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1. Introduction

This paper is motivated by the study of the large deviations and spacetime limit shapes
of the Kardar-Parisi-Zhang (KPZ) equation. Introduced in [64], the KPZ equation

Oh = 10,.h + L(0,h)* + 1, h=h(t,z), (t,z)ec (0,00)xR (1.1)
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describes the evolution of a randomly growing interface, where n = (¢, z) denotes the
spacetime white noise. This equation plays a central role in nonequilibrium statistical
mechanics and has been widely studied in mathematics and physics; we refer to [82,19,
81,21,20] for reviews on the mathematical literature related to the KPZ equation.

This paper and the companion paper [75] use the moments of the Stochastic Heat
Equation (SHE) to obtain a Large Deviation Principle (LDP) and the corresponding
spacetime limit shape of the KPZ equation. Recall that the SHE

NZ =107 +nZ (1.2)

gives the solution of (1.1) via h := log Z, so the moment generating function of the
KPZ equation is related to the moments of the SHE. This relation serves as a gateway
to studying the KPZ equation, since the moments of the SHE are accessible from a
number of tools, including the delta Bose gas and Feynman—Kac formula. At the one-
point level, this relation has led to fruitful results on the one-point upper tail of the KPZ
equation [16,11,26,22,71,32].

The goal of this paper is to characterize the multi-point moment Lyapunov exponents

. Nm,
Jm_ S o B [ ];[1 Z(Tt, NTx.) (1.3)
for all positive powers, Nm, € (0,00), and for fixed x; < ... < x, € R. Hereafter

T = Ty is the scale of time, and N is the scale of the powers. The only conditions we
impose on N and T = Ty are

N — oo, N2T = N?Ty — oo. (1.4)

Our results actually hold for any T = Ty 4 := A/N? with (N, A) — (c0,0); we take
T = Ty to depend only on N for the convenience of notation. Note that (1.4) allows
Tnv — 0, Ty — 1, and Ty — oo. The second condition in (1.4) underscores what
we call the clustering behaviors of the attractive Brownian Particles, as explained in
the paragraph after next. The first condition in (1.4) reduces the task of characterizing
(1.3) for positive powers, Nm, € (0,00), to that of integer powers. Indeed, Nm, € Z~
translates into m, € %Zw, which becomes a denser and denser subset of (0,00) as
N — oo.

Let us briefly describe our methods and results; the full description will be given in
Section 2. To analyze the moment Lyapunov exponents, we express the integer moments
of the SHE in terms of a system of attractive Brownian Particles (BPs), which are
Brownian Motions (BMs) interacting via pairwise attractive drift. The task of analyzing
the moment Lyapunov exponents turns into proving the LDP for the attractive BPs.
Theorem 2.3 gives the sample-path LDP for the empirical measure of the attractive
BPs. Next, we specialize the initial condition into the delta-like initial condition (defined
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in (2.14)). Theorem 2.4 explicitly characterizes the unique minimizer of the rate function
(of the LDP for the attractive BPs) under the delta-like initial condition. We call the
minimizer the optimal deviation. Corollary 2.5 gives the limit of (1.3) under the delta-like
initial condition. Finally, in Theorem 2.6, we show how the moment Lyapunov exponents
and optimal deviation are related to the corresponding rate function and limit shape of
the KPZ equation. The results of this paper are used in the companion paper [75] to prove
an n-point, upper-tail LDP for the KPZ equation and to characterize the corresponding
spacetime limit shape.

Under (1.4), the attractive BPs exhibit what we call the clustering behavior. Two
effects contribute to the evolution of the attractive BPs: the attractive drift and diffu-
sive effect. The drift pulls the particles together, while the diffusive effect spreads them
out. As will be explained in Section 2.2, under the second condition in (1.4), the attrac-
tive drift dominates the diffusive effect, so the BPs tend to cluster. Theorem 2.4 (also
Theorem 2.6(b)) shows that, under the delta-like initial condition, the optimal deviation
consists of a number of clusters and explicitly describes the spacetime trajectories of
the clusters. In the context of the upper-tail LDPs for the KPZ equation, the clustering
behavior (of the attractive BPs) corresponds to what is called the noise-corridor effect
in [75, Sect. 1.3]. Those noise corridors are exactly the trajectories of the clusters.

Our proof does not rely on integrability or explicit formulas. Thanks to the integrabil-
ity of the delta Bose gas, moments of the SHE enjoy explicit formulas. The formulas offer
a potential path to obtain the limit in (1.3), but they do not seem to provide information
for proving a localization result like Corollary 2.5(b), which is a crucial technical input
for the proof in [75]. Still, it is interesting to see if one can obtain the limit in (1.3) also
from the formulas.

Let us compare (1.4) with two commonly-considered scaling regimes. First, Ty =
A/N? with A < oo fixed and N — oo, corresponds to the Freidlin—Wentzell /weak-noise
LDP for the KPZ equation. At the level of the attractive BPs, this is the diffusive regime,
and the LDP is proven in [24] for a general class of rank-based diffusions that includes the
attractive BPs. The LDP in [24] and the LDP proven here are very different in nature, as
will be explained in Section 2.2. Next, N =1 and T — oo correspond to the hyperbolic
scaling regime, in long time, of the KPZ equation, namely hr(t,x) := T~ h(Tt, Tx). This
is perhaps the most natural scaling regime in long time, while (1.4) allows us to probe
any deviation much larger than those in the hyperbolic regime. For the hyperbolic scaling
regime, since N2T = T — oo, we also expect the clustering behaviors to happen. One
may seek to generalize our approach to obtain the multipoint, positive-integer moment
Lyapunov exponents in this regime. This has been achieved by [72], based on exact
formulas as well as ideas about the optimal clusters from Section 2.3 of this paper.

We end the introduction with a brief literature review. The moments of the SHE
and its variant have been used to study the intermittency property [34,31,47], large de-
viations, and the density function of the SHE (and its variants) in [18,35,4,16,9,52,45,
37,11,17,26,22,71]. The connection between the delta Bose gas and attractive BPs has
been used in the physics work [68] to study their relaxation properties and their hy-
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drodynamic limits. The attractive BPs is a special case of diffusions with rank-based
drifts, or rank-based diffusions for short. We refer to [28,6,80,29,42,5,87,43,83,24,25,
44,84,85,93,94,10,23,86,2,3] and the references therein for the literature on rank-based
diffusions. Recently, there has been much interest in the LDPs for the KPZ equation
in mathematics and physics. Several strands of methods produce detailed information
on the one-point tail probabilities and the one-point rate function. This includes the
physics works [69,70,54,90,13,55,56,61,65,57,67], the simulation works [38,39,36,40], and
the mathematics works [11,12,8,26,22,48,71,7,32,30,95]. For the Freidlin-Wentzell /weak-
noise LDP, behaviors of the one-point rate function and the corresponding most probable
shape(s) for various initial conditions and boundary conditions have been predicted
[49-51,76,62,77,79,89,91,1,92], some of which recently proven [73,74,33]; an intriguing
symmetry breaking and second-order phase transition has been discovered in [46,88] via
numerical means and analytically derived in [54,59]; a connection to integrable PDEs is
recently established and studied in the physics works [66,58-60] and the mathematically
rigorous work [96].

Outline

In Section 2, we state the results and present some discussions. In Section 3, we
introduce some notation, definitions, and tools. Sections 4—6 make up the proof of Theo-
rem 2.3, the LDP for the attractive BPs: We establish properties of the rate function in
Section 4, prove the LDP upper bound in Section 5, and prove the LDP lower bound in
Section 6. In Section 7, we specialize the setting into the delta-like initial condition and
establish results on the moment Lyapunov exponents, stated as Theorem 2.4 and Corol-
lary 2.5. Finally, in Section 8, we prove Theorem 2.6 that relates the moment Lyapunov
exponent and optimal deviation to the rate function and spacetime limit shape of the
KPZ equation.
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2. Results and discussions
2.1. Moment Lyapunov exponents, attractive BPs

The first goal of this paper is to prove that the n-point Lyapunov exponent (1.3)
exists and to characterize it, for suitable initial conditions for Z. In (1.3) and hereafter,
€ (0,0), X1 < ... <X, €R,and my,...,m, € (0,00). Throughout this paper we will
only work with integer moments, so an integer part is implicitly taken whenever needed;
for example, Nm, := [Nm,] in (1.3). As will be shown in Theorem 2.6(a), the limit of
(1.3) is continuous in m € [0, 00)™. Hence, once we obtain the limit for [Nni] € (Zo)™,
the result automatically extends to N € [0, 00)™.

To access (1.3), let us express the moments in terms of the attractive BPs. First,
by [41, Theorem 5.3], the one-point moment of Z can be expressed as an expectation
over independent BMs. The same proof there works for multipoint (in space) moments,
giving, for y1,...,ynm € R,

Nm Nm
E{H Z(t,yi)} —E,, {EZK]. St ds 80 (X (t—5)— X (t—5)) I1 Z(O,Xi(t))], (2.1)
=1

=1

where X3(s) — y1, ..., Xnvm(8) — ynm are independent standard BMs under Egy, and
the integrals are interpreted as localtimes. Hereafter, m € (0, c0) is fixed and is taken to
be m = my +...+m, whenever we analyze (1.3). The localtimes in (2.1) can be removed
by transforming Eg,, into a different law E. Let P and E denote the law and expectation

under which X7, ..., Xym evolve as a system of attractive BPs as
Nm 1
dX;(s) = §sgn(Xj(s) — X;(s))ds + dB;(s), Xi(0) = yi, (2.2)
j=1

where Bi,..., Bym are independent standard BMs, and sgn(z) := (2/|z])1{zz20;. We
index the particles so that they are ordered at the start: X7(0) < X2(0) < ..., and the
particles can exchange orders as time evolves. By [43], the equations (2.2) have a unique
strong (pathwise) solution. Start from Pgy; (under which X;,..., Xy, are independent
BMs), apply Tanaka’s formula to X; — X, sum the result over i < j € {1,..., Nm}, and
exponentiate the result. Doing so gives

t
under Py, eXi<i Jo ds So(Xi=X;) _ exp Z/d —sgn(X - X, ))

1<J 0
(2.3a)

coxp (= Y0 31X0) - %00+ Y 510 - X)), (2:30)

i<j i<j
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Rewrite the sum in (2.3a) as —3 Zi\;nll fot dX; 325 5.5en(X; — Xj). As a process in ¢,
this term has quadratic variation tNm((Nm)2 — 1)/12; see [16, Eq. (2.1)]. Given this
property, Girsanov’s theorem asserts that

dPgy
dp

(X) = (right hand side of (2.3a)) - eN™((Nm)* 1)z (2:4)

Let (%) := exp(—3 dicy i —x;]) = exp(—3 va]m 1 |zi —x;]). Combining (2.3)—(2.4)
gives

]EBM[B l<}jo ds 8o (X (t—s)— X (t— s))( )] :eNm((Nm)2,1)2t—4 E[w ( ( ))( )/qugd

]
=
=

We view both sides of (2.5) as operators that act on a measurable function F'(
(Xi())iz1.... Nm such that ¢, (X (0))F(X)/th(X (t)) is integrable under E.

Remark 2.1. A similar application of Tanaka’s formula was used in [16] to access the
one-point integer moments of the SHE. The transformation (2.5) can also be derived by
conjugating the Hamiltonian of the delta Bose gas by its ground state. This is done in
[68, Eq. (5)—(6)] at a physics level of rigor.

To analyze the attractive BPs, we will mostly work with the (scaled) empirical measure

Nm

1
B (s) = N ZéXj(Ts)/(NT)- (2.6)
i=1

Hereafter, we write T' = TN, with the understanding that N — oo is always taken under

(1.4). Writing (A, f) := [ A( ) for the action of a Borel measure A on f, we rewrite
(2.5) as
Epy [€Z7<J Y ds 8o (X (Tt—s)— X~(ths))( . )] (27&)

= oxp (N*Tm? (1= (k) o) B exp (N Ty ()52, da = 2/ 55) (-],
(2.7b)

where A®2 := X\ ® X stands for the product measure that acts on R? = {(z,z')}.

Convention 2.2. We have and will continue to use ¢ to denote the time variable of the SHE,
and use s to denote the time variable of X1, Xo,.... We call Z(t, +)|t=0 and Z(¢, «)|:=n:
respectively the initial and terminal conditions of the SHE, and call X;(s)|s=0 and
X;(s)|s=nt respectively the starting and ending conditions of X;. Since t = Nt — s,
there is a time reversal between t and s.
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2.2. Result: LDP for the attractive BPs

The task of analyzing the moment Lyapunov exponent (1.3) turns into studying the
large deviations of the attractive BPs. Indeed, the quantities in (2.7) are of exponential
scales, so the expectation is controlled by the large deviations of the attractive BPs.

Our result, Theorem 2.3, gives the sample-path LDP for p ;.

Let us prepare some notation for Theorem 2.3. Let (mZ(R)) denote the space of
positive Borel measures on R with total mass m, and endow the space with the weak*
topology, namely the topology induced by convergence in distribution, which is denoted
by =. Consider %([0,t],mZ(R)). A sequence py, converging to u in this space means
Supseqo,¢) {1k (s) — p1(s), )| — 0 for any ¢ € €, (R). Endow ([0, t], mZ#(R)) with the
topology induced by the convergence sequences. Namely, a set A in €([0,t], mZ(R)) is
closed if and only if A contains the limit of any sequence {pug}r=1,2, .. C A that con-
verges. In Section 3.2, we will introduce metrics for these topologies. Given a topological
space 2, a sequence of Z -valued random variables Ry satisfying the LDP with the
speed sy and rate function I means that —info I < liminfy_ o %logP[RN € 0]
and limsupy_, o ﬁlogP[RN € C] < —inf¢ I for every open O C % and closed
C Cc Z. A function I : 2 — [0,00] being a good rate function means that its is
lower-semicontinuous and {I < r} is compact for any r < co.

More notation for Theorem 2.3 is in place. For A € mZ(R), set

O|(2) = (A, gsgn(+ — 7)) = =5\ Lcoom)) + 3N L(o,00))- (2.8)

Recall that sgn(0) := 0, so the right hand side excludes the mass of A at z. This function
gives the amount of drift a particle feels in the system of attractive BPs. More explicitly,
the drift in (2.2) is equal to N®[\|(z) with A = py(s) and x = X;(T's)/(NT). Next, let
%, ([0,4],R) be the space of functions h = h(s,z) with continuous and bounded first
derivatives in time and space. Let

t

M) = () )2y~ [ ds,ouh) — [ ds G Bloh) (29)

0

I(p) = sup{A(u,h)f/ds%QL, 0.0)) : he g (0 R} (210)
0

Hereafter, we adopt shorthand notation such as h(s) := h(s, +), (i, 9sh) := (u(s), dsh(s)),
and ®[u] := ®[u(s)](z). Expressions like (2.10) arise in the martingale method [63] for
proving LDP upper bounds. To prove the LDP lower bound and to analyze Z, it will be
convenient to have an expression more explicit than (2.10). Given any A € mZ(R), let

FA(2) == (A L(—ooa]) X[N(a) :=inf{x € R:a < F[\(z)}, (2.11)
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be the Cumulative Distribution Function (CDF) and quantile function, aka inverse CDF.
We refer to a € [0,m] as the quantile coordinate. As will be shown in Section 4.1, the
rate function Z permits a quantile representation I. Namely, Z = I, where

1) = [ ds [ da g (0.2 - olul(xlu)* (2.12)

where X[u] := X[u(s)](a). Given that |®[u]| < m/2, when ds(X[u]) ¢ L£2(]0,t] x [0,m]),
we define the integral in (2.12) to be +oc.

Theorem 2.3. Fiz any t,m € (0,00) and a starting condition ps. € mPR). Assume
(1.4).

Started from a deterministic pun(0) such that py(0) = psc, the empirical measure
Wy satisfies the LDP on €([0,t],mP(R)) with the speed N3T = N3Tx and the rate
function

(2.13)

L(4) = {I(u) =1(s)  when 1(0) = pie,
+oo when 1u(0) # psc

and I, is a good rate function.

We will refer to Z,, Z, and I all as rate functions; as shown in Sections 4, they are lower
semicontinuous, nonnegative, and not identically infinite.

As mentioned previously, the condition N?T — oo underscores the clustering behav-
iors. In (2.2), the drift pulls the particles together, while the diffusive effect spreads them
out. For O(N) particles evolving over time O(T'), the contribution of the drift is O(NT),
while the contribution of the diffusive effect is O(v/T). The condition N2T — co amounts
to saying that the drift dominates the diffusive effect. Under this condition, the attrac-
tive BPs tend to cluster, so we refer to the regimes with N2T — oo as the clustering
regimes. In these regimes, deviations p € €([0,t], mZ(R)) with atoms are relevant.

We emphasize that Theorem 2.3 differs from the LDP proven in [24]. The work [24]
considered a general class of rank-based diffusions and proved their LDPs under the
scaling regime that corresponds to N — oo and TN? = A < oo, which we refer to as
the diffusive regime. In the diffusive regime, the drift and diffusive effect compete at the
same footing. We hence do not expect deviations with atoms (that persist over time) to
be relevant. This distinction has a significant implication in the proof, which is explained
in the next paragraph.

Let us describe the major challenge in proving Theorem 2.3. The challenge stems from
the discontinuity of the drift, which is common in the study of rank-based diffusions.
With the presence of atomic deviations, however, the issue of discontinuity becomes
much more severe. To see why, take any deviation p € €([0,t], mZ?). At the macroscopic
level, when the attractive BPs follow p, the drift should approximate ®[u(s)](z). For a
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non-atomic p(s), the macroscopic drift ®[u(s)](z) is continuous in z, but for an atomic
u(s), the macroscopic drift is not continuous: for example ®[do](z) = (1(—oo,0)(x) —
1(0,00)())/2. Put differently, in the diffusive regime, the effect of the discontinuity in the
drift diminishes in the N — oo limit, while in the clustering regimes, the effect of the
discontinuity persists. This issue renders many commonly-used tools non-applicable and
manifests itself in the proof of the LDP lower bound, where we (have to) use a cluster
approximation with the help of the quantile representation (2.12) of the rate function.

2.3. Result: applications to the moment Lyapunov exponents [section rewritten]

The results in Sections 2.3-2.4 are for a particular initial condition, which we now
define. For x’ € R and a small o > 0, let Z, = Z,,(t, z) be the solution of the SHE with
the delta-like initial condition

Za(0,NT+) := 1[_atx x' ta]- (2.14)

We will send N — oo first and o — 0 later. The solution of the SHE with this initial
condition, scaled in time by 7" and in space by NT', can be written by the Feynman—Kac
formula as

Znalt,2) 1= Za(Tt,NTa) 1= By [eH 1IN0 (X (TH)],
(2.15)

where X = (standard BM) + NTz. For the purpose of studying the LDPs and limit
shapes of the KPZ equation, the delta-like initial condition approximates the true delta
initial condition dxs sufficiently well; this is seen in the analysis of the companion paper
[75].

We now explain how to obtain the multipoint moment Lyapunov exponents of Zy 4.
To set up the notation, fixany x; < ... < x, € R, x’ € R,let i = (my,...,m,) € [0,00)"
and m = my + ...+ m, be as before, and let

s=t

Lo (X' (%,18)) = sup {45 + (u(9)®%, Lo = 2/)[25 ~ T(w) = (2.16a)

e 60,4, mP(R)), u(0) =3 mede,, ult) :méx/}. (2.16b)
c=1
Let ¢y(i) := min{c : my + ... + m¢ > i/N} and set y; = X ¢;. This way,

E[HZI\QT Z(Tt,NTy;)] = E[[[\_, Z(Tt, NTx.)"™<]. Specialize to the delta-like initial
condition (2.14), use (2.1) for t = Tt and y; — NTy;, use (2.7), and apply ﬁ log(+) to
the result. Doing so gives
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1 - tm? 1 <
WlOgE{HZN,a(t;Xc)mc] = g—i- 1 memg |XC—XC/|+ON(1)
c=1 ¢, /=1 (217)

1 , _
+ <57 log P [Xi(o) = NTxX\ (i), | X:(Tt) — NTX/| < NTa, vz},

where oy (1) denotes a term that converges to zero as N — oo. Rewrite (2.17) as

2 tmg s=t
o7 logE“:[ Znalt, xc)m‘] = 5r + (v () 4o —2')| 2 +o(1) (218a)

c=1

_|_

logIP’{ (0) = chéxc , supp(py(t) C [+ x',x + 6]} (2.18Db)

c=1

N3T

It now suffices to obtain the limit of (2.18b) under lim,_,o limy_, o. This will be carried
out in Section 7.2 with the aid of Theorem 2.3. The result gives

lim sup lim sup
a—0 N—oc0

(2.18b) +1nf{ Zm Gx: pl(t) = 0 H —0. (2.19)

Combining (2.18)—(2.19) gives the multipoint moment Lyapunov exponents of Zy q:

lim sup hm sup

n sy ’ 7 logE [ 1;[1 Zn.alt, xc)m‘} — Lo (X' 5 (%, ﬁ)))‘ —0. (2.20)

For our subsequent analysis, the functional in the supremum in (2.16a) is not quite
convenient, and we need an equivalent expression of it. Let

52

Ly 5] (1) = /ds (Zi(u,l{m}f' f/da%(asae[u]f), (2.21)
z 0

S1

where the sum runs over atoms of u. In Appendix A, we prove that

3 s=t
B+ (u(s)®?, gle = 2'[)] 2y — L(k) = Lyo,q(w). (2.22)

Given this, let us rewrite (2.16) as
Lews(x' Y (%,1))) := sup {L[o,t](ﬂ) : (2.23a)

peZ([0,t], mP(R ch s p(t méx/}, (2.23b)

where M = (my,...,m,) and m:=my + ... +m,.
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X1 X9 X3 t X4 X5

Fig. 1. The inertia clusters (gray) and optimal clusters (black). In this figure, B = {{1,2,3}, {4,5}}, and
x' = 0.

Our result below, Theorem 2.4, gives the unique minimizer of (2.23). To state the result
we need to construct a few objects. We begin by introducing what we call inertia clusters.
The inertia clusters are point masses my,...,m, that start at s =0 from x; < ... < x,
with velocities ¢, := %(—ml cee— M1+ Mg + ...+ my), ¢ = 1,...,n. They travel
at constant velocities until they meet, and when they meet, they merge according to
the conservation of momentum. For example, if (. and (., ; meet, they merged into a
single cluster with mass (m; + m¢y1) and velocity (mcpe + mep1¢c41)/(me + meyq). Let
. =¢C.(s) € €[0,t],c=1,...,n denote the trajectories of the inertial clusters. Examine
which inertia clusters have merged within (0,t) and lump the indices of those clusters
together. Doing so gives a partition of {1,...,n} into intervals. We let B denote this
partition, and call an element b in B a branch. Namely, ¢, ¢’ € b if and only if ¢, and ¢
merged with s € (0,t). Note that branches depend on t. All the inertia clusters within a
branch end up at the same position at s = t, namely {.(t) = . (t) for all ¢, € b; call
this position ¢, (t). In general, ¢, (t) # x’. To bring the clusters to x’ at the ending time,
apply a constant drift:

£.(8) = (5) + ves, vp = (X' = Cp (1)) /8, ceb, beB. (2.24)
The resulting deviation & = >, mcdg, is the optimal deviation and we call §;,...,§,

the optimal clusters. See Fig. 1. By construction, &, and &, merge within (0, t) if and
only if ¢,¢’ € b.

Theorem 2.4. The optimal deviation & is the unique minimizer of (2.23).

For the analysis in the companion paper [75], the result (2.20) along does not suffice,
and we need a “localized” version of it as well. To set up the notation, For f € €[0,Ts'],
set

Dist..(£,€) == _min {|F/(Ts) =€)}, (225)
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X3 X2 X3 t t=t X4 X3
S

X1 \X5\| X5 X t=+t

x

Fig. 2. Intermediate-time configuration. In this figure, €(1) = {1}, €(2) = {2}, €(3) = {3}, €(4) = {4,5}.

Disty,[0,5(f, &) := S[up ]DistNﬁs(f, £). (2.26)
s€(0,s’

Define the localized version of Zy 4:

_loc Tt 4s —5,X(s
23l (@) o= Egy[elo 4Tt XOD ) (R0 X (T)) (2.27)

“L{Dist 0.0 (X.E(+(-0)<B}]»

where X = (standard BM)+ NTz. The last indicator in (2.27) constrains the BM to stay
close to €, in the post-scale units. By construction, Zﬁ,’}gc < Zn,a- Below, Corollary 2.5(a)
just restates (2.20), while Corollary 2.5(b) is the localized version of (2.20) that will be
needed in [75].

Corollary 2.5.

(a) hmsuph]znsup’N3 1ogE{HZNa (t Xc)ch} _ LSHE(X, AN ()‘(’,tﬁ))‘ =0.

(b) For any nonempty A C {1,. n} and 8 >0,

lim sup lim sup
a—0 N—o0 T

3108 B[ [T (Zno — 255 (tx)™™ - T] Zn ot x0) V]
ccA c¢A

< Leup (X' = (%, /).
(2.28)
As mentioned in Section 1, the analog of Corollary 2.5(a) in the hyperbolic scaling regime
(T' = 00, N =1, m € Z,) has been proven in [72].
The discussion that leads up to (2.20) holds for more general initial conditions. For
example, one can consider the multi-delta-like initial condition
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Z(O,NT-) = N T i)+ € TP g ey (229)

for xj < ...<x,, €R, f1,...,8m € R, with N — oo first and @ — 0 later. On the
other hand, the way we characterize the unique minimizer in Theorem 2.4 works only
for the delta-like initial condition (2.14).

2.4. Result: connection to Ixp, and the limit shape [section rewritten]

We begin by preparing some notation. Fix ¢t € (0,t] and x3 < ... < x,, and let
p(t) = p(t, z) = —2*/(2t) and

H(t,R):={F=(r)ie; :re > pt,xe), c=1,...,n}. (2.30)

Given any T € Z(t,X), let f, ; z = f.(x) be the piecewise ¢! function on R characterized
by the properties: f,(x.) = r, for all ¢; f, > p(t); fo(x) = p(t, x) for all |z| large enough;
0.f, is constant on {f, > p(t)} \ {x1,...,Xn}; fx is €' except at x1,...,x,. See Fig. 4
for an illustration. Set

IKPZ(t,)_ia F) = /d:L' (%(azf*,t,féf)2 - %(amp(t))2)v (231)
R
(z —y)?

h,(t,z) == inf{ 2= 1)

YY)y e R}, (t,z) € (0,1] xR.  (2.32)
See Fig. 3 for an illustration of h,. The space Z(t,X) is the space of deviations of the
n-point upper-tail LDP for the KPZ equation at (¢,x1), ..., ({,x,). Because our method
relies on positive moments, the results in this paper and in [75] are restricted to the
subspace

Reone(t,X) :={F € Z(t,X) : f, ; x 7 is concave}. (2.33)

Let us mention a related property. Recall that the hypograph of a function is hypo(f) :=
{(x,r) : r < f(x),x € R}. When ¥ € Zeonc(t,X), the function f, ; g = f, has its
hypograph hypo(f,) given by the convex hull of hypo(p(1)) U {(x,r¢) : ¢ = 1,...,n},
but this property fails when ' € Z(t,X) \ Zeconc(, X).

The companion paper [75] shows that the KPZ equation satisfies the finite-dimensional
LDP with the rate function Ixp,, and that h, gives the corresponding spacetime limit
shape, under the same scaling regimes considered in this paper; see Theorem 1.1 in [73]
for the precise statement. A similar LDP is proven in [30] based the Brownian Gibbs
resampling property [14,15]. The results in [30] cover a different set of scaling regimes,
work for configurations in Z(t,X), and give very detailed probability bounds.

Theorem 2.6 gives the connection between Ixp,, Lsur, hy, which is used in [75].

Notation for Theorem 2.6
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(a) Fix t and %; view Loy (£, %, F) = Loz (F) and Leus(0 & (R,1)) = Leus (i) as

functions on Zeone(t,X) and on [0, 00)™, respectively.

(b) Fix any (x3 < ... < X,), consider the terminal time t, take any pair (¥,m) €
Reonc(t,X)° x (0,00)™ that satisfies (Vilkpy)(t,X,T) = m, and let h, and & be the
corresponding limit shape and optimal deviation, respectively. As will be explained
in Section 8.3, the limit shape h, is a weak solution of the Hamilton—Jacobi equation
of Burgers’ equation and has shocks.

(¢) Let X, ¥, and m be as in Part (b) and take any intermediate time t' € (0, t]. Traveling
in backward time, some of the optimal clusters may have merged by time s =t —t'.
Let {£.(t— 1)}, = {x} < ... < x|, } denote the distinct positions of the clusters
at that time. Accordingly, let ¥ := (h,(t,x,))"_,, €(a) := {c: & (t —¢) = x,},
Mg = cce(q) Mo and M = (m})"_; see Fig. 2 for an illustration.

Theorem 2.6. Notation as above.

(a) The functions Ixp, and Lguy are continuous, strictly convex, and the Legendre
transform of each other. Further, Vi, = Vilkpy @ Peonc(t,X) — [0,00)" is a

homeomorphism.
(b) The trajectories of the shocks in hy, and the trajectories of the optimal clusters in €
coincide.
(c) We have
(Vielgrr) (', X, 7)) =1, (2.34)

’

Lown (05 (£,18)) = Lows (0 5 (1)) + 3 Lown (x4 =5 (e, Mo cce(n))-
a=1

(2.35)

3. Notation, definitions, tools
3.1. Reduction to m =1

We begin by explaining how Theorem 2.3, Theorem 2.4, and Corollary 2.5 follow from
the special case of m = 1. The key lies in certain scaling relations. Consider the scaling
operator (SuA,f) := (A, f(+/m)). The map L&, : mP(R) — Z(R) is a homeomor-
phism. Applying %Gm to py(s) gives %Gmu]\,(s) = ﬁ ZZ]\Q; dx,(Ts)/(NmT)- This can
be viewed as a unit-mass empirical measure with N’ := Nm being the scaling parameter.
We will verify in Appendix A the scaling identities

T(E6un) = =Z(0),  L(EGmp) = L), forall g€ €(0, 0, mP(R)}3.1)
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Fig. 4. The function f, =f, ; z .

The 1/m? factor absorbs the change in the LDP speed by going from N to N’ = Nm.
Combining what said above shows that Theorem 2.3, Theorem 2.4, and Corollary 2.5
follow from the special case of m = 1.

3.2. The spaces Z(R) and €([0,t], Z(R))

By Section 3.1, we consider m = 1 only.

Let us introduce some metrics on Z(R) and €([0,t], Z(R)). Even though we endow
Z(R) with the weak* topology, it will be convenient to also consider the 1-Wasserstein
metric:

W N) =inf {(m,|z —2[) i m € P(R?), (m, - ®@1) =)\, (m,1® ) =X} (3.2)

The 1-Wasserstein metric on &(R) permits the inverse-CDF formula:
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WO N) = / dz |FIN(z) — FIY)(2)| = / da[XN(@) — XV)(@)|  (33)

R

With R being non-compact, the 1-Wasserstein metric produces a topology stronger than
the weak* topology on Z(R). To metrize the weak* topology, we introduce

0o k
dist(\, \) Zz ¥ min {1, /dx|F[>\](x)—F[)\’](x)|}. (3.4)
k=1 e

It is not hard to check that dist metrizes the weak* topology on Z(R). Accordingly,

distio,¢) (p, p') := sup {dist(u(s), ' (s)) : s € [0, 4]} (3.5)

metrizes the topology on ([0,t], Z(R)) introduced in Section 2.2. Let us note two useful
inequalities related to these metrics. First, by (3.3)—(3.4), dist(A, \') < W(A, X'). Next,
for any vy, va,... € (0,1] that add to 1 and any y1,¥2,...,%}, 45, ... € R,

dlst(széy,Zvl )<W(Z’Uz6yazvl ) sz’yz y§|, (3.6)

which holds thanks to the coupling 7({y;,y;}) = v, i =1,2,.. ..

We will need a criterion for a set S C %([0,t], Z(R)) to be precompact. Recall the
topology of € ([0, t], Z(R)) from before Theorem 2.3 and recall that we endow Z?(R) with
the weak™® topology. First, by a generalized version of the Arzeld—Ascoli theorem, the set
S is precompact if it is equi-continuous and if {u(s) : p € S, s € [0,t]} is precompact in
P (R); see [78, Thm. 47.1] for example. By the Banach—Alaoglu theorem, for any b < oo,
the set {A € Z(R) : supp(A) C [—b,b]} is compact. From this property, it is not hard to
show that, for any b1, b2, ... = 00, the set N, {\ € Z(R) : A(R\ [—bg, b]) < 1/k} is
precompact in Z(R). These properties give the following criterion.

Lemma 3.1. A set S C €([0,t], Z(R)) is precompact if
(i) the set S is equicontinuous with respect to dist, and
(ii) there exists by, — 0o such that (p(s), IR\[=by b)) < 1/k, for allk € Zo, p € S, and
s €0,t].
Here is a list of useful properties.

Lemma 3.2.

(a) For any A € 2(R) and f € LR, \), (\,f) = fol daf(X[\(a)).
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(b) For any p € €([0,t], Z(R)), the tail mass sup,epo ¢ ((s), Ir\[—b,)) tends to zero
as b — oo.

(¢) For any p € €([0,t], Z(R)), for Lebesque almost every a € [0,1], X[u(+)](a) €
¢0,t].

Part (a) is the standard inverse-CDF formula; Parts (b)—(c) are proven in Appendix A.
3.3. Expressing ®[A] in the quantile coordinate
For any A € Z(R) and a € [0, 1], let

a_ =a_[)N(a) :=inf{a’ € [0,1] : X[N](d) = X[N](a)}, (3.7a)
at = ay[N(a) :=sup{a’ € [0,1] : X[A\](a’) = X[A\](a)}. (3.7b)
Note that a_ < a4 if and only if A has an atom at X[A](a). Refer to the second expression

of ®[\] in (2.8) and note that A\((—oo, X[\](a))) = a— and A((X[N\](a),x)) = (1 — a4).
We have

B %fa, when a_ = ay,

O S A

Fix any f € L1(R, \). By (3.+8), we have f(X[)\](a)) - @[A](%[/\](ap =f(X[\(a)) - (3 —a)

whenever a_ = ay, and [ daf(X[)(a)) - \|(X[N|(a)) = [ daf(X[N(a)) - (3 — a)

whenever a_ < a. Combining these properties gives

1 1

[ dat(@i@) - e (xDI@) = [ daf(XN@) (- o) (39)
0 0

3.4. Dividing a measure

Let us introduce a procedure of dividing a given u € €([0,t], Z(R)) into pieces with
constant masses. Fix any my, ..., m, € (0,1] that add up to m = 1. For any s € [0, t] and
c € {1,...,n}, consider Fi(s,z) := max{min{F[u(s)](x) — (my + ... +m_1),m},0}.
Namely, we consider the graph of F[u(s)](+) between the horizontal levels (my + ... +
m._1) and (my + ...+ m,) and shift the graph down so that the lower level is at 0. The
result F¢(s,z) is the CDF of a measure with total mass m., and we let p(s) € mZ(R)
denote that measure.

Here are a few properties of u.. First, u.(s) is continuous in s. To see why, note
that, by construction, |Fe(s',z) — F.(s,z)| < |F(s',x2) — F(s,x)|. Using this property
in conjunction with (3.4) and the continuity of p gives the continuity of p.. Next, by
construction, the measure p.(s) is supported in [X[u(s)](my + ... +mc_1), X[u(s)](my +
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..+ m.)]. Finally, note that p.(s) and pc11(s) can both have an atom at X[u(s)](m; +
o+ m).

4. LDP for the attractive BPs: properties of the rate functions

As explained in Section 3.1, we will only consider m = 1, so all deviations take value

in Z(R).
4.1. The quantile representation

Here, we show that Z = I on €([0, t], Z(R)). To simplify notation, write X[u(s)](a) =
X(s,a), @lu(s)](x) = ®(s,z), and Fu(s)|(z) := F(s,z).

Case 1: 3, X[u] € L3([0,t] x [0,1]). We seck to express the terms in (2.10) in the quantile
coordinate. Take any h € %,"'([0,t],R). Under the assumption of Case 1, X(s,a) is
differentiable in s Lebesgue almost everywhere (a.e.) on [0,t] x [0, 1], so $-h(s, X(s,a)) —
dsh(s, X(s,a)) = 0:h(s, X(s,a))0sX(s, a) Lebesgue a.e. Apply [jo,¢jds fol da to both sides.
On the left hand side of the result, use Lemma 3.2(a) in reverse to turn the result
into (u(s),h(s))|§ — fjo,e)ds(u, sh), which gives the first two terms in (2.9). Next, use
Lemma 3.2(a) to express the last term in (2.9) and the integral term in (2.10) in the
quantile coordinate. Collecting the preceding results gives

/ds— 1, (95h)? :/dso/da 2 (0% — Dy) — ((8Zh)3g) ) (4.1)

where the subscript means (¢x)(s,a) := ¢(t,X(s,a)), transformation to the quantile

coordinate. Taking the sumpremum over h € ‘fg 1([ t],R) gives

t 1
Zl) = sup [ ds [ da ((@0)x(0.% - 0x) = 5 (0ah)2)”). (42)
0 0

Let us simplify (4.2). Within the integral, write d,h = g and complete the square to
get —3(gx — 0, X+Px)?+4(0;X—Px)?, and recognize the contribution of $(9,X—®x)? as
I(p). The supremum is taken over h € ‘fbl’l([(), t], R). Via an approximation argument,
we can replace this supremum with the supremum over those gs with [jo, ¢ds (1, g%) < oo.
Doing so gives

I(p) = 1nf /ds/ = (gx — 0s Zf+<I>35) : /ds (1, g%) < oo}. (4.3)
0 0

It remains only to show that the infimum in (4.3) is zero. Take any partition T' =
{0=350 <51 <...<sp =t} of [0,t], for any ¢ € F[0,t], let
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|
Z £l5s-1) 1[81'—1»81')(3) (4.4)

— *SJ 1

denote the discrete-time derivative with respect to I', and take g(s,z) := (OrX(+, F(-,
x))(s) — ®(s,x). Insert this g into (4.3). The terms —®x and Px cancel each other.
For the discrete-derivative term, note that X(s;, F'(s;,z))x = X(s;, F(s;,X(sj,a))). It
is not hard to check that, for every s;, the last expressmn is equal to X(s;,a) Lebesgue
a.e. on [0, 1]. The resulting integral hence reads [jo ds fo dal 5(0rX — 0 X)2. Under the
assumption of Case 1, this integral tends to zero as the mesh of T" tends to zero. This
completes the proof for Case 1.

Case 2: 9,X[u] ¢ L£2([0,t] x [0,1]). In this case, by definition, I(u) := co. Take any
partition I' = {0 = 59 < 51 < ... < s)p| = t} of [0,t] and let Or be as in (4.4). We will

show that
t 1
/ ds / da (0r%)*. (4.5)
0 0

By the assumption of Case 2 and Lemma 3.2(c), the right hand side of (4.5) tends
to oo as the mesh of T' tends to zero. Hence proving (4.5) will give the desired result
Z(p) = I(p) = oo.

The proof will invoke a variant of Z. Let us introduce this variant and its properties.

/dsu,ah /dsu,ah }

(4.6)

I%(sr,5m (1) = sup {(u s
heé,t1([s’,s"],R)

The following properties are not difficult to verify, which we do in Appendix A.

(a) Additivity in time: 10[51’52] +IO[32,53] = 10[51’53].

(b) Monotonicity in time: For all [s2, s3] C [s1,54], Z°[s,,55] < Z°[s,54]-

(c) Convexity: p = Z°y gn1(p) is convex.

(d) Space translation invariance: Z°y g1(To,yp) = Z°[s (1), where Tq,, translates p
in space by y, namely (T ,u(s), ) := (u(s),f(- —y)) for f € G, (R).

(e) For any time-independent A € Z(R), Z°y o (\) = 0.

We begin by bounding Z (1) from below. Young’s inequality and the property |®[u]| <
1/2 together give —®[u]d,h > —1 —1(9,h)2. Insert this inequality into (2.9)-(2.10), and,
within the result, move the term f[07t]ds (1, —1/8) = —t/8 to the left hand side. Doing
so gives Z(u) +t/8 > I°p ¢(). Next, we mollify p. Define the time-space translation
operator by (T, ,v)(s),f) := (v(s' + 5),f(+ —y)), take ps(z) := exp(—x2/(20)) /276,

and use s to mollify p to get

s = /ds/dy ©05(5)0s(Y) T syt (4.7)

R R
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with the convention ju(s)|s<o := 1(0) and u(s)|s>¢ := p(t). Apply Z° ¢)(+) to both sides
of (4.7), use Property (c), and use Property (d). Doing so gives

%0, (1s) < /dS/dy%(S)%(y)Io[o,t](Ts7yu) = /dS ©5(8) L%0,e)(Tsom).  (4.8)
R R

Next, for s > 0, using Properties (a), (e), and (b) in order gives Z°p ¢ (Ts01) =
Z%0,e—s) (1) + L=, (1(t)) = L°1—s,1) (1) + 0 < Z°g ¢y (1) + 0, and similarly for s < 0.
Hence

Zl0a1(0s) < ( [ ds0s(9)) T0.0(0) = T p001(1) < Zlw) + . (4.9)
R

Write Z7 :=1° s;- The last bound and Property (a) give

Sj—1,

T(n) + g 2 T2 (s5) + .+ Ty (): (4.10)

We next bound Z?(us) from below. Write Fs(s,z) := Flus(s)](x) and Xs(s,a) :=
X[us(s)](a) to simplify notation. By the construction of s, both functions are €.
Further, since the mollifier ys is strictly positive everywhere, Fs(s, z) strictly increases
in x, whereby Fs(s,X5(s,a)) = a for all s and a. Fix any v € €°°[0, 1] and let h(s,z) :=
[* . dyv(Fs(s,y)). For this test function, $-h(s, X5(s,z)) = (9sh)x, + (9:h)x,0:Xs and
(0zh)x, = (v o Fs)x,, which is equal to v thanks to the relation Fs(s,X5(s,a)) = a.
Hence $-h(s, X5(s,x)) — (9sh)x, — (0:h)%, = v0:Xs — v%. Apply [is, ,.s,;)ds fo,17da to
both sides and compare the result with (4.6). Doing so gives

1
230 = [ da (s@)2s(s,0)[ 2, — 0l (55— 51-0). (411)
0
Optimizing (4.11) over v € €°°[0, 1] gives
1 X ,
L(s) 2 (5= 35-1) [ da g (B2l =Bolbin 0y (.12
] §j = Si-1

We are now ready to conclude the desired result. Combining (4.10) and (4.12) gives

t 1
+ g > 1 /[O,t]ds /[071](1(1 (8p3€5)2. (4.13)

With the aid of Lemma 3.2(c), it is not hard to check that X5 — X as 6 — 0 Lebesgue
a.e. on [0,t] x [0,1]. Given this property, sending 6 — 0 in (4.13) with the aid of Fatou’s
lemma gives the desired result (4.5).
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4.2. The rate function I, is a good

Here we prove that Z, is good. Recall from (2.13) that Z, consists of Z and a de-
pendence on the initial condition. It hence suffices to show that Z = I is a good rate
function when restricted to {p : 1(0) = ugse }. We will show that 7 is lower-semicontinuous
on € ([0,t], Z(R)) and that S := {p: I(u) <7, 1(0) = psc} is precompact.

Let us show the lower semicontinuity of Z. We begin with some reductions. Recall from
(2.10) that 7 is defined as a supremum. Since the supremum of any set of continuous
functions is lower semicontinuous, it suffices to check that, for any h € €,"([0, t], R),

t
%(0,t], Z(R)) = R, pur— A(p,h / 1 {, (0zh)?)  is continuous. (4.14)
0

l\')

Every term in (2.9) and (2.10) is readily seen to be continuous except for [jods (1,
®[u](0xh)). It hence suffices to show that, for any f € %,(R), the map Z(R) — R:
A = (A ®[Nf) is continuous. To this end, combine Lemma 3.2(a) and the identify
(3.9) to get (A, P[\|f) = fol da (3 — a) f(X(a)). Take any sequence A, = A. Note that
A = A implies X[\y] — X[\ Lebesgue a.e. on [0 1]. This property together with
the bounded convergence theorem gives (A, P[Ag]f) = fo da (5 — a)f(X[Ag](a)) —
Jo da (3 = a)f(X(a)) = (A, [AJf).

To prepare for the proof of the precompactness, we derive a time-continuity estimate.
Recall from (2.12) that T is defined as an integral over time. Fix s’ < s” € [0, ], forgo
the integral outside [/, s”], factor out 1(s” — s’) from the integral, and apply Jensen’s
inequality with respect to (s” — ')~ [ sds [jo,17da. Doing so gives

(4.15)

1 2 L — oy (B 0TI [ do o da Sl

S” _ 8/ S// _ S,
Call the first and second terms within the last square b and b respectively. Use the
inequality (b—b')% > %beb’Q and note that |[b/| < ||P[u]|lco < 1/2. After being simplified,
the result reads (s” —s)I(u)+ w > 1 fol da (X[u(s")] — X[u(s")])?. By the Cauchy—

Schwarz inequality, the last integral is bounded from below by fol da |X[p(s")]—X[p(s)]].
We arrive at the time-continuity estimate:

S (8” _ SI)H(/L) + %(S// _ Sl)2. (4.16)

e

1
/ da [%[u(s")] — X[u(s")]
0

Based on (4.16), we fix r € [0,00)
ness of S := {u : I(n) < 7, pu(0) = pse}- We will do so by verifying the conditions
in Lemma 3.1. Referring to (3.3)—(3.4), we see that dist(u(s”), u(s’)) is bounded by

and pse € Z(R) and show the precompact-
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4 times the left hand side of (4.16). Hence the equicontinuity of S, which is re-
quired by Lemma 3.1(i), follows. To verify the condition in Lemma 3.1(ii), take any
p € S and write (u(s), Ir\[—p,p)) as [ da1{|X[u(s)]| > b}. Bound the last integral by
Jda1{|X[p(0)]] > b/2} + [ da 1{|X[u(s)] — X[1(0)]| > b/2}. Recognize the former inte-
gral as (1(0), 1r\[—p/2,/2)) and bound the second integral by using Markov’s inequality
and (4.16) for (s, ") = (0, s). Doing so gives the bound (8/b)(sI (1) + s2/8), which is at
most (8rt+ f2)/b. Hence, (u(s), 1]R\[—b,b]> < (pse, 1R\[—b/2,b/2]> + (8rt+ t2)/b. From this,
we see that the condition in Lemma 3.1(ii) is satisfied for a suitable choice of by — oco.

5. LDP for the attractive BPs: upper bound

Here we prove the LDP upper bound in Theorem 2.3. We achieve this by first es-
tablishing the exponential tightness of py (defined at the beginning of Section 5.1) and
then proving the weak LDP upper bound (defined at the beginning of Section 5.2). As
was explained in Section 3.1, we consider m = 1 only.

5.1. Exponential tightness [section rewritten]

Here, we seek to prove that p is exponentially tight, which means, for any € > 0,
there exists a precompact S C €([0,t], Z(R)) such that

lim sup

1 1
< ——. .
i sup 7 og Ploay # 5] < — (5.1

The first step is to devise some events to control the BMs B; in (2.2). Consider the
events

N
UN([s1, 82],v) = {Z sup |Bi(Ts) — Bi(Ts1)| < N*Twl|sy — 51|1/3}, (5.2)

i—1 S€l[s1,s2]

4
Un(v) = () (U~ ([Z 4t],0). (5.3)

>15=1

To control the summand in (5.2), set Bi[s1, s2] := Supyes, o, (Bi(T's) — Bi(Ts1)) and
B,[s1,52] := —infygs, 5, (Bi(T's) — Bi(T's1)) and write

sup |Bi(Ts) — B;(T's1)| = max{B;[s1, s2], B;[s1, s2]} < Bi[s1, sa] + B,[s1, s2]. (5.4)

SE[s1,82] =
Sum (5.4) over i = 1,...,N. For A € R, we have the inequality

E [ek S SUPse(sysn] |Bi(TS)_Bi(T51)|:| <E [ek SN Bils1,s2] | e PR Bi[51752]} . (5.5)
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The random variables B;[s1, s3] and B,[s1, s2] each have the same law as /T(s2 — $1)
|Bi(1)]. On the right hand side of (5.5), use the Cauchy—Schwarz inequality, use the
just-mentioned property about the law, and use the property that By, ..., By are inde-
pendent. Doing so gives

E [esz’zl SUPs€[s1,52] \Bi(TS)—Bi,(Tﬁ)I] < (]E [e%m\Bl(l)\])N. (5.6)

The inequality exp(|r]) < exp(r) + exp(—r) and the identity Elexp(£rBi(1))] =
exp(r?/2) together give E[e2VT(s2=s1)IB1(1)]] < 22X’ T(s2=91) Using this in (5.6) gives

E[6A2i1 SUP,els;,s5] |Bi(Ts)—Bi(Tsl)|] < 2N€2)\2NT(82_81)- (57)

Combining (5.7) and Chernoff’s bound P[A > a] < e E[e*M] with 4 =
S SUDye (s, op) [Bi(Ts) = Bi(Ts1)|, a = N?Tw|sy — 51[V/3, and X = Nlsy — 51| ~2/3v/4
yields

PlUN([s1,2],v)¢] < 2NV exp ( — %N3Tv2|52 — 31|71/3). (5.8)

Next, use (5.8) and the union bound to bound P[Uy(v)°]. We have, for all v > 1 and
some universal constant ¢ < oo,

o 1 : 1
PlUy(v)] <2V 3 0. sV TR < N om g, (5.9)
/=1

Under (1.4), the factor 2% is negligible compared to exp(O(N3T)). Use (5.9) to fix a
large enough v such that

lij{rnj;lopﬁlogP[uN(v)c} < —1. (5.10)
Having fixed v, we write Uy (v) = Uy hereafter.
We next prove that, under Uy, all samples of p,; are contained in a fixed precompact
set. This will imply the desired exponential tightness. Proving this statement amounts
to verifying the conditions in Lemma 3.1 — for all realizations of p, under Uy — with
a fixed choice of by, bo,... — 00.
To verify the equicontinuity required by Lemma 3.1(i), apply (3.6) to get

N
: / 7 1 | Xi(Ts") — Xa(Ts')] / 7
< — . .
dist(pp ('), py (")) < ;_1 NT , for all 8" < s" €]0,¢]. (5.11)

To bound the last sum, integrate (2.2) over [T's’, T's”] and use |sgn| < 1. Doing so gives

N N
1 | X;(Ts") — X;(Ts")] |s" — & 1 |B;(Ts") — B;(Ts")]
— < — . 5.12
N ; NT - 2 * N ; NT ( )
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Under Uy, the last term in (5.12) is bounded by 2v|s” — s'|'/3. This is because, for
any given s’ < s’ € [0,t], we can find £ € Z~; and j € {1,...,£ — 1} such that
s',8" et(j —1)/6,4(j +1)/¢] and that s” — s’ > t/¢. Hence

under Uy, for all 8" < s” € [0,1],

1 1 " / 1 " / " 71/3 (5'13)
NZN— (T's™) Xi(Ts)|§§|s — s+ 2v|s" = §'|°.

Combining (5.11) and (5.13) gives, under Uy, dist(pen (s'), (")) < |8 —5'|/242v]s" —
s’ |1/ 3. 50 the desired equicontinuity holds.

To verify the condition in Lemma 3.1(ii), start by writing

N
(B (8); IR\ [—2b,28)) Z {77lX = X;(0)| > b} + (un(0), IR\(~bp))- (5.14)

We have limsupy_, o (ttn(0), IR\ (—b,5)) < (fhsc, IR\ (=b,5)), because puy(0) = pse and
because R \ (—b,b) is closed. Next, bound the summand in (5.14) by b~ X;(Ts) —
X:(0)|/(NT) and apply (5.13). The result gives that, under Uy, the first term on the
right side of (5.14) is bounded by b~ (s-271 42vs/3) < b=1(t/2+4 2vt'/?). These bounds
together verify the condition in Lemma 3.1(ii) for by := (/2 4 2vt'/3)2k.

5.2. The weak upper bound

We begin by stating the goal. First, given the exponential tightness, it suffices to prove
a weak LDP upper bound, namely the LDP upper bound where the closed set is assumed
to be compact. Fix any compact K C F([0,t], Z(R)). Recall Z, from (2.13). If K N {p :
1(0) = psc} = 0, then infx Z, = 400 and the desired upper bound follows trivially. We
hence assume K N {u : p1(0) = pge} # 0, whereby infx Z, = inf i Z. Further, recall from
(2.10) that Z is defined as a supremum over h € €, ([0, t],R). Via an approximation
argument, the supremum can be replaced by the one over h € 6.°([0, t], R). Hence our
goal is to show

t
1
lim su log P € K| <— inf su A(p, h f/ds— (0,h)2) 5.
msup ez log P 1y € K] uexhem‘;m{ (11,) / S (0:h)%) }

(5.15)

Let us use the martingale method [63] to prove (5.15). Take any h € €. ([0, t],R)
and apply Itd’s calculus to N3T{p(s), h(s)) = N2T > h(s, X;(T's)/(NT)) with the aid
of (2.2) to get

7

’

N3T(,uN(s),h(s)>‘; —N3T [ ds (g, Osh + @[y ) (Osh) + 5 Oash) (5.16a)
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= NTV2Y N[5 dBi(s) (0:h) (s, 2 Xi(Ts)).  (5.16D)

This result implies that the expression in (5.16a), when viewed as a process in ¢, is a mar-
tingale  with  the quadratic  variation ~ N3T [ ds({uy,(8;h)?).  Hence
Elexp(N3*TUn(py))] = 1, where

2N2T

[\:>|>—l

Un (1) = A, h) — / ds L (1, (9,0)%) — — / ds (1 Opsh),  (5.17)
0 0

and A was defined in (2.9). Given any Borel A C %([0,t], Z(R)), write

Plpy € Al = E[1a(py) exp(=N’TUn (py)) exp(N*TUn (ny))],  (5.18)

bound the first two factors together by sup,c,exp(=N*TUy(p)), use
Elexp(N3TUp(py))] = 1 for the remaining factor, and apply limsup y (N3T)~* log(+)
to both sides of the result. Doing so gives

1
lim sup —— NIT logP[uN € A] < limy o sup,eq Un (1) (5.19a)

N—o0

= —infen {A — Joo.yds L, (9.h)? >}. (5.19b)

Since this holds for all h € %.°°(]0, t],R), we further obtain

(1 (9:0)) }.

(5.20)

l\')|’—‘

t
1
limsup ——=logP |uy € A| < — sup inf {A 1, h —/d
RSP o o8Pl < 4] hewze ([0,].R) #EA o 0

We seek to swap the supremum and infimum on the right hand side. To this end, apply
Lemmata 3.2-3.3 in Appendix 2 in [53], with Ju(1) = —A(u, h) + [jo,11ds 5 (u, (85h)?).
Under our notation, these Lemmata assert that, if J,(u) is upper-semicontinuous in p
for every h, and if (5.20) holds for every open A, then (5.15) holds for every compact K.
As shown after (4.14), Jy(u) is continuous in u for every h. We have proved (5.20) for
every Borel A. Hence the desired weak upper bound (5.15) follows.

6. LDP for the attractive BPs: lower bound

We begin by setting up the goal of the proof. As mentioned in Section 3.1, we consider
m = 1 only. Indeed, proving the LDP lower bound amounts to proving that, for any u €
%([0,t], Z(R)) and & > 0, —Z, () < liminf. o liminfy o (N?T) " log P[disto ¢ (1,
1) < €]. Recall from (2.13) that, when Z, (1) < oo, we have u(0) = pse and Zo () = I().
Our goal is hence as follows.
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Proposition 6.1. For any u € €([0,t], Z(R)) with u(0) = pse and I(u) < oo,

lim inf lim inf Nl log P [dlst[o gy, 1) < r] > —I(p). (6.1)

r—=+0 N-—oo

6.1. Proving a preliminary version of Proposition 6.1

Let us introduce some classes of deviations. We call a deviation £ € F([0,t], Z(R))
clustering if it is of the form &(s) = YU mcdg (5), for some & < ... < &, € [0,t]
and some my,...,m, € (0,1] that add up to m = 1. We call &,...,&, the clusters or
the trajectories of clusters. We call a deviation Piecewise-Linear(PL)-clustering if it is
clustering and the trajectories of its clusters are piecewise linear.

As a first step toward proving Proposition 6.1, here we prove a preliminary version of it
where p is replaced by a PL-clustering deviation £. For a PL-clustering deviation, we will
use a different way (than distpg ¢]) to measure how close the empirical measure is to the
deviation. Recall that the attractive BPs are ordered at the start: X;(0) < ... < Xy/(0).
For a given PL-clustering &, to each X; assign a cluster &, via the ordering of the indices:

eve(d) :==min{c:my +...+m > i/N}, Ine(c) = c]_v’lg({c}) ={i:ene(t) =c¢}. (6.2)

For ¥ € (€0, Tt))Y

Disty, (L, &) := max {|g72:(Ts) — &y iy (8) :i=1,...,N}, (6.3)
QiStN,[s,',S” ( g) sup @iStN7s(l',§). (64)
s€[s’,s"]

We measure how close the system of attractive BPs is to £ by Dist N,s()? ,€), which is a
(much) finer measurement than dist(p (), £(s)). By (3.6),

dist(pey(s),&(s)) < Distn s ()275). (6.5)

Hereafter, ¢ = c¢(v1,v2,...) denotes a constant that depends only on the designated
variables v, va, . ... We seek to prove the following preliminary version of Proposition 6.1.

Proposition 6.2. Given any PL-clustering &, there exists a ¢ = ¢(§) € [1,00) such that

lim inf lim inf inf {
lgn—g(gl }\gri)l?o @istN,lor(l)ag)Sr N3T

log P [Dist [0, (X,6) < cr’X ]} > —T(p). (6.6)
In (6.6) and similarly hereafter, the conditional probability P[...|X (0)] is viewed as a
function of X (0), and the infimum is taken over those X (0)s that satisfy @istN,o()?, &) <
T
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Proof. We begin by setting up the notation. Let 0 = sg < s1 < ... < s¢ = t be the time
between which the clusters of £ are linear. For a small § > 0 to be fixed shortly, we call
[s0,81 — 0], [s1+ 0,82 — 0], ..., [Se—1 + I, s¢] the linear segments, and call [s; — &, s1 + ¢,
[s2 — 8,824 4], ..., the transition segments. To fix the value of §, consider the maximum
speed of all clusters Epay = SUP[o,¢] ¢ €|, and note that, by the definition of the s;s,
within each (sj_1,s;), the clusters of £ either never meet or completely coincide. We fix
a small enough § such that

45£max <2-3%, and (6.7)
for every linear segment, either

|€c — €| > 2+ 3%%r everywhere on that linear segment, or (6.8)
|€c — &/| = 0 everywhere on that linear segment.

Step 1: analysis within a linear segment. Let us set up the notation and state the goal
of this step. Fix a linear segment [s’, s”’] and define the event

Cnls’, 8] 1= {Disty (o o (X, ) < 377} (6.9)

Hereafter, 8 € {0,1,...,2¢ — 2} is an auxiliary parameter. Let Iy ;] be the analog of
I where the time integral (see (2.12)) is restricted to [¢',s”] and let ¢ := dy/ds. Tt is
readily checked that

12
S

for a clustering v = chdyc, Iy o (v) = /ds Z % — O[v(v ))2 (6.10)
=1 c=1

The goal of this step is to prove that

lim inf inf { logP|Cn g+1 5 ,s X Ts }2 =Ty (). 6.11
N—oo sty (X,6)<3sr LN3T [Crvss 1l )] o1& (6:11)
Recall from (6.8) that, within [s’, s”], any pair of clusters either stay strictly apart or
completely coincide. After combining those clusters that completely coincide, we have

€ — Eorljsrom > 23, Vel (6.12)

The first step of proving (6.11) is to set up Girsanov’s transform. Within [¢, s"],
the cluster &, travels at a constant velocity d&./ds := éc. Letting v, := éc — ¢, Where
O == %( co—Me_g + My +...), we seek to apply Girsanov’s transform to turn P into
another law Q where
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N
1
under Q,  dX Z 58en(X; — Xi)ds + N, (yds + dB;. (6.13)

In plain words, we pursue a “strategy” where each X; receives an additional drift
Nvey . (iy- The term £: in v, helps X;(T+)/(NT) follow the cluster &, while the term —g,
counters the “pulling” from those particles with a different assigned cluster, namely the
effect of the drift Zj&ﬁN,g(c) sgn(X; — X;)/2. Hereafter, we will use the phrase “pulling”
similarly, to refer to the effect of the drift coming from a set of particles.

The next step is to set up a stopping time and prepare the relevant properties. Let o
be the first time when the condition required by Cn g+1[s’, s”] is violated, namely

=inf {s € [s',s"] : | f5Xi(T's) — &y o) (5)| = 37T r, for some i}, (6.14)

Since 8 < 2¢, by (6.12), particles with different assigned clusters stay strictly ordered
within [s", o]. This property implies, for any ¢ € Ty ¢(c), the pulling from particles outside
JIne(c) is given by Zjezjw,g(c) 1sgn(j — ). The last expression sums to Ni(—m;... —
Me_1 +Mepq + ...+ my,) = No.. Hence, within s € [¢/,0] and for each i € Ty ¢(c),

l\DM—\

N
> osg - Xi(Ts)) = Y %sgn(Xj(Ts)in(Ts))JrNd)c. (6.15)
Jj=1 JETINe(c)

Having set up the stopping time o, we next analyze the evolution of the particles
within s € [¢/,0] and under the condition @istN7s/(X ,€) < 3%r, which is required in
(6.11). We will analyze separately the evolution of the center of mass (defined later)
relative to their assigned clusters and the evolution of a particle relative to its center of
mass. Hereafter, unless otherwise noted, s € [¢/, o].

We now define the center of mass and analyze its evolution. Let X, := ZiejN,g(c) X,/
(Nm,) be the center of mass. Take the average of (6.13) over ¢ € Iy ¢(c). The pulling from
within ¢ € Ty ¢(c) averages to zero; the pulling from outside of Ty ¢(c) averages to N,
by (6.15). Hence dX, = Né.ds + dB., where B, := ZiGjN,g(C) B;/(Nwm,). Integrating
this equation gives

| R Xe(T5) ~ &(5)] < | fp Xe(TS) — ()] + Rip|Be(T's) = Be(Ts)]. (6.16)

Under the condition @istN,Sr(X@) < 3Pr, the first term on the right hand side is at
most 3°7, so
| NpXe(Ts) = Ec(s)| < 377 + | Be(T's) — Be(T'))| (6.17)
<3Br+NTmax{\B s)— Bi(Ts')|:i=1,...,N}. .

We next analyze the motion of a particle relative to its center of mass. Fix any ¢. As
seen in (6.15), a particle with ¢ € Ty ¢(c) feels the pulling from within and outside of
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Jn¢(c). Intuitively, the former should only pull particles in Iy ¢(c) closer together. To
make this statement precise, we appeal to a comparison result from [86]. Write T ¢(¢) =
{i1, ... i}, rank {X;(T's)}icay, to get X )(Ts) < ... < X(,)(Ts), let Z(T's) =
X(i+1)(T's) — X(;y(T's) be the gap process, and let L;;;1 denote the localtime of Z; at
0. By [43, Proposition 3], the ranked processes satisfy

1
dX() = (Ngbc +Noe+ D sen(i - z’))ds +dW; + 2Ly — 2dLi g, (6.18)

J€TINe(c)

where W;,, ..., W,, are independent standard BMs, and we assume W;(s') = 0 without
loss of generality. Next, consider the analog of X(;) without the inner pulling. Namely,
for ¢ € Iy ¢(c), consider

dY(l) = N(¢c =+ ’Uc)dS +dW,; + %dfi_u — %dzi,i-l-l’ Yi(TS/) = X(z) (TS/), (619)

where L; ;41 is the localtime of X ;1) — X () at 0. Let Z; := X (;41) — X (541) denote the
gap process and let fi(s) := Wiy1(s) — Wi(s) + X(;)(T's’). From (6.18)—(6.19), we infer
the equations of the gap processes

dZ(z) = dfl —ds — %dLifl’i + dLi’i+1 — %dLi+1’Z‘+2, (620)
dZy =df; — §dLi—1; +dL;i41 — 3dLig1,i42, (6.21)

for i =4y,...,i2 — 1, with the convention that L;,_; ;, :== 0 and L;, ;,41 := 0. Now apply
[86, Theorem 3.1] to our Z = (Z;)iciyin) and Z = (Zs)ic[iy i), With fi(s) — (s — )
being the driving function for Z; and with f; being the driving function for Z;. The
result gives Z;(Ts) < Z;(Ts) for all i € [i1,i — 1) and s € [s',0]. Further, letting
X = ZiejN@(c) Xi/|In¢(c)| denote the center of mass of (X (;))icay (c) and averaging
(6.19) over i € Tn¢(c), we see that X = X . This property, together with the comparison
result of the gap processes, gives

max {|X; — X[ 11 € Ine(c)} <max{| Xy — Xc|:i€Tne(c)}. (6.22)
Next, let B;, for i € Jn,e(c), denote independent standard BMs, and consider

Yi(Ts) := Bi(Ts) — By(Ts') + N(¢. +v.)(Ts — Ts') + X;(Ts'), (6.23)
for s € [s',0] and i € Tn ¢(c). If we rank {Y;}icq, (o), the resulting process has the same

law as (Y(i))iegNﬁg(c). This property can be checked from (6.19) by using the generators
for example, which we omit. Given this property, defining the event

Fn(r') = {|Xi(Ts) — X(Ts)| < NT(r' + 3Pr), Vi € One(c),Vs € [s, 0]}, (6.24)
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and letting Y, := ZiejNg(C) Yi/|3n¢(c)| denote the center of mass of (Y;)icay () We
have

Q[Fn ()| X (Ts)]

(6.25)
>Q [|Y,-(Ts) —Yu(Ts)| < NT(r' +3°r), Vi € Ine(c),¥s € [s, 0]|.
Next, we seek to bound |Y;(T's) —Y(T's)|. Recall the expression of Y;(T's) for (6.23). Aver-
aging (6.23) over i € Jp ¢(c) gives the expression Y¢(T's) = (T ¢(c))~? dican <() (B;(Ts)
—B;(Ts"))+ N(¢c+v)(Ts—Ts') + X (Ts"). Inserting these expressions into |Y;(T's) —
Y.(T's)|, and bound the result using the triangle inequality. Doing so gives

Yi(T's) = Ye(Ts)| < 2, ax Bj(Ts) — B;(Ts)| + |Xi(Ts') — X(Ts"))|.  (6.26)

Under the condition Disty, o (X, €) < 3°r, the last term in (6.26) is bounded by NT 3°r.
Hence, under the condition Disty o (X, &) < 387,

max |Y;(Ts) — Y:(Ts)| <2 max |By(Ts) — By(Ts')| + NT3°r.  (6.27)
iGjNﬁg(C) iEjN,E(C)

Using this property in (6.25) gives

inf P[Fn ()| X(Ts)]
Disty ./ (X,6)<36r (6.28)

> P[|Bi(Ts) — Bi(Ts')| < ANTr', Vi € Ine(c),Vs € [s',0]].

Based on what we obtained so far, we now complete the proof of (6.11). Combining
(6.17) and (6.24) gives, under the condition Disty ¢ (X, &) < 3%r and within s € [¢/, 0],

| 57 Xi(Ts) — ch,g(i)(s)| <230 + 7 _max |Bi(Ts) — B;(Ts")| +7" on Fx(r).
(6.29)

We will take 7/ — 0 later, so let us assume 1’ < r/2 hereafter. Consider the event
En(r") ={|Bi(Ts) — B;(Ts')| < NTr',Vs € [¢/,s"],Vi=1,...,N}.  (6.30)

Under Fy(r') N En(r') and given the assumption r’ < r/2, the right hand side of
(6.29) is strictly less than 3°+1r. Hence, under the condition Disty, . (X,€) < 3°r,
we have Fy (') NEn(r') C {o > "} C Cngls’, s"]. Now apply Lemma C.1(a) with the
Vi = Uy (i) defined above (6.13) and with & = Fn(r') N En(r’). In the result recog-
nize that (s” — §')(2N)~"1 3N o2 Ier 5 (§) with the aid of (6.10), and bound

i=1Yn (i) =
N1t Zfil Ve ¢ (0|7 by ¢(§)r’. Doing so gives
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inf

loglP| F. né X(Ts'
@istN’s/()?g)ggBr{N?’T og P[Fn(r') Mén( | s ]}

(6.31)
> inf logQ| F né X(Ts")] = (&) =Ly n ().
N S N3T gQ[Fn(r)NEN()| )] —e(é) (57,5 (€)
On the left hand side of (6.31), bound the probability from above by P[Cy g[s’, s”]|
X(Ts')], and send N — oo on both sides. From (6.28) and (6.30), it is not hard to check
that the first term on the right hand side of (6.31) converges to 0 as N — oo. Finally
sending r’ — 0 gives the desired result (6.11).

Step 2: analysis within a transition segment. Let us set up the notation and state the
goal of this step. Fix a transition segment [s’, s”], consider the line (in the (s, z) plane)
that connects (s, &, (i) (8")) and (s”, &y () (s”)), and let

ny 3 / i/N 1 /
w; = w; [S/, SN] — §CN,E(i)(S$/), - i:zv,a(l)(s ) - N / da X[f(s S)/]/ : i[é(s )] (6.32)
(i-1)/N

be the velocity when traveling along the line. Consider

Cnpls',s"] = { | o5 Xi(Ts) — ey oy () — (5 — s wi| < 3°r,Vs € [s’,s"],W},

(6.33)
1
x X[A 142
COSt[S/’S//](/\, )\/) = (SH — 8/)/ (% =+ 5) . (634)
0
By (6.7), it is not hard to check from (6.33) that
Chvls', "] C {Dist, (s 4 (X, €) <3777} (6.35)

The goal of this step is to prove

liminf inf

im inf {N3T log P [Cly gy1ls’s s ‘X (Ts") ]} > —Costy o1 (£(s"), (")), (6.36)

where the infimum runs over Disty o (X, £(s")) < 3%r, just like in Step 1.

To prove (6.36), consider the law Q under which dX; = Nw;ds + dB;. Apply
Lemma C.1(b) with v; = w;, J; = {1,...,N}, &€ = Cy 4[s',s"], and p = 2. Doing so
gives

NT log P[Cly 541l s"] | X(Ts)]

"y , (6.37)

log Q[ Chy gyqls's " 1 X(Ts)] Sgs;(wipr»

- N3T
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It is readily checked that the first term on the right hand side of (6.37) tends to 0 as
N — oo, uniformly over Disty, o (X,£(s")) < 3°r. To bound the last term in (6.37), use
(6.32) and Jensen’s inequality to get

i/N

(|wl| + %)2 <N / da (‘X[S(S”)] - :{[5(8/)] + 1)2 (6.38)

s — ! 2

(i-1)/N

Applying (s” —s')N~! 211\;1 on both sides of (6.38) gives (s” —s ) N1 Y, (Jw;|+1/2)% <
Costy s1(£(5"),£(s”)). The desired result (6.36) hence follows.

Step 3: Combining Steps 1-2 to complete the proof. Apply (6.11) and (6.36) in al-

ternating order over the segments [sg,s1 — 8], [s1 — d,81 + 0], ..., [se—1 + 0, 8¢], with
B =0,1,...,20 — 2. By (6.9) and (6.33), Cn,1[s0,51 — 6] C {Distn,s,—s(X,&) < 3'},
Chals1t — 6,81 +9] C {Distn.s,4+5(X,€) < 32}, ..., so the resulting bounds can be

concatenated. The result gives

1

lim inf inf { NI

N=00 Disty o (X,6)<r

> _(ZH[S/,S”](g) + ZCOSt[s/,s”] (5(3/)75(‘9”)))7

log P [Disty 0,4 (X,€) < 3% 17| X(0)]
(6.39)

where the first sum runs over all linear segments, and the second runs over all transition
segments. The first sum is at most (&), while the second sum tends to zero as § tends to
zero, as is readily checked from (6.34) and the assumption that 9,X[u] € £2([0, ] x [0, 1]).
Recall that 4 is chosen so that (6.7)—(6.8) hold. With £ being PL-clustering, we can choose
d such that § < ¢(§)r. This way, § — 0 as r — 0. Sending r — 0 in (6.39) gives the
desired result (6.6). O

6.2. Proving Proposition 6.1 under Assumption 6.3

Based on the results in Section 6.1, here we prove Proposition 6.1 under an additional
assumption. Identify {A € Z(R) : supp(A) C [-b,b]} with F2[—b, b]. Namely, view those
measures supported in [—b,b] as measures on [—b, b].

Assumption 6.3. There exists a b < oo such that {uy(0)}nez.q, {14(5)}scio C
P[-b,b).

Namely, we assume that py(0) and p(s) have a compact support, uniformly over N €
Zso and s € [0,t]. Fixing a p and py(0) that satisfy I(u) < oo, py(0) = u(0), and
Assumption 6.3, we seek to prove (6.1) for this p and gy (0).

The proof requires an approximation tool. We state it here and put its proof in
Appendix B: For any [¢/,s"] C [0, ],
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inf {dist[sl,s//] (@M) + |]I[s',s”](§) — ]1[5/78//](/1” N

(6.40)
¢ is PL-clustering ,supp(¢(s)) C [-b,b],Vs € [¢',s"]} = 0.

Let us outline the proof. We will construct a small sg and use (6.40) to construct a PL-
clustering £ that approximates p, and perform analysis over [0, so] and [sg, t] separately.

Let us construct sp and £. Fix an € > 0. By the assumption I(u) < oo, 8:%[u] €
L£2([0,t] x [0, 1]). Using this property and the time continuity of x to find an so such that
Costg,s,) (1(0), p(s0)) < € and supyq . dist(u(s), u(s0)) < €. Turning to the construction
of £, we begin by noting that Costjg s : (Z[-b, b])? — R is continuous, which is not hard
to verify from (3.4) and (6.34). Granted this continuity, use (6.40) for [s', s”] = [so, t] to
obtain a PL-clustering & such that dist[,, ¢)(§, 1) <&, [I[50,¢1(§) — 1,41 ()] < €, and

Costpg,s, (14(0),£(s0)) < €. (6.41)

Given that dist(px(0), 1(0)) — 0, for all N large enough, Costyg s,](1x(0),£(s0)) < €.

Let us perform analysis over [0, sg] and [sg, t], beginning with the former. We seek
to adapt the argument in Step 2 in Section 6.1. More precisely, we seek to apply
the argument with w;[s’, s”] (defined in (6.32)) replaced by wi(so) = (§cy (i)(S0) —
Xi(0)/(NT))/s0 and Cjy 4[s’,s"] (defined in (6.33)) replaced by

CRr .10, 50] == { | 3 Xi(T's) — 55X:(0) — wi(so)s| <7, Vs €[0,s0],Vi}. (6.42)

Applying the argument in Step 2 in Section 6.1 with these adaptations gives

liin_}(r)lflg\gri};lofﬁlog[@[cxw[o,soﬂ > —lij{/nj;lop Costpo,s,) (n(0),£(50)). (6.43)
Unlike in (6.36), we need not impose any constraint on X (0) in (6.43). This is be-
cause when defining the event in (6.42), we use the reference point X;(0)/(NT)
instead of & .(#)(0); compared with (6.33). Given that disto s, (u(s),(0)) < e,
dist(&(so), p(s0)) < e, and dist(pp(0), u(0)) — 0, for all N large enough we have
Ci 10, s0] C {distio,so) (> 1) <7+ 2¢}. Also, note that

Che [0, 50] C {Dist s, (X,€) <7} (6.44)

Move on to [sg, t]. Apply Proposition 6.2 with [0, t] — [so, t]. In the result, use (6.5) and
distrs, (£, 1) < €. Doing so gives

e e e 1 . >
hrrn_}élfl}\r[glglof inf {W log P [dlst[s(),t](p,N,f) <e+er | X(Tsp) ]} > —]1[307t](/z), |
6.45

where the infimum runs over Disty , (X, &) < r. Further,
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s, (1) = —Tjo, (1) = —L(w). (6.46)

Combine (6.43) and (6.45) with the aid of (6.44). In the result, use (6.41) and (6.46),
and send € — 0. Doing so gives (6.1) under Assumption 6.3.

6.53. Removing Assumption 6.3

Having proven (6.1) under Assumption 6.3, we explain how the same result follows
without the assumption. Taking any p € €([0,t], Z(R)) with I(¢) < oo and p(0) = fise,
we seek to show that (6.1) holds for p, and this pu.

We begin by truncating p and pp so that the result satisfies Assumption 6.3. Fix
a sequence 1/2 > r; > ro > ... — 0 such that X[us] is continuous at every ry
and 1 — 7. Fix any k. Recall the scaling operator &, from Section 3.1. Apply the
procedure in Section 3.4 with (my,mg,m3) = (rg, 1 — 2rg,7%) to get uy, po, pz and
take v := o as the truncated deviation. By Lemma 3.2(b), the truncated deviation
v satisfies Assumption 6.3. Next, truncate the empirical measure similarly. Recall that
X1(0) < ... < Xn(0). Set N_ := [Nrg], Ny := [N1 —rg)], N := Ny — N_, and
UN(S) = § 2N <icn, OX,(Ts)/(nT)- Note that gy (0) = psc is equivalent to X[py(0)]
converging to X[us.] everywhere the latter is continuous. Recall that X[usc] is contin-
uous at each r; and 1 — rg. These properties imply, as N — oo, vy(0) = v(0),
Xn_(0)/(NT) — X[psc](rr), and Xn, (0)/(NT) — X[psc)(1 — ). The last two con-
vergences show that v (0) is supported in an N-independent bounded interval.

Next, we claim that

distpo,q) (ke 1) < disto,g(¥n,v) < e (rp + §)- (6.47)

Recall from Section 3.4 that the graph of F[v(s)] = Flua(s)] is obtained by taking
the graph of F[u(s)] between the levels r, and 1 — 7, and shift the graph down so
that the lower level is at 0. The same property holds for (Flvn(s)], Flpy(s)]) with
(rg, 1 —rg) — (N_/N,1— N, /N). By construction, N_/N and N /N differ from rj by
at most 1/N. Using these properties gives

k k
[ aalPlay(s) - Flu)| < [ da([Fon () - Fl] +e (). (645)
—k —k

Combining (6.48) and (3.4) gives (6.47).

Next, we would like to apply the result of Section 6.2 with py and p being replaced
by vy and v. However, note that the particles in v are not autonomous and feel the
pulling from particles outside of v . Namely, after being restricted to i € [N_, N.], the
system of equations (2.2) still contains terms 2sgn(X; — X;) from outside of the system
j ¢ [N_, N4]. To resolve this issue, consider the law Q under which
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dX; = Z %Sgn(Xj — X;)ds +dB;, for all 4 € [N_, N4], (6.49)
jE[N,,N+]
Al
dx;=> Ssen(X; — Xi)ds +dB;, for all i ¢ [N_, N, ]. (6.50)
j=1

Under Q, the truncated empirical measure vy evolves autonomously. Apply Lemma
C.1(b) with [¢',s"] =[0,t],v; =0, J; ={1,...,N_ =1, Ny +1,...,N} for i € [N_, N4],
and J; = 0 for i ¢ [N_, N1]. In the result, bound |.J;|/(2N) by cri. Doing so gives

pt(cre)?

-1 (6.51)

1
T log P [distyo ¢ (vn,v) <T] > —NZ;T log Q [distyo,¢(¥n,v) <T| —
Next, apply the result of Section 6.2 with (uy,u,P) — (vn,v,Q). Note that, even
though vy and v do not have unit mass, by the scaling arguments in Section 3.1, the
result still applies. Doing so gives, for any p > 1 and k € Z~,

pt (cri)?
W) =S —1y
2(p—1)

log]P’[dist[O,t}(uN,u) <r]>—pl (6.52)

1
lim inf lim 'glof N3T

r—0 N—

We are now ready to complete the proof. So far we have omitted most k dependence.

Restore it by writing v = v, Yy = vy, and N’ = N/. By the construction of v = v,

and the assumption I(u) < oo, it is not hard to check that I(v;) — I(u) as k — oo.

In (6.52), send k — oo with the aid of this property and (6.47). Finally sending p — 1
completes the proof.

7. Applications to the moment Lyapunov exponents
As was explained in Section 3.1, we consider m = 1 only.
7.1. Proof of Theorem 2.

We begin with some notation. Let x., x’, m., and the optimal deviation & =
v mcde, be as in Section 2.3. Recall branches from there and recall that B denotes
the set of branches. Let mp := ) ., m. be the total mass within a given branch b. By
definition, branches are disjoint intervals in {1,...,n}, so we can order them, and we
use < and < to denote the ordering. For a given branch b, we write b& 1 and b @ 1 for
the respective branches that precedes and succeeds b in B.

To facilitate the proof, let us prepare a few properties of the optimal clusters
&,...,§&,. From their definition given after Theorem 2.4, it is not hard to check that

£. = D[E](€,) + vy, forall ¢ € b and for all s € [0,] except when a merge happens,
(7.1)
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where vp is given in (2.24). Recall also that those £, and £. belonging to different
branches do not meet within (0, t). Using this property to take the mass-weighted average
of (7.1) over ¢ € b gives

Eb ¢b—|—vb, (Z)[, = %(...—mhel +mb@1+...). (72)

This equation shows that &, is a constant. Combining (7.1)—(7.2) gives &, — ®[€](£,) =
£, — dp, for all ¢ € b. Inserting this identity into (6.10) for v = £ and [, s”] = [0, ] gives

= Y € — ) (7.3)

beB

We now begin the proof, starting with a reduction. Set the starting and ending con-
ditions to be fisc 1= Y MOk, and plec = 0xs, with 1 =my + ...+ m,. By (2.16),

= o5 + (W, e — ') — (u&2, flo — 2'[) — inf {I(p) : p(0) = pse, p(t) = ucz}- |
74

Take any p € €([0,t], Z(R)) with p(0) = pse and p(t) = pec. Given (7.4), it suffices
to prove that I(u) > I(€) and that the equality holds only if p = €. Without loss of
generality, assume I(p) < oo, which implies 9;X[u] € £2([0,t] x [0, 1]).

Step 1: proving that I(u) > I(£). We begin with some notation. First, write X[u(s)](a) =
X(s,a) and ®[u(s)](X(s,a)) = Px(s,a) to simplify notation. Next, apply the procedure
in Section 3.4 with (mj,mg,...) = (mp)pes to get (up)pes, where the branches are
ordered as described previously. Let My := ", mp: be the cumulative mass.

Let us derive a lower bound on I(1). Refer to (2.12) for the definition of I(x) and divide
the integral fol da into f%"@l da, b € B, with the convention that Mgyt cluster)o1 = 0.
Note that this procedure is equivalent to the procedure of dividing p in the previous para-
graph. In each of the resulting integral, multiply and divide by tm;, and apply Jensen’s
inequality to get

My
ds da 2
I(u) = Zt7/T / - (asae—@x) (7.5)
beB 0 Mgyon
My, My
d
>Zt / > —ax /dts / %%). (7.6)
beB 0 Moor 0 Mg °

Next we derive an expression for the first integral in (7.6). Evaluate the integral over
[0,t] by the fundamental theorem of calculus, recognize the result as (up(s), z)|/(tmp),
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and use £(0) = £(0) and p(t) = £(t). Recall the center of mass &, := Y ., (mc&,)/mp.
The resulting expression is hence &, (s)|§/t. As shown in (7.2), €, is a constant, so

t q My d
S a ]
0 Mlv@l

Next we derive an expression for the last integral in (7.6). Recall from (3.8) that the
integrand takes two different forms depending on whether a_ = a4 or a_ < a4, where
a+ = ax[u(s)](a) is defined in (3.7). This dichotomy is particularly relevant at a = Mpg
and a = My, which are the boundaries of the last integral in (7.6). With this in mind,
set MbjE = MbjE (s) := ax[p(s)](My), and note that

M, < My < M. (7.8)

Divide the integral over [Myg1, Mp] into integrals over [Mbel,M;'el], [M[j'@l,Mb_], and
[M ", My] and use (3.8) to evaluate the integrals:

My 4 My
a 1 1 ,
m_bq)%*mb(A+ / da (1 a)+A), (7.9)
Mion M,

where A := (M, — Myo1)(1— Mg, — My_;) and A’ = (M — M, )(1— M — M).
Recall ¢p from (7.2) and write it as

M My
_1 [N S Y 1 i
P = o / da (1 a)—mb(A + / da(l—a)+A ) (7.10)
Myen M[‘fel

where A” := $ (Mg, — Meo1)(1— M, —Mye1) and A” := $(My— Mg )(1— My —M,)).
Subtract (7.10) from (7.9) and simplify (A — A”) and (A" — A’") in the result. Doing so

gives

My
da 1 1
— by = —D ——D 7.11
——r ¢b+mb ber = Do, (7.11)
Mycn
where
Dy := $(M — My)(Me — M, ), (7.12)

with the convention that D (g branchye1 := 0-
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We are now ready to complete the proof of Step 1. Insert (7.7) and (7.11) into (7.6),
expand the resulting square, and compare the result with (7.3). Doing so gives

t

+Ztmb(/dsM) + 3 (6~ 90) [ ds (Do - Dyca).

beB beB o
(7.13)

Rewrite the last sum as ) ;g fot ds (féb@l + ¢pp1 + £, — ¢u) Dy, with the convention
that &(1at branch)@1 = 0 and @(last branch)@1 := 0. We arrive at

t
() > 1)+ ) ﬁ(/ds (Do — Dbel))2 (7.14a)
beB 0
+2 /ds — &y + &6 + doe1 — ¢6) D (7.14b)
beB {)

By (7.2), (—éb@l — &y + boe1 — db) = —Vbg1 + ve. This quantity is strictly positive,
as is readily checked from (2.24). Also, Dy is nonnegative by (7.8) and (7.12). Hence
L(p) = 1(8).

Step 2: proving that [(u) = 1(€) implies ¢ = &£. The strategy is to extract information
on 4 from the condition I(u) = I(€). Set Xp(s) := X[u(s)](Mp) and note that up(s) is
supported in [Xpe1(s), Xo(s)]. As explained after (7.14), (€ g1 —&€p —Pom1+¢p) > 0; recall
that Dy > 0 by (7.8) and (7.12). Using these properties and the condition I(u) = I(€)
in (7.14b) gives Dy = 0 for all b. This property together with (7.8) and (7.12) forces
M, = M. This being true for all b implies that jp(s) has no atoms at Xpe1(s) and
Xe(s).

We continue to extract information from the condition I(u) = I(£). The condition
forces the inequality in (7.6) to be an equality, which in turn forces 9sX — ®x to be a
constant Lebesgue a.e. on [0, t] X [Myo1, My]. By (7.7), (7.11), and Dy = 0, the constant
is Sb — ¢p. Hence

DX — Ox = &, — ¢, Lebesgue a.e. on [0,t] x [Myg1, Mp). (7.15)

We seek to “localize” (7.15) onto up. More precisely, we seek to rewrite (7.15) in terms
of X[up] and ®[up]. First, by the construction of up in the first paragraph in Step 1,
Xluo(s)](a + Mys1) = X(s,a) for all a € [0,mp], 50 (0:X)|(s,a4Mp01) = (FsX[o])](s,a)-
Next, the definition (2.8) of ®[.] gives

1

®lpa(9))(x) = Rlpo(5)](2) — 5 > <,ub’(3)71(—oo,x)>+lg (e (5), L(z,00))-  (7.16)
2 2
b’<b b’>b
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Since up(s) is supported in [Xuss1(s), Xp(s)], we consider those z in this interval only. As
mentioned in the previous paragraph, ue (s) has not atoms at Xpo1(s) and Xg(s), for
all b’. Using this property in (7.16) simplifies the last two sums together into ¢y, defined
n (7.2). We now rewrite (7.15) as

DsX o] — ®1e](X[pe]) = &€,, Lebesgue a.e. on [0, t] x [0, m). (7.17)

Further using (7.2) gives

0sX[po] — @po](X[up]) = o +vp, Lebesgue a.e. on [0,t] x [0,mp].  (7.18)

Apply the procedure in Section 3.4 to divide up according to the masses (m.)cep to
get (fc)ceo-

Taking any ¢ € b, let us show that u.(s) is supported at a single point. This amounts
to showing that X[up(s)]|eev. s a constant, where Uc := (3 cp e Mers Do erep e Mer)-
Given (7.17), consider any a; < as € U, such that, for j = 1,2,

D5 X6 (5)](az) — ®[uo ()] (X[pe])(a;) = &, holds for Lebesgue a.e. s € [0,t].  (7.19)

It is readily checked from (2.8) and (2.11) that ®[A](z) is nonincreasing in x and X[ (a) is
nondecreasing in a. Hence ®[up (s)](X[ue])(a1) > @[uo(s)](X[o])(az2). Take the difference
of (7.19) for j = 1 and j = 2, use the last inequality, integrate the result over [0, s,
and use X[u(0)](a1) = X[u(0)](az) = x.. The result gives X[u(s)](a1) > X[u(s)](az).
Since X[\](a) is nondecreasing in a, X[(s)]|ac[q,,a,] IS @ constant. Sending [a1, az] — U,
shows that X[us()]|acv, is a constant. Hence p.(s) is supported at a single point; let
Zy.(8) = x,, denote this point.

It remains only to show that x, 1,...,%,  coincidence with &;,...,§,,. The measure
(s) being continuous in s implies that x, ((s) is too. Hence, there exists an sg > 0 such
that 2, 1,..., %, donot meet within [0, sg). Within s € [0, s¢), the equation (7.18) gives
Epe = o] (Tp,c) + do + vp, for ¢ € b. The first two terms on the right hand side add
to %(fml — =Ml M+ +my,) = @, S0 x, . moves at the constant velocity
@ + vp within [0, sg). This description of evolution matches that of the optimal clusters
&1, 160,50 2y cl[0,50] = &cl[0,50]> TOr all ¢. By a time-continuity argument, this equality
extends the first time when a merge happens in the optimal clusters. Take this first
merge time as the new starting time and run the same argument. Continuing inductively
completes the proof.

7.2. Proof of Corollary 2.5

Recall that we consider m = 1 only.
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(a) Given (2.18), the proof amounts to showing that

]+1nf{ Zm6x,u }

(7.20)

logP| X (TY)

oz e P llxr

tends to zero as N — oo first and o« — 0 later, where the attractive BPs start
from X;(0)/(NT) = Xc (i) or equivalently py(0) = >0, mcdy,. By (3.6), the event
{IX;(TY)/NT — x'| < r,Vi} implies dist(pn(t), ttec) < 7. Hence, by Theorem 2.3 and
the contraction principle, the limit of (7.20) is < 0. To prove the reverse inequality, note
that, by Theorem 2.4, the infimum in (7.20) is 1(£). Applying Proposition 6.2 with & = &
gives the reversed inequality > 0.

(b) Let us set up the notation and goal. Fix a nonempty A C {1,...,n}, recall cy¢
from (6.2), and let Iy ¢(A) = {i : cnye(i) € A}. Since A is nonempty7 [Tne(A)|/N >
min{my,...,m,} := m, > 0. Recall Disty [y ¢ from (2.25)-(2.26), and, for § > 0,
consider the event Dy := {Disty o, (Xi,&) > B,Vi € Tn(A)}. Similar to (a), proving
(b) amounts to proving that

X;(TY)

lim sup lim sup —— N logP[{|ﬁ i} NDy| < —I(§). (7.21)

a—0 N —o0

The strategy of proving (7.21) is to derive a lower bound on dist(g ¢} (ty, &) from the
condition imposed by Dy. First, it is not hard to check from (3.4) that, for a large
enough ko = ko(£),

distio,q (ke €) > dist(pen (s),€(s)) = 27 ’“°mm{ ZDlsth (X:.6)}. (122)

Under Dy, for every ¢ € Tne(A), there exists a random s(i) € [0,t] such that
Dist y5(3y (X3, &) > (. If these s(i)s happen to be all the same, by (7.22), disto g (e, &) >
27 kom, min{1, 8}. In general, those s(i)s are different, so we need some time-continuity
estimates. Recall the event Uy (v) from (5.3). Use the bounds derived after (5.3) to fix a
v so that

hmsupN log P [Un (v)°] < —1(&), (7.23)

N—oo

and write Un(v) = Un hereafter. We claim that, there exists a ¢; = ¢1(v,£) < oo such
that

under Dy NUy,  sup {|[{i € Ine(A): Disty o(X;,€) > 5/2}|}
s€[0,t]

> Nm, /ey (7.24)
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Namely, under Uy, a 1/c¢; fraction of i € Iy ¢(A) simultaneously satisfy Disty s(X;, &) >
B/2 at least once within s € [0, t]. To see why, divide [0, t] into ¢ equally spaced subinter-
vals. Within each subinterval, apply the continuity estimate (5.13) and use the continuity
of £.(s), c =1,...,n. By choosing ¢ large enough (depending only on v, £, and f3), we
ensure that, under Uy, the bound

max sup “ﬁXi(Ts) — ch’s(i)(s)| — |ﬁXi(Ts') — échs(i)(sl)M <

5,5 €[ L bt

holds for at least N(1 — m,/2) many ¢ € {1,...,N}. Since |Ine(A)] > Nm,, the
bound (7.25) holds for at least Nm, /2 many i € T ¢(A). The claim (7.24) hence follows
with ¢; = 2¢. Set ¢ := 275 min{1, fm,/(2¢1)} > 0. Combining (7.22)—(7.24) gives

Dy NUN C {diSt[Oﬁt] (ny, &) > 02}. (7.26)

Let us complete the proof of (7.21). First, by (7.26) and Theorem 2.3,

1
li li ——log P[{| &= X;(T) — x'
tm sup i sup 77 og P [{ 7 X, (1) —x

< a,Vi} N Dy NUN]

(7.27)
< inf {I[(,u) s distyo (1, &) > 22 p(0) = chéxt,u(t) = méx/}.

By Theorem 2.4, the right hand side of (7.27) is strictly smaller than —I(&). Given this
and (7.23), the desired result (7.21) now follows.

8. Connection to Iy, and the limit shape

Here, we establish a few properties of Ip, and the limit shape. In doing so, we prove
Theorem 2.6: Part (a) is proven in Sections 8.1, 8.2, and 8.4; Parts (b)—(c) are proven in
Section 8.3.

8.1. Basic properties of Ixpy

Fix t and (x1 < ... < x,) and writing Ixp,(t,X,T) = Lips(F), fo 26 = fum Z(t,X) =
X, and Feone(t,X) = Reonc to simplify notation.

Let us show that Ixp, : Z — [0,00) is strictly convex, which implies that Ixpz|e..,..
is strictly convex. The key is to recognize f, # as the minimizer of a variational problem.
Recall that p(t,z) = —2%/(2t). For any piecewise ¢! function f : R — R such that
f > p(t) and f(z) = p(t,x) for all large enough |z|, consider Iy (f) := [p dz (5(8.f)* —
1(0.p(t))?). Note that the integral is well-defined and finite because f(z) = p(t, z) for
all large enough |x|. It is not hard to check that
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Loy (F) := Ipu(f, #) = inf {IBM(f) cf(x)=r,c=1,... ,n}. (8.1)

Namely, f, z is the minimizer of the infimum in (8.1). For any v € (0, 1), use the convexity
of u +— u?/2 to write

L0, + (1= 7)0ufsy)® <A (0ufis)” + (1= 7)1 (0fs,)”. (8.2)

Subtract (9.(—p(t)))?/2 from both sides and integrate both sides over = € R. The right
hand side is yIxpz(T1) + (1 — ) Ixpz(T2). The left hand side is at least Iyp,(y71 + (1 —
v)(r2)) by the variational characterization (8.1). This proves the convexity. To prove the
strictness, note that the equality in (8.2) holds only if 0,f, #, = O2fs z,. This being true
for Lebesgue a.e. x € R forces ry = r's.

Next, we show that, for every r € Z,

8EIKPZ(F) = 8rcIKPZ(ta ) (6 f, r)( ) ((9 f, r)( )a
forallc=1,...,n. (8.3)

Let L¢cy1 = L¢,c+1(z) denote the linear function such that L. 41(x¢) = r. and that
L ct1(Xe41) = Tepr, and let x. — = inf{z > x.1 : O.f, g(x) = O.f z(x7)}, with
the convention xo := —oo. In words, X is Xc—1 When L ct1]xe xci1] = P(E)|xe,xeia]s
otherwise x. _ is the “tangent point” to the left of x.; the tangent points are those
labeled by triangles in Fig. 4. Define x.  similarly. To prove (8.3), it suffices to consider
those ¥ € #Z such that

either Le_1,¢|x._,x.] > P(t)|jxc_1,x] OF Xc—1,4 < X,— are both tangent points,

(8.4a)

either L ct1l[xc xcs1] > P(E)][xc,xcs1] OF Xe,4 < Xcy1,— are both tangent points.
(8.4b)
Indeed, for fixed ry,...,r¢—1, ct1,. .., Iy, there exist at most two values of r, for which

(8.4) fails. Also, as is readily checked, the right hand side (8.3) is continuous on Z.
Hence, once (8.3) is proven for those ¥ € # satisfying (8.4), the result extends to all
re#.

Let us prove (8.3) under the assumption (8.4). Under this assumption, perturbing r,
changes f, # only within z € [x. _, %] U [X, X 1], s0

8 KPZ ar( /dx %a f*r 7%(arp(t))2)

X,

(8.5)

+ O, / dz (3(0uf.2)% — 2(9.p(1))?).
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In the integrals in (8.1), only x._,Xcy,f,# may depend on r.. Under (8.4), either
0%, /0r. = 0 or (O.f, #)(Xc,—) = (02p)(t,x,—). Hence, in (8.5), the contribution of
differentiating x _ is zero. The same holds for x. . What remains is the contribution
of differentiating the integrands:

1 -1
acIKPZ(F) = / dil? 8;0'[:*’; ﬁ + / d{L’ axf*j(ﬁ) . (86)

)
[xc,fyxc] [XC7xc,+]

Note that the integrands are constant, so the last expression evaluates to the right hand
side of (8.3).

8.2. The map Vigpy : eonc — [0,00)™ is a homeomorphism

Notation as in Section 8.1.

First, by the strict convexity from Section 8.1, VIyp, is injective, and from (8.3), it
is not hard to check that VI, is continuous.

To prepare for the rest of the proof, for any i € [0,00)", we consider S(ii) := {F €
Reone : Oclypz(F) < me,¢ = 1,...,n} and establish a few properties of it. First, the
set S(m) is nonempty because it contains (—x2/(2t))"_;. Next, we claim that, for any
compact K C R, S(K) := UgecxS(m) is compact. It is not hard to check that S(K) is
closed. By definition, every ¥ € S(K) satisfies ry > —x3/(2t),...,r, > —x2/(2t), so we

only need upper bounds on ry,...,r,. Sum the formula (8.3) over ¢,...,n to get

(Oufu ) (X7) = (O ) (x1) = OcLips(F) + - ..+ OpLiry(F) S M + ... +m,. (87)

Recall x, 1 from after (8.3), and note that (9,f, #)(x;}) = (9:p)(t,Xn,+) < (92P)(t, X1).
Hence 0,(f, z)(x;) is bounded from above, and the bound can be chosen uniformly
over m € K. Using this property inductively for ¢ = 1,...,n shows that ry,...,r, are
bounded from above, uniformly over m € K.

Let us prove that VIgp, is surjective. Let m. : R™ — R be the projection onto the
cth coordinate, take any m € [0,00)", consider r, o := supmo(S(ni)), and set T, :=
(re,)?_,. Fix any ¢. By the construction of T, and the compactness of S(ni) = S({ni}),
there exists a convergent sequence Ty — T(x) in S(m) such that r() . = r.. and
I(oo),cr < Twe for all ¢’. These properties together with the property that f, is

T(o0)
concave gives that

(Oufrp) (%) — (8zf*,17*)(xj) < (axf*f(m))(xc_) - (amf*f(oo))(xj)' (8.8)

The right hand side is at most m, because ) € S(m). We arrive at the inequality

Oclipz(Fe) = (Oafi.) (x0) — (O ) (x) < me. (8.9)
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Next, we have the following property that can be checked by referring to Fig. 4: For
any ¥ € Zeonc (and in fact for any ¥ € #), when r. increases while other components
remain fixed, the quantity dclxp; = (0pfs)(x7) — (Oxfsz)(x!) increases while other
(Oc Ixpy)s decrease or stay the same. This property forces the inequality in (8.9) to be
an equality: Otherwise, by increasing r., we can increase OcIxp; while maintaining the
inequality Oy Ixpy; < m for all ¢/, which contradicts the construction of ¥,. Since ¢ was
arbitrary, O Ixp,(¥sx) = m,, for c =1,...,n, and this gives the desired surjectivity.
Finally, we prove that (VIyp,)~! is continuous. The previous paragraph gives
(Vigpz)(S(m)) > wi. Take any b < oo and consider S’ := S([0,b]™). We have
(VIpz)(S") D [0,b]". Since S’ is compact, the continuity of Vlip, implies the conti-

nuity of (VIgp,) ™t on [0,5]™.
8.3. Limit shape and its shocks

Fix ¥ € Zeonc = Peonc(t,X)°. Hereafter, we will often drop the t, X, dependence to
simplify notation.

We begin by recalling some PDE background related to h,; we refer to [27, Ch. 3]
for an introduction on this topic. Consider Burgers’ equation and its Hamilton—Jacobi
equation

dpu = 10, (u?), dth = 1(9,;h)?, (t,x) € (0,t] x R. (8.10)

The two equations are related by d,h = u. These equations can have multiple weak
solutions under a given initial condition, but have a unique entropy solution given by
the Hopf—Lax operator:

_ _ (z —y)? ,
h(t) = HL; (h(0)), HL;(f)(z) :=supy — — +f(y):yeRp.  (8.11)
Now, time reverse what is described above and consider the backward version of
(8.10)—(8.11):

dsh(t—s,2) = —1(0,h(t — 5,2))?, deu(t—s,2) = —10,(u(t—s,2))%, (8.12)

(z —y)?

(HLP%(f))(z) := inf { =

inf + f(y)}. (8.13)

Under such notation, the limit shape h,, defined in (2.32), is obtained by taking f, =
f, ¢ % as the terminal condition and evolving it backward by HLPX. Asis readily checked,
a weak solution of (8.12) is also a weak solution (8.10). On the other hand, an entropy
solution of (8.12) (which we call backward entropy) is in general not an entropy solution
of (8.10) (which we call forward entropy). Hence h, is a weak solution of (8.10) and (8.12),
is backward entropy, but is not forward entropy. Put u, := d,h,. The characteristics are
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linear trajectories in spacetime along which u, is constant. The shocks are trajectories
in spacetime across which u, is not continuous.
Let us give a geometric description of h,. Write h,(t) = f, as an infimum of lines:

f, = min { min {L5, L? |, LY : b € B, }, (8.14a)
inf {L : L is a tangent line of p(t) at places where p(t) = f, } }. (8.14b)

Here, B, is a partition of {1,...,n} into intervals, where each b € 9B, is a maximal set
of ¢s such that (f, —p(t))|sej—x. x.,] > 0 for all ¢, ¢’ € b; we will show later that B, = B.
Let y% and y? be the left and right tangent points as depicted in Fig. 5. The minimum
in (8.14a) runs over all b € B, and ¢,c + 1 € b, and accounts for the piecewise linear
part of f,, as depicted in Fig. 5. The infimum in (8.14b) accounts for the parabolic part
of f,, as depicted in Fig. 6. Next, apply HLlS)k to both sides of (8.14) and exchange the
infimum over y (in (8.13)) with other minimums and infimums to get

h.(t — s) = min{ min {HL* (L), HLY*(L! ., 1), HLY(L?) : b € B, }, (8.15a)
inf {HLE’k(L) : L is a tangent line of p(t) at places where p(t) = f, } }.
(8.15b)

For a linear function L(z) = vz + vy, it is readily checked that HLP(L) = L —
(5/2)(0,L)2. Tt is also readily checked that HL™®(p(t)) = p(t — s). Hence, for s € (0,1),
the limit shape h,(t — s) is obtained by vertically shifting the lines in Figs. 5-6 by
—(8/2) - (slope)? and taking the infimum of the result. Note that every shifted line
stays above p(t — s), since HLEk preserves orders: Namely, f1 > f> implies HLEk( f1) >
HLP*(f,). Within each b € 9B, the leftmost and rightmost lines (those indexed by < and
) touch the parabola p(t—s) at tangent. At the tangent points, 9,p(t—s) = —z/(t—s) is
equal to the slopes of those lines, so the = coordinates of the tangent points are (t—s)y%/t
and (t — s)y?/t, which trace out the dashed lines in Fig. 7.

Based on the preceding description of h,, we infer some properties of h, and its shocks.
Let Cp := {(t,z) : t € [0,t],z € [(t/t)y5, (t/t)yL]} be the spacetime region bounded by
the tangent points. They are the colored regions in Fig. 7.

(I) Outside Upess, Co, hi(t,7) = p(t,x) = —22/(2t), so the characteristics are straight
lines that connect (¢,2) = (0,0) and {t} x R; see Fig. 7.

(IT) Within each Cy, u, is piecewise constant, with values given by the slopes of L%, L,
and a subset of {L?’ch1 i ¢,c+ 1 € b}; the jumps of u, occur exactly along the
shocks; see Fig. 7.

Let o, = o(s) denote the shocks, parameter in the backward time s. Let t',x], be as in
the notation of Theorem 2.6(c). By the Rankine-Hugoniot relation (see [27, Ch. 3] for
example)
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ygl,2,3}

Lﬁf'“)
/

Fig. 5. f, as an infimum of lines, the piecewise linear part. In this Figure, B, = {{1, 2,3}, {4,5}}.

Fig. 6. f, as an infimum of lines, the parabolic part.

ygl’w} X X3 X3 y£1,2,3} y£4’5} X4 Xs yi4,5}

\

AN\

TN
A

|

o

(t,z) = (0,0)

Fig. 7. The shocks (thick solid lines), characteristics (thin solid lines), and tangent points (dashed lines).

Falsmiov = (Loa)(t—t) = $(uiq+ul,), where ufu = u (t, oq(t—t)F).

(8.16)
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This relation and Properties (I)—(II) together give the following property.

(III) For each b € B,, those shocks o with ¢ € b stay within C, and travel at constant
velocities except when they meet. Further, shocks o and o merge within s € (0,t)
if and only if they belong to the same b € B, so B, = B.

By Property (II), h, is linear in a neighborhood on either side of a shock and hence
solves (8.10) classically there. Using this property gives the following.

(IV) Let t',x/, be as in the notation of Theorem 2.6(c). For all t' € (0,t) except when
shocks merge, $;h.(t,0a(t—1))|[i=v = 3(u;4)? — Ui, Fa, where u; == u,(t, oq(t—
t)7).

Let us prove Theorem 2.6(c). To prove (2.34), recall that Vglp,(t,X,¥) = mi and
combine this relation with the formula (8.3) for t = t to get u, . — uf = m.. Next, use
the formula (8.3) for t = ¢’ to get Vglip, (¥, X', T') = u; , —u}, telescope the right hand
side as 3 c(q) (Usc — uf ), use uy . —uf . = mc, and recognize the resulting sum as m;.
Doing so concludes (2.34). To prove (2.35), let & be the optimal deviation for (2.23) with
x’ = 0. From the definition of the optimal deviation (in Section 2.3), it is readily checked
that &(+ + (t — t'))|j0,¢) is the optimal deviation for (2.23) with [0, — [0,t], X" = 0,
(X, 1) — (v, X’). Similarly, for each a = 1,...,n’, the deviation ZceC(a) mede |[0, e is
the optimal deviation for (2.23) with [0,t] — [0,t — '], X' = x{, (¥, M) = (Xc, Mc)cce(a)-
These properties together with Theorem 2.4 give (2.35).

Let us prove Theorem 2.6(b). With X, ¥ having been fixed, set mi := (VIgp,)(t, X, T).
For this i, let (£,)™_; be the optimal clusters. Take any intermediate time t' € (0,t] and
let a € {1,...,n'}, €(a), m’yq be as in Notation for Theorem 2.6(c), and recall vy from
before Theorem 2.4. We seek to prove that, for any a € {1,...,n'} with €(a) C b,

g ,
Ga=3 Z sgn(oy — oq)m,, + vp. (8.17)

a’=1

Referring to the definition of the optimal clusters (before Theorem 2.6(c)), we see that
(8.17) means that the shocks evolve the same way (in the backward time s) as the
optimal clusters. Since the shocks and optimal clusters share the same starting condition,
namely (o.(0))"; = (x)"; = (£.(0))"_,, once (8.17) is proven, the desired result
(o) = (&), follows. To prove (8.17), fix a,b with €(a) C b. Consider the set
{a’ : €(a') = b} and write it at {a’ : €(a’) = b} = [a%,...,a"] N Z. Let u®, and ul

denote the respective slopes of LY and L. By Property (II), ufj’<1 = Uy g, u27‘> = Uj—,a%
and uf,u/ = U o4 forall @’ € [a% a0 — 1]. Use these properties to telescope the right

hand side of (8.16) as
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1
6o = 5 (ui,q + Z (_ u:,a’ + uir,a’) + Z (u;a’ B uiﬂ') + uE,D)' (8'18)

a’€lad,a) a’€(a,a”]

Next, combine (2.34) and (8.3) to get

mo=u ,—uf,, a=1,..n. (8.19)
Inserting (8.19) into (8.18) gives
. 1 ,
64 = §(UE’<' + UE,») + e[z: | sgn(oy —oq)my,. (8.20)
a’€lad,aP

Let op := ) cp Mo /mp. Multiply both sides of (8.20) by m,, sum both sides over all
a € [aY,a"], and divide the result by mg. Doing so gives &y = %(u:q + uib), which is

constant. Write the left hand side as &y = %( .. — Mpo1 + Mpe1 + ...) + v, for some
constant vy. Integrate &, over s € [0,t], use o4(0) = £,(0) and o,(t) = 0 = &,(t), and
compare the result with (2.24). Doing so shows that vy = vp. Hence §(ul  +u?,) =
(... —Mpo1 + Mp@1 + . ..) + vp. Inserting this into (8.20) gives the desired result (8.17).

8.4. Legendre transform

Here we prove the first statement in Theorem 2.6(a), by showing that the Legendre
transform of Iyp,(F) gives Leyp (). Once this is done, since Ixp, is strictly convex and
since VIgpy : Zeone — [0,00)™ is a homeomorphism, it will follow that Leys(ni) is
also strictly convex and is the Legendre transform of Iyp,(F). Still use the notation in
Theorem 2.6. Set G := m-F— Ixp,(T), where the dot denotes the Euclidean inner product.
Our goal is to show G = Lgy (). To this end, we devise a time-dependent version of G:

tyl>/t

ch (todt—t)— > /dm(%u*(tﬁ—%(amp(t))?). (8.21)

be%*tyg/t

At t =, using h,(t) =f,, o (t —t) = x, and Property (I) verifies that G(t) = G. Using
Properties (I)—(II), it is not hard to check that h,(t,o.(t —t)) — 0 as t — 0, for all c,
and that u, and 9,p(t) are uniformly bounded on Cy for all b. These properties together
give that G(t) — 0 as t — 0. We seek to show that, for all ' except when shocks merge,

1 n’ n’ 1 .
(%G) (f/) = ﬁ E m(’l?’ — E §m(’1 O'g. (822)
a=1 a=1

Once this is done, using o, = £, integrating both sides over ¢t € (0,t], and comparing
the result with Lgue(m) = Lo (-, mc&,) (see (2.21)) will yield the desired result G =
Lgyg ().
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Let us differentiate the first sum in (8.21) at ¢ = t' and simplify the result. Take any
" at which no shocks merge, write the first sum in (8.21) as Y o, mih (¢, oa(t — 1)),
differentiate this expression in ¢ with the aid of Properties (IV). Doing so gives

%(ﬁrst sum in (8.21)) |t v Zm (3(ui o)’ —6a- Urg)- (8.23)
Combine (8.16), (8.3), and (2.34) to get the relation u , = im/+6, and insert it into the
right hand side of (8.23). The result gives & (first sum in (8.21)));—¢ = % Za ,m—
ZZ/ 1 3™ 0.

Next we treat the second sum in (8.21). The contribution of differentiating the bound-
ary points tyq /tand ty? /tis zero, because the integrand evaluates to zero at those points

by Property (I). Next, recall from Property (IT) that u, is piecewise constant within the
integral in (8.21). This gives

tyg/t

1 .
[ oty =5 ¥ (@l - @raP)se (824)
ty® /t a:C(a)Cb

Next, straightforward calculations verify the following relation. (One can also use the
machinery of entropy-entropy flux pairs to see it, which we will not do here.)

tyq/t
1
[ o @m0 -

tyg/t

(Dup(t, ty5/8)" — %(amp(t,tYE/f))3~ (8.25)

Wl =

By Property (I), the right hand 51de of (8.25) is equal to u.(t,ty5/t)® — fu.(t, tyl/t)>.
Telescope the last expression into § 3 .¢(aycp (Ui 0)® — (u;a)‘g). So far, we have

d . - xa) N7
&(second sum in (8.21)),_, = Z ( 7 7 -

2 3
a=1
(8.26)
Inset (8.16) into the right hand side of (8.26) and simplify the result. Doing so gives
4 (second sum in (8.21))[i—¢ = — > u_; (uf, — u;,)?/12, which, by (8.19), is equal to
- Yl mgt /12,

Combining the results in the last two paragraphs gives (8.22) and hence completes
the proof.
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Appendix A. Basic properties

Proof of the scaling identities (3.1). First, it is not hard to check that, for any A\ €
mZ(R),

FIL& A (2) = LF A (ma), X[16,,\(a) = LX[N](ma), B[L&uA (x) = L@[\](ma).
(A1)

Using the preceding scaling relations for X and ® in (2.12) and performing a change of
variables ma — a give the desired scaling relation I(£&wu) = I(u)/m?* for I. To prove
the scaling relation for Z, use (A.1) in (2.10) and call g(s,z) := h(s,z/m). After being
simplified, the result reads

I(:Gmp) = sup{

MIE

/ 0, } (A.2)

where the supremum runs over g € ‘gbl 1(10,¢],R). A supremum of this form can be
expressed as a supremum of a Rayleigh quotient: For u,v € (0, 00),

. L supg(uA (@)
Sl;p {uA(u,g) ) / ds (u, (9:8) >} fo R ds (11, (8,8)2) (A.3)
[0,¢]

with the convention that 0/0 := 0 and that *>/0 := oo for b # 0. To see why, rewrite
the supremum on the left hand side as a supremum over bg, with b € R, and optimize
over b for a fixed g. Using the Rayleigh quotient expression in (A.2) gives 7 (%Gmu) =

I(p)/m*. O

Proof of Lemma 3.2(b)—(c). To prove Part (b), assume the contrary: There exist
51, 82,... € [0,t] and g9 > 0 such that (u(sk), IR\ (—k,k)) = €0 > 0 for all k. After passing
to a subsequence, we have s, — s¢ € [0, t]. Since R\ (—k, k) is closed and since p(s) is con-
tinuous in s, limsup,_, . (1£(s¢), IR\ (=k,k)) < (1£(50), 1R\ (=k,k)) for every k € Zo. The
left hand side is at least £9. Sending k& — oo gives 0 < g < liminfg o0 (14(S0), 1R\[=,k]) s
contradicting u(sg) € Z(R).

To prove Part (c), write X[u(s)](a) = X(s,a) and let w(s,a) := limsup,,_,, X(s',a) —
liminfy s X(s’, a) denote the oscillation in time of X at (s,a). Fix k € Z~. By (3.4),

dist(p(s1), u(s2))
> 9~ kmm{ /da 1%(s1,a) — X(s2, a)|1{|X (51, )|gk}1{|x(82,a>|gk}}.

0
(A4)
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This inequality and the continuity of u(s) in s imply that the set {a € [0,1] : w(s,a) >
0, for some s with |X(s,a)| < k} has zero Lebesgue measure. Combining this with the
result of Part (b) gives the desired result. O

Proof of Properties (a)-(e) after (4.6). To prove Property (a), observe that
%, ! ([s1, 53], R) can be embedded into &,"*([s1,s2], R) and %, ([s2, s3], R), so the
inequality > follows. For the reverse inequality, take any hiy € (gbl)l([S]_,Sg],R) and
has € 6" ([s2, s3], R) and concatenate them as follows: Take any ¢ € €°°(R) that is
increasing, with ¢|(_oc,0) = 0 and ¢|;1,«) = 1, set @5(s) := ¢(s/d), and consider

hs(s, ) := hia(s,2)@s(s2 — ) + haz(s, 2)ps(s — s2) € €27 ([s1, 53], R).  (A.5)

Indeed, [7*ds (u, (0:hs)%) — [2%ds (i, (Dsh12)?) + [J7 ds (i, (9:ha3)?) as § — 0. Next,
write

/ds (1, Oshs) —/ds (1, Osh12) — /ds (1, Oshas) (A.6)
S2 32-'1-5
—— [ dstuhuadigs) + [ ds(uhadues) +00) (A7)
Ss2—0 s2

It is not hard to check that (A.7) converges to —(u(s2), hi2(s2)) + (1(s2), has(s2)) as
0 — 0. The preceding results together verify Property (a).

Property (b) follows from Property (a) and the property that Z°(y o, > 0; the latter
property is readily seen from (4.6). Property (c) follows since the expression within the
supremum in (4.6) is linear in u. Property (d) follows by renaming the test function
h(s,z —y) := h(s,z) in (4.6). Property (e) follows since for a time-independent = \ €
Z(R) the first two terms within the supremum in (4.6) cancel with each other, and the
last term is nonpositive. O

Proof of (2.22). We consider m = 1 only; the result for general m > 0 follows from the
result for m = 1 through the scaling argument in the proof of (3.1). Without loss of
generality, assume 0,X[u] € £2([0,t] x [0,1]); otherwise both sides of (2.22) are +oco by
definition. Write X[u(s)](a) = X(s,a) and ®[u(s)](z) = ®(s,z). Expand the integrand
in (2.12) and insert the result into the Left Hand Side (LHS) of (2.22) to get

t 1
s=t 1
LHS of (2.22) = i + {u(s)®? Yz —2'|) o /ds/da 5(@%)2
I A
+ A2 - A37 (AS)

where Ay = [jo.4ds [j,17da (8:X) @, and A3 := [jo,ds [jo,1da 1@2. For As, we claim
that we can replace ®(s,a) with (3 — a) to get
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As = /tds/lda (0:X[1]) - (5 —a). (A.9)

Recall ay[u(s)](a) from (3.7) and write them as a(s,a). Given (3.8), this claim follows
if we can show, for almost every (s,a), (9sX)(s, +) is almost everywhere a constant on
(a—(s,a),a4+(s,a)). Fix any (so, ag) such that X is differentiable in s at (sg, ag) and write
a4 (sg,a0) =: ag,+. For every a € (agp,—,a9), X(so,a) = X(so,a0) and X(s,a) < X(s,ap)
for all s. If X is differentiable in s at (s, @), the preceding properties force (05%)(so,a) =
(0s%)(s0, ap). The same conclusion holds for a € (ag, ap,+). Under the assumption that
0sX[p) € L£2([0,t] x [0,1]), X is differentiable in s Lebesgue a.e., so the claim follows.
Evaluate the s integral in (A.9), use (3.9) for f(z) = z in reverse, and use Lemma 3.2(a)
in reverse to get Ay = (u(s), 2®[u(s)])|3=f. Recalling ®[u(s)] from (2.8), we recognize
the last expression as Ay = (u(s)®?, sz sgn(z’ — 2)) [3=§. Since the measure p(s)®? is
symmetric in z and 2/, we can symmetrize the function %x sgn(z’ — x) to get

Ay = (u(s)®%, Lz — a')sgn(a’ — 2)) |2y = —(u(s)®% Hz — /) [7Z;. (A10)

As for Ag, the identity (3.8) gives

A=l / as( / da (4 —a>2—27da((% S - (), (A

where the sum runs over all pairs of (a_, a1 ) such that a_ < ay. Evaluating the integrals
and simplifying the result give

t t
ot oot 1 3
A== [as Y gias—a == [ 30 tn1e)’, (An2)
0 0 x

where the sum over x runs over atoms of p(s). Inserting (A.10) and (A.12) into (A.8)
gives (2.22). O

Appendix B. Proof of (6.40)

We take [s,s"] = [0,t] (whence I[g ¢j(+) := I(+)) to simplify notation.

We say 1 well approximates ' to within e if distjo ¢ (1, 1) < € and [I(p) —1(p')] <e.
We say a class of deviations well approximates p’ if, for every ¢ > 0, there exists a
deviation in that class that well approximates p’ to within e.

As the first step, we well approximate p by clustering deviations. For n € Z~q, ap-
ply the procedure in Section 3.4 with my = ... = m, = 1/n to get pe, ¢ = 1,...,n.
As explained there, each f(s) is continuous in s. Let x, (s) := n(uc(s),x), which
belongs to [0,t] thanks to the continuity of p. and thanks to Assumption 6.3. Set
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M (s) =13 0z, (s)> Which is clustering. Consider (twice of) the total variation norm
IN = Nllew = sup,er [F[A(z) = F[N](z)|. We claim that [y (s) — u(s)[lew < 1/n.
To see why, consider S. := {x : Flu(s)](z) € [(c — 1)/n,¢/n)} for ¢ = 1,...,n sep-
arately. Within each S, the function F[y(™)(s)] makes a single jump from the level
(¢ — 1)/n to the level ¢/n; this is seen from the construction of v(™). Hence the dif-
ference |F[y(™(s)](z) — F[u(s)](z)| is at most 1/n, so the claim follows. We have
that v(")(s) — pu(s) in the total variation norm, uniformly over s € [0,t]. This im-
plies dist|g ¢ (v, ) — 0. Next, we show I(y(™) — I(u). Note that by construction,
X ()]laer, = 7e(s) == n{u(s),z) = n f, daX[u(s)](a), where I = [(c — 1)/n,c/n).
Namely, X[y(™)(s)] is obtained by averaging X[u(s)] over intervals of length 1/n. By using
this property and 9;X[u] € £2(]0,t] x [0,1]), which follows from the assumption Z (1) =
[(1) < oo, it is not hard to check that dsX[y™] — 9,X[u] in £2([0,t] x [0,1]). Also,
[8[ (5] — Blpu(s)]lloo < I S5Enlool 1 (5) — () oy = B9 (5) = u(s) o < 1/(2).
Combining these properties gives T(y(™) — T(y).

As the second step, writing (") =: 4 to simplify notation and fixing an arbitrary
e > 0, we well approximate v by a finitely-changing-clustering ¢ to within €. A deviation
¢ being finitely-changing-clustering means that it is clustering and that there exist 0 =
S0 < 81 < ...< 8¢ = tsuch that, within each (s;_1, si), each pair of clusters either never
touch or completely coincide. We will construct a sequence ¢, ..., ¢(™ of clustering
deviations that satisfy the following conditions.

(i) distp,(¢U~Y,¢9) < g/n and [I(¢CV~V) — I(¢Y)| < e/n, with the convention
¢ :=.

i1 ac. ) has n clusters . < ... < n' of mass 1/n, and the finitely-changing

ii) Each ¢¥) h 1 ¢ ¢ of 1 d the finitely-ch
property holds up to the index j. More precisely, there exist 0 = 59 < 51 < ... <
s¢ = t, which may depend on j, such that within each (sg_1,sg), each pair in
C{j ), . C JQ ) either never touches or completely coincides.

Once constructed, ((™ =: ¢ gives the finitely-change clustering deviation.

We now construct the (s by induction on j. For j = 1, simply take () = ~. Assume
¢, ..., ¢U=D have been constructed. We will construct (1) =: ¢*¥ out of (=1 =: ¢!,
To begin the construction, keep all but the jth clusters unchanged: (7" := C;’,ld for all
j" # j. Next, to construct the jth cluster for (", consider O = {s € (0,t) : (?'9,(s) <
C;ld(s)}, which is open, and write O as the union of countable disjoint open intervals
(a1,b1), (ag,b), . ... By Condition (i), 1(¢?') < oo, so (24 € £2[0,t] for all ¢. Given this

property, find an ¢y large enough such that, with O” := Ugs¢, (ag, be),

1 1 :
/ds > e g%, /ds% > (|¢;ﬂd\+1)2g%. (B.1)

o c=j—1,j o c=j—1,j
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Set O := (a1,b1)U...U(ag,, by, ). Keep the jth cluster unchanged within O’ and perturb
it to match the (j — 1)th cluster outside O'. More explicitly, (}*V|or := (|0 and

old
= G 1lo.ovor
We next check that the ("% so constructed satisfies the required conditions. First,

given that ¢° satisfies Condition (ii) up to the index j — 1, it is not hard to check that
¢ev satisfies Condition (ii) up to the index j. Move on to checking Condition (i). Recall
that ¢*°¥ differs from (°¢ only at the jth cluster. Further, the difference occurs only
on O”. On 0", where (?*V and (5" differ, we have (?*V|or = (% |or. These properties
together with (6.10) and |®[-]| < 1/2 give

1
sup — Z |<~new _ s)ld (8)’ S / ds = old <01d| (Bz)

sefo,t] T
O/l
new o 1 Lo 2
1™ ~ 1 1d)|§/d5% (et B3
o c:jflvj

By (B.1), the right hand sides of (B.2)—(B.3) are bounded by £/n. By (3.6), the left hand
side of (B.2) bounds dist ¢ (¢"Y, ('*) from above.

Finally, we well approximate { by PL-clustering deviations. Let 0 = sp < 51 < ... <
s¢ = t prescribe the intervals on which the clusters of { either never touch or completely
coincide. Further partition each [si_1, $x] into smaller intervals of equal length. Linearly
interpolate the trajectories of the clusters of { with respect to the smaller intervals.
Use the resulting piecewise linear trajectories to build a PL-clustering £. Within each
(8k—1, Sk), since the clusters of ¢ either never touch or completely coincide, the same
property holds for . By using this property, (3.6), and (6.10), it is not hard to check
that, as the mesh of the sub partitions tends to zero, disty (£, ¢) — 0 and 1(£) — 1(().

Appendix C. Girsanov’s transform

Here, we pack Girsanov’s transform in ways convenient for our applications. Fix
[s',8"] C [0,t], let P be the law of (X;(s))scirs 17s7],i=1,.,8 under (2.2) given
(X:(Ts"))i=1,....n, take deterministic v; and J; C {1,...,N}7 it =1,...,N, and con-
sider the law Q such that

1
under Q, dX; = Z §sgn(Xj — X;)ds+ Nv;ds +dB;, s € [Ts',Ts"],
Jje{1,....N}\J;

(C.1)
with the same given (X;(T's"));=1

Lemma C.1.

(a) Assume J; = 0 for all i and take any r' € (0,00). For any measurable & C
€([s',s"),R)N with & C {|B;(Ts) — B;(Ts')| < NTr' Vs € [§',8"],i=1,...,N},
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1 (s —s) 5 7 al
NoT log]P’[é'] N3T log(@[ Zvl N;hﬂ (C.2)
(b) For any p > 1 and any measurable € C €([s',s"],R)V,
1 (S” N 2 9
NoT logP[£] > N3T logQ[&] — =3 ; ( ) . (C3)
Proof. Set A := TT:,H Zfil dB; (Nv; — 32505, sen(X; — X;)/2) and let (4) =

f:,” Zf\;l ds (Nvi — > ,c sen(X; — X;)/2)? denote its quadratic variation. Slightly

abusing notation, we write the ezpectation under Q also as Q. Girsanov’s transform
gives P[] = Q[lgexp(A4 — (A)/2)]. For Part (a), using 1¢A > —N2T7' Y, |v;| and
(A) = N?T'(s" — s') >, v? gives the desired result. For Part (b), use Holder’s inequality

Q[€] < Q[lgexp(A - §(A Ly (= A+ 5 APV (C4)

evaluate the last expectation

Ts// N
2
ﬁefwém»}: [ (L/ , 1 o ) }
Qe Qe (357 dszg(sz;fgn(x] X)) |,
Ts’ = i

(C.5)

bound the summand in >, by (N|v;| +|J;|/2)?, and replace Q[1¢ exp(A4 — (A)/2)] with
P[£] in (C.4). Doing so gives

"_ g N
Q[€] < PE]? exp (u Z (

20— 1) |2iv|>2) (C.6)

Applying 5= log( + ) to both sides and simplifying the result give (C.3). O
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