

24
)
E

[
exp

(
N3T

〈
μN (s)⊗2, 1

4 |x − x′|
〉∣∣s=t

s=0

) ( · )]
,

(2.7b)

where λ⊗2 := λ ⊗ λ stands for the product measure that acts on R2 = {(x, x′)}.

Convention 2.2. We have and will continue to use t to denote the time variable of the SHE, 
and use s to denote the time variable of X1, X2, . . .. We call Z(t, ·)|t=0 and Z(t, ·)|t=Nt

respectively the initial and terminal conditions of the SHE, and call Xi(s)|s=0 and 
Xi(s)|s=Nt respectively the starting and ending conditions of Xi. Since t = N t − s, 
there is a time reversal between t and s.
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2.2. Result: LDP for the attractive BPs

The task of analyzing the moment Lyapunov exponent (1.3) turns into studying the 
large deviations of the attractive BPs. Indeed, the quantities in (2.7) are of exponential 
scales, so the expectation is controlled by the large deviations of the attractive BPs.

Our result, Theorem 2.3, gives the sample-path LDP for μN .
Let us prepare some notation for Theorem 2.3. Let (mP(R)) denote the space of 

positive Borel measures on R with total mass m, and endow the space with the weak* 
topology, namely the topology induced by convergence in distribution, which is denoted 
by ⇒. Consider C ([0, t ], mP(R)). A sequence μk converging to μ in this space means 
sups∈[0,t ] |〈μk(s) − μ(s), ϕ〉| → 0 for any ϕ ∈ Cb(R). Endow C ([0, t ], mP(R)) with the 
topology induced by the convergence sequences. Namely, a set A in C ([0, t ], mP(R)) is 
closed if and only if A contains the limit of any sequence {μk}k=1,2,... ⊂ A that con-
verges. In Section 3.2, we will introduce metrics for these topologies. Given a topological 
space X , a sequence of X -valued random variables RN satisfying the LDP with the 
speed sN and rate function I means that − infO I ≤ lim infN→∞

1
sN

logP [RN ∈ O]
and lim supN→∞

1
sN

logP [RN ∈ C] ≤ − infC I for every open O ⊂ X and closed 
C ⊂ X . A function I : X → [0, ∞] being a good rate function means that its is 
lower-semicontinuous and {I ≤ r} is compact for any r < ∞.

More notation for Theorem 2.3 is in place. For λ ∈ mP(R), set

Φ[λ](x) := 〈λ, 1
2 sgn(· − x)〉 = −1

2 〈λ, 1(−∞,x)〉 + 1
2 〈λ, 1(x,∞)〉. (2.8)

Recall that sgn(0) := 0, so the right hand side excludes the mass of λ at x. This function 
gives the amount of drift a particle feels in the system of attractive BPs. More explicitly, 
the drift in (2.2) is equal to NΦ[λ](x) with λ = μN (s) and x = Xi(Ts)/(NT ). Next, let 
Cb

1,1([0, t ], R) be the space of functions h = h(s, x) with continuous and bounded first 
derivatives in time and space. Let

Λ(μ, h) := 〈μ(s), h(s)〉
∣∣s=t

s=0 −
t∫

0

ds 〈μ, ∂sh〉 −
t∫

0

ds 〈μ, Φ[μ]∂xh〉, (2.9)

I(μ) := sup
{

Λ(μ, h) −
t∫

0

ds
1
2

〈
μ, (∂xh)2〉

: h ∈ C 1,1
b ([0, t ],R)

}
. (2.10)

Hereafter, we adopt shorthand notation such as h(s) := h(s, ·), 〈μ, ∂sh〉 := 〈μ(s), ∂sh(s)〉, 
and Φ[μ] := Φ[μ(s)](x). Expressions like (2.10) arise in the martingale method [63] for 
proving LDP upper bounds. To prove the LDP lower bound and to analyze I, it will be 
convenient to have an expression more explicit than (2.10). Given any λ ∈ mP(R), let

F [λ](x) := 〈λ, 1(−∞,x]〉, X[λ](a) := inf{x ∈ R : a ≤ F [λ](x)}, (2.11)
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be the Cumulative Distribution Function (CDF) and quantile function, aka inverse CDF. 
We refer to a ∈ [0, m] as the quantile coordinate. As will be shown in Section 4.1, the 
rate function I permits a quantile representation I. Namely, I = I, where

I(μ) :=
t∫

0

ds

m∫
0

da
1
2

(
∂s(X[μ]) − Φ[μ](X[μ])

)2
, (2.12)

where X[μ] := X[μ(s)](a). Given that |Φ[μ]| ≤ m/2, when ∂s(X[μ]) /∈ L2([0, t ] × [0, m]), 
we define the integral in (2.12) to be +∞.

Theorem 2.3. Fix any t, m ∈ (0, ∞) and a starting condition μsc ∈ mP(R). Assume 
(1.4).

Started from a deterministic μN (0) such that μN (0) ⇒ μsc, the empirical measure 
μN satisfies the LDP on C ([0, t ], mP(R)) with the speed N3T = N3TN and the rate 
function

I�(μ) :=
{

I(μ) = I(μ) when μ(0) = μsc,

+∞ when μ(0) 
= μsc,
(2.13)

and I� is a good rate function.

We will refer to I�, I, and I all as rate functions; as shown in Sections 4, they are lower 
semicontinuous, nonnegative, and not identically infinite.

As mentioned previously, the condition N2T → ∞ underscores the clustering behav-
iors. In (2.2), the drift pulls the particles together, while the diffusive effect spreads them 
out. For O(N) particles evolving over time O(T ), the contribution of the drift is O(NT ), 
while the contribution of the diffusive effect is O(

√
T ). The condition N2T → ∞ amounts 

to saying that the drift dominates the diffusive effect. Under this condition, the attrac-
tive BPs tend to cluster, so we refer to the regimes with N2T → ∞ as the clustering 
regimes. In these regimes, deviations μ ∈ C ([0, t ], mP(R)) with atoms are relevant.

We emphasize that Theorem 2.3 differs from the LDP proven in [24]. The work [24]
considered a general class of rank-based diffusions and proved their LDPs under the 
scaling regime that corresponds to N → ∞ and TN2 = A < ∞, which we refer to as 
the diffusive regime. In the diffusive regime, the drift and diffusive effect compete at the 
same footing. We hence do not expect deviations with atoms (that persist over time) to 
be relevant. This distinction has a significant implication in the proof, which is explained 
in the next paragraph.

Let us describe the major challenge in proving Theorem 2.3. The challenge stems from 
the discontinuity of the drift, which is common in the study of rank-based diffusions. 
With the presence of atomic deviations, however, the issue of discontinuity becomes 
much more severe. To see why, take any deviation μ ∈ C ([0, t ], mP). At the macroscopic 
level, when the attractive BPs follow μ, the drift should approximate Φ[μ(s)](x). For a 
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non-atomic μ(s), the macroscopic drift Φ[μ(s)](x) is continuous in x, but for an atomic 
μ(s), the macroscopic drift is not continuous: for example Φ[δ0](x) = (1(−∞,0)(x) −
1(0,∞)(x))/2. Put differently, in the diffusive regime, the effect of the discontinuity in the 
drift diminishes in the N → ∞ limit, while in the clustering regimes, the effect of the 
discontinuity persists. This issue renders many commonly-used tools non-applicable and 
manifests itself in the proof of the LDP lower bound, where we (have to) use a cluster 
approximation with the help of the quantile representation (2.12) of the rate function.

2.3. Result: applications to the moment Lyapunov exponents [section rewritten]

The results in Sections 2.3–2.4 are for a particular initial condition, which we now 
define. For x′ ∈ R and a small α > 0, let Zα = Zα(t, x) be the solution of the SHE with 
the delta-like initial condition

Zα(0, NT· ) := 1[−α+x′,x′+α]. (2.14)

We will send N → ∞ first and α → 0 later. The solution of the SHE with this initial 
condition, scaled in time by T and in space by NT , can be written by the Feynman–Kac 
formula as

ZN,α(t, x) := Zα(Tt, NTx) := EBM

[
e

∫ T t
0 ds η(T t−s,X(s))1[−α+x′,x′+α]( 1

NT X(Tt))
]
,

(2.15)

where X = (standard BM) + NTx. For the purpose of studying the LDPs and limit 
shapes of the KPZ equation, the delta-like initial condition approximates the true delta 
initial condition δx′ sufficiently well; this is seen in the analysis of the companion paper 
[75].

We now explain how to obtain the multipoint moment Lyapunov exponents of ZN,α. 
To set up the notation, fix any x1 < . . . < xn ∈ R, x′ ∈ R, let �m = (m1, . . . , mn) ∈ [0, ∞)n

and m = m1 + . . . + mn be as before, and let

LSHE

(
x′ t−→ (�x, �m)

)
:= sup

{
tm

3

24 +
〈
μ(s)⊗2, 1

4 |x − x′|
〉∣∣s=t

s=0 − I(μ) : (2.16a)

μ ∈ C ([0, t ],mP(R)), μ(0) =
n∑

c=1
mcδxc

, μ(t) = mδx′

}
. (2.16b)

Let cN (i) := min{c : m1 + . . . + mc ≥ i/N} and set yi = xcN (i). This way, 
E[

∏Nm

i=1 Z(T t, NTyi)] = E[
∏n

c=1 Z(T t, NTxc)Nmc ]. Specialize to the delta-like initial 
condition (2.14), use (2.1) for t = T t and yi �→ NTyi, use (2.7), and apply 1

N3T log(·) to 
the result. Doing so gives
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1
N3T

log E
[ n∏
c=1

ZN,α(t, xc)mc

]
= tm3

24 + 1
4

n∑
c,c′=1

mc mc′ |xc − xc′ | + oN (1)

+ 1
N3T

logP
[
Xi(0) = NTxcN (i), |Xi(T t) − NTx′| ≤ NTα, ∀i

]
,

(2.17)

where oN (1) denotes a term that converges to zero as N → ∞. Rewrite (2.17) as

1
N3T

log E
[ n∏
c=1

ZN,α(t, xc)mc

]
= tm3

24 +
〈
μN (s)⊗2, 1

4 |x − x′|
〉∣∣s=t

s=0 + o(1) (2.18a)

+ 1
N3T

logP
[
μN (0) =

n∑
c=1

mcδxc
, supp(μN (t)) ⊂ [−δ + x′, x′ + δ]

]
. (2.18b)

It now suffices to obtain the limit of (2.18b) under limα→0 limN→∞. This will be carried 
out in Section 7.2 with the aid of Theorem 2.3. The result gives

lim sup
α→0

lim sup
N→∞

∣∣∣(2.18b) + inf
{
I(μ) : μ(0) =

n∑
c=1

mcδxc
; μ(t) = δx′

}∣∣∣ = 0. (2.19)

Combining (2.18)–(2.19) gives the multipoint moment Lyapunov exponents of ZN,α:

lim sup
α→0

lim sup
N→∞

∣∣∣ 1
N3T

logE
[ n∏
c=1

ZN,α(t, xc)mc

]
− LSHE

(
x′ t−→ (�x, �m))

)∣∣∣ = 0. (2.20)

For our subsequent analysis, the functional in the supremum in (2.16a) is not quite 
convenient, and we need an equivalent expression of it. Let

L[s1,s2](μ) :=
s2∫

s1

ds
( ∑

x

1
24 〈μ, 1{x}〉3 −

m∫
0

da
1
2

(
∂sX[μ]

)2
)

, (2.21)

where the sum runs over atoms of μ. In Appendix A, we prove that

tm
3

24 +
〈
μ(s)⊗2, 1

4 |x − x′|
〉∣∣s=t

s=0 − I(μ) = L[0,t ](μ). (2.22)

Given this, let us rewrite (2.16) as

LSHE

(
x′ t−→ (�x, �m))

)
:= sup

{
L[0,t ](μ) : (2.23a)

μ ∈ C ([0, t ],mP(R)), μ(0) =
n∑

c=1
mcδxc

, μ(t) = mδx′

}
, (2.23b)

where �m = (m1, . . . , mn) and m := m1 + . . . + mn.
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Fig. 1. The inertia clusters (gray) and optimal clusters (black). In this figure, B = {{1, 2, 3}, {4, 5}}, and 
x′ = 0.

Our result below, Theorem 2.4, gives the unique minimizer of (2.23). To state the result 
we need to construct a few objects. We begin by introducing what we call inertia clusters. 
The inertia clusters are point masses m1, . . . , mn that start at s = 0 from x1 < . . . < xn

with velocities φc := 1
2 (−m1 . . . − mc−1 + mc+1 + . . . + mn), c = 1, . . . , n. They travel 

at constant velocities until they meet, and when they meet, they merge according to 
the conservation of momentum. For example, if ζc and ζc+1 meet, they merged into a 
single cluster with mass (mc + mc+1) and velocity (mcφc + mc+1φc+1)/(mc + mc+1). Let 
ζc = ζc(s) ∈ C [0, t ], c = 1, . . . , n denote the trajectories of the inertial clusters. Examine 
which inertia clusters have merged within (0, t) and lump the indices of those clusters 
together. Doing so gives a partition of {1, . . . , n} into intervals. We let B denote this 
partition, and call an element b in B a branch. Namely, c, c′ ∈ b if and only if ζc and ζc′

merged with s ∈ (0, t). Note that branches depend on t. All the inertia clusters within a 
branch end up at the same position at s = t, namely ζc(t) = ζc′(t) for all c, c′ ∈ b; call 
this position ζb(t). In general, ζb(t) 
= x′. To bring the clusters to x′ at the ending time, 
apply a constant drift:

ξc(s) := ζc(s) + vbs, vb := (x′ − ζb(t))/t, c ∈ b, b ∈ B. (2.24)

The resulting deviation ξ =
∑n

c=1 mcδξc
is the optimal deviation and we call ξ1, . . . , ξn

the optimal clusters. See Fig. 1. By construction, ξc and ξc′ merge within (0, t) if and 
only if c, c′ ∈ b.

Theorem 2.4. The optimal deviation ξ is the unique minimizer of (2.23).

For the analysis in the companion paper [75], the result (2.20) along does not suffice, 
and we need a “localized” version of it as well. To set up the notation, For f ∈ C [0, Ts′], 
set

DistN,s(f, ξ) := min {| 1
NT f(Ts) − ξc(s)|}, (2.25)
c=1,...,n
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Fig. 2. Intermediate-time configuration. In this figure, C(1) = {1}, C(2) = {2}, C(3) = {3}, C(4) = {4, 5}.

DistN,[0,s′](f, ξ) := sup
s∈[0,s′]

DistN,s(f, ξ). (2.26)

Define the localized version of ZN,α:

Zβ-loc
N,α (t, x) := EBM

[
e

∫ T t
0 ds η(T t−s,X(s))1[−α+x′,x′+α]( 1

NT X(Tt))

· 1{DistN,[0,t](X,ξ(·+(t−t)))≤β}
]
,

(2.27)

where X = (standard BM)+NTx. The last indicator in (2.27) constrains the BM to stay 
close to ξ, in the post-scale units. By construction, Zβ-loc

N,α ≤ ZN,α. Below, Corollary 2.5(a) 
just restates (2.20), while Corollary 2.5(b) is the localized version of (2.20) that will be 
needed in [75].

Corollary 2.5.

(a) lim sup
α→0

lim sup
N→∞

∣∣∣ 1
N3T

log E
[ n∏
c=1

ZN,α(t, xc)Nmc

]
− LSHE

(
x′ t−→ (�x, �m)

)∣∣∣ = 0.

(b) For any nonempty A ⊂ {1, . . . , n} and β > 0,

lim sup
α→0

lim sup
N→∞

1
N3T

log E
[ ∏
c∈A

(
ZN,α − Zβ-loc

N,α

)
(t, xc)Nmc ·

∏
c/∈A

ZN,α(t, xc)Nmc

]
< LSHE

(
x′ t−→ (�x, �m)

)
.

(2.28)

As mentioned in Section 1, the analog of Corollary 2.5(a) in the hyperbolic scaling regime 
(T → ∞, N = 1, �m ∈ Zn

>0) has been proven in [72].
The discussion that leads up to (2.20) holds for more general initial conditions. For 

example, one can consider the multi-delta-like initial condition
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Z ′
α(0, NT· ) := eN2T β11[−α+x′

1,x′
1+α] + . . . + eN2T βm1[−α+x′

m,x′
m+α], (2.29)

for x′
1 < . . . < x′

m ∈ R, β1, . . . , βm ∈ R, with N → ∞ first and α → 0 later. On the 
other hand, the way we characterize the unique minimizer in Theorem 2.4 works only 
for the delta-like initial condition (2.14).

2.4. Result: connection to IKPZ and the limit shape [section rewritten]

We begin by preparing some notation. Fix t ∈ (0, t ] and x1 < . . . < xn, and let 
p(t) = p(t, x) := −x2/(2t) and

R(t, �x) := {�r = (rc)n
c=1 : rc ≥ p(t, xc), c = 1, . . . , n}. (2.30)

Given any �r ∈ R(t, �x), let f�,t,�x,�r = f�(x) be the piecewise C 1 function on R characterized 
by the properties: f�(xc) = rc, for all c; f� ≥ p(t); f�(x) = p(t, x) for all |x| large enough; 
∂xf� is constant on {f� > p(t)} \ {x1, . . . , xn}; f� is C 1 except at x1, . . . , xn. See Fig. 4
for an illustration. Set

IKPZ(t, �x,�r) :=
∫
R

dx
(1

2 (∂xf�,t,�x,�r)2 − 1
2 (∂xp(t))2)

, (2.31)

h�(t, x) := inf
{ (x − y)2

2(t − t) + f�(y) : y ∈ R
}

, (t, x) ∈ (0, 1] × R. (2.32)

See Fig. 3 for an illustration of h�. The space R(t, �x) is the space of deviations of the 
n-point upper-tail LDP for the KPZ equation at (t, x1), . . . , (t, xn). Because our method 
relies on positive moments, the results in this paper and in [75] are restricted to the 
subspace

Rconc(t, �x) := {�r ∈ R(t, �x) : f�,t,�x,�r is concave}. (2.33)

Let us mention a related property. Recall that the hypograph of a function is hypo(f) :=
{(x, r) : r ≤ f(x), x ∈ R}. When �r ∈ Rconc(t, �x), the function f�,t,�x,�r = f� has its 
hypograph hypo(f�) given by the convex hull of hypo(p(1)) ∪ {(xc, rc) : c = 1, . . . , n}, 
but this property fails when �r ∈ R(t, �x) \ Rconc(t, �x).

The companion paper [75] shows that the KPZ equation satisfies the finite-dimensional 
LDP with the rate function IKPZ, and that h� gives the corresponding spacetime limit 
shape, under the same scaling regimes considered in this paper; see Theorem 1.1 in [73]
for the precise statement. A similar LDP is proven in [30] based the Brownian Gibbs 
resampling property [14,15]. The results in [30] cover a different set of scaling regimes, 
work for configurations in R(t, �x), and give very detailed probability bounds.

Theorem 2.6 gives the connection between IKPZ, LSHE, h�, which is used in [75].

Notation for Theorem 2.6
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(a) Fix t and �x; view IKPZ(t, �x, �r) =: IKPZ(�r) and LSHE(0 t−→ (�x, �m)) =: LSHE(�m) as 
functions on Rconc(t, �x) and on [0, ∞)n, respectively.

(b) Fix any (x1 < . . . < xn), consider the terminal time t, take any pair (�r, �m) ∈
Rconc(t, �x)◦ × (0, ∞)n that satisfies (∇�rIKPZ)(t, �x, �r) = �m, and let h� and ξ be the 
corresponding limit shape and optimal deviation, respectively. As will be explained 
in Section 8.3, the limit shape h� is a weak solution of the Hamilton–Jacobi equation 
of Burgers’ equation and has shocks.

(c) Let �x, �r, and �m be as in Part (b) and take any intermediate time t′ ∈ (0, t ]. Traveling 
in backward time, some of the optimal clusters may have merged by time s = t − t′. 
Let {ξc(t − t′)}n

c=1 = {x′
1 < . . . < x′

n′} denote the distinct positions of the clusters 
at that time. Accordingly, let �r ′ := (h�(t′, x′

a))n′
a=1, C(a) := {c : ξc(t − t′) = x′

a}, 
m ′

a :=
∑

c∈C(a) mc, and �m′ := (m ′
a)n′

a=1; see Fig. 2 for an illustration.

Theorem 2.6. Notation as above.

(a) The functions IKPZ and LSHE are continuous, strictly convex, and the Legendre 
transform of each other. Further, ∇IKPZ = ∇�rIKPZ : Rconc(t, �x) → [0, ∞)n is a 
homeomorphism.

(b) The trajectories of the shocks in h� and the trajectories of the optimal clusters in ξ
coincide.

(c) We have

(∇�rIKPZ)(t′, �x ′,�r ′) = �m′, (2.34)

LSHE

(
0 t−→ (�x, �m)

)
= LSHE

(
0 t

′
−→ (�x ′, �m′)

)
+

n′∑
a=1

LSHE

(
x′
a

t−t
′

−−−→ (xc,mc)c∈C(a)
)
.

(2.35)

3. Notation, definitions, tools

3.1. Reduction to m = 1

We begin by explaining how Theorem 2.3, Theorem 2.4, and Corollary 2.5 follow from 
the special case of m = 1. The key lies in certain scaling relations. Consider the scaling 
operator 〈Smλ, f〉 := 〈λ, f(·/m)〉. The map 1

m
Sm : mP(R) → P(R) is a homeomor-

phism. Applying 1
m
Sm to μN (s) gives 1

m
SmμN (s) = 1

Nm

∑Nm

i=1 δXi(T s)/(NmT ). This can 
be viewed as a unit-mass empirical measure with N ′ := Nm being the scaling parameter. 
We will verify in Appendix A the scaling identities

I
( 1
m
Smμ) = 1

m3 I(μ), I
( 1
m
Smμ) = 1

m3 I(μ), for all μ ∈ C ([0, t ],mP(R)).(3.1)
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Fig. 3. The limit shape h�. In the gray regions h� = p; in the colored regions h� is piecewise linear.

Fig. 4. The function f� = f�,t,�x,�r.

The 1/m3 factor absorbs the change in the LDP speed by going from N to N ′ = Nm. 
Combining what said above shows that Theorem 2.3, Theorem 2.4, and Corollary 2.5
follow from the special case of m = 1.

3.2. The spaces P(R) and C ([0, t ], P(R))

By Section 3.1, we consider m = 1 only.
Let us introduce some metrics on P(R) and C ([0, t ], P(R)). Even though we endow 

P(R) with the weak* topology, it will be convenient to also consider the 1-Wasserstein 
metric:

W(λ, λ′) := inf
{

〈π, |x − x′|〉 : π ∈ P(R2), 〈π, · ⊗ 1〉 = λ, 〈π, 1 ⊗ ·〉 = λ′}. (3.2)

The 1-Wasserstein metric on P(R) permits the inverse-CDF formula:
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W(λ, λ′) =
∫
R

dx
∣∣F [λ](x) − F [λ′](x)

∣∣ =
1∫

0

da
∣∣X[λ](a) − X[λ′](a)

∣∣. (3.3)

With R being non-compact, the 1-Wasserstein metric produces a topology stronger than 
the weak* topology on P(R). To metrize the weak* topology, we introduce

dist(λ, λ′) :=
∞∑

k=1

2−k min
{

1,

k∫
−k

dx
∣∣F [λ](x) − F [λ′](x)

∣∣}. (3.4)

It is not hard to check that dist metrizes the weak* topology on P(R). Accordingly,

dist[0,t ](μ, μ′) := sup
{

dist(μ(s), μ′(s)) : s ∈ [0, t ]
}

(3.5)

metrizes the topology on C ([0, t ], P(R)) introduced in Section 2.2. Let us note two useful 
inequalities related to these metrics. First, by (3.3)–(3.4), dist(λ, λ′) ≤ W(λ, λ′). Next, 
for any v1, v2, . . . ∈ (0, 1] that add to 1 and any y1, y2, . . . , y′

1, y′
2, . . . ∈ R,

dist
( ∑

i

viδyi
,
∑

i

viδy′
i

)
≤ W

( ∑
i

viδyi
,
∑

i

viδy′
i

)
≤

∑
i

vi

∣∣yi − y′
i

∣∣, (3.6)

which holds thanks to the coupling π({yi, y′
i}) = vi, i = 1, 2, . . ..

We will need a criterion for a set S ⊂ C ([0, t ], P(R)) to be precompact. Recall the 
topology of C ([0, t ], P(R)) from before Theorem 2.3 and recall that we endow P(R) with 
the weak* topology. First, by a generalized version of the Arzelá–Ascoli theorem, the set 
S is precompact if it is equi-continuous and if {μ(s) : μ ∈ S, s ∈ [0, t ]} is precompact in 
P(R); see [78, Thm. 47.1] for example. By the Banach–Alaoglu theorem, for any b < ∞, 
the set {λ ∈ P(R) : supp(λ) ⊂ [−b, b]} is compact. From this property, it is not hard to 
show that, for any b1, b2, . . . → ∞, the set ∩∞

k=1{λ ∈ P(R) : λ(R \ [−bk, bk]) ≤ 1/k} is 
precompact in P(R). These properties give the following criterion.

Lemma 3.1. A set S ⊂ C ([0, t ], P(R)) is precompact if

(i) the set S is equicontinuous with respect to dist, and
(ii) there exists bk → ∞ such that 〈μ(s), 1R\[−bk,bk]〉 ≤ 1/k, for all k ∈ Z>0, μ ∈ S, and 

s ∈ [0, t ].

Here is a list of useful properties.

Lemma 3.2.

(a) For any λ ∈ P(R) and f ∈ L1(R, λ), 〈λ, f〉 =
∫ 1 da f(X[λ](a)).
0
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(b) For any μ ∈ C ([0, t ], P(R)), the tail mass sups∈[0,t ]〈μ(s), 1R\[−b,b]〉 tends to zero 
as b → ∞.

(c) For any μ ∈ C ([0, t ], P(R)), for Lebesgue almost every a ∈ [0, 1], X[μ(·)](a) ∈
C [0, t ].

Part (a) is the standard inverse-CDF formula; Parts (b)–(c) are proven in Appendix A.

3.3. Expressing Φ[λ] in the quantile coordinate

For any λ ∈ P(R) and a ∈ [0, 1], let

a− = a−[λ](a) := inf{a′ ∈ [0, 1] : X[λ](a′) = X[λ](a)}, (3.7a)

a+ = a+[λ](a) := sup{a′ ∈ [0, 1] : X[λ](a′) = X[λ](a)}. (3.7b)

Note that a− < a+ if and only if λ has an atom at X[λ](a). Refer to the second expression 
of Φ[λ] in (2.8) and note that λ((−∞, X[λ](a))) = a− and λ((X[λ](a), ∞)) = (1 − a+). 
We have

Φ[λ]
(
X[λ](a)

)
=

{
1
2 − a, when a− = a+,
1
2 − a−+a+

2 = 1
a+−a−

∫ a+
a−

da (1
2 − a), when a− < a+.

(3.8)

Fix any f ∈ L1(R, λ). By (3.8), we have f(X[λ](a)) · Φ[λ](X[λ](a)) = f(X[λ](a)) · (1
2 − a)

whenever a− = a+, and 
∫ a+

a−
da f(X[λ](a)) · Φ[λ](X[λ](a)) =

∫ a+

a−
da f(X[λ](a)) · (1

2 − a)
whenever a− < a+. Combining these properties gives

1∫
0

da f
(
X[λ](a)

)
· Φ[λ]

(
X[λ](a)

)
=

1∫
0

da f
(
X[λ](a)

)
(1

2 − a). (3.9)

3.4. Dividing a measure

Let us introduce a procedure of dividing a given μ ∈ C ([0, t ], P(R)) into pieces with 
constant masses. Fix any m1, . . . , mn ∈ (0, 1] that add up to m = 1. For any s ∈ [0, t ] and 
c ∈ {1, . . . , n}, consider Fc(s, x) := max{min{F [μ(s)](x) − (m1 + . . . + mc−1), mc}, 0}. 
Namely, we consider the graph of F [μ(s)](·) between the horizontal levels (m1 + . . . +
mc−1) and (m1 + . . . + mc) and shift the graph down so that the lower level is at 0. The 
result Fc(s, x) is the CDF of a measure with total mass mc, and we let μc(s) ∈ mcP(R)
denote that measure.

Here are a few properties of μc. First, μc(s) is continuous in s. To see why, note 
that, by construction, |Fc(s′, x) − Fc(s, x)| ≤ |F (s′, x) − F (s, x)|. Using this property 
in conjunction with (3.4) and the continuity of μ gives the continuity of μc. Next, by 
construction, the measure μc(s) is supported in [X[μ(s)](m1 + . . . + mc−1), X[μ(s)](m1 +
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. . . + mc)]. Finally, note that μc(s) and μc+1(s) can both have an atom at X[μ(s)](m1 +

. . . + mc).

4. LDP for the attractive BPs: properties of the rate functions

As explained in Section 3.1, we will only consider m = 1, so all deviations take value 
in P(R).

4.1. The quantile representation

Here, we show that I = I on C ([0, t ], P(R)). To simplify notation, write X[μ(s)](a) =
X(s, a), Φ[μ(s)](x) = Φ(s, x), and F [μ(s)](x) := F (s, x).

Case 1: ∂sX[μ] ∈ L2([0,t] ×[0,1]). We seek to express the terms in (2.10) in the quantile 
coordinate. Take any h ∈ Cb

1,1([0, t ], R). Under the assumption of Case 1, X(s, a) is 
differentiable in s Lebesgue almost everywhere (a.e.) on [0, t ] × [0, 1], so d

ds h(s, X(s, a)) −
∂sh(s, X(s, a)) = ∂xh(s, X(s, a))∂sX(s, a) Lebesgue a.e. Apply 

∫
[0,t ]ds 

∫ 1
0 da to both sides. 

On the left hand side of the result, use Lemma 3.2(a) in reverse to turn the result 
into 〈μ(s), h(s)〉|t0 −

∫
[0,t ]ds〈μ, ∂sh〉, which gives the first two terms in (2.9). Next, use 

Lemma 3.2(a) to express the last term in (2.9) and the integral term in (2.10) in the 
quantile coordinate. Collecting the preceding results gives

Λ(μ, h) −
t∫

0

ds
1
2

〈
μ, (∂xh)2〉

=
t∫

0

ds

1∫
0

da
(

(∂xh)X(∂sX − ΦX) − 1
2

(
(∂xh)X

)2
)

, (4.1)

where the subscript means (ϕX)(s, a) := ϕ(t, X(s, a)), transformation to the quantile 
coordinate. Taking the sumpremum over h ∈ C 1,1

b ([0, t ], R) gives

I(μ) = sup
h

t∫
0

ds

1∫
0

da
(

(∂xh)X(∂sX − ΦX) − 1
2

(
(∂xh)X

)2
)

. (4.2)

Let us simplify (4.2). Within the integral, write ∂xh = g and complete the square to 
get −1

2 (gX−∂sX +ΦX)2+ 1
2 (∂sX −ΦX)2, and recognize the contribution of 1

2(∂sX −ΦX)2 as 
I(μ). The supremum is taken over h ∈ Cb

1,1([0, t ], R). Via an approximation argument, 
we can replace this supremum with the supremum over those gs with 

∫
[0,t ]ds 〈μ, g2〉 < ∞. 

Doing so gives

I(μ) = I(μ) − inf
{ t∫

0

ds

1∫
0

da
1
2

(
gX − ∂sX + ΦX

)2 :
t∫

0

ds 〈μ, g2〉 < ∞
}

. (4.3)

It remains only to show that the infimum in (4.3) is zero. Take any partition Γ =
{0 = s0 < s1 < . . . < s|Γ| = t} of [0, t ], for any ϕ ∈ C [0, t], let
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(∂Γϕ)(s) :=
|Γ|∑

j=1

ϕ(sj) − ϕ(sj−1)
sj − sj−1

1[sj−1,sj)(s) (4.4)

denote the discrete-time derivative with respect to Γ, and take g(s, x) := (∂ΓX(·, F (·,

x))(s) − Φ(s, x). Insert this g into (4.3). The terms −ΦX and ΦX cancel each other. 
For the discrete-derivative term, note that X(sj , F (sj , x))X := X(sj , F (sj , X(sj , a))). It 
is not hard to check that, for every sj , the last expression is equal to X(sj , a) Lebesgue 
a.e. on [0, 1]. The resulting integral hence reads 

∫
[0,t ]ds 

∫ 1
0 da 12(∂ΓX − ∂sX)2. Under the 

assumption of Case 1, this integral tends to zero as the mesh of Γ tends to zero. This 
completes the proof for Case 1.

Case 2: ∂sX[μ] /∈ L2([0,t] × [0,1]). In this case, by definition, I(μ) := ∞. Take any 
partition Γ = {0 = s0 < s1 < . . . < s|Γ| = t} of [0, t ] and let ∂Γ be as in (4.4). We will 
show that

I(μ) + t

8 ≥ 1
4

t∫
0

ds

1∫
0

da
(
∂ΓX

)2
. (4.5)

By the assumption of Case 2 and Lemma 3.2(c), the right hand side of (4.5) tends 
to ∞ as the mesh of Γ tends to zero. Hence proving (4.5) will give the desired result 
I(μ) = I(μ) = ∞.

The proof will invoke a variant of I. Let us introduce this variant and its properties.

I◦
[s′,s′′](μ) := sup

h∈Cb
1,1([s′,s′′],R)

{
〈μ(s), h(s)〉

∣∣s′′

s′ −
s′′∫

s′

ds 〈μ, ∂sh〉 −
s′′∫

s′

ds 〈μ, (∂xh)2〉
}

.

(4.6)

The following properties are not difficult to verify, which we do in Appendix A.
(a) Additivity in time: I◦

[s1,s2] + I◦
[s2,s3] = I◦

[s1,s3].
(b) Monotonicity in time: For all [s2, s3] ⊂ [s1, s4], I◦

[s2,s3] ≤ I◦
[s1,s4].

(c) Convexity: μ �→ I◦
[s′,s′′](μ) is convex.

(d) Space translation invariance: I◦
[s′,s′′](T0,yμ) = I◦

[s′,s′′](μ), where T0,y translates μ
in space by y, namely 〈T0,yμ(s), f〉 := 〈μ(s), f(· − y)〉 for f ∈ Cb(R).

(e) For any time-independent λ ∈ P(R), I◦
[s′,s′′](λ) = 0.

We begin by bounding I(μ) from below. Young’s inequality and the property |Φ[μ]| ≤
1/2 together give −Φ[μ]∂xh ≥ −1

8 − 1
2 (∂xh)2. Insert this inequality into (2.9)–(2.10), and, 

within the result, move the term 
∫

[0,t ]ds 〈μ, −1/8〉 = −t/8 to the left hand side. Doing 
so gives I(μ) + t/8 ≥ I◦

[0,t ](μ). Next, we mollify μ. Define the time-space translation 
operator by 〈(Ts,yν)(s′), f〉 := 〈ν(s′ + s), f(· − y)〉, take ϕδ(x) := exp(−x2/(2δ))/

√
2πδ, 

and use ϕδ to mollify μ to get

μδ :=
∫

ds

∫
dy ϕδ(s)ϕδ(y)Ts,yμ, (4.7)
R R
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with the convention μ(s)|s<0 := μ(0) and μ(s)|s>t := μ(t). Apply I◦
[0,t ](·) to both sides 

of (4.7), use Property (c), and use Property (d). Doing so gives

I◦
[0,t ](μδ) ≤

∫
R

ds

∫
R

dy ϕδ(s)ϕδ(y)I◦
[0,t ](Ts,yμ) =

∫
R

ds ϕδ(s) I◦
[0,t ](Ts,0μ). (4.8)

Next, for s ≥ 0, using Properties (a), (e), and (b) in order gives I◦
[0,t ](Ts,0μ) =

I◦
[0,t−s](μ) + I◦

[t−s,t ](μ(t)) = I◦
[t−s,t ](μ) + 0 ≤ I◦

[0,t ](μ) + 0, and similarly for s < 0. 
Hence

I◦
[0,t ](μδ) ≤

( ∫
R

ds ϕδ(s)
)

I◦
[0,t ](μ) = I◦

[0,t ](μ) ≤ I(μ) + t

8 . (4.9)

Write I◦
j := I◦

[sj−1,sj ]. The last bound and Property (a) give

I(μ) + t

8 ≥ I◦
1 (μδ) + . . . + I◦

|Γ|(μδ). (4.10)

We next bound I◦
j (μδ) from below. Write Fδ(s, x) := F [μδ(s)](x) and Xδ(s, a) :=

X[μδ(s)](a) to simplify notation. By the construction of μδ, both functions are C ∞. 
Further, since the mollifier ϕδ is strictly positive everywhere, Fδ(s, x) strictly increases 
in x, whereby Fδ(s, Xδ(s, a)) = a for all s and a. Fix any v ∈ C ∞[0, 1] and let h(s, x) :=∫ x

−∞ dy v(Fδ(s, y)). For this test function, d
ds h(s, Xδ(s, x)) = (∂sh)Xδ

+ (∂xh)Xδ
∂sXδ and 

(∂xh)Xδ
= (v ◦ Fδ)Xδ

, which is equal to v thanks to the relation Fδ(s, Xδ(s, a)) = a. 
Hence d

ds h(s, Xδ(s, x)) − (∂sh)Xδ
− (∂xh)2

Xδ
= v ∂sXδ − v2. Apply 

∫
[sj−1,sj ]ds 

∫
[0,1]da to 

both sides and compare the result with (4.6). Doing so gives

I◦
j (μδ) ≥

1∫
0

da
(

v(a)Xδ(s, a)
∣∣sj

sj−1
− v(a)2(sj − sj−1)

)
. (4.11)

Optimizing (4.11) over v ∈ C ∞[0, 1] gives

I◦
j (μδ) ≥ (sj − sj−1)

1∫
0

da
1
4

(
Xδ(sj , a) − Xδ(sj−1, a)

sj − sj−1

)2
. (4.12)

We are now ready to conclude the desired result. Combining (4.10) and (4.12) gives

I(μ) + t

8 ≥ 1
4

∫
[0,t ]ds

∫
[0,1]da (∂ΓXδ)2. (4.13)

With the aid of Lemma 3.2(c), it is not hard to check that Xδ → X as δ → 0 Lebesgue 
a.e. on [0, t ] × [0, 1]. Given this property, sending δ → 0 in (4.13) with the aid of Fatou’s 
lemma gives the desired result (4.5).
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4.2. The rate function I� is a good

Here we prove that I� is good. Recall from (2.13) that I� consists of I and a de-
pendence on the initial condition. It hence suffices to show that I = I is a good rate 
function when restricted to {μ : μ(0) = μsc}. We will show that I is lower-semicontinuous 
on C ([0, t ], P(R)) and that S := {μ : I(μ) ≤ r, μ(0) = μsc} is precompact.

Let us show the lower semicontinuity of I. We begin with some reductions. Recall from 
(2.10) that I is defined as a supremum. Since the supremum of any set of continuous 
functions is lower semicontinuous, it suffices to check that, for any h ∈ Cb

1,1([0, t ], R),

C ([0, t ], P(R)) → R, μ �−→ Λ(μ, h) −
t∫

0

ds
1
2 〈μ, (∂xh)2〉 is continuous. (4.14)

Every term in (2.9) and (2.10) is readily seen to be continuous except for 
∫

[0,t ]ds 〈μ,

Φ[μ](∂xh)〉. It hence suffices to show that, for any f ∈ Cb(R), the map P(R) → R: 
λ �→ 〈λ, Φ[λ]f〉 is continuous. To this end, combine Lemma 3.2(a) and the identify 
(3.9) to get 〈λ, Φ[λ]f〉 =

∫ 1
0 da (1

2 − a) f(X(a)). Take any sequence λk ⇒ λ. Note that 
λk ⇒ λ implies X[λk] → X[λ] Lebesgue a.e. on [0, 1]. This property together with 
the bounded convergence theorem gives 〈λk, Φ[λk]f〉 =

∫ 1
0 da (1

2 − a) f(X[λk](a)) →∫ 1
0 da (1

2 − a) f(X(a)) = 〈λ, Φ[λ]f〉.
To prepare for the proof of the precompactness, we derive a time-continuity estimate. 

Recall from (2.12) that I is defined as an integral over time. Fix s′ < s′′ ∈ [0, t ], forgo 
the integral outside [s′, s′′], factor out 1

2 (s′′ − s′) from the integral, and apply Jensen’s 
inequality with respect to (s′′ − s′)−1 ∫

[s′,s′′]ds 
∫

[0,1]da. Doing so gives

I(μ) ≥ 1
2(s′′ − s′)

(∫ 1
0 daX[μ(s)]|s′′

s′

s′′ − s′ −
∫ s′′

s′ ds
∫ 1

0 da Φ[μ]X
s′′ − s′

)2
. (4.15)

Call the first and second terms within the last square b and b′ respectively. Use the 
inequality (b −b′)2 ≥ 1

2b2−b′2 and note that |b′| ≤ ‖Φ[μ]‖∞ ≤ 1/2. After being simplified, 
the result reads (s′′ −s′)I(μ) + (s′′−s′)2

8 ≥ 1
4

∫ 1
0 da (X[μ(s′′)] −X[μ(s′)])2. By the Cauchy–

Schwarz inequality, the last integral is bounded from below by 
∫ 1

0 da |X[μ(s′′)] −X[μ(s′)]|. 
We arrive at the time-continuity estimate:

1
4

1∫
0

da
∣∣∣X[μ(s′′)] − X[μ(s′)]

∣∣∣ ≤ (s′′ − s′)I(μ) + 1
8(s′′ − s′)2. (4.16)

Based on (4.16), we fix r ∈ [0, ∞) and μsc ∈ P(R) and show the precompact-
ness of S := {μ : I(μ) ≤ r, μ(0) = μsc}. We will do so by verifying the conditions 
in Lemma 3.1. Referring to (3.3)–(3.4), we see that dist(μ(s′′), μ(s′)) is bounded by 
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4 times the left hand side of (4.16). Hence the equicontinuity of S, which is re-
quired by Lemma 3.1(i), follows. To verify the condition in Lemma 3.1(ii), take any 
μ ∈ S and write 〈μ(s), 1R\[−b,b]〉 as 

∫
da 1{|X[μ(s)]| > b}. Bound the last integral by ∫

da 1{|X[μ(0)]| > b/2} +
∫

da 1{|X[μ(s)] − X[μ(0)]| > b/2}. Recognize the former inte-
gral as 〈μ(0), 1R\[−b/2,b/2]〉 and bound the second integral by using Markov’s inequality 
and (4.16) for (s′, s′′) = (0, s). Doing so gives the bound (8/b)(sI(μ) + s2/8), which is at 
most (8rt + t2)/b. Hence, 〈μ(s), 1R\[−b,b]〉 ≤ 〈μsc, 1R\[−b/2,b/2]〉 + (8rt + t2)/b. From this, 
we see that the condition in Lemma 3.1(ii) is satisfied for a suitable choice of bk → ∞.

5. LDP for the attractive BPs: upper bound

Here we prove the LDP upper bound in Theorem 2.3. We achieve this by first es-
tablishing the exponential tightness of μN (defined at the beginning of Section 5.1) and 
then proving the weak LDP upper bound (defined at the beginning of Section 5.2). As 
was explained in Section 3.1, we consider m = 1 only.

5.1. Exponential tightness [section rewritten]

Here, we seek to prove that μN is exponentially tight, which means, for any ε > 0, 
there exists a precompact S ⊂ C ([0, t ], P(R)) such that

lim sup
N→∞

1
N3T

logP [μN /∈ S] ≤ −1
ε

. (5.1)

The first step is to devise some events to control the BMs Bi in (2.2). Consider the 
events

UN ([s1, s2], v) :=
{ N∑

i=1
sup

s∈[s1,s2]
|Bi(Ts) − Bi(Ts1)| ≤ N2Tv|s2 − s1|1/3

}
, (5.2)

UN (v) :=
⋂
�≥1

�⋂
j=1

UN

([
j−1

� t, j
� t

]
, v

)
. (5.3)

To control the summand in (5.2), set Bi[s1, s2] := sups∈[s1,s2](Bi(Ts) − Bi(Ts1)) and 
Bi[s1, s2] := − infs∈[s1,s2](Bi(Ts) − Bi(Ts1)) and write

sup
s∈[s1,s2]

|Bi(Ts) − Bi(Ts1)| = max{Bi[s1, s2], Bi[s1, s2]} ≤ Bi[s1, s2] + Bi[s1, s2]. (5.4)

Sum (5.4) over i = 1, . . . , N . For λ ∈ R, we have the inequality

E
[
eλ

∑N
i=1 sups∈[s1,s2] |Bi(T s)−Bi(T s1)|] ≤ E

[
eλ

∑N
i=1 Bi[s1,s2] · eλ

∑N
i=1 Bi[s1,s2]]. (5.5)
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The random variables Bi[s1, s2] and Bi[s1, s2] each have the same law as 
√

T (s2 − s1)
|Bi(1)|. On the right hand side of (5.5), use the Cauchy–Schwarz inequality, use the 
just-mentioned property about the law, and use the property that B1, . . . , BN are inde-
pendent. Doing so gives

E
[
eλ

∑N
i=1 sups∈[s1,s2] |Bi(T s)−Bi(T s1)|] ≤

(
E

[
e2λ

√
T (s2−s1)|B1(1)|])N

. (5.6)

The inequality exp(|r|) ≤ exp(r) + exp(−r) and the identity E[exp(±rB1(1))] =
exp(r2/2) together give E[e2λ

√
T (s2−s1)|B1(1)|] ≤ 2e2λ2T (s2−s1). Using this in (5.6) gives

E
[
eλ

∑N
i=1 sups∈[s1,s2] |Bi(T s)−Bi(T s1)|] ≤ 2N e2λ2NT (s2−s1). (5.7)

Combining (5.7) and Chernoff’s bound P [A > a] ≤ e−λaE[eλA] with A =∑N
i=1 sups∈[s1,s2] |Bi(Ts) − Bi(Ts1)|, a = N2Tv|s2 − s1|1/3, and λ = N |s2 − s1|−2/3v/4

yields

P [ UN ([s1, s2], v)c] ≤ 2N exp
(

− 1
8N3Tv2|s2 − s1|−1/3)

. (5.8)

Next, use (5.8) and the union bound to bound P [ UN (v)c]. We have, for all v ≥ 1 and 
some universal constant c < ∞,

P [ UN (v)c] ≤ 2N
∞∑

�=1

� · e− 1
8 N3T v2�1/3

≤ c2N e− 1
8 N3T v2

. (5.9)

Under (1.4), the factor c2N is negligible compared to exp(O(N3T )). Use (5.9) to fix a 
large enough v such that

lim sup
N→∞

1
N3T

logP
[
UN (v)c]

≤ −1
ε

. (5.10)

Having fixed v, we write UN (v) = UN hereafter.
We next prove that, under UN , all samples of μN are contained in a fixed precompact 

set. This will imply the desired exponential tightness. Proving this statement amounts 
to verifying the conditions in Lemma 3.1 — for all realizations of μN under UN — with 
a fixed choice of b1, b2, . . . → ∞.

To verify the equicontinuity required by Lemma 3.1(i), apply (3.6) to get

dist(μN (s′), μN (s′′)) ≤ 1
N

N∑
i=1

|Xi(Ts′′) − Xi(Ts′)|
NT

, for all s′ < s′′ ∈ [0, t ]. (5.11)

To bound the last sum, integrate (2.2) over [Ts′, Ts′′] and use |sgn| ≤ 1. Doing so gives

1
N

N∑
i=1

|Xi(Ts′′) − Xi(Ts′)|
NT

≤ |s′′ − s′|
2 + 1

N

N∑
i=1

|Bi(Ts′′) − Bi(Ts′)|
NT

. (5.12)
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Under UN , the last term in (5.12) is bounded by 2v|s′′ − s′|1/3. This is because, for 
any given s′ < s′′ ∈ [0, t], we can find � ∈ Z>1 and j ∈ {1, . . . , � − 1} such that 
s′, s′′ ∈ [t(j − 1)/�, t(j + 1)/�] and that s′′ − s′ > t/�. Hence

under UN , for all s′ < s′′ ∈ [0, t ],

1
N

N∑
i=1

1
NT

|Xi(Ts′′) − Xi(Ts′)| ≤ 1
2 |s′′ − s′| + 2v|s′′ − s′|1/3.

(5.13)

Combining (5.11) and (5.13) gives, under UN , dist(μN (s′), μN (s′′)) ≤ |s′′−s′|/2 +2v|s′′−
s′|1/3, so the desired equicontinuity holds.

To verify the condition in Lemma 3.1(ii), start by writing

〈μN (s), 1R\[−2b,2b]〉 ≤ 1
N

N∑
i=1

1{ 1
NT |Xi(Ts) − Xi(0)| > b} + 〈μN (0), 1R\(−b,b)〉. (5.14)

We have lim supN→∞〈μN (0), 1R\(−b,b)〉 ≤ 〈μsc, 1R\(−b,b)〉, because μN (0) ⇒ μsc and 
because R \ (−b, b) is closed. Next, bound the summand in (5.14) by b−1|Xi(Ts) −
Xi(0)|/(NT ) and apply (5.13). The result gives that, under UN , the first term on the 
right side of (5.14) is bounded by b−1(s ·2−1 +2vs1/3) ≤ b−1(t/2 +2vt1/3). These bounds 
together verify the condition in Lemma 3.1(ii) for bk := (t/2 + 2vt1/3)2k.

5.2. The weak upper bound

We begin by stating the goal. First, given the exponential tightness, it suffices to prove 
a weak LDP upper bound, namely the LDP upper bound where the closed set is assumed 
to be compact. Fix any compact K ⊂ C ([0, t ], P(R)). Recall I� from (2.13). If K ∩ {μ :
μ(0) = μsc} = ∅, then infK I� = +∞ and the desired upper bound follows trivially. We 
hence assume K ∩ {μ : μ(0) = μsc} 
= ∅, whereby infK I� = infK I. Further, recall from 
(2.10) that I is defined as a supremum over h ∈ Cb

1,1([0, t ], R). Via an approximation 
argument, the supremum can be replaced by the one over h ∈ Cc

∞([0, t ], R). Hence our 
goal is to show

lim sup
N→∞

1
N3T

logP
[
μN ∈ K

]
≤ − inf

μ∈K
sup

h∈C ∞
c ([0,t ],R)

{
Λ(μ, h) −

t∫
0

ds
1
2

〈
μ, (∂xh)2〉}

.

(5.15)

Let us use the martingale method [63] to prove (5.15). Take any h ∈ Cc
∞([0, t ], R)

and apply Itô’s calculus to N3T 〈μN (s), h(s)〉 = N2T
∑

i h(s, Xi(Ts)/(NT )) with the aid 
of (2.2) to get

N3T 〈μN (s), h(s)〉
∣∣∣s′

−N3T
∫ s′

ds
〈
μN , ∂sh + Φ[μN ](∂xh) + 1

2 ∂xxh
〉

(5.16a)

0 0 2N T
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= NT 1/2 ∑N
i=1

∫ s′

0 dBi(s) (∂xh)
(
s, 1

NT Xi(Ts)
)
. (5.16b)

This result implies that the expression in (5.16a), when viewed as a process in s′, is a mar-
tingale with the quadratic variation N3T

∫ s′

0 ds 〈μN , (∂xh)2〉. Hence
E[exp(N3TUN (μN ))] = 1, where

UN (μ) := Λ(μ, h) −
t∫

0

ds
1
2 〈μ, (∂xh)2〉 − 1

2N2T

t∫
0

ds 〈μ, ∂xxh〉, (5.17)

and Λ was defined in (2.9). Given any Borel A ⊂ C ([0, t ], P(R)), write

P [μN ∈ A] = E[1A(μN ) exp(−N3TUN (μN )) exp(N3TUN (μN ))], (5.18)

bound the first two factors together by supμ∈A exp(−N3TUN (μ)), use
E[exp(N3TUN (μN ))] = 1 for the remaining factor, and apply lim supN (N3T )−1 log(·)
to both sides of the result. Doing so gives

lim sup
N→∞

1
N3T

logP [μN ∈ A] ≤ limN→∞ supμ∈A UN (μ) (5.19a)

= − infμ∈A

{
Λ(μ, h) −

∫
[0,t ]ds 1

2 〈μ, (∂xh)2〉
}

. (5.19b)

Since this holds for all h ∈ Cc
∞([0, t ], R), we further obtain

lim sup
N→∞

1
N3T

logP
[
μN ∈ A

]
≤ − sup

h∈C ∞
c ([0,t ],R)

inf
μ∈A

{
Λ(μ, h) −

t∫
0

ds
1
2 〈μ, (∂xh)2〉

}
.

(5.20)

We seek to swap the supremum and infimum on the right hand side. To this end, apply 
Lemmata 3.2–3.3 in Appendix 2 in [53], with Jh(μ) = −Λ(μ, h) +

∫
[0,t ]ds 12 〈μ, (∂xh)2〉. 

Under our notation, these Lemmata assert that, if Jh(μ) is upper-semicontinuous in μ
for every h, and if (5.20) holds for every open A, then (5.15) holds for every compact K. 
As shown after (4.14), Jh(μ) is continuous in μ for every h. We have proved (5.20) for 
every Borel A. Hence the desired weak upper bound (5.15) follows.

6. LDP for the attractive BPs: lower bound

We begin by setting up the goal of the proof. As mentioned in Section 3.1, we consider 
m = 1 only. Indeed, proving the LDP lower bound amounts to proving that, for any μ ∈
C ([0, t ], P(R)) and ε > 0, −I�(μ) ≤ lim infε→0 lim infN→∞(N3T )−1 logP [dist[0,t ](μN ,

μ) < ε]. Recall from (2.13) that, when I�(μ) < ∞, we have μ(0) = μsc and I�(μ) = I(μ). 
Our goal is hence as follows.
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Proposition 6.1. For any μ ∈ C ([0, t ], P(R)) with μ(0) = μsc and I(μ) < ∞,

lim inf
r→0

lim inf
N→∞

1
N3T

logP
[
dist[0,t ](μN , μ) < r

]
≥ −I(μ). (6.1)

6.1. Proving a preliminary version of Proposition 6.1

Let us introduce some classes of deviations. We call a deviation ξ ∈ C ([0, t ], P(R))
clustering if it is of the form ξ(s) =

∑n
c=1 mcδξc(s), for some ξ1 ≤ . . . ≤ ξn ∈ C [0, t ]

and some m1, . . . , mn ∈ (0, 1] that add up to m = 1. We call ξ1, . . . , ξn the clusters or 
the trajectories of clusters. We call a deviation Piecewise-Linear(PL)-clustering if it is 
clustering and the trajectories of its clusters are piecewise linear.

As a first step toward proving Proposition 6.1, here we prove a preliminary version of it 
where μ is replaced by a PL-clustering deviation ξ. For a PL-clustering deviation, we will 
use a different way (than dist[0,t ]) to measure how close the empirical measure is to the 
deviation. Recall that the attractive BPs are ordered at the start: X1(0) ≤ . . . ≤ XN (0). 
For a given PL-clustering ξ, to each Xi assign a cluster ξc via the ordering of the indices:

cN,ξ(i) := min{c : m1 + . . . + mc ≥ i/N}, IN,ξ(c) := c
−1
N,ξ({c}) = {i : cN,ξ(i) = c}. (6.2)

For �x ∈ (C [0, T t ])N , set

DistN,s(�x, ξ) := max
{

| 1
NT xi(Ts) − ξcN,ξ(i)(s)| : i = 1, . . . , N

}
, (6.3)

DistN,[s,′,s′′](�x, ξ) := sup
s∈[s′,s′′]

DistN,s(�x, ξ). (6.4)

We measure how close the system of attractive BPs is to ξ by DistN,s( �X, ξ), which is a 
(much) finer measurement than dist(μN (s), ξ(s)). By (3.6),

dist(μN (s), ξ(s)) ≤ DistN,s

(
�X, ξ

)
. (6.5)

Hereafter, c = c(v1, v2, . . .) denotes a constant that depends only on the designated 
variables v1, v2, . . .. We seek to prove the following preliminary version of Proposition 6.1.

Proposition 6.2. Given any PL-clustering ξ, there exists a c = c(ξ) ∈ [1, ∞) such that

lim inf
r→0

lim inf
N→∞

inf
DistN,0( �X,ξ)≤r

{ 1
N3T

logP
[
DistN,[0,t ]( �X, ξ) ≤ cr

∣∣ �X(0)
]}

≥ −I(μ). (6.6)

In (6.6) and similarly hereafter, the conditional probability P [. . . | �X(0)] is viewed as a 
function of �X(0), and the infimum is taken over those �X(0)s that satisfy DistN,0( �X, ξ) ≤
r.
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Proof. We begin by setting up the notation. Let 0 = s0 < s1 < . . . < s� = t be the time 
between which the clusters of ξ are linear. For a small δ > 0 to be fixed shortly, we call 
[s0, s1 − δ], [s1 + δ, s2 − δ], . . . , [s�−1 + δ, s�] the linear segments, and call [s1 − δ, s1 + δ], 
[s2 − δ, s2 + δ], . . . , the transition segments. To fix the value of δ, consider the maximum 
speed of all clusters ξ̇max := sup[0,t],c |ξ̇c|, and note that, by the definition of the sjs, 
within each (sj−1, sj), the clusters of ξ either never meet or completely coincide. We fix 
a small enough δ such that

4δξ̇max ≤ 2 · 30 r, and (6.7)

for every linear segment, either

|ξc − ξc′ | > 2 · 32�r everywhere on that linear segment, or

|ξc − ξc′ | = 0 everywhere on that linear segment.

(6.8)

Step 1: analysis within a linear segment. Let us set up the notation and state the goal 
of this step. Fix a linear segment [s′, s′′] and define the event

CN,β [s′, s′′] :=
{
DistN,[s′,s′′]( �X, ξ) < 3βr

}
. (6.9)

Hereafter, β ∈ {0, 1, . . . , 2� − 2} is an auxiliary parameter. Let I[s′,s′′] be the analog of 
I where the time integral (see (2.12)) is restricted to [s′, s′′] and let ϕ̇ := dϕ/ds. It is 
readily checked that

for a clustering ν =
n∑

c=1
mcδνc

, I[s′,s′′](ν) =
s′′∫

s′

ds

n∑
c=1

mc

2
(
ν̇c − Φ[ν](νc)

)2
. (6.10)

The goal of this step is to prove that

lim inf
N→∞

inf
DistN,s′ ( �X,ξ)≤3βr

{ 1
N3T

logP
[

CN,β+1[s′, s′′]
∣∣ �X(Ts′)

]}
≥ −I[s′,s′′](ξ). (6.11)

Recall from (6.8) that, within [s′, s′′], any pair of clusters either stay strictly apart or 
completely coincide. After combining those clusters that completely coincide, we have

|ξc − ξc′ |[s′,s′′] > 2 · 32�r, ∀c 
= c′. (6.12)

The first step of proving (6.11) is to set up Girsanov’s transform. Within [s′, s′′], 
the cluster ξc travels at a constant velocity dξc/ds := ξ̇c. Letting vc := ξ̇c − φc, where 
φc := 1

2 (. . . − mc−1 + mc+1 + . . .), we seek to apply Girsanov’s transform to turn P into 
another law Q where
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under Q, dXi =
N∑

j=1

1
2sgn(Xj − Xi)ds + NvcN,ξ(i)ds + dBi. (6.13)

In plain words, we pursue a “strategy” where each Xi receives an additional drift 
NvcN,ξ(i). The term ξ̇c in vc helps Xi(T·)/(NT ) follow the cluster ξc, while the term −φc

counters the “pulling” from those particles with a different assigned cluster, namely the 
effect of the drift 

∑
j /∈IN,ξ(c) sgn(Xj − Xi)/2. Hereafter, we will use the phrase “pulling” 

similarly, to refer to the effect of the drift coming from a set of particles.
The next step is to set up a stopping time and prepare the relevant properties. Let σ

be the first time when the condition required by CN,β+1[s′, s′′] is violated, namely

σ := inf
{

s ∈ [s′, s′′] : | 1
NT Xi(Ts) − ξcN,ξ(i)(s)| = 3β+1r, for some i

}
. (6.14)

Since β < 2�, by (6.12), particles with different assigned clusters stay strictly ordered 
within [s′, σ]. This property implies, for any i ∈ IN,ξ(c), the pulling from particles outside 
IN,ξ(c) is given by 

∑
j /∈IN,ξ(c)

1
2 sgn(j − i). The last expression sums to N 1

2 (−m1 . . . −
mc−1 + mc+1 + . . . + mn) = Nφc. Hence, within s ∈ [s′, σ] and for each i ∈ IN,ξ(c),

N∑
j=1

1
2sgn

(
Xj(Ts) − Xi(Ts)

)
=

∑
j∈IN,ξ(c)

1
2sgn

(
Xj(Ts) − Xi(Ts)

)
+ Nφc. (6.15)

Having set up the stopping time σ, we next analyze the evolution of the particles 
within s ∈ [s′, σ] and under the condition DistN,s′( �X, ξ) ≤ 3βr, which is required in 
(6.11). We will analyze separately the evolution of the center of mass (defined later) 
relative to their assigned clusters and the evolution of a particle relative to its center of 
mass. Hereafter, unless otherwise noted, s ∈ [s′, σ].

We now define the center of mass and analyze its evolution. Let Xc :=
∑

i∈IN,ξ(c) Xi/

(Nmc) be the center of mass. Take the average of (6.13) over i ∈ IN,ξ(c). The pulling from 
within i ∈ IN,ξ(c) averages to zero; the pulling from outside of IN,ξ(c) averages to Nφc

by (6.15). Hence dXc = Nξ̇cds + dBc, where Bc :=
∑

i∈IN,ξ(c) Bi/(Nmc). Integrating 
this equation gives

| 1
NT Xc(Ts) − ξc(s)| ≤ | 1

NT Xc(Ts′) − ξc(s′)| + 1
NT |Bc(Ts) − Bc(Ts′)|. (6.16)

Under the condition DistN,s′( �X, ξ) ≤ 3βr, the first term on the right hand side is at 
most 3βr, so

| 1
NT Xc(Ts) − ξc(s)| ≤ 3βr + 1

NT |Bc(Ts) − Bc(Ts′)|
≤ 3βr + 1

NT max
{

|Bi(Ts) − Bi(Ts′)| : i = 1, . . . , N
}

.
(6.17)

We next analyze the motion of a particle relative to its center of mass. Fix any c. As 
seen in (6.15), a particle with i ∈ IN,ξ(c) feels the pulling from within and outside of 
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IN,ξ(c). Intuitively, the former should only pull particles in IN,ξ(c) closer together. To 
make this statement precise, we appeal to a comparison result from [86]. Write IN,ξ(c) =
{i1, . . . , i2}, rank {Xi(Ts)}i∈IN,ξ

to get X(i1)(Ts) ≤ . . . ≤ X(i2)(Ts), let Zi(Ts) :=
X(i+1)(Ts) − X(i)(Ts) be the gap process, and let Li,i+1 denote the localtime of Zi at 
0. By [43, Proposition 3], the ranked processes satisfy

dX(i) =
(

Nφc + Nvc +
∑

j∈IN,ξ(c)

1
2sgn(j − i)

)
ds + dWi + 1

2dLi−1,i − 1
2dLi,i+1, (6.18)

where Wi1 , . . . , Wi2 are independent standard BMs, and we assume Wi(s′) = 0 without 
loss of generality. Next, consider the analog of X(i) without the inner pulling. Namely, 
for i ∈ IN,ξ(c), consider

dX(i) = N
(
φc + vc

)
ds + dWi + 1

2dLi−1,i − 1
2dLi,i+1, Xi(Ts′) = X(i)(Ts′), (6.19)

where Li,i+1 is the localtime of X(i+1) − X(i) at 0. Let Zi := X(i+1) − X(i+1) denote the 
gap process and let fi(s) := Wi+1(s) − Wi(s) + X(i)(Ts′). From (6.18)–(6.19), we infer 
the equations of the gap processes

dZ(i) = dfi − ds − 1
2dLi−1,i + dLi,i+1 − 1

2dLi+1,i+2, (6.20)

dZ(i) = dfi − 1
2dLi−1,i + dLi,i+1 − 1

2dLi+1,i+2, (6.21)

for i = i1, . . . , i2 −1, with the convention that Lii−1,ii
:= 0 and Li2,i2+1 := 0. Now apply 

[86, Theorem 3.1] to our Z = (Zi)i∈[i1,i2) and Z = (Zi)i∈[i1,i2), with fi(s) − (s − s′)
being the driving function for Zi and with fi being the driving function for Zi. The 
result gives Zi(Ts) ≤ Zi(Ts) for all i ∈ [i1, i2 − 1) and s ∈ [s′, σ]. Further, letting 
Xc :=

∑
i∈IN,ξ(c) Xi/|IN,ξ(c)| denote the center of mass of (X(i))i∈IN,ξ(c) and averaging 

(6.19) over i ∈ IN,ξ(c), we see that Xc = Xc. This property, together with the comparison 
result of the gap processes, gives

max
{

|Xi − Xc| : i ∈ IN,ξ(c)
}

≤ max
{

|X(i) − Xc| : i ∈ IN,ξ(c)
}

. (6.22)

Next, let Bi, for i ∈ IN,ξ(c), denote independent standard BMs, and consider

Yi(Ts) := Bi(Ts) − Bi(Ts′) + N(φc + vc)(Ts − Ts′) + Xi(Ts′), (6.23)

for s ∈ [s′, σ] and i ∈ IN,ξ(c). If we rank {Yi}i∈IN,ξ(c), the resulting process has the same 
law as (X(i))i∈IN,ξ(c). This property can be checked from (6.19) by using the generators 
for example, which we omit. Given this property, defining the event

FN (r′) :=
{

|Xi(Ts) − Xc(Ts)| < NT (r′ + 3βr), ∀i ∈ IN,ξ(c), ∀s ∈ [s′, σ]
}

, (6.24)
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and letting Yc :=
∑

i∈IN,ξ(c) Yi/|IN,ξ(c)| denote the center of mass of (Yi)i∈IN,ξ(c), we 
have

Q
[
FN (r′)

∣∣ �X(Ts′)
]

≥ Q
[
|Yi(Ts) − Yc(Ts)| < NT (r′ + 3βr), ∀i ∈ IN,ξ(c), ∀s ∈ [s′, σ]

]
.

(6.25)

Next, we seek to bound |Yi(Ts) −Yc(Ts)|. Recall the expression of Yi(Ts) for (6.23). Aver-
aging (6.23) over i ∈ IN,ξ(c) gives the expression Yc(Ts) = (IN,ξ(c))−1 ∑

j∈IN,ξ(c)(Bj(Ts)
− Bj(Ts′)) + N(φc + vc)(Ts − Ts′) + Xc(Ts′). Inserting these expressions into |Yi(Ts) −
Yc(Ts)|, and bound the result using the triangle inequality. Doing so gives

|Yi(Ts) − Yc(Ts)| ≤ 2 max
j∈IN,ξ(c)

|Bj(Ts) − Bj(Ts′)| + |Xi(Ts′) − Xc(Ts′))|. (6.26)

Under the condition DistN,s′( �X, ξ) ≤ 3βr, the last term in (6.26) is bounded by NT 3βr. 
Hence, under the condition DistN,s′( �X, ξ) ≤ 3βr,

max
i∈IN,ξ(c)

∣∣Yi(Ts) − Yc(Ts)
∣∣ ≤ 2 max

i∈IN,ξ(c)

∣∣Bi(Ts) − Bi(Ts′)
∣∣ + NT 3βr. (6.27)

Using this property in (6.25) gives

inf
DistN,s′ ( �X,ξ)≤3βr

P
[
FN (r′)

∣∣ �X(Ts′)
]

≥ P
[
|Bi(Ts) − Bi(Ts′)| < 1

2NTr′, ∀i ∈ IN,ξ(c), ∀s ∈ [s′, σ]
]
.

(6.28)

Based on what we obtained so far, we now complete the proof of (6.11). Combining 
(6.17) and (6.24) gives, under the condition DistN,s′( �X, ξ) ≤ 3βr and within s ∈ [s′, σ],

∣∣ 1
NT Xi(Ts) − ξcN,ξ(i)(s)

∣∣ ≤ 2 · 3βr + 1
NT max

i=1,...,N
|Bi(Ts) − Bi(Ts′)| + r′ on FN (r′).

(6.29)

We will take r′ → 0 later, so let us assume r′ < r/2 hereafter. Consider the event

EN (r′) := {|Bi(Ts) − Bi(Ts′)| < NTr′, ∀s ∈ [s′, s′′], ∀i = 1, . . . , N}. (6.30)

Under FN (r′) ∩ EN (r′) and given the assumption r′ < r/2, the right hand side of 
(6.29) is strictly less than 3β+1r. Hence, under the condition DistN,s′( �X, ξ) ≤ 3βr, 
we have FN (r′) ∩ EN (r′) ⊂ {σ > s′′} ⊂ CN,β [s′, s′′]. Now apply Lemma C.1(a) with the 
vi = vcN,ξ(i) defined above (6.13) and with E = FN (r′) ∩ EN (r′). In the result recog-
nize that (s′′ − s′)(2N)−1 ∑N

i=1 v2
cN,ξ(i) = I[s′,s′′](ξ) with the aid of (6.10), and bound 

N−1 ∑N
i=1 |vcN,ξ(i)|r′ by c(ξ)r′. Doing so gives
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inf
DistN,s′ ( �X,ξ)≤3βr

{ 1
N3T

logP
[

FN (r′) ∩ EN (r′)
∣∣ �X(Ts′)

]}
≥ inf

DistN,s′ ( �X,ξ)≤3βr

1
N3T

logQ
[

FN (r′) ∩ EN (r′)
∣∣ �X(Ts′)

]
− c(ξ)r′ − I[s′,s′′](ξ).

(6.31)

On the left hand side of (6.31), bound the probability from above by P [ CN,β [s′, s′′] |
�X(Ts′) ], and send N → ∞ on both sides. From (6.28) and (6.30), it is not hard to check 
that the first term on the right hand side of (6.31) converges to 0 as N → ∞. Finally 
sending r′ → 0 gives the desired result (6.11).

Step 2: analysis within a transition segment. Let us set up the notation and state the 
goal of this step. Fix a transition segment [s′, s′′], consider the line (in the (s, x) plane) 
that connects (s′, ξcN,ξ(i)(s′)) and (s′′, ξcN,ξ(i)(s′′)), and let

wi = wi[s′, s′′] :=
ξcN,ξ(i)(s′′) − ξcN,ξ(i)(s′)

s′′ − s′ = N

i/N∫
(i−1)/N

da
X[ξ(s′′)] − X[ξ(s′)]

s′′ − s′ (6.32)

be the velocity when traveling along the line. Consider

C′
N,β [s′, s′′] :=

{ ∣∣ 1
NT Xi(Ts) − ξcN,ξ(i)(s′) − (s − s′)wi

∣∣ ≤ 3βr, ∀s ∈ [s′, s′′], ∀i
}

,

(6.33)

Cost[s′,s′′](λ, λ′) := (s′′ − s′)
1∫

0

da
( |X[λ′] − X[λ]|

s′′ − s′ + 1
2

)2
. (6.34)

By (6.7), it is not hard to check from (6.33) that

C′
N,β [s′, s′′] ⊂

{
DistN,[s′,s′′]

(
�X, ξ

)
≤ 3β+1r

}
. (6.35)

The goal of this step is to prove

lim inf
N→∞

inf
{ 1

N3T
logP

[
C′

N,β+1[s′, s′′]
∣∣ �X(Ts′)

]}
≥ −Cost[s′,s′′](ξ(s′), ξ(s′′)), (6.36)

where the infimum runs over DistN,s′( �X, ξ(s′)) ≤ 3βr, just like in Step 1.
To prove (6.36), consider the law Q under which dXi = Nwids + dBi. Apply 

Lemma C.1(b) with vi = wi, Ji = {1, . . . , N}, E = C′
N,β[s′, s′′], and p = 2. Doing so 

gives

1
N3T

logP
[

C′
N,β+1[s′, s′′]

∣∣ �X(Ts′)
]

≥ 2
N3T

logQ
[

C′
N,β+1[s′, s′′]

∣∣ �X(Ts′)
]

− s′′ − s′

N

N∑
i=1

(
|wi| + 1

2

)2
.

(6.37)
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It is readily checked that the first term on the right hand side of (6.37) tends to 0 as 
N → ∞, uniformly over DistN,s′( �X, ξ(s′)) ≤ 3βr. To bound the last term in (6.37), use 
(6.32) and Jensen’s inequality to get

(
|wi| + 1

2

)2
≤ N

i/N∫
(i−1)/N

da
( |X[ξ(s′′)] − X[ξ(s′)]

s′′ − s′ + 1
2

)2
. (6.38)

Applying (s′′ −s′)N−1 ∑N
i=1 on both sides of (6.38) gives (s′′ −s′)N−1 ∑

i(|wi| +1/2)2 ≤
Cost[s′,s′′](ξ(s′), ξ(s′′)). The desired result (6.36) hence follows.

Step 3: Combining Steps 1–2 to complete the proof. Apply (6.11) and (6.36) in al-
ternating order over the segments [s0, s1 − δ], [s1 − δ, s1 + δ], . . . , [s�−1 + δ, s�], with 
β = 0, 1, . . . , 2� − 2. By (6.9) and (6.33), CN,1[s0, s1 − δ] ⊂ {DistN,s1−δ( �X, ξ) ≤ 31}, 
C′

N,2[s1 − δ, s1 + δ] ⊂ {DistN,s1+δ( �X, ξ) ≤ 32}, . . . , so the resulting bounds can be 
concatenated. The result gives

lim inf
N→∞

inf
DistN,0( �X,ξ)≤r

{ 1
N3T

logP
[
DistN,[0,t ]( �X, ξ) ≤ 32�−1r

∣∣ �X(0)
]}

≥ −
( ∑

I[s′,s′′](ξ) +
∑

Cost[s′,s′′](ξ(s′), ξ(s′′))
)

,

(6.39)

where the first sum runs over all linear segments, and the second runs over all transition 
segments. The first sum is at most I(ξ), while the second sum tends to zero as δ tends to 
zero, as is readily checked from (6.34) and the assumption that ∂sX[μ] ∈ L2([0, t ] ×[0, 1]). 
Recall that δ is chosen so that (6.7)–(6.8) hold. With ξ being PL-clustering, we can choose 
δ such that δ ≤ c(ξ)r. This way, δ → 0 as r → 0. Sending r → 0 in (6.39) gives the 
desired result (6.6). �
6.2. Proving Proposition 6.1 under Assumption 6.3

Based on the results in Section 6.1, here we prove Proposition 6.1 under an additional 
assumption. Identify {λ ∈ P(R) : supp(λ) ⊂ [−b, b]} with P[−b, b]. Namely, view those 
measures supported in [−b, b] as measures on [−b, b].

Assumption 6.3. There exists a b < ∞ such that {μN (0)}N∈Z>0 , {μ(s)}s∈[0,t ] ⊂
P[−b, b].

Namely, we assume that μN (0) and μ(s) have a compact support, uniformly over N ∈
Z>0 and s ∈ [0, t ]. Fixing a μ and μN (0) that satisfy I(μ) < ∞, μN (0) ⇒ μ(0), and 
Assumption 6.3, we seek to prove (6.1) for this μ and μN (0).

The proof requires an approximation tool. We state it here and put its proof in 
Appendix B: For any [s′, s′′] ⊂ [0, t],
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inf
{

dist[s′,s′′](ξ, μ) + |I[s′,s′′](ξ) − I[s′,s′′](μ)| :

ξ is PL-clustering , supp(ξ(s)) ⊂ [−b, b], ∀s ∈ [s′, s′′]
}

= 0.
(6.40)

Let us outline the proof. We will construct a small s0 and use (6.40) to construct a PL-
clustering ξ that approximates μ, and perform analysis over [0, s0] and [s0, t ] separately.

Let us construct s0 and ξ. Fix an ε > 0. By the assumption I(μ) < ∞, ∂sX[μ] ∈
L2([0, t ] × [0, 1]). Using this property and the time continuity of μ to find an s0 such that 
Cost[0,s0](μ(0), μ(s0)) < ε and sup[0,s0] dist(μ(s), μ(s0)) < ε. Turning to the construction 
of ξ, we begin by noting that Cost[0,s0] : (P[−b, b])2 → R is continuous, which is not hard 
to verify from (3.4) and (6.34). Granted this continuity, use (6.40) for [s′, s′′] = [s0, t ] to 
obtain a PL-clustering ξ such that dist[s0,t ](ξ, μ) < ε, |I[s0,t ](ξ) − I[s0,t ](μ)| < ε, and

Cost[0,s0](μ(0), ξ(s0)) < ε. (6.41)

Given that dist(μN (0), μ(0)) → 0, for all N large enough, Cost[0,s0](μN (0), ξ(s0)) < ε.
Let us perform analysis over [0, s0] and [s0, t ], beginning with the former. We seek 

to adapt the argument in Step 2 in Section 6.1. More precisely, we seek to apply 
the argument with wi[s′, s′′] (defined in (6.32)) replaced by wi(s0) := (ξcN,ξ(i)(s0) −
Xi(0)/(NT ))/s0 and C′

N,β[s′, s′′] (defined in (6.33)) replaced by

C′′
N,r[0, s0] :=

{ ∣∣ 1
NT Xi(Ts) − 1

NT Xi(0) − wi(s0)s
∣∣ < r, ∀s ∈ [0, s0], ∀i

}
. (6.42)

Applying the argument in Step 2 in Section 6.1 with these adaptations gives

lim inf
r→0

lim inf
N→∞

1
N3T

logP
[

C′′
N,r[0, s0]

]
≥ − lim sup

N→∞
Cost[0,s0](μN (0), ξ(s0)). (6.43)

Unlike in (6.36), we need not impose any constraint on �X(0) in (6.43). This is be-
cause when defining the event in (6.42), we use the reference point Xi(0)/(NT )
instead of ξcN,ξ(i)(0); compared with (6.33). Given that dist[0,s0](μ(s), μ(0)) < ε, 
dist(ξ(s0), μ(s0)) < ε, and dist(μN (0), μ(0)) → 0, for all N large enough we have 
C′′

N,r[0, s0] ⊂ {dist[0,s0](μN , μ) < r + 2ε}. Also, note that

C′′
N,r[0, s0] ⊂ {DistN,s0( �X, ξ) ≤ r}. (6.44)

Move on to [s0, t ]. Apply Proposition 6.2 with [0, t ] �→ [s0, t ]. In the result, use (6.5) and 
dist[s0,t ](ξ, μ) < ε. Doing so gives

lim inf
r→0

lim inf
N→∞

inf
{ 1

N3T
logP

[
dist[s0,t ](μN , ξ) < ε + cr

∣∣ �X(Ts0)
]}

≥ −I[s0,t ](μ),
(6.45)

where the infimum runs over DistN,s0( �X, ξ) ≤ r. Further,
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−I[s0,t ](μ) ≥ −I[0,t ](μ) = −I(μ). (6.46)

Combine (6.43) and (6.45) with the aid of (6.44). In the result, use (6.41) and (6.46), 
and send ε → 0. Doing so gives (6.1) under Assumption 6.3.

6.3. Removing Assumption 6.3

Having proven (6.1) under Assumption 6.3, we explain how the same result follows 
without the assumption. Taking any μ ∈ C ([0, t ], P(R)) with I(μ) < ∞ and μ(0) = μsc, 
we seek to show that (6.1) holds for μN and this μ.

We begin by truncating μ and μN so that the result satisfies Assumption 6.3. Fix 
a sequence 1/2 > r1 > r2 > . . . → 0 such that X[μsc] is continuous at every rk

and 1 − rk. Fix any k. Recall the scaling operator Sm from Section 3.1. Apply the 
procedure in Section 3.4 with (m1, m2, m3) = (rk, 1 − 2rk, rk) to get μ1, μ2, μ3 and 
take ν := μ2 as the truncated deviation. By Lemma 3.2(b), the truncated deviation 
ν satisfies Assumption 6.3. Next, truncate the empirical measure similarly. Recall that 
X1(0) ≤ . . . ≤ XN (0). Set N− := �Nrk�, N+ := �N(1 − rk)�, N ′ := N+ − N−, and 
νN (s) := 1

N

∑
N−≤i≤N+

δXi(T s)/(NT ). Note that μN (0) ⇒ μsc is equivalent to X[μN (0)]
converging to X[μsc] everywhere the latter is continuous. Recall that X[μsc] is contin-
uous at each rk and 1 − rk. These properties imply, as N → ∞, νN (0) ⇒ ν(0), 
XN−(0)/(NT ) → X[μsc](rk), and XN+(0)/(NT ) → X[μsc](1 − rk). The last two con-
vergences show that νN (0) is supported in an N -independent bounded interval.

Next, we claim that

dist[0,t ](μN , μ) ≤ dist[0,t ](νN , ν) ≤ c · (rk + 1
N ). (6.47)

Recall from Section 3.4 that the graph of F [ν(s)] = F [μ2(s)] is obtained by taking 
the graph of F [μ(s)] between the levels rk and 1 − rk and shift the graph down so 
that the lower level is at 0. The same property holds for (F [νN (s)], F [μN (s)]) with 
(rk, 1 − rk) �→ (N−/N, 1 − N+/N). By construction, N−/N and N+/N differ from rk by 
at most 1/N . Using these properties gives

k∫
−k

da
∣∣F [μN (s)] − F [μ(s)]

∣∣ ≤
k∫

−k

da
(∣∣F [νN (s)] − F [ν(s)]

∣∣ + c ·
(
rk + 1

N

))
. (6.48)

Combining (6.48) and (3.4) gives (6.47).
Next, we would like to apply the result of Section 6.2 with μN and μ being replaced 

by νN and ν. However, note that the particles in νN are not autonomous and feel the 
pulling from particles outside of νN . Namely, after being restricted to i ∈ [N−, N+], the 
system of equations (2.2) still contains terms 1

2 sgn(Xj − Xi) from outside of the system 
j /∈ [N−, N+]. To resolve this issue, consider the law Q under which
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dXi =
∑

j∈[N−,N+]

1
2sgn(Xj − Xi)ds + dBi, for all i ∈ [N−, N+], (6.49)

dXi =
N∑

j=1

1
2sgn(Xj − Xi)ds + dBi, for all i /∈ [N−, N+]. (6.50)

Under Q, the truncated empirical measure νN evolves autonomously. Apply Lemma 
C.1(b) with [s′, s′′] = [0, t ], vi = 0, Ji = {1, . . . , N− −1, N+ +1, . . . , N} for i ∈ [N−, N+], 
and Ji = ∅ for i /∈ [N−, N+]. In the result, bound |Ji|/(2N) by crk. Doing so gives

1
N3T

logP
[
dist[0,t ](νN , ν) < r

]
≥ p

N3T
logQ

[
dist[0,t ](νN , ν) < r

]
− pt (crk)2

2(p − 1) . (6.51)

Next, apply the result of Section 6.2 with (μN , μ, P ) �→ (νN , ν, Q). Note that, even 
though νN and ν do not have unit mass, by the scaling arguments in Section 3.1, the 
result still applies. Doing so gives, for any p > 1 and k ∈ Z>0,

lim inf
r→0

lim inf
N→∞

1
N3T

logP
[
dist[0,t ](νN , ν) < r

]
≥ −pI(ν) − pt (crk)2

2(p − 1) . (6.52)

We are now ready to complete the proof. So far we have omitted most k dependence. 
Restore it by writing ν = νk, νN = νN,k, and N ′ = N ′

k. By the construction of ν = νk

and the assumption I(μ) < ∞, it is not hard to check that I(νk) → I(μ) as k → ∞. 
In (6.52), send k → ∞ with the aid of this property and (6.47). Finally sending p → 1
completes the proof.

7. Applications to the moment Lyapunov exponents

As was explained in Section 3.1, we consider m = 1 only.

7.1. Proof of Theorem 2.4

We begin with some notation. Let xc, x′, mc, and the optimal deviation ξ =∑n
c=1 mcδξc

be as in Section 2.3. Recall branches from there and recall that B denotes 
the set of branches. Let mb :=

∑
c∈b

mc be the total mass within a given branch b. By 
definition, branches are disjoint intervals in {1, . . . , n}, so we can order them, and we 
use < and ≤ to denote the ordering. For a given branch b, we write b � 1 and b ⊕ 1 for 
the respective branches that precedes and succeeds b in B.

To facilitate the proof, let us prepare a few properties of the optimal clusters 
ξ1, . . . , ξn. From their definition given after Theorem 2.4, it is not hard to check that

ξ̇c = Φ[ξ](ξc) + vb, for all c ∈ b and for all s ∈ [0, t ] except when a merge happens,
(7.1)
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where vb is given in (2.24). Recall also that those ξc and ξc′ belonging to different 
branches do not meet within (0, t ). Using this property to take the mass-weighted average 
of (7.1) over c ∈ b gives

ξ̇b = φb + vb, φb := 1
2 (. . . − mb�1 + mb⊕1 + . . .). (7.2)

This equation shows that ξ̇b is a constant. Combining (7.1)–(7.2) gives ξ̇c − Φ[ξ](ξc) =
ξ̇b −φb, for all c ∈ b. Inserting this identity into (6.10) for ν = ξ and [s′, s′′] = [0, t ] gives

I(ξ) =
∑
b∈B

t
mb

2 (ξ̇b − φb)2. (7.3)

We now begin the proof, starting with a reduction. Set the starting and ending con-
ditions to be μsc :=

∑
c
mcδxc

and μec := δx′ , with 1 = m1 + . . . + mn. By (2.16),

LSHE

(
x′ t−→ (�x, �m)

)
= t

24 +
〈
μ⊗2

sc , 1
4 |x − x′|

〉
−

〈
μ⊗2

ec , 1
4 |x − x′|

〉
− inf

{
I(μ) : μ(0) = μsc, μ(t) = μec

}
.

(7.4)

Take any μ ∈ C ([0, t ], P(R)) with μ(0) = μsc and μ(t ) = μec. Given (7.4), it suffices 
to prove that I(μ) ≥ I(ξ) and that the equality holds only if μ = ξ. Without loss of 
generality, assume I(μ) < ∞, which implies ∂sX[μ] ∈ L2([0, t ] × [0, 1]).

Step 1: proving that I(μ) ≥ I(ξ). We begin with some notation. First, write X[μ(s)](a) =
X(s, a) and Φ[μ(s)](X(s, a)) = ΦX(s, a) to simplify notation. Next, apply the procedure 
in Section 3.4 with (m1, m2, . . .) = (mb)b∈B to get (μb)b∈B, where the branches are 
ordered as described previously. Let Mb :=

∑
b′≤b

mb′ be the cumulative mass.
Let us derive a lower bound on I(μ). Refer to (2.12) for the definition of I(μ) and divide 

the integral 
∫ 1

0 da into 
∫ Mb

Mb�1
da, b ∈ B, with the convention that M(first cluster)�1 := 0. 

Note that this procedure is equivalent to the procedure of dividing μ in the previous para-
graph. In each of the resulting integral, multiply and divide by tmb and apply Jensen’s 
inequality to get

I(μ) =
∑
b∈B

t
mb

2

t∫
0

ds

t

Mb∫
Mb�1

da

mb

(
∂sX − ΦX

)2
(7.5)

≥
∑
b∈B

t
mb

2

( t∫
0

ds

t

Mb∫
Mb�1

da

mb

∂sX −
t∫

0

ds

t

Mb∫
Mb�1

da

mb

ΦX

)2
. (7.6)

Next we derive an expression for the first integral in (7.6). Evaluate the integral over 
[0, t ] by the fundamental theorem of calculus, recognize the result as 〈μb(s), x〉|t0/(tmb), 
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and use μ(0) = ξ(0) and μ(t ) = ξ(t ). Recall the center of mass ξb :=
∑

c∈b
(mcξc)/mb. 

The resulting expression is hence ξb(s)|t0/t. As shown in (7.2), ξ̇b is a constant, so

t∫
0

ds

t

Mb∫
Mb�1

da

mb

∂sX = ξ̇b (7.7)

Next we derive an expression for the last integral in (7.6). Recall from (3.8) that the 
integrand takes two different forms depending on whether a− = a+ or a− < a+, where 
a± = a±[μ(s)](a) is defined in (3.7). This dichotomy is particularly relevant at a = Mb�1
and a = Mb, which are the boundaries of the last integral in (7.6). With this in mind, 
set M±

b
= M±

b
(s) := a±[μ(s)](Mb), and note that

M−
b

≤ Mb ≤ M+
b

. (7.8)

Divide the integral over [Mb�1, Mb] into integrals over [Mb�1, M+
b�1], [M+

b�1, M−
b

], and 
[M−

b
, Mb] and use (3.8) to evaluate the integrals:

Mb∫
Mb�1

da

mb

ΦX = 1
mb

(
A +

M−
b∫

M+
b�1

da (1
2 − a) + A′

)
, (7.9)

where A := 1
2 (M+

b� − Mb�1)(1 − M+
b�1 − M−

b�1) and A′ = 1
2 (Mb − M−

b
)(1 − M+

b
− M−

b
). 

Recall φb from (7.2) and write it as

φb = 1
mb

Mb∫
Mb�1

da (1
2 − a) = 1

mb

(
A′′ +

M−
b∫

M+
b�1

da (1
2 − a) + A′′′

)
, (7.10)

where A′′ := 1
2 (M+

b�1−Mb�1)(1 −M+
b�1−Mb�1) and A′′′ := 1

2 (Mb−M−
b

)(1 −Mb−M−
b

). 
Subtract (7.10) from (7.9) and simplify (A − A′′) and (A′ − A′′′) in the result. Doing so 
gives

Mb∫
Mb�1

da

mb

ΦX = φb + 1
mb

Db�1 − 1
mb

Db, (7.11)

where

Db := 1
2 (M+

b
− Mb)(Mb − M−

b
), (7.12)

with the convention that D(first branch)�1 := 0.
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We are now ready to complete the proof of Step 1. Insert (7.7) and (7.11) into (7.6), 
expand the resulting square, and compare the result with (7.3). Doing so gives

I(μ) ≥ I(ξ) +
∑
b∈B

tmb

2

( t∫
0

ds

t

Db − Db�1

mb

)2
+

∑
b∈B

(
ξ̇b − φb

) t∫
0

ds
(
Db − Db�1

)
.

(7.13)

Rewrite the last sum as 
∑

b∈B

∫ t

0 ds (−ξ̇b⊕1 + φb⊕1 + ξ̇b − φb)Db, with the convention 
that ξ̇(last branch)⊕1 := 0 and φ(last branch)⊕1 := 0. We arrive at

I(μ) ≥ I(ξ) +
∑
b∈B

1
2tmb

( t∫
0

ds
(
Db − Db�1

))2
(7.14a)

+
∑
b∈B

t∫
0

ds
(

− ξ̇b⊕1 + ξ̇b + φb⊕1 − φb

)
Db. (7.14b)

By (7.2), (−ξ̇b⊕1 − ξ̇b + φb⊕1 − φb) = −vb⊕1 + vb. This quantity is strictly positive, 
as is readily checked from (2.24). Also, Db is nonnegative by (7.8) and (7.12). Hence 
I(μ) ≥ I(ξ).

Step 2: proving that I(μ) = I(ξ) implies μ = ξ. The strategy is to extract information 
on μ from the condition I(μ) = I(ξ). Set Xb(s) := X[μ(s)](Mb) and note that μb(s) is 
supported in [Xb�1(s), Xb(s)]. As explained after (7.14), (ξ̇b⊕1−ξ̇b−φb⊕1+φb) > 0; recall 
that Db ≥ 0 by (7.8) and (7.12). Using these properties and the condition I(μ) = I(ξ)
in (7.14b) gives Db = 0 for all b. This property together with (7.8) and (7.12) forces 
M−

b
= M+

b
. This being true for all b implies that μb(s) has no atoms at Xb�1(s) and 

Xb(s).
We continue to extract information from the condition I(μ) = I(ξ). The condition 

forces the inequality in (7.6) to be an equality, which in turn forces ∂sX − ΦX to be a 
constant Lebesgue a.e. on [0, t ] × [Mb�1, Mb]. By (7.7), (7.11), and Db = 0, the constant 
is ξ̇b − φb. Hence

∂sX − ΦX = ξ̇b − φb, Lebesgue a.e. on [0, t ] × [Mb�1, Mb]. (7.15)

We seek to “localize” (7.15) onto μb. More precisely, we seek to rewrite (7.15) in terms 
of X[μb] and Φ[μb]. First, by the construction of μb in the first paragraph in Step 1, 
X[μb(s)](a + Mb�1) = X(s, a) for all a ∈ [0, mb], so (∂sX)|(s,a+Mb�1) = (∂sX[μb])|(s,a). 
Next, the definition (2.8) of Φ[·] gives

Φ[μ(s)](x) = Φ[μb(s)](x) − 1
2

∑
〈μb′(s), 1(−∞,x)〉 + 1

2
∑

〈μb′(s), 1(x,∞)〉. (7.16)

b′<b b′>b
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Since μb(s) is supported in [Xb�1(s), Xb(s)], we consider those x in this interval only. As 
mentioned in the previous paragraph, μb′(s) has not atoms at Xb′�1(s) and Xb′(s), for 
all b′. Using this property in (7.16) simplifies the last two sums together into φb, defined 
in (7.2). We now rewrite (7.15) as

∂sX[μb] − Φ[μb](X[μb]) = ξ̇b, Lebesgue a.e. on [0, t ] × [0,mb]. (7.17)

Further using (7.2) gives

∂sX[μb] − Φ[μb](X[μb]) = φb + vb, Lebesgue a.e. on [0, t ] × [0,mb]. (7.18)

Apply the procedure in Section 3.4 to divide μb according to the masses (mc)c∈b to 
get (μc)c∈b.

Taking any c ∈ b, let us show that μc(s) is supported at a single point. This amounts 
to showing that X[μb(s)]|a∈Uc

is a constant, where Uc := (
∑

c′∈b,c′<c
mc′ , 

∑
c′∈b,c′≤c

mc′). 
Given (7.17), consider any a1 < a2 ∈ Uc such that, for j = 1, 2,

∂sX[μb(s)](aj) − Φ[μb(s)](X[μb])(aj) = ξ̇b holds for Lebesgue a.e. s ∈ [0, t ]. (7.19)

It is readily checked from (2.8) and (2.11) that Φ[λ](x) is nonincreasing in x and X[λ](a) is 
nondecreasing in a. Hence Φ[μb(s)](X[μb])(a1) ≥ Φ[μb(s)](X[μb])(a2). Take the difference 
of (7.19) for j = 1 and j = 2, use the last inequality, integrate the result over [0, s], 
and use X[μ(0)](a1) = X[μ(0)](a2) = xc. The result gives X[μ(s)](a1) ≥ X[μ(s)](a2). 
Since X[λ](a) is nondecreasing in a, X[μ(s)]|a∈[a1,a2] is a constant. Sending [a1, a2] → Uc

shows that X[μb(s)]|a∈Uc
is a constant. Hence μc(s) is supported at a single point; let 

xμ,c(s) = xμ,c denote this point.
It remains only to show that xμ,1, . . . , xμ,n coincidence with ξ1, . . . , ξn. The measure 

μ(s) being continuous in s implies that xμ,c(s) is too. Hence, there exists an s0 > 0 such 
that xμ,1, . . . , xμ,n do not meet within [0, s0). Within s ∈ [0, s0), the equation (7.18) gives 
ẋμ,c = Φ[μb](xμ,c) + φb + vb, for c ∈ b. The first two terms on the right hand side add 
to 1

2 (−m1 − . . . − mc−1 + mc+1 + . . . + mn) =: φc, so xμ,c moves at the constant velocity 
φc + vb within [0, s0). This description of evolution matches that of the optimal clusters 
ξ1, . . . , ξn, so xμ,c|[0,s0] = ξc|[0,s0], for all c. By a time-continuity argument, this equality 
extends the first time when a merge happens in the optimal clusters. Take this first 
merge time as the new starting time and run the same argument. Continuing inductively 
completes the proof.

7.2. Proof of Corollary 2.5

Recall that we consider m = 1 only.
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(a) Given (2.18), the proof amounts to showing that

1
N3T

logP
[ ∣∣ 1

NT Xi(T t) − x′
∣∣ ≤ α, ∀i

]
+ inf

{
I(μ) : μ(0) =

n∑
c=1

mcδxc
, μ(t) = δx′

}
(7.20)

tends to zero as N → ∞ first and α → 0 later, where the attractive BPs start 
from Xi(0)/(NT ) = xcN,ξ(i) or equivalently μN (0) =

∑n
c=1 mcδxc

. By (3.6), the event 
{|Xi(T t)/NT − x′| ≤ r, ∀i} implies dist(μN (t), μec) ≤ r. Hence, by Theorem 2.3 and 
the contraction principle, the limit of (7.20) is ≤ 0. To prove the reverse inequality, note 
that, by Theorem 2.4, the infimum in (7.20) is I(ξ). Applying Proposition 6.2 with ξ = ξ

gives the reversed inequality ≥ 0.

(b) Let us set up the notation and goal. Fix a nonempty A ⊂ {1, . . . , n}, recall cN,ξ

from (6.2), and let IN,ξ(A) = {i : cN,ξ(i) ∈ A}. Since A is nonempty, |IN,ξ(A)|/N ≥
min{m1, . . . , mn} := m∗ > 0. Recall DistN,[s′,s′′] from (2.25)–(2.26), and, for β > 0, 
consider the event DN := {DistN,[0,t ](Xi, ξ) > β, ∀i ∈ IN (A)}. Similar to (a), proving 
(b) amounts to proving that

lim sup
α→0

lim sup
N→∞

1
N3T

logP
[{∣∣ 1

NT Xi(T t) − x′
∣∣ ≤ α, ∀i

}
∩ DN

]
< −I(ξ). (7.21)

The strategy of proving (7.21) is to derive a lower bound on dist[0,t ](μN , ξ) from the 
condition imposed by DN . First, it is not hard to check from (3.4) that, for a large 
enough k0 = k0(ξ),

dist[0,t](μN , ξ) ≥ dist(μN (s), ξ(s)) ≥ 2−k0 min
{

1,
1
N

N∑
i=1

DistN,s

(
Xi, ξ

)}
. (7.22)

Under DN , for every i ∈ IN,ξ(A), there exists a random s(i) ∈ [0, t ] such that 
DistN,s(i)(Xi, ξ) > β. If these s(i)s happen to be all the same, by (7.22), dist[0,t](μN , ξ) ≥
2−k0m∗ min{1, β}. In general, those s(i)s are different, so we need some time-continuity 
estimates. Recall the event UN (v) from (5.3). Use the bounds derived after (5.3) to fix a 
v so that

lim sup
N→∞

1
N3T

logP
[

UN (v)c]
< −I(ξ), (7.23)

and write UN (v) = UN hereafter. We claim that, there exists a c1 = c1(v, ξ) < ∞ such 
that

under DN ∩ UN , sup
s∈[0,t ]

{∣∣{i ∈ IN,ξ(A) : DistN,s(Xi, ξ) > β/2}
∣∣}

≥ Nm∗/c1. (7.24)
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Namely, under UN , a 1/c1 fraction of i ∈ IN,ξ(A) simultaneously satisfy DistN,s(Xi, ξ) >
β/2 at least once within s ∈ [0, t ]. To see why, divide [0, t ] into � equally spaced subinter-
vals. Within each subinterval, apply the continuity estimate (5.13) and use the continuity 
of ξc(s), c = 1, . . . , n. By choosing � large enough (depending only on v, ξ, and β), we 
ensure that, under UN , the bound

max
k=1,...,�

sup
s,s′∈[ (k−1)t

� , kt
� ]

∣∣∣∣∣ 1
NT Xi(Ts) − ξcN,ξ(i)(s)

∣∣ −
∣∣ 1

NT Xi(Ts′) − ξcN,ξ(i)(s′)
∣∣∣∣∣ ≤ β

2
(7.25)

holds for at least N(1 − m∗/2) many i ∈ {1, . . . , N}. Since |IN,ξ(A)| ≥ Nm∗, the 
bound (7.25) holds for at least Nm∗/2 many i ∈ IN,ξ(A). The claim (7.24) hence follows 
with c1 = 2�. Set c2 := 2−k0 min{1, βm∗/(2c1)} > 0. Combining (7.22)–(7.24) gives

DN ∩ UN ⊂
{

dist[0,t](μN , ξ) ≥ c2
}

. (7.26)

Let us complete the proof of (7.21). First, by (7.26) and Theorem 2.3,

lim sup
α→0

lim sup
N→∞

1
N3T

logP
[{∣∣ 1

NT Xi(T t) − x′
∣∣ ≤ α, ∀i

}
∩ DN ∩ UN

]
≤ inf

{
I(μ) : dist[0,t ](μ, ξ) ≥ c2 : μ(0) =

∑
c

mcδxc
, μ(t) = mδx′

}
.

(7.27)

By Theorem 2.4, the right hand side of (7.27) is strictly smaller than −I(ξ). Given this 
and (7.23), the desired result (7.21) now follows.

8. Connection to IKPZ and the limit shape

Here, we establish a few properties of IKPZ and the limit shape. In doing so, we prove 
Theorem 2.6: Part (a) is proven in Sections 8.1, 8.2, and 8.4; Parts (b)–(c) are proven in 
Section 8.3.

8.1. Basic properties of IKPZ

Fix t and (x1 < . . . < xn) and writing IKPZ(t, �x, �r) = IKPZ(�r), f�,t,�x,�r = f�,�r, R(t, �x) =
R, and Rconc(t, �x) = Rconc to simplify notation.

Let us show that IKPZ : R → [0, ∞) is strictly convex, which implies that IKPZ|Rconc

is strictly convex. The key is to recognize f�,�r as the minimizer of a variational problem. 
Recall that p(t, x) = −x2/(2t). For any piecewise C 1 function f : R → R such that 
f ≥ p(t) and f(x) = p(t, x) for all large enough |x|, consider IBM(f) :=

∫
R dx (1

2 (∂xf)2 −
1
2(∂xp(t))2). Note that the integral is well-defined and finite because f(x) = p(t, x) for 
all large enough |x|. It is not hard to check that
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IKPZ(�r) := IBM(f�,�r) = inf
{

IBM(f) : f(xc) = rc, c = 1, . . . , n
}

. (8.1)

Namely, f�,�r is the minimizer of the infimum in (8.1). For any γ ∈ (0, 1), use the convexity 
of u �→ u2/2 to write

1
2
(
γ∂xf�,�r1 + (1 − γ)∂xf�,�r2

)2 ≤ γ 1
2
(
∂xf�,�r1

)2 + (1 − γ) 1
2
(
∂xf�,�r2

)2
. (8.2)

Subtract (∂x(−p(t)))2/2 from both sides and integrate both sides over x ∈ R. The right 
hand side is γIKPZ(�r1) + (1 − γ)IKPZ(�r2). The left hand side is at least IKPZ(γ�r1 + (1 −
γ)(�r2)) by the variational characterization (8.1). This proves the convexity. To prove the 
strictness, note that the equality in (8.2) holds only if ∂xf�,�r1 = ∂xf�,�r2 . This being true 
for Lebesgue a.e. x ∈ R forces �r1 = �r2.

Next, we show that, for every �r ∈ R,

∂cIKPZ(�r) := ∂rc
IKPZ(t, �x,�r) = (∂xf�,�r)(x−

c ) − (∂xf�,�r)(x+
c ),

for all c = 1, . . . , n. (8.3)

Let Lc,c+1 = Lc,c+1(x) denote the linear function such that Lc,c+1(xc) = rc and that 
Lc,c+1(xc+1) = rc+1, and let xc,− := inf{x ≥ xc−1 : ∂xf�,�r(x) = ∂xf�,�r(x−

c )}, with 
the convention x0 := −∞. In words, xc,− is xc−1 when Lc,c+1|[xc,xc+1] ≥ p(t)|[xc,xc+1], 
otherwise xc,− is the “tangent point” to the left of xc; the tangent points are those 
labeled by triangles in Fig. 4. Define xc,+ similarly. To prove (8.3), it suffices to consider 
those �r ∈ R such that

either Lc−1,c|[xc−1,xc] > p(t)|[xc−1,xc] or xc−1,+ < xc,− are both tangent points,

(8.4a)

either Lc,c+1|[xc,xc+1] > p(t)|[xc,xc+1] or xc,+ < xc+1,− are both tangent points.

(8.4b)

Indeed, for fixed r1, . . . , rc−1, rc+1, . . . , rn, there exist at most two values of rc for which 
(8.4) fails. Also, as is readily checked, the right hand side (8.3) is continuous on R. 
Hence, once (8.3) is proven for those �r ∈ R satisfying (8.4), the result extends to all 
�r ∈ R.

Let us prove (8.3) under the assumption (8.4). Under this assumption, perturbing rc
changes f�,�r only within x ∈ [xc,−, xc] ∪ [xc, xc,+], so

∂cIKPZ(�r) =∂rc

xc∫
xc,−

dx
(1

2 (∂xf�,�r)2 − 1
2 (∂xp(t))2)

+ ∂rc

xc,+∫
xc

dx
( 1

2 (∂xf�,�r)2 − 1
2 (∂xp(t))2)

.

(8.5)
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In the integrals in (8.1), only xc,−, xc,+, f�,�r may depend on rc. Under (8.4), either 
∂xc,−/∂rc = 0 or (∂xf�,�r)(xc,−) = (∂xp)(t, xc,−). Hence, in (8.5), the contribution of 
differentiating xc,− is zero. The same holds for xc,+. What remains is the contribution 
of differentiating the integrands:

∂cIKPZ(�r) =
∫

[xc,−,xc]

dx ∂xf�,�r
1

xc − xc,−
+

∫
[xc,xc,+]

dx ∂xf�,�r

( −1
xc,+ − xc

)
. (8.6)

Note that the integrands are constant, so the last expression evaluates to the right hand 
side of (8.3).

8.2. The map ∇IKPZ : Rconc → [0, ∞)n is a homeomorphism

Notation as in Section 8.1.
First, by the strict convexity from Section 8.1, ∇IKPZ is injective, and from (8.3), it 

is not hard to check that ∇IKPZ is continuous.
To prepare for the rest of the proof, for any �m ∈ [0, ∞)n, we consider S(�m) := {�r ∈

Rconc : ∂cIKPZ(�r) ≤ mc, c = 1, . . . , n} and establish a few properties of it. First, the 
set S(�m) is nonempty because it contains (−x2

c/(2t))n
c=1. Next, we claim that, for any 

compact K ⊂ Rn, S(K) := ∪�m∈KS(�m) is compact. It is not hard to check that S(K) is 
closed. By definition, every �r ∈ S(K) satisfies r1 ≥ −x2

1/(2t), . . . , rn ≥ −x2
n/(2t), so we 

only need upper bounds on r1, . . . , rn. Sum the formula (8.3) over c, . . . , n to get

(∂xf�,�r)(x−
c ) − (∂xf�,�r)(x+

n ) = ∂cIKPZ(�r) + . . . + ∂nIKPZ(�r) ≤ mc + . . . + mn. (8.7)

Recall xc,± from after (8.3), and note that (∂xf�,�r)(x+
n ) = (∂xp)(t, xn,+) ≤ (∂xp)(t, xn). 

Hence ∂x(f�,�r)(x−
c ) is bounded from above, and the bound can be chosen uniformly 

over �m ∈ K. Using this property inductively for c = 1, . . . , n shows that r1, . . . , rn are 
bounded from above, uniformly over �m ∈ K.

Let us prove that ∇IKPZ is surjective. Let πc : Rn → R be the projection onto the 
cth coordinate, take any �m ∈ [0, ∞)n, consider r∗,c′ := sup πc′(S(�m)), and set �r∗ :=
(r∗,c′)n

c′=1. Fix any c. By the construction of �r∗ and the compactness of S(�m) = S({�m}), 
there exists a convergent sequence �r(k) → �r(∞) in S(�m) such that r(∞),c = r∗,c and 
r(∞),c′ ≤ r∗,c′ for all c′. These properties together with the property that f�,�r(∞) is 
concave gives that

(∂xf�,�r∗)(x−
c ) − (∂xf�,�r∗)(x+

c ) ≤ (∂xf�,�r(∞))(x
−
c ) − (∂xf�,�r(∞))(x

+
c ). (8.8)

The right hand side is at most mc because �r(∞) ∈ S(�m). We arrive at the inequality

∂cIKPZ(�r∗) = (∂xf�,�r∗)(x−
c ) − (∂xf�,�r∗)(x+

c ) ≤ mc. (8.9)
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Next, we have the following property that can be checked by referring to Fig. 4: For 
any �r ∈ Rconc (and in fact for any �r ∈ R), when rc increases while other components 
remain fixed, the quantity ∂cIKPZ = (∂xf�,�r)(x−

c ) − (∂xf�,�r)(x+
c ) increases while other 

(∂c′IKPZ)s decrease or stay the same. This property forces the inequality in (8.9) to be 
an equality: Otherwise, by increasing rc, we can increase ∂cIKPZ while maintaining the 
inequality ∂c′IKPZ ≤ mc′ for all c′, which contradicts the construction of �r∗. Since c was 
arbitrary, ∂cIKPZ(�r∗) = mc, for c = 1, . . . , n, and this gives the desired surjectivity.

Finally, we prove that (∇IKPZ)−1 is continuous. The previous paragraph gives 
(∇IKPZ)(S(�m)) � �m. Take any b < ∞ and consider S′ := S([0, b]n). We have 
(∇IKPZ)(S′) ⊃ [0, b]n. Since S′ is compact, the continuity of ∇IKPZ implies the conti-
nuity of (∇IKPZ)−1 on [0, b]n.

8.3. Limit shape and its shocks

Fix �r ∈ Rconc = Rconc(t, �x)◦. Hereafter, we will often drop the t, �x, �r dependence to 
simplify notation.

We begin by recalling some PDE background related to h�; we refer to [27, Ch. 3]
for an introduction on this topic. Consider Burgers’ equation and its Hamilton–Jacobi 
equation

∂tu = 1
2∂x(u2), ∂th = 1

2 (∂xh)2, (t, x) ∈ (0, t ] × R. (8.10)

The two equations are related by ∂xh = u. These equations can have multiple weak 
solutions under a given initial condition, but have a unique entropy solution given by 
the Hopf–Lax operator:

h(t) = HLt

(
h(0)

)
, HLt(f)(x) := sup

{
− (x − y)2

2t
+ f(y) : y ∈ R

}
. (8.11)

Now, time reverse what is described above and consider the backward version of 
(8.10)–(8.11):

∂sh(t − s, x) = −1
2 (∂xh(t − s, x))2, ∂su(t − s, x) = −1

2∂x(u(t − s, x))2, (8.12)

(HLbk
s (f))(x) := inf

y∈R

{ (x − y)2

2s
+ f(y)

}
. (8.13)

Under such notation, the limit shape h�, defined in (2.32), is obtained by taking f� =
f�,t,�x,�r as the terminal condition and evolving it backward by HLbk. As is readily checked, 
a weak solution of (8.12) is also a weak solution (8.10). On the other hand, an entropy 
solution of (8.12) (which we call backward entropy) is in general not an entropy solution 
of (8.10) (which we call forward entropy). Hence h� is a weak solution of (8.10) and (8.12), 
is backward entropy, but is not forward entropy. Put u� := ∂xh�. The characteristics are 
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linear trajectories in spacetime along which u� is constant. The shocks are trajectories 
in spacetime across which u� is not continuous.

Let us give a geometric description of h�. Write h�(t) = f� as an infimum of lines:

f� = min
{

min
{

Lb

, Lb

c,c+1, Lb
� : b ∈ B�

}
, (8.14a)

inf
{

L : L is a tangent line of p(t) at places where p(t) = f�
}}

. (8.14b)

Here, B� is a partition of {1, . . . , n} into intervals, where each b ∈ B� is a maximal set 
of cs such that (f� − p(t))|x∈[−xc,xc′ ] > 0 for all c, c′ ∈ b; we will show later that B� = B. 
Let yb


 and yb
� be the left and right tangent points as depicted in Fig. 5. The minimum 

in (8.14a) runs over all b ∈ B� and c, c + 1 ∈ b, and accounts for the piecewise linear 
part of f�, as depicted in Fig. 5. The infimum in (8.14b) accounts for the parabolic part 
of f�, as depicted in Fig. 6. Next, apply HLbk

s to both sides of (8.14) and exchange the 
infimum over y (in (8.13)) with other minimums and infimums to get

h�(t − s) = min
{

min
{

HLbk
s (Lb


), HLbk
s (Lb

c,c+1), HLbk
s (Lb

�) : b ∈ B�

}
, (8.15a)

inf
{

HLbk
s (L) : L is a tangent line of p(t) at places where p(t) = f�

}}
.

(8.15b)

For a linear function L(x) = v1x + v2, it is readily checked that HLbk
s (L) = L −

(s/2)(∂xL)2. It is also readily checked that HLbk
s (p(t)) = p(t − s). Hence, for s ∈ (0, t), 

the limit shape h�(t − s) is obtained by vertically shifting the lines in Figs. 5-6 by 
−(s/2) · (slope)2 and taking the infimum of the result. Note that every shifted line 
stays above p(t − s), since HLbk

s preserves orders: Namely, f1 ≥ f2 implies HLbk
s (f1) ≥

HLbk
s (f2). Within each b ∈ B�, the leftmost and rightmost lines (those indexed by � and 

�) touch the parabola p(t −s) at tangent. At the tangent points, ∂xp(t −s) = −x/(t −s) is 
equal to the slopes of those lines, so the x coordinates of the tangent points are (t −s)yb


/t

and (t − s)yb
�/t, which trace out the dashed lines in Fig. 7.

Based on the preceding description of h�, we infer some properties of h� and its shocks. 
Let Cb := {(t, x) : t ∈ [0, t ], x ∈ [(t/t )yb


, (t/t )yb
�]} be the spacetime region bounded by 

the tangent points. They are the colored regions in Fig. 7.

(I) Outside ∪b∈B�
Cb, h�(t, x) = p(t, x) = −x2/(2t), so the characteristics are straight 

lines that connect (t, x) = (0, 0) and {t} × R; see Fig. 7.
(II) Within each Cb, u� is piecewise constant, with values given by the slopes of Lb


, Lb
�, 

and a subset of {Lb
c,c+1 : c, c + 1 ∈ b}; the jumps of u� occur exactly along the 

shocks; see Fig. 7.

Let σc = σc(s) denote the shocks, parameter in the backward time s. Let t′, x′
a be as in 

the notation of Theorem 2.6(c). By the Rankine–Hugoniot relation (see [27, Ch. 3] for 
example)
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Fig. 5. f� as an infimum of lines, the piecewise linear part. In this Figure, B� = {{1, 2, 3}, {4, 5}}.

Fig. 6. f� as an infimum of lines, the parabolic part.

Fig. 7. The shocks (thick solid lines), characteristics (thin solid lines), and tangent points (dashed lines).

σ̇a|s=t−t′ := ( d
ds σa)(t − t′) = 1

2 (u−
�,a + u+

�,a), where u±
�,a := u�(t′, σa(t − t′)±).

(8.16)
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This relation and Properties (I)–(II) together give the following property.

(III) For each b ∈ B�, those shocks σc with c ∈ b stay within Cb and travel at constant 
velocities except when they meet. Further, shocks σc and σc′ merge within s ∈ (0, t )
if and only if they belong to the same b ∈ B�, so B� = B.

By Property (II), h� is linear in a neighborhood on either side of a shock and hence 
solves (8.10) classically there. Using this property gives the following.

(IV) Let t′, x′
a be as in the notation of Theorem 2.6(c). For all t′ ∈ (0, t ) except when 

shocks merge, d
dt h�(t, σa(t − t))|t=t′ = 1

2 (u−
�,a)2 −u−

�,a σ̇a, where u−
�,a := u�(t, σa(t −

t′)−).

Let us prove Theorem 2.6(c). To prove (2.34), recall that ∇�rIKPZ(t, �x, �r) = �m and 
combine this relation with the formula (8.3) for t = t to get u−

�,c − u+
�,c = mc. Next, use 

the formula (8.3) for t = t′ to get ∇�rIKPZ(t′, �x ′, �r ′) = u−
�,a −u+

�,a, telescope the right hand 
side as 

∑
c∈C(a)(u−

�,c − u+
�,c), use u−

�,c − u+
�,c = mc, and recognize the resulting sum as m ′

a. 
Doing so concludes (2.34). To prove (2.35), let ξ be the optimal deviation for (2.23) with 
x′ = 0. From the definition of the optimal deviation (in Section 2.3), it is readily checked 
that ξ(· + (t − t′))|[0,t′] is the optimal deviation for (2.23) with [0, t] �→ [0, t′], x′ = 0, 
(�x, �m) �→ (�m′, �x ′). Similarly, for each a = 1, . . . , n′, the deviation 

∑
c∈C(a) mcδξc

|[0,t−t′] is 
the optimal deviation for (2.23) with [0, t] �→ [0, t − t′], x′ = x′

a, (�x, �m) �→ (xc, mc)c∈C(a). 
These properties together with Theorem 2.4 give (2.35).

Let us prove Theorem 2.6(b). With �x, �r having been fixed, set �m := (∇IKPZ)(t, �x, �r). 
For this �m, let (ξc)n

c=1 be the optimal clusters. Take any intermediate time t′ ∈ (0, t ] and 
let a ∈ {1, . . . , n′}, C(a), m ′

a be as in Notation for Theorem 2.6(c), and recall vb from 
before Theorem 2.4. We seek to prove that, for any a ∈ {1, . . . , n′} with C(a) ⊂ b,

σ̇a = 1
2

n′∑
a′=1

sgn(σa′ − σa)m ′
a′ + vb. (8.17)

Referring to the definition of the optimal clusters (before Theorem 2.6(c)), we see that 
(8.17) means that the shocks evolve the same way (in the backward time s) as the 
optimal clusters. Since the shocks and optimal clusters share the same starting condition, 
namely (σc(0))n

c=1 = (xc)n
c=1 = (ξc(0))n

c=1, once (8.17) is proven, the desired result 
(σc)n

c=1 = (ξc)n
c=1 follows. To prove (8.17), fix a, b with C(a) ⊂ b. Consider the set 

{a′ : C(a′) = b} and write it at {a′ : C(a′) = b} = [a
, . . . , a�] ∩ Z. Let ub
�,
 and ub

�,�

denote the respective slopes of Lb

 and Lb

�. By Property (II), ub
�,
 = u−

�,a� , ub
�,� = u+

�,a	 , 
and u+

�,a′ = u−
�,a′+1 for all a′ ∈ [a
, a� − 1]. Use these properties to telescope the right 

hand side of (8.16) as
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σ̇a = 1
2

(
ub

�,
 +
∑

a′∈[a�,a)

(
− u−

�,a′ + u+
�,a′

)
+

∑
a′∈(a,a	]

(
u−

�,a′ − u+
�,a′

)
+ ub

�,�

)
. (8.18)

Next, combine (2.34) and (8.3) to get

m ′
a = u−

�,a − u+
�,a, a = 1, . . . , n′. (8.19)

Inserting (8.19) into (8.18) gives

σ̇a = 1
2

(
ub

�,
 + ub
�,�

)
+

∑
a′∈[a�,a	]

sgn(σa′ − σa)m ′
a′ . (8.20)

Let σb :=
∑

c∈b
mcσc/mb. Multiply both sides of (8.20) by ma, sum both sides over all 

a ∈ [a
, a�], and divide the result by mb. Doing so gives σ̇b = 1
2 (ub

�,
 + ub
�,�), which is 

constant. Write the left hand side as σ̇b = 1
2 (. . . − mb�1 + mb⊕1 + . . .) + v′

b, for some 
constant v′

b. Integrate σ̇b over s ∈ [0, t ], use σb(0) = ξb(0) and σb(t) = 0 = ξb(t), and 
compare the result with (2.24). Doing so shows that v′

b = vb. Hence 1
2 (ub

�,
 + ub
�,�) =

1
2 (. . . −mb�1 +mb⊕1 + . . .) + vb. Inserting this into (8.20) gives the desired result (8.17).

8.4. Legendre transform

Here we prove the first statement in Theorem 2.6(a), by showing that the Legendre 
transform of IKPZ(�r) gives LSHE(�m). Once this is done, since IKPZ is strictly convex and 
since ∇IKPZ : Rconc → [0, ∞)n is a homeomorphism, it will follow that LSHE(�m) is 
also strictly convex and is the Legendre transform of IKPZ(�r). Still use the notation in 
Theorem 2.6. Set G := �m·�r−IKPZ(�r), where the dot denotes the Euclidean inner product. 
Our goal is to show G = LSHE(�m). To this end, we devise a time-dependent version of G:

G(t) :=
n∑

c=1
mch�(t, σc(t − t)) −

∑
b∈B�

tyb
	 /t∫

tyb
� /t

dx
(1

2u�(t)2 − 1
2

(
∂xp(t)

)2
)

. (8.21)

At t = t, using h�(t) = f�, σc(t − t) = xc, and Property (I) verifies that G(t) = G. Using 
Properties (I)–(II), it is not hard to check that h�(t, σc(t − t)) → 0 as t → 0, for all c, 
and that u� and ∂xp(t) are uniformly bounded on Cb for all b. These properties together 
give that G(t) → 0 as t → 0. We seek to show that, for all t′ except when shocks merge,

( d
dt G

)
(t′) = 1

24

n′∑
a=1

m ′
a

3 −
n′∑
a=1

1
2m

′
a σ̇2

a. (8.22)

Once this is done, using σc = ξc, integrating both sides over t ∈ (0, t ], and comparing 
the result with LSHE(�m) = L[0,t ](

∑
c
mcξc) (see (2.21)) will yield the desired result G =

LSHE(�m).
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Let us differentiate the first sum in (8.21) at t = t′ and simplify the result. Take any 
t′ at which no shocks merge, write the first sum in (8.21) as 

∑n′

a=1 m
′
ah�(t, σa(t − t)), 

differentiate this expression in t with the aid of Properties (IV). Doing so gives

d
dt

(first sum in (8.21))
∣∣
t=t′ =

n′∑
a=1

m ′
a ·

( 1
2 (u−

�,a)2 − σ̇a · u−
�,a

)
. (8.23)

Combine (8.16), (8.3), and (2.34) to get the relation u−
�,a = 1

2m
′
a+σ̇a and insert it into the 

right hand side of (8.23). The result gives d
dt (first sum in (8.21))|t=t′ = 1

8
∑n′

a=1 m
′
a

3 −∑n′

a=1
1
2m

′
a σ̇2

a.
Next we treat the second sum in (8.21). The contribution of differentiating the bound-

ary points tyb

/t and tyb

�/t is zero, because the integrand evaluates to zero at those points 
by Property (I). Next, recall from Property (II) that u� is piecewise constant within the 
integral in (8.21). This gives

tyb
� /t∫

tyb
	 /t

dx ∂t
1
2 (u�)2 = 1

2
∑

a:C(a)⊂b

((u+
�,a)2 − (u−

�,a)2)σ̇a. (8.24)

Next, straightforward calculations verify the following relation. (One can also use the 
machinery of entropy-entropy flux pairs to see it, which we will not do here.)

tyb
� /t∫

tyb
	 /t

dx ∂t
1
2(∂xp(t))2 = 1

3
(
∂xp(t, tyb


/t)
)3 − 1

3
(
∂xp(t, tyb

�/t)
)3

. (8.25)

By Property (I), the right hand side of (8.25) is equal to 1
3u�(t, tyb


/t)3 − 1
3u�(t, tyb

�/t)3. 
Telescope the last expression into 1

3
∑

a:C(a)⊂b
((u+

�,a)3 − (u−
�,a)3). So far, we have

d
dt

(second sum in (8.21))
∣∣
t=t′ =

n′∑
a=1

( ((u+
�,a)2 + (u−

�,a)2)(−σ̇a)
2 −

(u+
�,a)3 − (u−

�,a)3

3

)
.

(8.26)

Inset (8.16) into the right hand side of (8.26) and simplify the result. Doing so gives
d
dt (second sum in (8.21))|t=t′ = − 

∑n′

a=1(u+
�,a − u−

�,a)3/12, which, by (8.19), is equal to 

− 
∑n′

a=1 m
′
a

3/12.
Combining the results in the last two paragraphs gives (8.22) and hence completes 

the proof.

Data availability

No data was used for the research described in the article.
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Appendix A. Basic properties

Proof of the scaling identities (3.1). First, it is not hard to check that, for any λ ∈
mP(R),

F [ 1
m
Smλ](x) = 1

m
F [λ](mx), X[ 1

m
Smλ](a) = 1

m
X[λ](ma), Φ[ 1

m
Smλ](x) = 1

m
Φ[λ](mx).

(A.1)

Using the preceding scaling relations for X and Φ in (2.12) and performing a change of 
variables ma �→ a give the desired scaling relation I( 1

m
Smμ) = I(μ)/m3 for I. To prove 

the scaling relation for I, use (A.1) in (2.10) and call g(s, x) := h(s, x/m). After being 
simplified, the result reads

I( 1
m
Smμ) = sup

g

{ 1
m

Λ(μ, g) − m

2

t∫
0

ds 〈μ, (∂xg)2〉
}

, (A.2)

where the supremum runs over g ∈ C 1,1
b ([0, t ], R). A supremum of this form can be 

expressed as a supremum of a Rayleigh quotient: For u, v ∈ (0, ∞),

sup
g

{
uΛ(μ, g) − v

2

∫
[0,t ]

ds 〈μ, (∂xg)2〉
}

=
supg(uΛ(μ, g))2

2v
∫

[0,t ] ds 〈μ, (∂xg)2〉 . (A.3)

with the convention that 0/0 := 0 and that b2/0 := ∞ for b 
= 0. To see why, rewrite 
the supremum on the left hand side as a supremum over bg, with b ∈ R, and optimize 
over b for a fixed g. Using the Rayleigh quotient expression in (A.2) gives I( 1

m
Smμ) =

I(μ)/m3. �
Proof of Lemma 3.2(b)–(c). To prove Part (b), assume the contrary: There exist 
s1, s2, . . . ∈ [0, t ] and ε0 > 0 such that 〈μ(sk), 1R\(−k,k)〉 ≥ ε0 > 0 for all k. After passing 
to a subsequence, we have sk → s0 ∈ [0, t ]. Since R \(−k, k) is closed and since μ(s) is con-
tinuous in s, lim sup�→∞〈μ(s�), 1R\(−k,k)〉 ≤ 〈μ(s0), 1R\(−k,k)〉 for every k ∈ Z>0. The 
left hand side is at least ε0. Sending k → ∞ gives 0 < ε0 ≤ lim infk→∞〈μ(s0), 1R\[−k,k]〉, 
contradicting μ(s0) ∈ P(R).

To prove Part (c), write X[μ(s)](a) = X(s, a) and let ω(s, a) := lim sups′→s X(s′, a) −
lim infs′→s X(s′, a) denote the oscillation in time of X at (s, a). Fix k ∈ Z>0. By (3.4),

dist(μ(s1), μ(s2))

≥ 2−k min
{

1,

1∫
0

da |X(s1, a) − X(s2, a)|1{|X(s1, a)| ≤ k}1{|X(s2, a)| ≤ k}
}

.

(A.4)
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This inequality and the continuity of μ(s) in s imply that the set {a ∈ [0, 1] : ω(s, a) >
0, for some s with |X(s, a)| < k} has zero Lebesgue measure. Combining this with the 
result of Part (b) gives the desired result. �
Proof of Properties (a)–(e) after (4.6). To prove Property (a), observe that
Cb

1,1([s1, s3], R) can be embedded into Cb
1,1([s1, s2], R) and Cb

1,1([s2, s3], R), so the 
inequality ≥ follows. For the reverse inequality, take any h12 ∈ Cb

1,1([s1, s2], R) and 
h23 ∈ Cb

1,1([s2, s3], R) and concatenate them as follows: Take any ϕ ∈ C ∞(R) that is 
increasing, with ϕ|(−∞,0] = 0 and ϕ|[1,∞) = 1, set ϕδ(s) := ϕ(s/δ), and consider

hδ(s, x) := h12(s, x)ϕδ(s2 − s) + h23(s, x)ϕδ(s − s2) ∈ C 1,2
b ([s1, s3],R). (A.5)

Indeed, 
∫ s3

s1
ds 〈μ, (∂xhδ)2〉 →

∫ s2
s1

ds 〈μ, (∂xh12)2〉 +
∫ s3

s2
ds 〈μ, (∂xh23)2〉 as δ → 0. Next, 

write
s3∫

s1

ds 〈μ, ∂shδ〉 −
s2∫

s1

ds 〈μ, ∂sh12〉 −
s3∫

s2

ds 〈μ, ∂sh23〉 (A.6)

= −
s2∫

s2−δ

ds 〈μ, h12∂sϕδ〉 +
s2+δ∫
s2

ds 〈μ, h23∂sϕδ〉 + O(δ) (A.7)

It is not hard to check that (A.7) converges to −〈μ(s2), h12(s2)〉 + 〈μ(s2), h23(s2)〉 as 
δ → 0. The preceding results together verify Property (a).

Property (b) follows from Property (a) and the property that I◦
[s′,s′′] ≥ 0; the latter 

property is readily seen from (4.6). Property (c) follows since the expression within the 
supremum in (4.6) is linear in μ. Property (d) follows by renaming the test function 
h(s, x − y) := h̃(s, x) in (4.6). Property (e) follows since for a time-independent μ = λ ∈
P(R) the first two terms within the supremum in (4.6) cancel with each other, and the 
last term is nonpositive. �
Proof of (2.22). We consider m = 1 only; the result for general m > 0 follows from the 
result for m = 1 through the scaling argument in the proof of (3.1). Without loss of 
generality, assume ∂sX[μ] ∈ L2([0, t ] × [0, 1]); otherwise both sides of (2.22) are +∞ by 
definition. Write X[μ(s)](a) = X(s, a) and Φ[μ(s)](x) = Φ(s, x). Expand the integrand 
in (2.12) and insert the result into the Left Hand Side (LHS) of (2.22) to get

LHS of (2.22) = t

24 +
〈
μ(s)⊗2, 1

4 |x − x′|
〉∣∣∣s=t

s=0
−

t∫
0

ds

1∫
0

da
1
2(∂sX)2

+ A2 − A3, (A.8)

where A2 :=
∫

[0,t ]ds 
∫

[0,1]da (∂sX) Φ, and A3 :=
∫

[0,t ]ds 
∫

[0,1]da 12Φ2. For A2, we claim 
that we can replace Φ(s, a) with (1 − a) to get
2



52 L.-C. Tsai / Journal of Functional Analysis 288 (2025) 110675
A2 =
t∫

0

ds

1∫
0

da
(
∂sX[μ]

)
·
( 1

2 − a
)
. (A.9)

Recall a±[μ(s)](a) from (3.7) and write them as a±(s, a). Given (3.8), this claim follows 
if we can show, for almost every (s, a), (∂sX)(s, ·) is almost everywhere a constant on 
(a−(s, a), a+(s, a)). Fix any (s0, a0) such that X is differentiable in s at (s0, a0) and write 
a±(s0, a0) =: a0,±. For every a ∈ (a0,−, a0), X(s0, a) = X(s0, a0) and X(s, a) ≤ X(s, a0)
for all s. If X is differentiable in s at (s0, a), the preceding properties force (∂sX)(s0, a) =
(∂sX)(s0, a0). The same conclusion holds for a ∈ (a0, a0,+). Under the assumption that 
∂sX[μ] ∈ L2([0, t ] × [0, 1]), X is differentiable in s Lebesgue a.e., so the claim follows. 
Evaluate the s integral in (A.9), use (3.9) for f(x) = x in reverse, and use Lemma 3.2(a) 
in reverse to get A2 = 〈μ(s), xΦ[μ(s)]〉|s=t

s=0. Recalling Φ[μ(s)] from (2.8), we recognize 
the last expression as A2 = 〈μ(s)⊗2, 12x sgn(x′ − x)〉 |s=t

s=0. Since the measure μ(s)⊗2 is 
symmetric in x and x′, we can symmetrize the function 1

2x sgn(x′ − x) to get

A2 = 〈μ(s)⊗2, 1
4 (x − x′)sgn(x′ − x)〉

∣∣s=t

s=0 = −〈μ(s)⊗2, 1
4 |x − x′|〉

∣∣s=t

s=0. (A.10)

As for A3, the identity (3.8) gives

A3 = 1
2

t∫
0

ds
( 1∫

0

da
(1

2 − a
)2 −

∑ a+∫
a−

da
(( 1

2 − a
)2 −

( 1−a−−a+
2

)2
))

, (A.11)

where the sum runs over all pairs of (a−, a+) such that a− < a+. Evaluating the integrals 
and simplifying the result give

A3 = t

24 −
t∫

0

ds
∑ 1

24(a+ − a−)3 = t

24 −
t∫

0

ds
∑

x

1
24 〈μ, 1{x}〉3, (A.12)

where the sum over x runs over atoms of μ(s). Inserting (A.10) and (A.12) into (A.8)
gives (2.22). �
Appendix B. Proof of (6.40)

We take [s′, s′′] = [0, t ] (whence I[0,t ](·) := I(·)) to simplify notation.
We say μ well approximates μ′ to within ε if dist[0,t ](μ, μ′) < ε and |I(μ) − I(μ′)| < ε. 

We say a class of deviations well approximates μ′ if, for every ε > 0, there exists a 
deviation in that class that well approximates μ′ to within ε.

As the first step, we well approximate μ by clustering deviations. For n ∈ Z>0, ap-
ply the procedure in Section 3.4 with m1 = . . . = mn = 1/n to get μc, c = 1, . . . , n. 
As explained there, each μc(s) is continuous in s. Let xγ,c(s) := n〈μc(s), x〉, which 
belongs to C [0, t ] thanks to the continuity of μc and thanks to Assumption 6.3. Set 
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γ(n)(s) := 1
n

∑
c
δxγ,c(s), which is clustering. Consider (twice of) the total variation norm 

‖λ − λ′‖tv := supx∈R |F [λ](x) − F [λ′](x)|. We claim that ‖γ(n)(s) − μ(s)‖tv ≤ 1/n. 
To see why, consider Sc := {x : F [μ(s)](x) ∈ [(c − 1)/n, c/n)} for c = 1, . . . , n sep-
arately. Within each Sc, the function F [γ(n)(s)] makes a single jump from the level 
(c − 1)/n to the level c/n; this is seen from the construction of γ(n). Hence the dif-
ference |F [γ(n)(s)](x) − F [μ(s)](x)| is at most 1/n, so the claim follows. We have 
that γ(n)(s) → μ(s) in the total variation norm, uniformly over s ∈ [0, t ]. This im-
plies dist[0,t](γ(n), μ) → 0. Next, we show I(γ(n)) → I(μ). Note that by construction, 
X[γ(n)(s)]|a∈Ic = γc(s) := n〈μ(s), x〉 = n 

∫
Ic

da X[μ(s)](a), where Ic := [(c − 1)/n, c/n). 
Namely, X[γ(n)(s)] is obtained by averaging X[μ(s)] over intervals of length 1/n. By using 
this property and ∂sX[μ] ∈ L2([0, t ] × [0, 1]), which follows from the assumption I(μ) =
I(μ) < ∞, it is not hard to check that ∂sX[γ(n)] → ∂sX[μ] in L2([0, t ] × [0, 1]). Also, 
‖Φ[γ(n)(s)] − Φ[μ(s)]‖∞ ≤ ‖ 1

2 sgn‖∞‖γ(n)(s) − μ(s)‖tv = 1
2‖γ(n)(s) − μ(s)‖tv ≤ 1/(2n). 

Combining these properties gives I(γ(n)) → I(μ).
As the second step, writing γ(n) =: γ to simplify notation and fixing an arbitrary 

ε > 0, we well approximate γ by a finitely-changing-clustering ζ to within ε. A deviation 
ζ being finitely-changing-clustering means that it is clustering and that there exist 0 =
s0 < s1 < . . . < s� = t such that, within each (sk−1, sk), each pair of clusters either never 
touch or completely coincide. We will construct a sequence ζ(1), . . . , ζ(n) of clustering 
deviations that satisfy the following conditions.

(i) dist[0,t ](ζ(j−1), ζ(j)) ≤ ε/n and |I(ζ(j−1)) − I(ζ(j))| ≤ ε/n, with the convention 
ζ(0) := γ.

(ii) Each ζ(j) has n clusters ζ
(j)
1 ≤ . . . ≤ ζ

(j)
n of mass 1/n, and the finitely-changing 

property holds up to the index j. More precisely, there exist 0 = s0 < s1 < . . . <

s� = t, which may depend on j, such that within each (sk−1, sk), each pair in 
ζ

(j)
1 , . . . , ζ(j)

j either never touches or completely coincides.

Once constructed, ζ(n) =: ζ gives the finitely-change clustering deviation.
We now construct the ζ(j)s by induction on j. For j = 1, simply take ζ(1) = γ. Assume 

ζ(1), . . . , ζ(j−1) have been constructed. We will construct ζ(j) =: ζnew out of ζ(j−1) =: ζold. 
To begin the construction, keep all but the jth clusters unchanged: ζnew

j′ := ζold
j′ for all 

j′ 
= j. Next, to construct the jth cluster for ζnew, consider O = {s ∈ (0, t ) : ζold
j−1(s) <

ζold
j (s)}, which is open, and write O as the union of countable disjoint open intervals 

(a1, b1), (a2, b2), . . .. By Condition (i), I(ζold) < ∞, so ζ̇old
c ∈ L2[0, t ] for all c. Given this 

property, find an �0 large enough such that, with O′′ := ∪�>�0(a�, b�),

∫
O′′

ds
∑

c=j−1,j

1
n

∣∣ζ̇old
c

∣∣ ≤ ε

n
,

∫
O′′

ds
1

2n

∑
c=j−1,j

(∣∣ζ̇old
c

∣∣ + 1
)2 ≤ ε

n
. (B.1)



54 L.-C. Tsai / Journal of Functional Analysis 288 (2025) 110675
Set O′ := (a1, b1) ∪ . . .∪(a�0 , b�0). Keep the jth cluster unchanged within O′ and perturb 
it to match the (j − 1)th cluster outside O′. More explicitly, ζnew

j |O′ := ζold
j |O′ and 

ζnew
j |[0,t ]\O′ := ζold

j−1|[0,t ]\O′ .
We next check that the ζnew so constructed satisfies the required conditions. First, 

given that ζold satisfies Condition (ii) up to the index j − 1, it is not hard to check that 
ζnew satisfies Condition (ii) up to the index j. Move on to checking Condition (i). Recall 
that ζnew differs from ζold only at the jth cluster. Further, the difference occurs only 
on O′′. On O′′, where ζnew

j and ζold
j differ, we have ζnew

j |O′′ = ζold
j−1|O′′ . These properties 

together with (6.10) and |Φ[·]| ≤ 1/2 give

sup
s∈[0,t ]

1
n

n∑
c=1

∣∣ζnew
c (s) − ζold

c (s)
∣∣ ≤

∫
O′′

ds
1
n

∣∣ζ̇old
j−1 − ζ̇old

j

∣∣ , (B.2)

|I(ζnew) − I(ζold)| ≤
∫

O′′

ds
1

2n

∑
c=j−1,j

(
|ζ̇old

c | + 1
2
)2

. (B.3)

By (B.1), the right hand sides of (B.2)–(B.3) are bounded by ε/n. By (3.6), the left hand 
side of (B.2) bounds dist[0,t ](ζnew, ζold) from above.

Finally, we well approximate ζ by PL-clustering deviations. Let 0 = s0 < s1 < . . . <

s� = t prescribe the intervals on which the clusters of ζ either never touch or completely 
coincide. Further partition each [sk−1, sk] into smaller intervals of equal length. Linearly 
interpolate the trajectories of the clusters of ζ with respect to the smaller intervals. 
Use the resulting piecewise linear trajectories to build a PL-clustering ξ. Within each 
(sk−1, sk), since the clusters of ζ either never touch or completely coincide, the same 
property holds for ξ. By using this property, (3.6), and (6.10), it is not hard to check 
that, as the mesh of the sub partitions tends to zero, dist[0,t ](ξ, ζ) → 0 and I(ξ) → I(ζ).

Appendix C. Girsanov’s transform

Here, we pack Girsanov’s transform in ways convenient for our applications. Fix 
[s′, s′′] ⊂ [0, t ], let P be the law of (Xi(s))s∈[T s′,T s′′],i=1,...,N under (2.2) given 
(Xi(Ts′))i=1,...,N , take deterministic vi and Ji ⊂ {1, . . . , N}, i = 1, . . . , N , and con-
sider the law Q such that

under Q, dXi =
∑

j∈{1,...,N}\Ji

1
2sgn(Xj − Xi) ds + Nvi ds + dBi, s ∈ [Ts′, T s′′],

(C.1)

with the same given (Xi(Ts′))i=1,...,N .

Lemma C.1.
(a) Assume Ji = ∅ for all i and take any r′ ∈ (0, ∞). For any measurable E ⊂

C ([s′, s′′], R)N with E ⊂ {|Bi(Ts) − Bi(Ts′)| < NTr′, ∀s ∈ [s′, s′′], i = 1, . . . , N},
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1
N3T

logP
[
E

]
≥ 1

N3T
logQ

[
E

]
− (s′ − s)

2N

N∑
i=1

v2
i − r′

N

N∑
i=1

|vi|. (C.2)

(b) For any p > 1 and any measurable E ⊂ C ([s′, s′′], R)N ,

1
N3T

logP
[
E

]
≥ p

N3T
logQ

[
E

]
− p (s′′ − s′)

p − 1
1

2N

N∑
i=1

(
|vi| + |Ji|2

2N

)2
. (C.3)

Proof. Set A :=
∫ T s′′

T s′
∑N

i=1 dBi (Nvi −
∑

j∈Ji
sgn(Xj − Xi)/2) and let 〈A〉 =∫ T s′′

T s′
∑N

i=1 ds (Nvi −
∑

j∈Ji
sgn(Xj − Xi)/2)2 denote its quadratic variation. Slightly 

abusing notation, we write the expectation under Q also as Q. Girsanov’s transform 
gives P [E ] = Q[1E exp(A − 〈A〉/2)]. For Part (a), using 1EA ≥ −N2Tr′ ∑

i |vi| and 
〈A〉 = N2T (s′′ − s′) 

∑
i v2

i gives the desired result. For Part (b), use Hölder’s inequality

Q[E ] ≤ Q[1E exp(A − 1
2 〈A〉)]1/pQ[exp( 1

(p−1) (−A + 1
2 〈A〉))](p−1)/p, (C.4)

evaluate the last expectation

Q
[
e

1
p−1 (−A+ 1

2 〈A〉)
]

= Q
[

exp
( p

2(p − 1)2

T s′′∫
T s′

ds

N∑
i=1

(
Nvi +

∑
j∈Ji

1
2sgn(Xj − Xi)

)2 ]
,

(C.5)

bound the summand in 
∑

i by (N |vi| + |Ji|/2)2, and replace Q[1E exp(A − 〈A〉/2)] with 
P [E ] in (C.4). Doing so gives

Q[E ] ≤ P [E ]1/p exp
( (s′′ − s′)T

2(p − 1)

N∑
i=1

(
N |vi| + |Ji|

2N

)2)
. (C.6)

Applying p
N3T log( · ) to both sides and simplifying the result give (C.3). �
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