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Two-dimensional delta Bose gas in a weighted space*
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Abstract

We extend the construction of the semigroup of the two-dimensional delta-Bose
gas in [20] (based on [22, 16]) to a weighted L? space that allows exponentially
growing functions. We further show that the semigroup of the mollified delta-Bose
gas converges strongly to that of the delta-Bose gas.
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1 Introduction

In this paper, we study the two-dimensional, n-particle delta-Bose gas. Fix a nonnega-
tive ® € C°°(R?) with a compact support such that Jg2 dz ®(x) =1, and, for e — 0, let
¢ (x) := ¢ 2® (¢~ 'x) be the corresponding approximation of the delta function. Let [n] :=
{1,...,n}, write « = ij = {i < j} for an unordered pair of integers in [n], view ij as a set,
and let Pair[n] := {ij|ij C [n]}. Consider R2[I"] .= (R?)["] = {& = (21,...,2,)|z; € R?},
and, for o = ij, let ®¢(z) := ®*(x; — ;). The Hamiltonian #° of the mollified delta-Bose
gas acts on functions on R?["l and is given by

€ ]'n €
~H ::§;Ai+ﬁa >, (1.1)

a€Pair[n]

where A; is the Laplacian acting on z; € R?, ®¢, acts multiplicatively,

2

%= Toge] * TlogeP

(0—210g2+27+2 dz da’ ®(x) log\x—x’@(x’)) , (1.2)
R4

v = 0.577... denotes the Euler-Mascheroni constant, and 6 is a fixed parameter that can
be taken to be any real value. In (1.2), the constants after # are just conventional (and
can be absorbed into ).

The delta-Bose gas is an instance of quantum many-body systems and is highly
relevant in the study of the Stochastic Heat Equation (SHE). In the quantum context,
(1.1) can be used to approximate the Hamiltonian of n Bosons with pairwise, attractive
(true) delta potentials. Quantum systems with delta potentials exhibit intriguing physical

*SS is partially supported by the NSF through DMS-2243112. LCT is partially supported by the NSF through
DMS-2243112 and the Alfred P. Sloan Foundation through the Sloan Research Fellowship FG-2022-19308.

TUniversity of Utah. E-mail: sudheesh@math.utah.edu

*University of Utah. E-mail: licheng.tsai@utah.edu


https://doi.org/10.1214/25-ECP685
https://imstat.org/journals-and-publications/electronic-communications-in-probability/
https://ams.org/mathscinet/msc/msc2020.html
mailto:sudheesh@math.utah.edu
mailto:licheng.tsai@utah.edu

2d delta Bose gas in a weighted space

properties, pose significant mathematical challenges, and enjoy a long history of study.
We point to [2] for a review and mention the works [15, 22, 16, 19, 18] on the two-
dimensional delta-Bose gas. As it turns out, in two dimensions, in order to see a non-
degenerate limit as ¢ — 0, one needs to attenuate the coupling constant (. logarithmically
around the value 27 as in (1.2). This was observed in the n = 2 case in [2, Chapter 1.5]
and [3]. In the SHE context, the semigroup Q¢ (t) := e **" describes the moments of the
noise-mollified SHE. Based on [2, 1], the work [3] established the convergence (as ¢ — 0)
of the second moment of the noise-mollified SHE to an explicit limit. Convergence of
higher moments are significantly more challenging, and was later obtained in [5] for
the third moment based on [4], and in [20] for of all moments based on [22, 16]; see
[8, 9, 10] for probabilistic studies of the moments. A central question in this context
concerns the ¢ — 0 limit of the noise-mollified SHE, and the limit is called the Stochastic
Heat Flow (SHF). The construction of the SHF had been a challenging open problem
and was accomplished [6].

In this paper, we generalize the results of [20] from the L? space to a weighted L?
space. Based on [22, 16], the work [20] gave an explicit formula of a strongly continuous
semigroup Q(t) on L*(R?["l) and showed that Q°(t) := e~ """ converges strongly to
Q(t) on L?(R?I"l), These results translate into the convergence of the moments of the
noise-mollified SHE to an explicit limit, for L? initial conditions. The class of L? functions
is natural, because the generator of Q(t) is self-adjoint, but the class leaves out some
commonly considered initial conditions, most notably the constant/flat ones. Further,
when using delta-Bose gas to study the noise-mollified SHE and the SHF, one often needs
to consider more general spaces than L2. One instance is the work [6], which introduces
weighted LP estimates for the semigroup in a discrete setting. Another instance is the
recent work [23], which requires the use of the weighted L? space and the bounds
(3.9)-(3.10) from this paper.

To state our result, let | - |, denote the ¢ norm on R4, fora € R, let

1/2
o= ([ dsl@ehP)5, 2@ = (41l <o} Q)

let (f1, f2) :== fRQM dx e?el*l1 f) () fo(z) denote the inner product, and for a linear operator
T : L2(R2) — £2(R2I7D), let

1T l2.a52.0 == sup {(f, TF) [ 1 2.0 <1, 1If

20 <1} (1.4)

denote the weighted operator norm. Deferring the definition of Q(¢) to Section 2, we
now state our main result.

Theorem 1.1. Given any 0 € R, n € Z~(, and a € R, there exists ¢ = ¢(0,n,a, ®) such
that forallt >0, e € (0,1/c|, f € L2(R?["]), and T < oo,

1. [|Q(t)
2. [|Q°(t)|I2,a2.0a < ce, and ||Q°(t) f—Q(t) fll2.a — 0 ase — 0 uniformly overt € [0, 7).

ct
2,a—2,0 S ce”,

We note in the passing that the work [9] studied a similar problem for bounded fs and
proved the pointwise (in x) convergence of (Q°(t) f)(x).

A crucial property used in [20] is that the generators of Q(¢) and Q¢(¢) are self-adjoint
in L2, but this property no longer holds in L2. In the self-adjoint setting of [20], to prove
statements like those in Theorem 1.1, one can just work with the resolvents. Indeed, in
the self-adjoint setting, thanks to the spectral theorem, bounds on the resolvents imply
bounds on the spectra and hence the semigroups. In our non-self-adjoint setting, we
need to bound the semigroups Q(t¢) and Q¢ (t) directly, without resorting to resolvents.
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These semigroups are much less well-behaved than their resolvents, so the bounds
require additional work. This fact manifests itself in our proof of (3.10d).

Here is an overview of the proof. As will be seen in Section 2, proving Theorem 1.1
boils down to bounding the weighted norms of the various operators that make up
Q(t) and Q¢(t). We obtain these bounds in two steps, by first employing a comparison
argument to reduce proving these bounds to proving their unweighted analogs, and
then proving their unweighted analogs. While most of the unweighted analogs follow
from existing results, one of them, (3.10d), does not seem straightforward and requires
significant work. One may also consider the weighted L? space for p # 2, and we leave
that to future work.

Let us mention a few more works on the moments of the noise-mollified SHE and
point to the references in [6] for more references. The work [17] carried out detailed
analysis of the second moment and further used of the Gaussian correlation inequality
to compare the moments of the SHE with those of a log-normal. The works [7, 11, 12]
studied properties related to the Gaussian multiplicative chaos. High moments of the
polymers and the mollified SHE are studied in [13, 21, 14].

The rest of the paper is organized as follows. In Section 2, we recall the definition
of Q(t) and prove Theorem 1.1(1). In Section 2, we consider the prelimiting semigroup
Q¢(t) := e~*"" and prove Theorem 1.1(2).

2 The limiting semigroup, proof of Theorem 1.1(1)

We begin by recalling the definition of the delta-Bose semigroup Q(t). For a € Pair[n],
the relevant operators map between functions on

R = R = {(2:)icpny | 2 € R?} (2.1)
R? x R = R? x RN o= Ly = (yo, Wi)icpnpa) | Ve v € R?} . (2.2)

where we index the first coordinate in (2.2) by “c” for “center of mass”. Consider

. wheni
So R x R2ANe L g2 (g, = (Y WRERTEQ 2.3)
‘ y; wheni € [n]\ a.

Let p(t,z;) = exp(—|r;|3/2t)/(2nt) denote the heat kernel on R?, let P(t,z) :=
[Licpny (¢, x;) denote the heat kernel on R?["], and let
o8] tufleeu

j(t) == / dy—, (2.4)

) 0 I(u)

where 6 € R is the parameter in (1.2). For o # o/ € Pair[n], define the integral operators
Pa(t), Pal(t)*, Pao (t), Ja(t) through their kernels as

Palt,y,x) == P(t,Say — 2) = (Pa) (t,2,y) (2.5a)

Pow (t,4,9') :=P(t, Sayy — Sart/') (2.5b)

Talt,y, ) =4mjt)p(tyve —vt) - [ pltwi —vl) (2.5c)
i€n]\a

where z € R2["l and v,y € R? x R2["I\* in (2.5a) and (2.5¢), and y € R? x R2["\> and
y € R2["I\e’ in (2.5b). Next, let

Dgm([n] := {d@ = (o), € Pair[n]™ |m € Zso,a # appr fork=1,....m—1} . (2.6)
This set indexes certain diagrams, hence the name Dgm; see [20, Section 2]. Write

a| := m for the length of @« € Dgm|n|. For j = f(7,7',7",...) that depends on finitely
] for the 1 hofad € D For f = f ol hat d d finitel
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many nonnegative 7s, write jz ) d7f = fT e _, d7f for the convolution-like integral.
For & € Dgm|[n], let
|@|—1
R / dr Pal % H jak ) akak+1(7—k+ ) joqa (T\al) P ( dH—%) - (2.7)
k=1

Hereafter, products of operators are understood in the written order, so Hszl T =
T:T5--- Tk. The delta-Bose semigroup on R2["] is

Qt):=Pt)+ > Ralt). (2.8)

aeDgm[n]

In [20, Section 8], the series (2.8) is shown to converge in the L? operator norm.
Here we seek to do similarly for the weighted operator norm. Let us prepare some
notation and tools. First,

a|m|1 2 — R2[n]
1110 = 11320 = {fﬂ e e TR @9
Q |fy c i€[n]\a O=R*xR .
For Q = R2["], the norm is the same as (1.3), but for Q = R? x R2["I\® we assign twice
the exponential weight to y., which is natural because it bears a meaning of “merging”
the two coordinates in a. Accordingly, for operators that map between functions on the
spaces (2.1)-(2.2), define the weighted operator norm || - ||2,q4—2. as (1.4) with the || - ||2,¢
given in (2.9). We will omit the underlying spaces {2 when writing the operator norms,
because the spaces can be read off from the definition of the operators. For example,
referring to (2.5a) and the description that follows, we see that ||P,(t) o Mmeans the
operator norm of P, (t) : L2(R2["]) — L2(R? x R2["\®), Next, note that the kernels in
(2.5) are nonnegative. For a one-parameter family of integral operators 7 (t), ¢t > 0, with
a nonnegative kernel 7 (¢, z, 2), if

sup /dt/dzdz ()] Tt 2) - |f(z)\}, (2.10)

tor fob dt 7 (t) is well-defined and bounded with || fo At T(t)]|,, a2

expression. When a = 0, the weighted norms reduce to the L? norms, which we write as
Il - ||z and || - - [la—y2. It will be useful to be able to bound convolution-
like integral as in equation (2.7) in norm by bounding the individual integrands. To this
end, we have the following lemma:

Lemma 2.1 ([23, Lemma 2.1(a)]; also [20, Lemma 8.10]). For m € Z~q and k € (%Z) N
(0,m + 1), let T.(t) : B, — B._1/2 be a bounded operator with a nonnegative kernel,
where B, is a Banach space consisting of some Borel functions on R%, and let || 7, (t)]op
denote the operator norm. Assume that, for all t > 0 and a constant ¢, € (0, 0),

is finite when the supremum is taken over || f'||2, < 1 and ||f||2,. < 1, then the opera-
equal to the above

t—1/2 when k = 3 ,
t=1log(L At)|"? whenk € ZN ,m],
[T®]l,, < coe** 71| (3 11 ) L (2.11)
t when s € (5 +7Z)N (1,m) ,
t—1/2 whenrk=m+ 1,
H/ dte= T, (t)|| <o whenwe (L +2)n(1,m). (2.12)
0 op
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Fix ¢; > 0 and let T(t) := c160(t)1 + T,.(t) when k € Z N [1,m] and T, (t) := T.(t) when
k € (3 +7Z) N (0,m+ 1). Then, there exists a universal ¢ € (0,00), such that for all
m € Z~o, t >0, and X\ > ¢y + 2,

2m-+1 2 m—1
) &
a7 I | 7o (T H Scmm‘seM(cqucQ(c +—0 ) ) . (2.13)
H /z(t) Pt br2lThs2) op PO T log(A — oo — 1)

Given Lemma 2.1, our task is reduced to bounding the norm || - ||2,4—2, of the
operators in (2.5). The Lemma then implies the convergence of the operator in equation
(2.8) by choosing X large enough. First, consider the multiplicative isometric operator
£ : L2(R?) — L?*(R?), ¢ ~— e'l1y) and express the weights in the norm as conjugations:

Hpa(t)H2,a—>2,a = ng ® el “Pa(t) gl ||2—>2 ’ (2.14a)
1Pa®lly s = €580 Patt)” - £ @ 20N, (2.14b)
[Pace ()]0ya0 = |€2 @ EXN - P (8) - £72 @ €700 (2.140)
H /O h dte—vtpw,(t)) porn = H52 ® £8InNe . /O T At e P (1) - 62 @ £l L
(2.144d)
a0 = €2 051 Go(1)- 2 @£, @2.140)
Next, note that the heat kernel satisfies the bound
p(t,x; — yi)e“(‘yih*m'l) < 2e%p(2t, 15 — i) zi,y; € R?. (2.15)

To see how, use the triangle inequality followed by Young’s inequality to get |y;|1 —|zi|1 <
|z —yil1 < 2at+ |z —y|3/(8at) < 2at+ |z —y|3/(4at), where we used the bound |- |3 < 2|-|3
that holds on R2. This bounds the left-hand side of (2.15) by p(t, z; — y;) e2at+lzi—vil3/(4t),
Further using the readily verified identity p(¢, z; — yi)e‘zi‘yi‘g/(‘“) = 2p(2t,xz; — y;) gives
(2.15). Referring to (2.5a), we see that the conjugated operator in (2.14a) has kernel
e“\sayllfalx‘lp(t,Say — z). Using (2.15) and the fact that the kernel is nonnegative,
we bound the right-hand side of (2.14a) by ce®||P,(2t)||2—2. Hereafter, we write ¢ =
¢(0,n,a, @) for a general, finite, positive, deterministic constant that may change from
place to place but depends only on 8, n, a, . Similar arguments apply to the operators in
(2.14) and give, for « # «/, the comparison bounds

[Pa®)lly,q0,0 < ce[[Pal2)]l;,, » (2.16a)

[Pa(®) 5,010, < ce[[Pal2)7]],, » (2.16b)

Hpaa’ (t)“27a~>2,a < C€CtH7)aa'(2t)’|2a2 ’ (2.16¢)

H / T dte(erip,, (t)‘ <c / h dte’QtP(m/(%)H : (2.16d)
0 2,a—2,a 0 22

1Ta (O < cei0) (022 - IP2OIES (2.16¢)

We are now ready to prove Theorem 1.1(1). By [20, Lemmas 5.1, 8.1(a), 8.2, and
8.4] and the property that ||p(s)|l2—2 < 1, the left-hand sides of (2.16) are bounded by
cett=1/2 cect4=1/2 cecty—1 et and cectt=1 1og(% At)|72, respectively. Combining these
bounds with Lemma 2.1 for a large enough )\ gives Theorem 1.1(1).

3 The prelimiting semigroup, proof of Theorem 1.1(2)

Let us introduce the ¢ analogs of the operators in Section 2. For oo = ij € Pair[n],

R* x (R?)["N\ .= R x RN = {y = (4, yeo W)icpnra) | U0 Ve v € R?}, (3.1)

ECP 30 (2025), paper 35. https://www.imstat.org/ecp
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Yo +eyr/2 when k =i
So R x RN 5 B2 (S5y), o= Qye — ey /2 whenk = (3.2)
Yk when k € [n]\ «.

where we index the first two coordinates in (3.1) respectively by r and c for “relative” and
“center of mass”. Set ¢ := v/® and view ® and ¢ as multiplicative operators acting on
L?(R?), where R? represents the space of the y, coordinate. For a, o’ € Pair[n], define
operators

Pi(t,y,z) == ¢(y) P(t, S5y — z) = (P5) " (t,2,y) . (3.32)
Peo 6y, y') == o(ye) P(t. Soy — Seny)) o(yy) (3.3b)
=Zﬁ’““/ d7Poa(m1) -+ Paa(Tk) s (3.3¢)
=1 =(t)
@] —1

Ra() = [ P 11 (00r) + T2, ) Pl i)

. (/8850(7\&|) +Ja 2 (Mal )) Payar (Tia1+4) »

where z € R2["], y € R* x R2["\*, and y/ € R* x R2["\®’, The operator J¢(t) permits
another expression. Let p.(t,y: — y.) := p(¢,e(y. — y.)) and consider

oo L
() s LA(R?) — L2 (R?), (1) == Zﬂﬁ“/ a7 ] e p-(2m) ¢- (3.4)
=1 =) g=1
It is straightforward to check from (3.3c) that
Tity ) =i by vl p(s e —vl) [ ety —ui) - (3.5)
i€n]\a

The prelimiting semigroup Q°(t) := e~**" enjoys an expansion similar to that of Q(t):

() =PH)+ Y Ra). (3.6)

aeDgm[n]

To prove this, in (1.1), use Duhamel’s principle to write Q°(¢t) = P(¢) + fg dsP(t —
s) Y, P5Q°(t) and iterate the equation to obtain

Q% (t) =P(t) + Z/

=(t)

|7

dT'P8 7'0 HPUI« 177k(Tk) Pf]m|(7—|ﬁ|)’ (3.7)
k=2

where the sum runs over 77 € U°_, (Pair[n])™. Rewrite 7 as (af*,a4?,...), where of :=
(a,...,a) € (Pair[n])*, and ay 75 ag, ag # ag, .... Accordingly, the sum in (3.7) is
rewritten as sums over @ € Dgm|[n] and over ki, ..., kg € Z>o. Carrying out the latter
sum gives (3.6).

2,0 = || fllLz(2) by

o [ Jade @t Q=R (3.8)
O\ oy dy | F(y)et Zomsr lret FushtaXicpa loil 2 g — R R2ImNe

We have slightly abused notation by using the same notation for the norms in (1.3) and
in (3.8). This should not cause any confusion, since the latter will only be applied to
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e-dependent operators. Define the operator norm || - ||2,—2, the same way as in (1.4)
with the norm in (3.8) replacing that of (1.3).

The comparison argument in Section 2 applies here, too. Consider the multiplicative
operator £ : L2(R*) — L2(R%), (E)(yr,ye) = e®2o=s1lvetF vy ). The bounds
in (2.14) continue to hold when we replace P (t), Po(t)*, Paa(t), Ju(t), €2, and 72
with PE (1), PE(t)*, P (t), JE(t), £, and 1, respectively. Next the same comparlson
argument leading to (2.16) applies also to their € analogs and gives, for a # o/,

||7)€ t ||2 a—2,a S CeCtHPs 2t ||24)2 ’ (393)
[Pe) ||0sna < celIPa26)]],,, » (3.9b)
1Pear Ol asz0 < Ced||7’ia @2t)_ys 5 (3.9¢)
dt e H2IPE L (t) <ec Tt e 2P L (2t) . (3.9d)
2,
0 a—2,a 0 22

176|000 < e 1FOl2am2.0 [PE)ll2m2 - IP21)555 - (3.9€)

*()l2.a52,a < ¢[i(¢)]l2—2. Using this bound
and ||p( )22 < 1 turns (3.9e) into Hjj( M2as2.a < ce|(t)||l2.a»2.4. Given these
comparison bounds, the main task is to prove the following bounds.

[PaOlysy = PE@) ||,y < et (3.10a)
Paar(t) <ct ', (3.10b)

2—2
H/ dtePeL ), | <e, (3.10¢)

0 2—2
[F0)]|y St Hlog (EA L)% ect (3.10d)

Postponing the proof of (3.10) to Section 3.1, we now complete the proof of Theo-
rem 1.1(2). First, combining (3.10) and Lemma 2.1 for ¢; = 5. and for a large enough
A gives the first statement in Theorem 1.1(2). To prove the second statement, let
(1SMf)(CE) = f(x)lmlgM, let 15,7 := 1 — 1<, and write

Q) ~ @ @N1l,., < I<nr(Q(t) — (1) 1crr f]],.,

+ Z H1>MT1§A{/fH2,a + Z HT1>M’f”2,a ) (3.11)
T=emet® T=0(),Q%(1)

On the right-hand side, send ¢ — 0 first, M — oo second, and M’ — oo last. The first term
on the right-hand side is bounded by e/*™||(Q(t) — Q% (t))1<ps f||2. For fixed M’, 1<y f €
Lz(]RQ[[”]]), so by [20, Theorem 1.6(b)] the term tends to 0 as ¢ — 0. The second term
on the right-hand side is bounded by e | Q(t)1<r fll2,a+1 + ¢ M| Q% (1) L< st fll2,a41,
which is in turn bounded by e (|| Q(#)||l2.a+1-2.a+1 + |Q° () |2.a41=2,a+1) [ L<nr
This tends to 0 as € — 0 first and M — oo second. The last term on the right-hand side is
bounded by ([|Q(t)|l2,a—2,a + [|1Q°(t)||l2,a—2,a) 15117 f|2,a, Which tends to 0 as e — 0 first
and M’ — oo later.

3.1 Proving (3.10)

The bounds (3.10a)-(3.10c) follow from existing results. For a = ij, let N, denote
the map R?I"l — R? x R\ N,p := (p; + pj,pap\a). and let p; = (p; — p;)/2. For
f e L*(R?") and g € L2(R* x R2"\), let

ry d i M dyi —1 9
fp) = /}RM #e““f(x), 9wa) = 1 /Rz Vig—iaivi . g(y)  (3.12)

ic€cU[n]\o
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denote the Fourier and partial Fourier transforms, where p € R2["l and ¢ € R? x R2["I\e,
By [20, Equations (4-11), (5-5b")],

d ! i p- -t 2~
9,736 /Rz Y /Rz[[ ]dpg Yrs Nap) d(yr)e sV Po e 2|p|2f(p) ’ (3.13)

/ dyr/ dyr/
<917 oo 92
Rz 27 Jr2 27 JRernl (3.14)

01 (g, Nap) o) €~ f'P'W@f’P;-yi'pc?)qb(y;) 92yl Novp) .

In (3.13), bound |¢(y; )€l Pa | < cd(y,) and e~ tP13/2 < e=tIPi=pil3/4 write the resulting
integrand as the product of ¢ ¢(y.)'d(v:, ]\/Oép)e*“pi*pf‘3/4 and f(p) and apply the Cauchy-
Schwarz inequality over the p integral. Doing so gives the bound ct=1/2( ., dy:é(y:) || 9(vr,
Il2) - || flle. Further applying the Cauchy-Schwarz inequality over the y, integral gives
(3.10a). Applying a similar argument to (3.14) gives (3.10b). Applying fooo dte~tto (3.14)
followed by using [15, Equations (3.1), (3.3), (3.4), (3.6)] gives (3.10c).

Proving (3.10d) requires more work. We begin with a preliminary bound. Let || - ||us
denote the Hilbert-Schmidt norm and let b(u) := [, dy:dy; ¢ (y:)e —uly—vi5/4 2 (o). We
have ||¢p(27)d|l2—2 < ||dp:(27)9||lus = b(e 2/7)1/2/4777 Recall that ¢ is C*> smooth, has
a compact support, and satisfies f1R2 dr ¢?(x) = 1. Using these properties, it is not
hard to check that b is C* smooth and strictly decreasing on u € [0, 00), that 6(0) =1
that #'(0) < 0, and that limsup,,_,., b(u)u < co. These properties together imply that
b(u) < (1+ cou)™!, for some ¢y € (0,00) depending only on ¢. Hence ||¢p:(27)¢||2—2 <
(47)~ (72 4 cpe?7)~1/2. Using this in (3.4) gives

(3.15)

*(O2.0-2.0 < Be(t) /dT P s
158z 02,0 < Be(?) ﬁaZ - HMW

The bound (3.15) reduces our task to bounding B.(¢). Let us consider the cases

t <e?cpand t > e%c) separately. For ¢ < e%cg, bound 1/\/77 + coe?7, < 1/4/£%7; and use
the Dirichlet integral formula [, ,, d7 1o , 7 /% = t/2-10(1/2)* /T (£/2) to get

= (eBoviz ) o= () (ViE )

-1 —1/2.-1 Cﬁs
B S ekt ) Ty T L

The series converges for all small enough ¢ because 5. — 0. Using te~2 < ¢y and
B < , we bound B, (t) by ¢t~%/2 . ¢~ 1|1loge| 2. Since t~/?(logt)~? is decreasing
for t < e%cy as € — 0, the last expression is bounded by ct~'/2 - t=1/2|log t| 2.

Moving on to the case t > £2cy, we begin by deriving a contour-integral formula of
B.(t). Consider the Laplace transform of the factor in the product in (3.15):

< e
C.(\) == ds ————— .
) /0 y 4m\/8% + coe?s

Perform a change of variables \s — s, use integration by parts fooo dse ®/v/s? + ssg =
—2log /50 + 2 fooc dse *log(y/s + /s + sg), and use (1.2) to simplify the result. Doing so
gives

(3.16)

(3.17)

C.(\)=1- f—s(log)\ — 1. — D(coe?N)) , (3.18)
m
where 7). is a real constant such thatn. - n€ R ase¢ — 0, and
(oo}
D)) = 2/ dse " log(vs+ Vs + ). (3.19)
0
ECP 30 (2025), paper 35. https://www.imstat.org/ecp

Page 8/10


https://doi.org/10.1214/25-ECP685
https://imstat.org/journals-and-publications/electronic-communications-in-probability/

2d delta Bose gas in a weighted space

Put ¢; := ¢¥*P(O)+1 By (3.18), for all real A > ¢; and small enough ¢, C.()\) < 1. By
(3.17), for all real A > 0, C.(\) > 0. Since the integral in (3.15) is a sum of convolutions,
the Laplace transform of B (t) is a geometric series [~ dte "™ B.(t) = 8. > 77, C-(M)F =
BeC:e(N)/(1 — C.(N)), for all A > ¢;. The last expression analytically continues to z €
C\ ( 00,c1]. Given the Laplace transform, Mellin’s inversion formula yields B.(t) =

S Lz e*t8.C.(2)/(1-C=(z)), where D := {(z—i0)|—oco < z < ¢1 }U{(z+i0)|—00 < z < ¢}
denotes the contour that goes from —oo to ¢; along the lower side of the real axis and
then from c¢; to —oo along the upper side of the real axis. Add f 5 55 € e*!B., which is zero,
to the right-hand side. Doing so gives the contour-integral formula

dz €*'B. dz e*tar
B.(t)= | &£ 2% _ [ & . 3.20
®) /D 271 1 — C.(2) /D 27i —log z + ne + D(cpe?z) ( )

Let us bound (3.20). Express the last integral in (3.20) in real variables as B.(t) =
f dze 4G (2)/(F:(z ) + Ge(z ) ), where

F.(z) :=log|z| — n. — RG(D(—CQSQ.’L' +1i0)) , (3.21)

Ge(z) := (7 — Im(D(—coe’z +i0))) 10 - (3.22)

Let log, v :=log(u V1) and uy :=u V0 for v € R. It is not hard to check from (3.19) that,
for all z € [—c1,00), |G:(z)| < c and F.(z) > log |z| — ¢ — log, (coe*x). Hence

[e'e] e—t:c
B.(t) < d , 3.23
(¥ / * log([ljcz) — Tog, (co?a)) 12 (323

for some constant ¢z € [1,00). Divide the integrals into

coe? Vv(1/t) 1/5062 0o
[T
—c1 coe3 (c2e3)V(1/t) 1/coe?

and call the results I; through I,, respectively. The integral I; is bounded by ce'?. For
Iy, since x < 1/t < 1/e%¢y, the denominator of the integrand is |log(z/c)|?. Forgoing the

exponential gives [, < I} := f(°2€ SR dx/(log(z/c2))?. Integrate by parts to get

caed

C 63
! (x — C2€ ) (626 V(l/t) + /( 2 )V(l/t) dx 2 (JC — 6263) . (3.25)
" (logx/cg)? lees el z(logz/co)?
On the right-hand side, bound the terms by ¢t~ (log((e*) V (1/¢c2t)))~* and 1525 I3, respec-

tively. Doing so gives I} < ce’ t~!|log(t A 3)|~2. As for I, since < 1/e2¢,, the denomina-
tor of the integrand is | log(x/c2)|?. This is > |log(tA 5)[?/c because z > (c2¢®) V (1/t). For
I,, the denominator is (loge? — ¢)?, which is > |log(t A 1)|?/c because t > £2¢y. Bounding
the denominators this way and releasing the range of integration to = € [0,00) give
Is+ 1y < ct™log(t A 3)| 72
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