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Abstract

We extend the construction of the semigroup of the two-dimensional delta-Bose
gas in [20] (based on [22, 16]) to a weighted L2 space that allows exponentially
growing functions. We further show that the semigroup of the mollified delta-Bose
gas converges strongly to that of the delta-Bose gas.
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1 Introduction

In this paper, we study the two-dimensional, n-particle delta-Bose gas. Fix a nonnega-
tive Φ ∈ C∞(R2) with a compact support such that

∫
R2 dxΦ(x) = 1, and, for ε → 0, let

Φε(x) := ε−2Φ(ε−1x) be the corresponding approximation of the delta function. Let [[n]] :=
{1, . . . , n}, write α = ij = {i < j} for an unordered pair of integers in [[n]], view ij as a set,
and let Pair[[n]] := {ij|ij ⊂ [[n]]}. Consider R2[[n]] := (R2)[[n]] = {x = (x1, . . . , xn)|xi ∈ R2},
and, for α = ij, let Φε

α(x) := Φε(xi − xj). The Hamiltonian Hε of the mollified delta-Bose
gas acts on functions on R2[[n]] and is given by

−Hε :=
1

2

n∑
i=1

∆i + βε
∑

α∈Pair[[n]]

Φε
α , (1.1)

where ∆i is the Laplacian acting on xi ∈ R2, Φε
α acts multiplicatively,

βε :=
2π

| log ε|
+

π

| log ε|2
(
θ − 2 log 2 + 2γ + 2

∫
R4

dx dx′Φ(x) log |x− x′|Φ(x′)
)
, (1.2)

γ = 0.577 . . . denotes the Euler–Mascheroni constant, and θ is a fixed parameter that can
be taken to be any real value. In (1.2), the constants after θ are just conventional (and
can be absorbed into θ).

The delta-Bose gas is an instance of quantum many-body systems and is highly
relevant in the study of the Stochastic Heat Equation (SHE). In the quantum context,
(1.1) can be used to approximate the Hamiltonian of n Bosons with pairwise, attractive
(true) delta potentials. Quantum systems with delta potentials exhibit intriguing physical
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2d delta Bose gas in a weighted space

properties, pose significant mathematical challenges, and enjoy a long history of study.
We point to [2] for a review and mention the works [15, 22, 16, 19, 18] on the two-
dimensional delta-Bose gas. As it turns out, in two dimensions, in order to see a non-
degenerate limit as ε→ 0, one needs to attenuate the coupling constant βε logarithmically
around the value 2π as in (1.2). This was observed in the n = 2 case in [2, Chapter I.5]
and [3]. In the SHE context, the semigroup Qε(t) := e−tHε

describes the moments of the
noise-mollified SHE. Based on [2, 1], the work [3] established the convergence (as ε→ 0)
of the second moment of the noise-mollified SHE to an explicit limit. Convergence of
higher moments are significantly more challenging, and was later obtained in [5] for
the third moment based on [4], and in [20] for of all moments based on [22, 16]; see
[8, 9, 10] for probabilistic studies of the moments. A central question in this context
concerns the ε→ 0 limit of the noise-mollified SHE, and the limit is called the Stochastic
Heat Flow (SHF). The construction of the SHF had been a challenging open problem
and was accomplished [6].

In this paper, we generalize the results of [20] from the L2 space to a weighted L2

space. Based on [22, 16], the work [20] gave an explicit formula of a strongly continuous
semigroup Q(t) on L2(R2[[n]]) and showed that Qε(t) := e−tHε

converges strongly to
Q(t) on L2(R2[[n]]). These results translate into the convergence of the moments of the
noise-mollified SHE to an explicit limit, for L2 initial conditions. The class of L2 functions
is natural, because the generator of Q(t) is self-adjoint, but the class leaves out some
commonly considered initial conditions, most notably the constant/flat ones. Further,
when using delta-Bose gas to study the noise-mollified SHE and the SHF, one often needs
to consider more general spaces than L2. One instance is the work [6], which introduces
weighted Lp estimates for the semigroup in a discrete setting. Another instance is the
recent work [23], which requires the use of the weighted L2 space and the bounds
(3.9)–(3.10) from this paper.

To state our result, let | · |p denote the `p norm on Rd, for a ∈ R, let

‖f‖2,a :=
(∫

R2[[n]]

dx
∣∣f(x)ea|x|1 ∣∣2)1/2

, L2
a(R

2[[n]]) :=
{
f
∣∣ ‖f‖2,a <∞

}
, (1.3)

let 〈f1, f2〉 :=
∫
R2[[n]] dx e

2a|x|1f1(x)f2(x) denote the inner product, and for a linear operator
T : L2

a(R
2[[n]]) → L2

a(R
2[[n]]), let

‖T ‖2,a→2,a := sup
{
〈f ′, T f〉

∣∣ ‖f ′‖2,a ≤ 1 , ‖f‖2,a ≤ 1
}

(1.4)

denote the weighted operator norm. Deferring the definition of Q(t) to Section 2, we
now state our main result.

Theorem 1.1. Given any θ ∈ R, n ∈ Z>0, and a ∈ R, there exists c = c(θ, n, a,Φ) such
that for all t ≥ 0, ε ∈ (0, 1/c], f ∈ L2

a(R
2[[n]]), and T <∞,

1. ‖Q(t)‖2,a→2,a ≤ c ect,

2. ‖Qε(t)‖2,a→2,a ≤ c ect, and ‖Qε(t)f−Q(t)f‖2,a → 0 as ε→ 0 uniformly over t ∈ [0, T ].

We note in the passing that the work [9] studied a similar problem for bounded fs and
proved the pointwise (in x) convergence of (Qε(t)f)(x).

A crucial property used in [20] is that the generators of Q(t) and Qε(t) are self-adjoint
in L2, but this property no longer holds in L2

a. In the self-adjoint setting of [20], to prove
statements like those in Theorem 1.1, one can just work with the resolvents. Indeed, in
the self-adjoint setting, thanks to the spectral theorem, bounds on the resolvents imply
bounds on the spectra and hence the semigroups. In our non-self-adjoint setting, we
need to bound the semigroups Q(t) and Qε(t) directly, without resorting to resolvents.
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2d delta Bose gas in a weighted space

These semigroups are much less well-behaved than their resolvents, so the bounds
require additional work. This fact manifests itself in our proof of (3.10d).

Here is an overview of the proof. As will be seen in Section 2, proving Theorem 1.1
boils down to bounding the weighted norms of the various operators that make up
Q(t) and Qε(t). We obtain these bounds in two steps, by first employing a comparison
argument to reduce proving these bounds to proving their unweighted analogs, and
then proving their unweighted analogs. While most of the unweighted analogs follow
from existing results, one of them, (3.10d), does not seem straightforward and requires
significant work. One may also consider the weighted Lp space for p 6= 2, and we leave
that to future work.

Let us mention a few more works on the moments of the noise-mollified SHE and
point to the references in [6] for more references. The work [17] carried out detailed
analysis of the second moment and further used of the Gaussian correlation inequality
to compare the moments of the SHE with those of a log-normal. The works [7, 11, 12]
studied properties related to the Gaussian multiplicative chaos. High moments of the
polymers and the mollified SHE are studied in [13, 21, 14].

The rest of the paper is organized as follows. In Section 2, we recall the definition
of Q(t) and prove Theorem 1.1(1). In Section 2, we consider the prelimiting semigroup
Qε(t) := e−tHε

and prove Theorem 1.1(2).

2 The limiting semigroup, proof of Theorem 1.1(1)

We begin by recalling the definition of the delta-Bose semigroup Q(t). For α ∈ Pair[[n]],
the relevant operators map between functions on

R2[[n]] := (R2)[[n]] :=
{
(xi)i∈[[n]]

∣∣xi ∈ R2
}
, (2.1)

R2 ×R2[[n]]\α := R2 ×R2([[n]]\α) :=
{
y = (yc, (yi)i∈[[n]]\α)

∣∣ yc, yi ∈ R2
}
, (2.2)

where we index the first coordinate in (2.2) by “c” for “center of mass”. Consider

Sα : R2 ×R2[[n]]\α → R2[[n]],
(
Sαy

)
i
:=

{
yc when i ∈ α

yi when i ∈ [[n]] \ α .
(2.3)

Let p(t, xi) := exp(−|xi|22/2t)/(2πt) denote the heat kernel on R2, let P(t, x) :=∏
i∈[[n]] p(t, xi) denote the heat kernel on R2[[n]], and let

j(t) :=

∫ ∞

0

du
tu−1eθu

Γ(u)
, (2.4)

where θ ∈ R is the parameter in (1.2). For α 6= α′ ∈ Pair[[n]], define the integral operators
Pα(t), Pα(t)

∗, Pαα′(t), Jα(t) through their kernels as

Pα(t, y, x) := P
(
t, Sαy − x

)
=:

(
Pα

)∗
(t, x, y) , (2.5a)

Pαα′(t, y, y′) := P
(
t, Sαy − Sα′y′

)
, (2.5b)

Jα(t, y, y
′) := 4π j(t) p( t2 , yc − y′c) ·

∏
i∈[[n]]\α

p(t, yi − y′i) , (2.5c)

where x ∈ R2[[n]] and y, y′ ∈ R2 ×R2[[n]]\α in (2.5a) and (2.5c), and y ∈ R2 ×R2[[n]]\α and
y′ ∈ R2[[n]]\α′

in (2.5b). Next, let

Dgm[[n]] :=
{
~α = (αk)

m
k=1 ∈ Pair[[n]]m

∣∣m ∈ Z>0, αk 6= αk+1 for k = 1, . . . ,m− 1
}
. (2.6)

This set indexes certain diagrams, hence the name Dgm; see [20, Section 2]. Write
|~α| := m for the length of ~α ∈ Dgm[[n]]. For f = f(τ, τ ′, τ ′′, . . .) that depends on finitely
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many nonnegative τs, write
∫
Σ(t)

d~τf =
∫
τ+τ ′+...=t

d~τf for the convolution-like integral.

For ~α ∈ Dgm[[n]], let

R~α(t) :=

∫
Σ(t)

d~τ Pα1(τ 1
2
)∗

|~α|−1∏
k=1

Jαk
(τk)Pαkαk+1

(τk+ 1
2
) · Jα|~α|(τ|~α|)Pα|~α|(τ|~α|+ 1

2
) . (2.7)

Hereafter, products of operators are understood in the written order, so
∏K

k=1 Tk :=

T1T2 · · · TK . The delta-Bose semigroup on R2[[n]] is

Q(t) := P(t) +
∑

~α∈Dgm[[n]]

R~α(t) . (2.8)

In [20, Section 8], the series (2.8) is shown to converge in the L2 operator norm.
Here we seek to do similarly for the weighted operator norm. Let us prepare some
notation and tools. First,

‖f‖22,a = ‖f‖2L2
a(Ω) :=

{∫
Ω
dx

∣∣f(x)ea|x|1 ∣∣2 Ω = R2[[n]] ,∫
Ω
dy

∣∣f(y)e2a|yc|1+a
∑

i∈[[n]]\α |yi|1
∣∣2 Ω = R2 ×R2[[n]]\α .

(2.9)

For Ω = R2[[n]], the norm is the same as (1.3), but for Ω = R2 ×R2[[n]]\α, we assign twice
the exponential weight to yc, which is natural because it bears a meaning of “merging”
the two coordinates in α. Accordingly, for operators that map between functions on the
spaces (2.1)–(2.2), define the weighted operator norm ‖ · ‖2,a→2,a as (1.4) with the ‖ · ‖2,a
given in (2.9). We will omit the underlying spaces Ω when writing the operator norms,
because the spaces can be read off from the definition of the operators. For example,
referring to (2.5a) and the description that follows, we see that ‖Pα(t)‖2,a→2,a means the
operator norm of Pα(t) : L

2
a(R

2[[n]]) → L2
a(R

2 × R2[[n]]\α). Next, note that the kernels in
(2.5) are nonnegative. For a one-parameter family of integral operators T (t), t > 0, with
a nonnegative kernel T (t, z, z′), if

sup
{∫ b

0

dt

∫
dz′dz |f ′(z′)| · T (t, z′, z) · |f(z)|

}
, (2.10)

is finite when the supremum is taken over ‖f ′‖2,a ≤ 1 and ‖f‖2,a ≤ 1, then the opera-

tor
∫ b

0
dt T (t) is well-defined and bounded with

∥∥ ∫ b

0
dt T (t)

∥∥
2,a→2,a

equal to the above

expression. When a = 0, the weighted norms reduce to the L2 norms, which we write as
‖ · ‖2,0 = ‖ · ‖2 and ‖ · ‖2,0→2,0 = ‖ · ‖2→2. It will be useful to be able to bound convolution-
like integral as in equation (2.7) in norm by bounding the individual integrands. To this
end, we have the following lemma:

Lemma 2.1 ([23, Lemma 2.1(a)]; also [20, Lemma 8.10]). For m ∈ Z>0 and κ ∈ ( 12Z) ∩
(0,m + 1), let Tκ(t) : Bκ → Bκ−1/2 be a bounded operator with a nonnegative kernel,
where Bκ is a Banach space consisting of some Borel functions on Rdκ , and let ‖Tκ(t)‖op
denote the operator norm. Assume that, for all t > 0 and a constant c0 ∈ (0,∞),

∥∥Tκ(t)∥∥op ≤ c0e
c0t ·


t−1/2 when κ = 1

2 ,

t−1
∣∣ log( 12 ∧ t)

∣∣−2
when κ ∈ Z ∩ [1,m] ,

t−1 when κ ∈ ( 12 +Z) ∩ (1,m) ,

t−1/2 when κ = m+ 1
2 ,

(2.11)

∥∥∥ ∫ ∞

0

dt e−c0tTκ(t)
∥∥∥
op

≤ c0 when κ ∈ ( 12 +Z) ∩ (1,m) . (2.12)
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Fix c1 ≥ 0 and let T ′
κ(t) := c1δ0(t)1 + Tκ(t) when κ ∈ Z ∩ [1,m] and T ′

κ(t) := Tκ(t) when
κ ∈ ( 12 + Z) ∩ (0,m + 1). Then, there exists a universal c ∈ (0,∞), such that for all
m ∈ Z>0, t > 0, and λ ≥ c0 + 2,∥∥∥ ∫

Σ(t)

d~τ
2m+1∏
k=1

T ′
k/2(τk/2)

∥∥∥
op

≤ cmm3 eλt
(
cm1 + c20

(
c1 +

c20
log(λ− c0 − 1)

)m−1)
. (2.13)

Given Lemma 2.1, our task is reduced to bounding the norm ‖ · ‖2,a→2,a of the
operators in (2.5). The Lemma then implies the convergence of the operator in equation
(2.8) by choosing λ large enough. First, consider the multiplicative isometric operator
E : L2

a(R
2) → L2(R2), ψ 7→ ea|·|1ψ and express the weights in the norm as conjugations:∥∥Pα(t)

∥∥
2,a→2,a

=
∥∥E2 ⊗ E⊗[[n]]\α · Pα(t) · E−⊗[[n]]

∥∥
2→2

, (2.14a)∥∥Pα(t)
∗∥∥

2,a→2,a
=

∥∥E⊗[[n]] · Pα(t)
∗ · E−2 ⊗ E−⊗[[n]]\α∥∥

2→2
, (2.14b)∥∥Pαα′(t)

∥∥
2,a→2,a

=
∥∥E2 ⊗ E⊗[[n]]\α · Pαα′(t) · E−2 ⊗ E−⊗[[n]]\α′∥∥

2→2
, (2.14c)∥∥∥ ∫ ∞

0

dt e−γtPαα′(t)
∥∥∥
2,a→2,a

=
∥∥∥E2 ⊗ E⊗[[n]]\α ·

∫ ∞

0

dt e−γtPαα′(t) · E−2 ⊗ E−⊗[[n]]\α′
∥∥∥
2→2

,

(2.14d)∥∥Jα(t)
∥∥
2,a→2,a

=
∥∥E2 ⊗ E⊗[[n]]\α · Jα(t) · E−2 ⊗ E−⊗[[n]]\α∥∥

2→2
. (2.14e)

Next, note that the heat kernel satisfies the bound

p(t, xi − yi)e
a (|yi|1−|xi|1) ≤ 2e2atp(2t, xi − yi) , xi, yi ∈ R2 . (2.15)

To see how, use the triangle inequality followed by Young’s inequality to get |yi|1−|xi|1 ≤
|xi−yi|1 ≤ 2at+ |x−y|21/(8at) ≤ 2at+ |x−y|22/(4at), where we used the bound | · |21 ≤ 2| · |22
that holds on R2. This bounds the left-hand side of (2.15) by p(t, xi − yi) e

2at+|xi−yi|22/(4t).
Further using the readily verified identity p(t, xi − yi)e

|xi−yi|22/(4t) = 2p(2t, xi − yi) gives
(2.15). Referring to (2.5a), we see that the conjugated operator in (2.14a) has kernel
ea|Sαy|1−a|x|1P(t, Sαy − x). Using (2.15) and the fact that the kernel is nonnegative,
we bound the right-hand side of (2.14a) by cect‖Pα(2t)‖2→2. Hereafter, we write c =

c(θ, n, a,Φ) for a general, finite, positive, deterministic constant that may change from
place to place but depends only on θ, n, a,Φ. Similar arguments apply to the operators in
(2.14) and give, for α 6= α′, the comparison bounds∥∥Pα(t)

∥∥
2,a→2,a

≤ cect
∥∥Pα(2t)

∥∥
2→2

, (2.16a)∥∥Pα(t)
∗∥∥

2,a→2,a
≤ cect

∥∥Pα(2t)
∗∥∥

2→2
, (2.16b)∥∥Pαα′(t)

∥∥
2,a→2,a

≤ cect
∥∥Pαα′(2t)

∥∥
2→2

, (2.16c)∥∥∥ ∫ ∞

0

dt e−(c+2)tPαα′(t)
∥∥∥
2,a→2,a

≤ c
∥∥∥ ∫ ∞

0

dt e−2tPαα′(2t)
∥∥∥
2→2

, (2.16d)∥∥Jα(t)
∥∥
2,a→2,a

≤ cectj(t) ‖p(t)‖2→2 · ‖p(2t)‖n−2
2→2 . (2.16e)

We are now ready to prove Theorem 1.1(1). By [20, Lemmas 5.1, 8.1(a), 8.2, and
8.4] and the property that ‖p(s)‖2→2 ≤ 1, the left-hand sides of (2.16) are bounded by
cectt−1/2, cectt−1/2, cectt−1, cect, and cectt−1| log( 12 ∧ t)|−2, respectively. Combining these
bounds with Lemma 2.1 for a large enough λ gives Theorem 1.1(1).

3 The prelimiting semigroup, proof of Theorem 1.1(2)

Let us introduce the ε analogs of the operators in Section 2. For α = ij ∈ Pair[[n]],

R4 × (R2)[[n]]\α := R4 ×R2[[n]]\α :=
{
y = (yr, yc, (yi)i∈[[n]]\α)

∣∣ yr, yc, yi ∈ R2
}
, (3.1)
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Sε
α : R4 ×R2[[n]]\α → R2[[n]],

(
Sε
αy

)
k
:=


yc + εyr/2 when k = i

yc − εyr/2 when k = j

yk when k ∈ [[n]] \ α .
(3.2)

where we index the first two coordinates in (3.1) respectively by r and c for “relative” and
“center of mass”. Set φ :=

√
Φ and view Φ and φ as multiplicative operators acting on

L2(R2), where R2 represents the space of the yr coordinate. For α, α′ ∈ Pair[[n]], define
operators

Pε
α(t, y, x) := φ(yr)P

(
t, Sε

αy − x
)
=:

(
Pε
α

)∗
(t, x, y) , (3.3a)

Pε
αα′(t, y, y′) := φ(yr)P

(
t, Sε

αy − Sε
α′y′

)
φ(y′r) , (3.3b)

J ε
α(t) :=

∞∑
k=1

βk+1
ε

∫
Σ(t)

d~τ Pε
αα(τ1) · · · Pε

αα(τk) , (3.3c)

Rε
~α(t) :=

∫
Σ(t)

d~τ Pε
α1
(τ 1

2
)∗

|~α|−1∏
k=1

(
βεδ0(τk) + J ε

αk
(τk)

)
Pε
αkαk+1

(τk+ 1
2
)

·
(
βεδ0(τ|~α|) + J ε

α|~α|
(τ|~α|)

)
Pε
α|~α|

(τ|~α|+ 1
2
) ,

(3.3d)

where x ∈ R2[[n]], y ∈ R4 ×R2[[n]]\α, and y′ ∈ R4 ×R2[[n]]\α′
. The operator J ε

α(t) permits
another expression. Let pε(t, yr − y′r) := p(t, ε(yr − y′r)) and consider

jε(t) : L2(R2) → L2(R2) , jε(t) :=
∞∑
`=1

β`+1
ε

∫
Σ(t)

d~τ
∏̀
k=1

φ pε(2τk)φ. (3.4)

It is straightforward to check from (3.3c) that

J ε
α(t, y, y

′) = jε(t, yr, y
′
r) p(

t
2 , yc − y′c)

∏
i∈[[n]]\α

p(t, yi − y′i) . (3.5)

The prelimiting semigroup Qε(t) := e−tHε

enjoys an expansion similar to that of Q(t):

Qε(t) = P(t) +
∑

~α∈Dgm[[n]]

Rε
~α(t) . (3.6)

To prove this, in (1.1), use Duhamel’s principle to write Qε(t) = P(t) +
∫ t

0
dsP(t −

s)
∑

α Φε
αQε(t) and iterate the equation to obtain

Qε(t) = P(t) +
∑
~η

∫
Σ(t)

dτ Pε
η1
(τ0)

∗
|~η|∏
k=2

Pε
ηk−1ηk

(τk) · Pε
η|~η|

(τ|~η|) , (3.7)

where the sum runs over ~η ∈ ∪∞
m=1(Pair[[n]])

m. Rewrite ~η as (αk1
1 , α

k2
2 , . . .), where α

k :=

(α, . . . , α) ∈ (Pair[[n]])k, and α1 6= α2, α2 6= α3, . . . . Accordingly, the sum in (3.7) is
rewritten as sums over ~α ∈ Dgm[[n]] and over k1, . . . , k|~α| ∈ Z>0. Carrying out the latter
sum gives (3.6).

Next, similarly define the weighted norm ‖f‖2,a = ‖f‖L2
a(Ω) by

‖f‖2L2
a(Ω) :=

{∫
Ω
dx

∣∣f(x)ea|x|1 ∣∣2 Ω = R2[[n]] ,∫
Ω
dy

∣∣f(y)ea∑
σ=±1 |yc+

εσ
2 yr|1+a

∑
i∈[[n]]\α |yi|1

∣∣2 Ω = R4 ×R2[[n]]\α .
(3.8)

We have slightly abused notation by using the same notation for the norms in (1.3) and
in (3.8). This should not cause any confusion, since the latter will only be applied to
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ε-dependent operators. Define the operator norm ‖ · ‖2,a→2,a the same way as in (1.4)
with the norm in (3.8) replacing that of (1.3).

The comparison argument in Section 2 applies here, too. Consider the multiplicative
operator Ẽ : L2

a(R
4) → L2

a(R
4), (Ẽψ)(yr, yc) := ea

∑
σ=±1 |yc+

εσ
2 yr|1ψ(yr, yc). The bounds

in (2.14) continue to hold when we replace Pα(t), Pα(t)
∗, Pαα′(t), Jα(t), E2, and E−2

with Pε
α(t), Pε

α(t)
∗, Pε

αα′(t), J ε
α(t), Ẽ , and Ẽ−1, respectively. Next, the same comparison

argument leading to (2.16) applies also to their ε analogs and gives, for α 6= α′,∥∥Pε
α(t)

∥∥
2,a→2,a

≤ cect
∥∥Pε

α(2t)
∥∥
2→2

, (3.9a)∥∥Pε
α(t)

∗∥∥
2,a→2,a

≤ cect
∥∥Pε

α(2t)
∗∥∥

2→2
, (3.9b)∥∥Pε

αα′(t)
∥∥
2,a→2,a

≤ cect
∥∥Pε

αα′(2t)
∥∥
2→2

, (3.9c)∥∥∥ ∫ ∞

0

dt e−(c+2)tPε
αα′(t)

∥∥∥
2,a→2,a

≤ c
∥∥∥ ∫ ∞

0

dt e−2tPε
αα′(2t)

∥∥∥
2→2

. (3.9d)∥∥J ε
α(t)

∥∥
2,a→2,a

≤ cect ‖jε(t)‖2,a→2,a ‖p(t)‖2→2 · ‖p(2t)‖n−2
2→2 . (3.9e)

Further, since φ has a compact support, ‖jε(t)‖2,a→2,a ≤ c‖jε(t)‖2→2. Using this bound
and ‖p(s)‖2→2 ≤ 1 turns (3.9e) into ‖J ε

α(t)‖2,a→2,a ≤ cect ‖jε(t)‖2,a→2,a. Given these
comparison bounds, the main task is to prove the following bounds.∥∥Pε

α(t)
∥∥
2→2

=
∥∥Pε

α(t)
∗∥∥

2→2
≤ c t−1/2 , (3.10a)∥∥Pε

αα′(t)
∥∥
2→2

≤ c t−1 , (3.10b)∥∥∥ ∫ ∞

0

dt e−tPε
αα′(t)

∥∥∥
2→2

≤ c , (3.10c)∥∥jε(t)∥∥
2→2

≤ c t−1
∣∣ log (t ∧ 1

2

)∣∣−2 · ec t . (3.10d)

Postponing the proof of (3.10) to Section 3.1, we now complete the proof of Theo-
rem 1.1(2). First, combining (3.10) and Lemma 2.1 for c1 = βε and for a large enough
λ gives the first statement in Theorem 1.1(2). To prove the second statement, let
(1≤Mf)(x) := f(x)1|x|1≤M , let 1>M := 1− 1≤M , and write∥∥(Q(t)−Qε(t))f

∥∥
2,a

≤
∥∥1≤M (Q(t)−Qε(t))1≤M ′f

∥∥
2,a

+
∑

T =Q(t),Qε(t)

∥∥1>MT 1≤M ′f
∥∥
2,a

+
∑

T =Q(t),Qε(t)

∥∥T 1>M ′f
∥∥
2,a

. (3.11)

On the right-hand side, send ε→ 0 first,M → ∞ second, andM ′ → ∞ last. The first term
on the right-hand side is bounded by e|a|M‖(Q(t)−Qε(t))1≤M ′f‖2. For fixedM ′, 1≤M ′f ∈
L2(R2[[n]]), so by [20, Theorem 1.6(b)] the term tends to 0 as ε → 0. The second term
on the right-hand side is bounded by e−M‖Q(t)1≤M ′f‖2,a+1 + e−M‖Qε(t)1≤M ′f‖2,a+1,
which is in turn bounded by e−M (‖Q(t)‖2,a+1→2,a+1 + ‖Qε(t)‖2,a+1→2,a+1) ‖1≤M ′f‖2,a+1.
This tends to 0 as ε→ 0 first andM → ∞ second. The last term on the right-hand side is
bounded by (‖Q(t)‖2,a→2,a + ‖Qε(t)‖2,a→2,a) ‖1>M ′f‖2,a, which tends to 0 as ε→ 0 first
andM ′ → ∞ later.

3.1 Proving (3.10)

The bounds (3.10a)–(3.10c) follow from existing results. For α = ij, let Nα denote
the map R2[[n]] → R2 × R2[[n]]\α, Nαp := (pi + pj , p[[n]]\α), and let p−α := (pi − pj)/2. For
f ∈ L2(R2[[n]]) and g ∈ L2(R4 ×R2[[n]]\α), let

f̂(p) :=

∫
R2[[n]]

dp

(2π)n
e−ip·xf(x) , g(yr, q) :=

∏
i∈c∪[[n]]\α

∫
R2

dyi
2π

e−iqi·yi · g(y) (3.12)
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denote the Fourier and partial Fourier transforms, where p ∈ R2[[n]] and q ∈ R2 ×R2[[n]]\α.
By [20, Equations (4-11), (5-5b’)],〈

g,Pε
α(t)f

〉
=

∫
R2

dyr
2π

∫
R2[[n]]

dp g(yr, Nαp)φ(yr)e
iεyr·p−

α e−
t
2 |p|

2
2 f̂(p) , (3.13)

〈
g1,Pε

αα′(t)g2
〉
=

∫
R2

dyr
2π

∫
R2

dy′r
2π

∫
R2[[n]]

dp

· g1(yr, Nαp)φ(yr) e
− t

2 |p|
2
2+iε(yr·p−

α−y′
r·p

−
α′ )φ(y′r) g2(y

′
r, Nα′p) .

(3.14)

In (3.13), bound |φ(yr)eiεyr·p−
α | ≤ c φ(yr) and e−t|p|22/2 ≤ e−t|pi−pj |22/4, write the resulting

integrand as the product of c φ(yr) g(yr, Nαp)e
−t|pi−pj |22/4 and f̂(p), and apply the Cauchy–

Schwarz inequality over the p integral. Doing so gives the bound c t−1/2(
∫
R2 dyrφ(yr)‖g(yr,

·)‖2) · ‖f‖2. Further applying the Cauchy–Schwarz inequality over the yr integral gives
(3.10a). Applying a similar argument to (3.14) gives (3.10b). Applying

∫∞
0

dt e−t to (3.14)
followed by using [15, Equations (3.1), (3.3), (3.4), (3.6)] gives (3.10c).

Proving (3.10d) requires more work. We begin with a preliminary bound. Let ‖ · ‖HS

denote the Hilbert–Schmidt norm and let b(u) :=
∫
R4 dyrdy

′
r φ

2(yr)e
−u|yr−y′

r|
2
2/4φ2(y′r). We

have ‖φpε(2τ)φ‖2→2 ≤ ‖φpε(2τ)φ‖HS = b(ε2/τ)1/2/4πτ . Recall that φ is C∞ smooth, has
a compact support, and satisfies

∫
R2 dxφ

2(x) = 1. Using these properties, it is not
hard to check that b is C∞ smooth and strictly decreasing on u ∈ [0,∞), that b(0) = 1,
that b′(0) < 0, and that lim supu→∞ b(u)u < ∞. These properties together imply that
b(u) ≤ (1 + c0u)

−1, for some c0 ∈ (0,∞) depending only on φ. Hence ‖φpε(2τ)φ‖2→2 ≤
(4π)−1(τ2 + c0ε

2τ)−1/2. Using this in (3.4) gives

‖jε(t)‖2,a→2,a ≤ Bε(t) , Bε(t) := βε

∞∑
`=1

∫
Σ(t)

d~τ
∏̀
k=1

βε

4π
√
τ2k + c0ε2τk

. (3.15)

The bound (3.15) reduces our task to bounding Bε(t). Let us consider the cases
t ≤ ε2c0 and t > ε2c0 separately. For t ≤ ε2c0, bound 1/

√
τ2k + c0ε2τk ≤ 1/

√
ε2τk and use

the Dirichlet integral formula
∫
Σ(t)

d~τ
∏`

k=1 τ
−1/2
k = t`/2−1Γ(1/2)`/Γ(`/2) to get

Bε(t) ≤ c βε t
−1

∞∑
`=1

(cβε
√
tε−2)`

Γ(`/2)
= c βε t

−1/2ε−1
∞∑
`=1

(cβε)
`(
√
tε−2)`−1

Γ(`/2)
. (3.16)

The series converges for all small enough ε because βε → 0. Using tε−2 ≤ c0 and
βε ≤ c/| log ε|, we bound Bε(t) by c t−1/2 · ε−1| log ε|−2. Since t−1/2(log t)−2 is decreasing
for t ≤ ε2c0 as ε→ 0, the last expression is bounded by c t−1/2 · t−1/2| log t|−2.

Moving on to the case t > ε2c0, we begin by deriving a contour-integral formula of
Bε(t). Consider the Laplace transform of the factor in the product in (3.15):

Cε(λ) :=

∫ ∞

0

ds
e−λsβε

4π
√
s2 + c0ε2s

. (3.17)

Perform a change of variables λs 7→ s, use integration by parts
∫∞
0

ds e−s/
√
s2 + ss0 =

−2 log
√
s0 + 2

∫∞
0

ds e−s log(
√
s+

√
s+ s0), and use (1.2) to simplify the result. Doing so

gives

Cε(λ) = 1− βε
4π

(log λ− ηε −D(c0ε
2λ)) , (3.18)

where ηε is a real constant such that ηε → η ∈ R as ε→ 0, and

D(λ) := 2

∫ ∞

0

ds e−s log(
√
s+

√
s+ λ) . (3.19)
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Put c1 := eγ+D(0)+1. By (3.18), for all real λ > c1 and small enough ε, Cε(λ) < 1. By
(3.17), for all real λ > 0, Cε(λ) > 0. Since the integral in (3.15) is a sum of convolutions,
the Laplace transform of Bε(t) is a geometric series

∫∞
0

dt e−tλBε(t) = βε
∑∞

k=1 Cε(λ)
k =

βεCε(λ)/(1 − Cε(λ)), for all λ > c1. The last expression analytically continues to z ∈
C \ (−∞, c1]. Given the Laplace transform, Mellin’s inversion formula yields Bε(t) =∫
⊃

dz
2πi e

ztβεCε(z)/(1−Cε(z)), where ⊃ := {(x−i0)|−∞ < x ≤ c1}∪{(x+i0)|−∞ < x ≤ c1}
denotes the contour that goes from −∞ to c1 along the lower side of the real axis and
then from c1 to −∞ along the upper side of the real axis. Add

∫
⊃

dz
2πi e

ztβε, which is zero,
to the right-hand side. Doing so gives the contour-integral formula

Bε(t) =

∫
⊃

dz

2πi

eztβε
1− Cε(z)

=

∫
⊃

dz

2πi

ezt 4π

− log z + ηε +D(c0ε2z)
. (3.20)

Let us bound (3.20). Express the last integral in (3.20) in real variables as Bε(t) =∫∞
−c1

dx e−tx 4Gε(x)/(Fε(x)
2 +Gε(x)

2), where

Fε(x) := log |x| − ηε − Re(D(−c0ε2x+ i0)) , (3.21)

Gε(x) :=
(
π − Im(D(−c0ε2x+ i0))

)
1x>0 . (3.22)

Let log+ u := log(u∨ 1) and u+ := u∨ 0 for u ∈ R. It is not hard to check from (3.19) that,
for all x ∈ [−c1,∞), |Gε(x)| ≤ c and Fε(x) ≥ log |x| − c− log+(c0ε

2x). Hence

Bε(t) ≤ c

∫ ∞

−c1

dx
e−tx

(log(|x|/c2)− log+(c0ε
2x))+2

, (3.23)

for some constant c2 ∈ [1,∞). Divide the integrals into∫ c2e
3

−c1

+

∫ (c2e
3)∨(1/t)

c2e3
+

∫ 1/c0ε
2

(c2e3)∨(1/t)

+

∫ ∞

1/c0ε2
(3.24)

and call the results I1 through I4, respectively. The integral I1 is bounded by cec1t. For
I2, since x ≤ 1/t ≤ 1/ε2c0, the denominator of the integrand is | log(x/c2)|2. Forgoing the

exponential gives I2 ≤ I ′2 :=
∫ (c2e

3)∨(1/t)

c2e3
dx/(log(x/c2))

2. Integrate by parts to get

I ′2 =
(x− c2e

3)

(log x/c2)2

∣∣∣(c2e3)∨(1/t)

c2e3
+

∫ (c2e
3)∨(1/t)

c2e3
dx

2 (x− c2e
3)

x(log x/c2)3
. (3.25)

On the right-hand side, bound the terms by t−1(log((e3) ∨ (1/c2t)))
−2 and 2

log e3 I
′
2, respec-

tively. Doing so gives I ′2 ≤ c et t−1| log(t∧ 1
2 )|

−2. As for I3, since x ≤ 1/ε2c0, the denomina-
tor of the integrand is | log(x/c2)|2. This is ≥ | log(t∧ 1

2 )|
2/c because x ≥ (c2e

3)∨(1/t). For
I4, the denominator is (log ε2 − c)2, which is ≥ | log(t ∧ 1

2 )|
2/c because t ≥ ε2c0. Bounding

the denominators this way and releasing the range of integration to x ∈ [0,∞) give
I3 + I4 ≤ c t−1| log(t ∧ 1

2 )|
−2.
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