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Abstract—Estimating quantiles is one of the foundational
problems of data sketching. Given n elements x1, x2, . . . , xn from
some universe of size U arriving in a data stream, a quantile
sketch estimates the rank of any element with additive error at
most εn. A low-space algorithm solving this task has applications
in database systems, network measurement, load balancing, and
many other practical scenarios.

Current quantile estimation algorithms described as optimal
include the GK sketch (Greenwald and Khanna 2001) using
O(ε−1 log n) words (deterministic) and the KLL sketch (Karnin,
Lang, and Liberty 2016) using O(ε−1 log log(1/δ)) words (ran-
domized, with failure probability δ). However, both algorithms
are only optimal in the comparison-based model, whereas many
typical applications involve streams of integers that the sketch
can use aside from making comparisons.

If we go beyond the comparison-based model, the deterministic
q-digest sketch (Shrivastava, Buragohain, Agrawal, and Suri
2004) achieves a space complexity of O(ε−1 logU) words, which
is incomparable to the previously-mentioned sketches. It has long
been asked whether there is a quantile sketch using O(ε−1) words
of space (which is optimal as long as n ≤ poly(U)). In this
work, we present a deterministic algorithm using O(ε−1) words,
resolving this line of work.

Index Terms—streaming algorithm, quantiles, sketching

I. INTRODUCTION

Estimating basic statistics such as the mean, median, min-

imum/maximum, and variance of large datasets is a funda-

mental problem of wide practical interest. Nowadays, the

massive amount of data often exceeds the memory capacity

of the algorithm. This is captured by streaming model: The

bounded-memory algorithm makes one pass over the data

stream x1, x2, . . . , xn from a universe [U ] = {1, . . . , U} and,

in the end, outputs the statistic of interest. The memory state of

the algorithm is therefore a sketch of the data set that contains

the information about the statistic and allows future insertions.

Here, memory consumption is conventionally measured in

units of words, where 1 word equals log n+ logU bits.

This work is supported by NSF GRFP Fellowship, Jelani Nelson’s NSF
award CCF-2427808, Venkatesan Guruswami’s Simons Investigator award,
Avishay Tal’s Sloan Research Fellowship and NSF CAREER Award CCF-
2145474.

Most of these simple statistics can be computed exactly

with a constant number of words. But the median, or more

generally, the ϕ-quantile, is one exception. In their pioneering

paper, Munro and Paterson [1] showed that even an algorithm

that makes p passes over the data stream still needs Ω(n1/p)
space to find the median. Fortunately, for many practical

applications, it suffices to find the ε-approximate ϕ-quantile:

Instead of outputting the element of rank exactly ϕn, the

algorithm only has to output an element of rank (ϕ±ε)n. Such

algorithms are called approximate quantile sketches. They are

actually implemented in practice, appearing in systems or

libraries such as Spark-SQL [2], the Apache DataSketches

project [3], GoogleSQL [4], and the popular machine learning

library XGBoost [5].

There are also other queries the sketch could need to answer:

For example, online queries asked in the middle of the stream,

or rank queries, where the algorithm is asked to estimate the

rank of an element up to εn error. As finding approximate

quantiles is equivalent to answering rank queries. To solve all

of them, it suffices to solve the following strongest definition.

Problem I.1 (Quantile sketch). The problem of quantile

sketching (or specifically, ε-approximate quantile sketching)

is to find a data structure A taking as little space as possible

in order to solve the following problem: Given a stream of el-

ements Ã = x1, x2, . . . , xn ∈ [U ], we define the partial stream

Ãt = x1, x2, . . . , xt. For element x ∈ [U ], let rankÃt
(x) be

be the number of elements in Ãt that are at most x. When a

query x arrives at time t, then A must output an approximate

rank r, such that |r − rankÃt
(x)| f εt.

Two notable quantile sketches include the Greenwald and

Khanna (GK) sketch [6] using O(ε−1 log n) words (determin-

istic) and KLL sketch [7] using O(ε−1 log log(1/¶)) words

(randomized, with failure probability ¶). Both algorithms fol-

low the comparison-based paradigm, where the sketch cannot

see anything about the elements themselves and can only make

black-box comparisons between elements it has stored. They

are known to be optimal in this paradigm ( [8] shows the GK

is optimal for deterministic algorithms and [7] shows that KLL

is optimal for randomized algorithms).
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However, many applications of quantile sketches apply to

streams of integers (or elements of some finite universe),

rather than just to black-box comparable objects. For example,

the elements in the universe could be one of the following:

network response times (with a preset timeout), IP addresses,

file sizes, or any other data with fixed precision. This may

allow for a better quantile sketch than in the comparison-

based model. The best previously-known non-comparison-

based algorithm is the q-digest sketch introduced in [9],

which is a deterministic sketch using O(ε−1 logU) words.

Unfortunately, this isn’t really better than the GK sketch, as

n is typically much less than poly(U). On the other hand,

the only lower bound we know is the trivial lower bound of

Ω(ε−1) words in the regime where n f poly(U) (which holds

for both deterministic and randomized algorithms). Motivated

by this gap, Greenwald and Khanna, in their survey [10], asked

if the q-digest algorithm is already optimal, and as such, one

cannot substantially improve upon comparison-based sketches.

In this work, we resolve this question fully and provide

a deterministic quantile sketch that uses the optimal O(ε−1)
words. This is the first quantile sketch that goes beyond the

comparison-based lower bound (in the natural regime of n f
poly(U)) and is the first direct improvement on the q-digest

sketch in the 20 years since it was proposed. (See Table I for

a detailed comparison.)

Theorem I.2. There exists a deterministic streaming algo-

rithm for Problem I.1 using O(ε−1) words (more specifically,

O(ε−1(log(εn) + log(εU))) bits) of space1.

Our sketch uses less space than not only the deterministic q-

digest and GK sketches but also the randomized KLL sketch,

when compared in words. Note that randomized algorithms,

like KLL sketch, have failure probabilities and retain their

theoretical guarantee only against non-adaptive adversaries.

The fact that our algorithm is deterministic provides stronger

robustness. As these sketches are already implemented in

practice, we hope that our algorithm can help improve the

performance of these libraries.

A. Discussion and further directions

a) Optimality of our algorithm: As we discussed earlier,

the quantile sketch lower bound of Ω(ε−1) words only holds

in the regime where n f poly(U). However, we conjecture

that our algorithm is optimal in general for deterministic

algorithms. Specifically, there is a simple example showing

any sketch for Problem I.1 requires at least ε−1 log(εU) bits

(see Section VII), but we also need to show a lower bound

of ε−1 log(εn) bits. We make the following conjecture about

deterministic parallel counting, which would imply our lower

bound because any algorithm for Problem I.1 can also solve

the k-parallel counters problem for k = Θ(1/ε).

1Here, technically, when we write log(εn) and log(εU), it really should be
max{log(εn), 1},max{log(εU), 1} to avoid the uninteresting corner cases.

Conjecture I.3 (Deterministic parallel counters). We define

the k-parallel counters problem as following: There are

k counters initiated to 0. Given a stream of increments

i1, i2, . . . , in ∈ [k] where it means to increment the it-th
counter by 1, the algorithm has to output the final count of

each counter up to an additive error of n/k.

We conjecture that any deterministic algorithm for this

problem requires at least Ω(k log(n/k)) bits of memory. 2

This conjecture essentially says that to maintain k counters

in parallel, one needs to maintain each counter independently.

Aden-Ali, Han, Nelson, and Yu [11] studied this problem

for randomized algorithms. We note that our conjecture is

resolved in a follow-up paper by Wang [12]. Thus proving

the optimality of our algorithm.

b) Improvements in the randomized setting: Determin-

istic algorithms are used at the heart of the randomized

ones. Many randomized algorithms (including the algorithm

by Felber and Ostrovsky [13], the KLL sketch [7], and the

mergeable summary of [14]) follow the paradigm of first

sampling a number of elements from the stream and then

maintaining them with a careful combination of deterministic

sketches.

As long as n f poly(U), our algorithm is optimal even

in the randomized setting, but when this condition is not

met, it is possible to do better in the randomized setting.

If n is known in advance, one can simply sample
log 1/¶

ε2

elements and feeds them into our sketch.3 It uses a mem-

ory of O(ε−1(log log(1/¶) + logU) + log n) bits, which

strictly improves that of the KLL sketch. We note that, in

the most common regime where ¶ > 1/2εn, there is a

Ω(ε−1(log log(1/¶)+ log εU))-bit lower bound for streaming

quantile sketches.4 So our algorithm is also very close to

optimal in the randomized setting as well.

c) Finding a simpler algorithm: Although our basic

construction is relatively simple, to obtain the optimal bound,

we need to iterate our basic construction recursively. Then

it becomes quite intricate. Can the current algorithm be

simplified? Or, is there any other algorithm that is at same

time simple and optimal?

B. Related works

More on quantile sketches.: Early works on quantiles

sketches include [1], [15], [16]. Among them, the MRL

sketch [16] and its randomized variant from [14] lead to the

aforementioned KLL sketch. Another variant of the problem is

2This conjecture is recently sovled by
3If n is not known is advance, instead of simple sampling, one can replace

the use of GK sketch in KLL with our algorithm. As the compactor hierarchy
part of KLL stores only O(1/ε) elements, it results in the same space
complexity as the known n case.

4This follows from the ε−1 log εU lower bound in Section VII (which
holds for both deterministic and randomized algorithms), and the afore-
mentioned k · min(log(n/k), log log(1/δ)) lower bound in [11] (setting
k = 1/ε).
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Algorithm Type Space (words) Space (bits)

GK sketch [6]
deterministic

comparison-based
O(ε−1 log(εn)) O(ε−1(log2(εn) + log(εn) · logU))

q-digest [9]
deterministic

bounded-universe
O(ε−1 logU) O(ε−1(log2 U + log(εn) · logU))

KLL sketch [7]
randomized

comparison-based
O(ε−1 log log(1/δ))

O(ε−1 log log(1/δ) · (log log(1/δ) + logU) +
logn)

Our algorithm
(Theorem I.2)

deterministic
bounded-universe

O(ε−1) O(ε−1(log(εn) + log(εU)))

TABLE I: The word and bit complexity of quantile sketches.

the biased quantile sketches (also called relative error quantile

sketches), meaning that for queries of rank r, the algorithm

can only have an error of εr instead of εn. That is, we require

that the 0.1% quantiles are extremely accurate, while the 50%
quantile can allow much more error. This question was raised

in [17]; since then, people have proposed deterministic [18],

[19] and randomized [20] algorithms for this problem. There

are also other variants such as sliding windows [21], weighted

streams [22] and relative value error [23]. In practice, there are

also the t-digest sketch [24] and the moment-based sketch [25],

which do not have strict theoretical guarantees. In particular,

[26] shows that there exists a data distribution, such that even

i.i.d. samples from that distribution can cause t-digest to have

arbitrarily large error.

II. PRELIMINARIES

A. Definitions for streams

Define the rank of an element x in a stream Ã, denoted

rankÃ(x), to be the total number of elements of Ã that are

less than or equal to x. We also define a notion of distance

between two streams. For two streams Ã, Ã′ of equal length,

define their distance as follows:

d(Ã, Ã′) = max
x∈[1,U ]

|rankÃ(x)− rankÃ′(x)|.

We observe that this distance satisfies some basic properties,

i.e., the triangle inequality, and subadditivity under concate-

nation of streams:

Observation II.1 (Triangle inequality). For all streams

Ã, Ã′, Ã′′ of the same length,

d(Ã, Ã′) f d(Ã, Ã′′) + d(Ã′′, Ã′)

Observation II.2. For all streams Ã, Ã′ of the same length

and Ä, Ä′ of the same length,

d(Ã ◦ Ä, Ã′ ◦ Ä′) f d(Ã, Ã′) + d(Ä, Ä′),

where Ã ◦ Ä denotes concatenation of the streams Ã and Ä.

B. Other notation

Throughout this paper, we use standard asymptotic nota-

tion, including big O and little o. For clarity, we sometimes

omit floor and ceiling signs where they might technically be

required.

All logarithms in this paper are considered to be in base

2, and we define the iterated logarithm log∗(m) to be the

number of times we need to apply a logarithm to the number

m to bring its value below 1.

We also define the function VxW, for any x ∈ R
+, to be the

smallest power of 2 that is at least x. In particular, we always

have x f VxW f 2x.

III. TECHNICAL OVERVIEW

In this section, we explain the main idea of our algorithm.

First, we get a few technical details out of the way. We

will assume for now that we know n beforehand. For this

overview, we will focus on describing a data structure that

uses O(ε−1 log(ε−1) log logU) words of memory. After that,

we will briefly describe the modifications that we perform to

bring the space complexity down to O(ε−1) words.

a) The eager q-digest sketch: Before explaining our

algorithm, it would be instructive to first reivew the q-digest

algorithm because our algorithm is based on it. At a high

level, this data structure is a tree where every node represents

some subset of the stream elements received so far. The node

doesn’t store each element exactly, but only an interval that

contains all of the elements it represents and a count of how

many elements it represents. The version we describe slightly

differs from the typical treatment, and we call it eager q-digest.

The data structure has the following structure and supports the

following operations.

• Structure: The eager q-digest is a binary tree of depth

logU . The nodes in the bottom level of the tree (which

we call the base level) correspond left-to-right to each

element 1, 2, . . . , U in the universe. Each non-base level

node corresponds to a subinterval of [1, U ] consisting of

the base level nodes below it. Each node u represents a

subset of W [u] elements (W [u] is the weight/count of

the node) that have been received so far; that is, when

an element is inserted, it increments the counter W [u] at

some node. The W [u] elements that u represents must

all be within the node’s interval.

• Insertion: We insert elements into the tree top-down as

follows: upon receiving an element x ∈ [1, U ], look at the

path from the root to x and increment the counter W [u]
of the first non-full node u. A node is full if its weight is
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already at capacity, which we set to be ³ := εn
logU . Base

level nodes are permitted to exceed capacity.

• Rank queries: We are given an element x ∈ [U ] for

which we want to return the rank. To do this, answer

with the total weight of everything on the path from the

root to the base node x and everything to the left of that

path in the tree. All the elements inserted in nodes to the

left of this path must have been less than x (since their

intervals only contain elements less than x) and all the

elements inserted to the right must be larger. As such,

the error in the rank estimate is only the sum of nodes

along the path (not including x), which is bounded by the

depth of the tree times the weight of each node above x,

at most ³ logU = εn.

• Quantile queries: We are given a rank r ∈ [n] for which

we want to return an element between the rank-(r− εn)
and the rank-(r+ εn) element of the stream. The ability

to do this follows from the ability to answer rank queries,

since we can simply perform a binary search.5

Let us look at an example of an eager q-digest. Each node

has capacity (maximum weight) ³ = 5 for this example.

In this example, triangle represents 5 elements in the interval

[1, 4], square represents 5 more elements in the interval [3, 4],
and star represents 3 more elements exactly equal to 3. If we

insert the number 3 into the example, it would not get inserted

into triangle or square because they are full, and so it would

be put into star and increment the count by 1. If we want to

then find the rank of the number 3 (in the pictured tree exactly,

before the insertion), we return the sum of the weights on the

circled nodes plus the path to x, which is 9+5+5+3 = 22.

This can be off by at most 10 – we know the 9 elements

represented by the circled nodes are definitely less than 3, the

ones inserted directly to the star are exactly 3, the ones to

the right are definitely more than 3. The ones inserted to the

triangle and square are the only unknowns.

b) Analyzing the space complexity of eager q-digest: The

space complexity (in bits) of q-digest (and similarly of eager

q-digest) is well known to be O(ε−1((logU)2+logU log n)).
Let us understand why, so we can see where we might improve

upon this. The space complexity is approximately the product

of the following two things:

(1) The number of non-empty nodes. This is at most

O(ε−1 logU) since the number of full nodes (which is

within a constant factor of the number of non-empty

nodes) is n/³ = ε−1 logU .

(2) The amount of space necessary per non-empty node.

Naively, we would need to store the location of each

nonempty node (the interval it corresponds to) and the

weight of the node (the number of stream elements it

corresponds to). This would take logU + log n space.

As such, in total the space complexity is O(ε−1(logU)2 +
logU log n). In our sketch, we do not reduce (1), the number

5This is true in a black-box way; see Section VI for details.

of nodes. Therefore, we must reduce the storage in (2)

substantially. This has two parts: efficiently storing the cor-

responding interval (location in the binary tree) of each node

and efficiently storing the count.

It is actually quite simple to store the interval/location of

each node: To see this, notice that the non-empty nodes form

a connected tree of their own within the large binary tree.

Since the tree is binary, storing the edge from a parent to

child in the tree of nonempty nodes takes only O(1) space.

This observation is quite straightforward from the way we

formulated q-digest, but the usual implementation of q-digest

doesn’t push to the top eagerly, and so is unable to directly

save this logU term.

c) The main challenge, avoiding storing counters: The

second challenge is to avoid storing a counter W [u] at each

node. One useful observation about the structure of the tree

of non-empty nodes is that all internal nodes are full (at

capacity) and only its leaves, which we call exposed nodes,

need counters. Unfortunately, a constant fraction of the non-

empty nodes are exposed nodes, so this doesn’t actually save

on space.

Another idea is to store only an approximate count at

each node. Unfortunately, we cannot just store an independent

approximate count at each node, or even only a counter

that estimates when the count surpasses the threshold ³;

this is impossible to do deterministically without using log³
space (which is too large). Even in the randomized setting,

approximately counting each node independently does not

improve upon KLL.

The situation is summarized above in Figure 2. At

each of the exposed nodes, denoted v1, v2, . . . , vℓ, we

want to store some approximate version of counters

W [v1],W [v2], . . . ,W [vℓ] that represent how many elements

are inserted into that node using significantly less than log n
space, ideally O(1) space.

For simplicity, assume that elements are received in

“batches” of size n̂ (to be determined later), which we can use

unlimited space to process. Our only constraint is to minimize

storage space between batches. Let us assume that before the

batch, all the counters W [v1],W [v2], . . . ,W [vℓ] are less than

³/2 and set n̂ = ³/2 so the set of exposed nodes won’t

change within the batch. At the end of the batch, we need

to find suitable approximate values Ŵ [v1], Ŵ [v2] . . . , Ŵ [vℓ]
to increment the counters by, based on the true counts

C[v1], C[v2], . . . , C[vℓ] of the stream elements.

Let us quantify how “inaccurate” these approximate counts

can be compared to the true counts. The amount of additional

error (in rank-space) introduced by answering a rank query for

some universe element below a node vi should be at most εn̂
– we can tolerate this much because it only doubles ε and we

could’ve chosen ε to be half as big at the start. The value of

this rank query, or the total weight of all the nodes to the left

of vi and the path to vi changes by

∣∣∣
(
Ŵ [v1]+ . . .+Ŵ [vi]

)
−
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[1, 4]
W=5

[1, 2]

[1, 1] [2, 2]

[3, 4]
W=5

[3, 3]
W=3

[4, 4]

Total W
=9

Fig. 1: An example eager q-digest tree.

[1, 8]
W=³

[1, 4]
W=³

[1, 2]
W=³

v1 [1, 1]
W=?

v2 [2, 2]
W=?

v3 [3, 4]
W=?

[5, 8]
W=³

v4 [5, 6]
W=?

Fig. 2: The tree formed by non-empty nodes in eager q-digest. (The filled nodes are the full nodes.)

(
C[v1] + . . .+ C[vi]

)∣∣∣, and so we need to ensure for all i,

∣∣∣
(
Ŵ [v1] + . . .+ Ŵ [vi]

)
−
(
C[v1] + . . .+C[vi]

)∣∣∣ < εn̂. (1)

Here is a simple way to make that happen: Take the 0-

th element, the (εn̂)-th element, the (2εn̂)-th element and so

on, and increment the counters W [vi] corresponding to those

elements each by εn̂. Then, Equation 1 is satisfied, and also

the counters can be stored in O(log(ε−1)) bits since they

are always multiples of εn̂ = ε³/2 and so only have 2ε−1

possibilities.

d) The main idea: recursive quantile sketch: Of course,

the glaring issue is how to find (an approximation of) the

0-th element, the (εn̂)-th element, the (2εn̂)-th element and

so on, or at least which vi each one corresponds to, without

storing the entire batch of n̂ elements. In particular, we have

reduced to the following problem: We receive n̂ elements in

a stream in the universe {v1, . . . , vℓ}, and we need to return

the approximate 0-th element, the (εn̂)-th element, the (2εn̂)-
th element and so on. These are just quantile queries! In

particular, we need a quantile sketch on a universe of size

ℓ receiving n̂ elements. The new universe size ℓ is at most

the number of exposed nodes of the eager q-digest, which is

at most ε−1 logU , and so we have a big saving – the new

quantile sketch is on a logarithmically smaller universe, and

so even naively using eager q-digest for the inner sketch will

save space.

This solves the problem. The outer quantile sketch re-

quires only O(ε−1 log(ε−1) logU) space because it needs

O(log(ε−1) space per node, and the inner sketch requires only

ε−1 log logU(log logU+log n̂) space because its universe size

is logU . Both of these are within O(ε−1 log(ε−1) log logU)
words of memory. An illustration of the recursive step is shown

in Figure 3, where we build a new eager q-digest whose

universe is the exposed nodes of our original eager q-digest.

This new eager q-digest will process n̂ elements and ultimately

return the 0-th element, the εn̂-th element, 2εn̂-th element, and

so on.

e) Modifications to get the optimal bounds: We can

iterate this construction recursively by building a new eager

q-digest on the exposed nodes of the second eager q-digest.

This process will continue to reduce the universe size nearly

logarithmically each time. The number of layers before reach-

ing a constant sized universe is roughly log∗ U , and so to get

constant error and constant space, we will need to be careful

with how we set the error fraction εi for each recursive layer

and argue that the total size of the sketches converges.

We also made an assumption that when we started receiving

the batch of n̂ elements, all the exposed nodes had weight at

most ³/2. However, the node could have any weight jε³. To

deal with this, we need the lower level q-digest to deal with

nodes getting “overfilled.”

Our final algorithm also manages to get rid of log(ε−1)
factors in the space complexity. This takes a number of

additional considerations. One is that the nodes cannot even

store counts that require O(ε−1) bits, but truly need to just

be either empty or full. To deal with this, we will increase
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[1, 8]
W=³

[1, 4]
W=³

[1, 2]
W=³

v1 [1, 1]
W=0

v2 [2, 2]
W=0

v3 [3, 4]
W=0

[5, 8]
W=³

v4 [5, 6]
W=0

...

[1, 6]

[1, 2]

v1 [1, 1] v2 [2, 2]

[3, 6]

v3 [3, 4] v4 [5, 6]

New base level nodes

Fig. 3: An inner eager q-digest tree whose universe is the exposed nodes of the original tree. (The filled nodes are the full

nodes.)

the batch size to n̂³ but now we will need to deal with nodes

getting overfilled again. A second issue is that, as described,

at the last layer of recursion, the number of nodes would be

ε−1 log(ε−1), which is slightly too large. To deal with this,

we will have to use an optimized eager q-digest, which we

discuss in Section IV.

IV. WARM UP: OPTIMIZED EAGER Q-DIGEST

In this section, we will describe the optimized eager q-

digest algorithm. This slightly improves the q-digest al-

gorithm of [9]. The space complexity of optimized ea-

ger q-digest will be fairly similar to that of q-digest (it

achieves O(ε−1 log εn log εU) bits instead of O(ε−1(logU +
log εn) logU) bits).

Although it does not contain the main idea of this paper, we

need it as a building block of our algorithm. Also, we hope

that this section can be a warm-up that familiarizes readers

with our notation and the basics about q-digest.

Though we have already talked briefly about the eager q-

digest in the technical overview, we will start anew in this

section by building the algorithm up from the original q-

digest, since we make several more modifications than what

we described in that section.

Tree structure of the original q-digest sketch: In the

original q-digest sketch of [9], there is a underlying complete

binary tree T of depth logU . We say that those nodes at depth

logU are at the base-level of T . These nodes correspond (from

left to right) to each element 1, 2, . . . , U in the universe.

We label each node in T with a subinterval of [1, U ]. First,

the base-level node corresponding to i is labeled with [i, i]. For

a node above u the base level, its interval is the union of all

its base-level descendants. For every node u ∈ T , it also has

a weight W [u] associated to it. Intuitively, one can think of

the nodes u ∈ T with weight W [u] and interval label [au, bu]
as a representative of W [u] many elements in the stream that

are within [au, bu].

In the original q-digest all nodes u except the base level

nodes can have weight at most W [u] f ³. This is the capacity

of the node and is usually set to ³ = εn
logU . When there is an

insertion of stream element x, the algorithm finds the base-

level node v whose interval equals [x, x] and increases W [x]
by 1. This is always possible as there is no capacity constraint

for base-level nodes.

Since this tree T has as many as 2U − 1 nodes, the q-

digest algorithm does not store the tree T nor the labels. It

only store the set S of non-empty nodes, those nodes v with

W [v] > 0. As there are more and more insertions, the set S
grows. Whenever |S| > logU

ε , the q-digest algorithm performs

a compression.

One way of performing such compression is to find all nodes

u such that W [u] > 0 and W [parent(u)] < ³, and move one

unit of weight from W [u] to W [parent(u)]. After there is

no such node u, let F ¦ S be the set of full nodes v with

W [v] = ³. We know that |F | f n
³ = logU

ε . Now for every

nonempty node u ∈ S, its parent must be a full node. So

compression gets the number of nonempty node down to |S| f

3|F | = O
(

logU
ε

)
. For every u ∈ S, the actual information

stored by original q-digest are 1. the position of u in the tree T
(which takes logU bits); 2. weight W [v] (which takes log³ ≈
log(εn) bits).

Finally, for all these to make sense, we have to be able to

answer rank queries. In order to estimate rank(x), we simply

add up the weights W [u] of all nodes u whose intervals contain

at least one element less or equal to x. This might overcount

the number of actual stream elements which are at most x;

any node whose interval contains both an element which is at

most x and greater than x can contribute to the overcounting.

These nodes are all (strict) ancestors of the node in the base

level corresponding to x, so there are at most logU of them,

and their total weight is thus at most ³·logU . Thus the answer

to the rank query is off by at most ³ · logU f εn.

Now, having described the original q-digest algorithm, we

will describe the modifications we make to it to get the
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optimized eager q-digest.

Modification 0, Enforcing capacity constraints on base-

level nodes: In our algorithm, we will need every node,

including those at the base level, to satisfy the capacity

constraint. But an element x ∈ [U ] could potentially have

multiplicity > ³ in the input stream.

To handle this, rather than the trees ending at the base

level, we let them continue as infinite paths (i.e., unary trees)

descending from each node of the base level. Let u be a base-

level node that is labeled with interval [x, x]. All nodes on

the infinite path below u will also just be labeled [x, x]. As a

sanity check, since we are not storing the tree T anyway, it

makes sense to be infinite.

Modification 1: Use a forest of 1/ε trees. : To improve

the logU factor to log(εU), we have to equally divide the

universe into 1/ε intervals and maintain a tree for each one.

This gives us a forest of 1/ε trees, while allowing us to set ³
to εn

log(εU) .6

Roughly speaking, this change corresponds to removing the

top log(1/ε) levels of the q-digest tree while keeping the levels

below it. Although only offering a small improvement here,

this is actually essential for our final algorithm. It is one of the

ingredients that allow us to avoid the extra O(ε−1 log(ε−1))
term in the number of words used.

Modification 2: Move weights up eagerly: Next we

describe how nodes are inserted into the eager q-digest. The

original q-digest algorithm moves weight up the tree lazily;

that is, it does so when the number of nodes stored exceeds

its limit. By contrast, the eager q-digest will do so eagerly:

upon receiving an element of the stream, it will immediately

move it up as much as possible.

More formally, when we receive an element x of the stream,

we do not increase the weight of the base-level node with

interval [x, x] as we would in a normal q-digest. Instead, we

immediately move this weight up. That is, we pick the highest

non-full node whose interval contains x, and we increment its

weight by 1.

Space Complexity: Full nodes and non-full nodes: We

now look at the space complexity of optimized eager q-

digest. An ordinary q-digest has to store, for every non-empty

node, both its location in T and its weight. However, in an

optimized eager q-digest, the non-empty nodes are upward

closed; that is, every parent of a non-empty node is also non-

empty. (In fact, every parent of an non-empty node is actually

full, since otherwise the weight would have been pushed up to

the parent.) Thus, the non-empty nodes form at most 1/ε trees

which include the roots of their components in T . Storing the

topology of a binary tree of size k only requires space k (it

is enough to use 2 bits for each node to record whether it has

left/right child). Thus the total space required to describe the

6This is because the depth of each tree becomes at most log(εU) and the
error for answering rank queries is at most the depth multiplied by α.

locations of the non-empty nodes is only O(|S| + 1/ε) bits,

where |S| is the total number of non-empty nodes.

At this point, for all the full nodes, we are already done.

Since we know that their weight is exactly ³, there is nothing

more to store. Since |S| f 3|F | f 3n
³ = O

(
log(εU)

ε

)
, we

are able to store all the full nodes with only O(1/ε) words.

However, there are still the non-full nodes in S. Since we have

to store the weight for each of them, this takes O(|S| log³) =

O
(

log(εU)
ε · log(εn)

)
space.

This completes the description of eager q-digest. We have

saved an |S| logU term in the space complexity by not

having to store the location of each non-empty node, but the

|S| log³ term from storing the weights of non-full nodes in

S still remains. In the following section, the main idea of our

algorithm is to recursively maintain these non-full nodes in S
with another recursive layer of our algorithm. When carefully

implemented, we are able to ensure that every node in our

trees are either full or empty, except at the very last layer of

recursion. This removes the extra |S| log³ term.

V. OUR O(ε−1)-WORD ALGORITHM

In this section, we will implement the sketch in Table II,

proving Theorem I.2. We assume throughout this section that

εU is at least a sufficiently large absolute constant, since

otherwise we can increase U without affecting our asymptotic

space complexity.

To start with, we will also assume that we know an upper

bound on n (this upper bound will become n0), and that it

is sufficiently large (that is, n0 g n∗, where n∗ is a function

of U, ε). Furthermore, we will initially allow rank queries to

have error up to εn0. We will maintain these assumptions until

Section V-E, where we will then describe how to dispense with

these assumptions.

We now outline how this section will proceed. In Sec-

tions V-A and V-B, we describe the data structure, and how

to handle insertions into the data structure, including how to

merge layers of the data structure. In Section V-C, we bound

the error introduced into the data structure with each merge.

Then, in Section V-D, we describe how to perform rank queries

and show a bound of εn0 on the error of a query. We next,

in Section V-E, describe how to make our data structure work

even when n < n∗, and also improve our bound on error of

a query to εt (where t is the size of the stream so far). In

Section V-F, we pick the numerical parameters of our data

structure such that the claims of the previous section hold.

Finally, in Sections V-G and V-H, we analyze the space and

time complexity of our algorithm, respectively.

A. Structure of the sketch

As mentioned before, our sketch will be formed from

recursive applications of the eager q-digest. We now define the

structure of the recursive layers, which we number 0, 1, . . . , k.
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Our ε-approximate quantile sketch

Space complexity: O(ε−1(log(εn) + log(εU))) bits.

Supported operations:

• INSERT(x): Adds an element x ∈ [U ] to the stream. (Algorithm 1)
• RANK(x): Returns the rank of x up to ± εt error where t is the number of elements in the current

stream. (Algorithm 6)

In Section V-H, we will show that each operation takes O(log(1/ε)) amortized time under mild assumptions.

TABLE II: Our quantile sketch.

The 0-th layer: We start with the top layer (layer 0) and

introduce our notation. The top layer has the same structure

as an ordinary optimized eager q-digest forest. We call this

underlying forest T0. It has universe size U0 = U and error

parameter ε0 = ε/8. We would like to emphasize that in

optimized eager q-digest, T0 is a forest with 1/ε0 infinite trees

where most nodes have weight 0. We call these nodes empty.

Whether empty or not, each node in this infinite forest

is labeled with an interval. The 1/ε0 roots of the trees are

labeled with [1, ε0U ], [ε0U +1, 2ε0U ], . . . , [(1−ε0)U +1, U ],
respectively. Then, if a node is labeled with interval [a, b],
its two children are labeled with [a, (a + b − 1)/2] and

[(a+ b+ 1)/2, b] respectively. (Since we assumed that ε and

U are powers of 2, these are all integers.) As a special case,

if a = b, the node is going to have only one child, labeled

[a, a].

In T0, each node u has a weight W0[u] that cannot exceed

capacity ³0 = ε0n0/Vlog(ε0U0) + 1W, where n0 is an upper

bound on n. We define the set of full nodes, F0, as the set of

nodes that have a weight of exactly ³0. Recall from optimized

eager q-digest that we know F0 is a upward-closed set of

nodes and is therefore itself a forest of at most 1/ε0 trees.

(See Section IV for details). We will enforce the invariant that

every node in the tree T0 is either full or empty. So nodes in

F0 are the only nodes in T0 that we actually use and store.

As mentioned before, this allows us to store each node with

only a constant number of bits.

Note that if we were to add new full nodes to this structure,

the empty children of full nodes in F0, as well as the empty

roots of trees, are potentially positions for new nodes. We call

these empty nodes the exposed nodes. Formally, the exposed

nodes of T0 is the set of empty nodes that do not have a full

parent. For a concrete example, see the forest T0 in Figure 4.

a) Intuition: Batch processing of insertions: Let us first

jump ahead and sketch the purpose of having layer i (1 f i f
k). Imagine if we insert a new element in the stream. Then,

an execution of the eager q-digest algorithm will increase the

weight of one exposed node in V0 to 1 j ³0. However, our

algorithm cannot do the same, because it would break our

invariant of having only full nodes in T0. Instead, we maintain

the exposed nodes V0 with our recursive structure (layers g 1)

and insert the new element into layers g 1. These recursive

layers act like a “buffer”; once they accumulate n1 elements,

we clear them and compress those elements into new full

nodes in T0.

In general, for layer i (1 f i < k), we group ni+1 insertions

in a batch and insert them to layer g i+1. After each batch,

we compress the elements in layer g i+ 1 into full nodes in

layer i and clear layer g i+1. Full details of how we handle

insertion will be discussed in Section V-B.

The i-th layer (1 f i f k): Roughly speaking, the upper

part of the layer i structure (which we call Ti) resembles an

optimized eager q-digest forest with whose “universe size”

is Ui, which is an upper bound on |Vi−1| (when we pick

the values of the parameters, we will prove this upper bound

in Claim V.19). At depth hi := log(εiUi), they have exactly

|Vi−1| nodes7. Each such node u will correspond to an exposed

node v ∈ Vi−1, in order (from left to right). We call this depth

the base level of Ti. This is the upper part of Ti.

For the interval labeling of the upper part, as each base level

node u corresponds to an empty node v ∈ Vi−1, naturally, u
just inherits the interval label of v. Strictly above the base

level, the interval of each node is the union of the intervals of

its base-level descendants.

Now we start to describe the lower part of Ti. Unlike the

optimized eager q-digest, we will also allow Ti to grow beyond

the base level. (We give some intuition for this in Remark V.2,

which readers may skip on the first read.) For each base-level

node u that corresponds to v ∈ Vi−1, we copy the empty

infinite subtree of v in Ti−1, and put it as the subtree of u in

Ti. This also copies the interval labels on nodes in the subtree.

For a concrete example, see the forests T1, T2 in Figure 4.

Remark V.1. Because we copied the subtrees from Ti−1, for

any node u below the base level (including the base level

itself), there exists a unique node u′ ∈ Ti−1 corresponding to

it. (We will soon see that u′ is in fact an empty node.)

A node u in Ti has weight Wi[u] and capacity ³i =
εini/Vlog(εiUi)+1W. We again call a node full when it reaches

its capacity. Fi is defined to be the set of all full nodes in Ti.

We maintain the similar invariant as layer 0: For all 0 f i < k,

the forest Ti will contain either full or empty nodes.8

7Note that in an optimized eager q-digest, the base level contains Ui nodes;
we just remove the remaining Ui − |Vi−1| nodes and their descendants, and
also any inner nodes with no descendants remaining.

8Note when i = k, since there are no further recursive layers, we do not
require the invariant for it. Insertions to Tk are simply handled as in a normal
optimized eager q-digest. (See Section V-B for more details.)
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Note that this invariant means that, for layers i < k, instead

of storing the weight map Wi, it suffices to only store Fi,

since the contents of Wi are determined by Fi.

Finally, Vi, the set of exposed nodes of Ti, is defined as the

set of of empty nodes which do not have a full parent (for

1 f i < k)9. Note that there may be some exposed nodes

above the base level. (This results in a subtlety in the interval

labels. See Remark V.3 for details. Readers may skip it on

their first read.)

Remark V.2. Suppose that we do not allow the tree Ti to

grow beyond the base level. Then the total weight of it can

be at most 2³i|Vi−1|. In other words, layer g i will not be

able to handle more than that many insertions. But it turns out

that we will later want to set ni k 2³i|Vi−1|, so we have to

allow Ti to grow beyond the base level. (More specifically,

we want to set ni so that εini g ³i−1, which is essential for

Lemma V.13.)

Remark V.3. First, for the upper part of Ti, a node labeled

with [a, b] may not have children with evenly split interval

labels ([a, (a + b − 1)/2] and [(a + b + 1)/2, b]). This is

clear since the labels of nodes above base level are derived

bottom-up by taking the union of intervals at their base-level

descendants. It is, though, tempting to think that for the lower

part of Ti (below the base level), all nodes labeled will have

two children with equally split intervals. This, however, is also

not always the case. It is possible that a base-level node u
corresponds to an exposed node v ∈ Vi−1 that is in the upper

part of Ti−1. Then when we copy the subtree of v, those

two children will not have equally split interval labels. For

example, this happens in Figure 4, at the node labeled [1, 6]
in the tree T2. Its two children split into [1, 4] and [5, 6], while

an even split is [1, 3] and [3, 6].

Remark V.4. In order to avoid interrupting the flow of the

paper, we will defer the precise definitions of the parameters

k, ni, Ui, εi until Section V-F. However, so that the reader can

have a sense of the scale of each of these parameters, we will

give approximate values now that can be used as guidelines.

All the parameters except k will be powers of 2, to avoid

divisibility issues. We pick the following rough values:

• The number of layers will be k + 1 ≈ log∗(εU).

• The approximation parameters εi are all very close to ε,

and can be thought of as essentially equal to ε.

• The Ui will satisfy the approximate recursion εUi+1 ≈
log(εUi), so by the last level we will have Uk ≈ 1/ε.

• The batch sizes ni will shrink very slowly (only by

polylogarithmic factors in εU ), so they can all be thought

of as roughly n, though decreasing.

◦ In particular, even the last batch size nk is almost n
in this sense, so one can think of the algorithm as

9For i = k, we define Vk instead to be the set of non-full nodes without
a full parent.

spending most of its time at layer k, with a “universe”

of size O(1/ε).

• Similarly, the capacities ³i are also all approximately εn,

though also decreasing in i.

B. Handling insertions

In this subsection, we formally explain how we handle

insertions.

Insertions: Recall that in Section V-A, we only require

our invariant to hold for layers i ̸= k. For layer k, it is

maintained by a normal eager q-digest. For any insertion x,

we first insert it into the layer k as we would in a normal

optimized eager q-digest. In other words, we find the exposed

node in Tk whose interval contains x and increase its weight,

Wk[v], by 1. This node always exists due to the following

observation.

Observation V.5. For all layers 1 f i f k. the intervals of

the exposed nodes Vi are always disjoint and cover the entire

universe [1, U ].

Then for i = k, k − 1, . . . , 1, we check if the total number

of elements inserted so far, denoted by t, is a multiple of ni.

If so, we need to compress layers g i into full nodes in layer

i−1. Specifically, we will chose these ni’s so that ni is always

a multiple of ni+1 for all I (we prove this in Fact V.20(c)).

Therefore if wtot is a multiple of ni, layers g i+1 have already

been compressed into full nodes of layer i. We will only need

to compress layer i into full nodes in layer i − 1 and merge

them into Ti−1. We call this procedure MERGE(i) and will

describe it next. The pseudocode for the insertion procedure

as a whole is summarized below in Algorithm 1.

Next, we explain how MERGE(i) compresses layer i into full

nodes in layer i− 1. We follow a delicate three-step strategy.

On a high level, it is carefully designed so that we incur an

error (which is defined formally later in Section V-C) of at

most hi · ³i + ³i+1 from the compression. (Recall that hi :=
log(εiUi) is the depth of the base level in Ti.) This is important

to our analysis.

a) Merge Step 1 - move the weight into Ti−1: In the first

step, we move all the weight in Ti into empty nodes in Ti−1.

There are two cases:

• For every node u with weight below the base level (in-

cluding the base level itself) in Ti, there is a unique empty

node u′ in Ti−1 corresponding to it. (See Remark V.1.)

We move all the weights for u into that of u′. Formally,

we just increase weight Wk−1[u
′] by Wk[u].

• For every node u strictly above the base level of Ti, there

is no node in Ti−1 that directly corresponds to it. Instead,

we will take an arbitrary descendant v ∈ Ti of it at the

base level. As v corresponds to an (exposed) empty node

v′ ∈ Ti−1, we will move the weight of u there. Formally,

we increase weight Wk−1[v
′] by Wk[u].
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T0 :

[1, 4]

[1, 2]

[1, 1]

[1, 1]

[2, 2]

[2, 2]

[3, 4]

[3, 3]

[3, 3]

[4, 4]

[4, 4]
...

[5, 8]

[5, 6]

[5, 5]

[5, 5]

[6, 6]

[6, 6]

[7, 8]

[7, 7]

[7, 7]

[8, 8]

[8, 8]
...

T1 :

[1, 6]

[1, 4]

[1, 2]

[1, 1] [2, 2]

[3, 4]

[3, 3] [4, 4]

[5, 6]

[5, 5]

[5, 5]

[6, 6]

[6, 6]
...

[7, 8]

△ [7, 7]

[7, 7]

[7, 7]

[8, 8]

[8, 8]

[8, 8]
...

T2 :

[1, 7]

[1, 6]

[1, 4] [5, 6]

[7, 7]

[7, 7]

...

[8, 8]

[8, 8]

[8, 8]

...

Exposed nodes in T0 Exposed nodes in T1 full nodes

Fig. 4: The structure of different layers. Here ε = 0.5, so there are 1/ε = 2 trees in each layer. The nodes below the base-level

of each layer is marked as gray. Note that when we construct Ti, we take all the exposed nodes in Ti−1 and use them as the

base-level nodes to build 1/ε trees. Then we copy their subtrees in Ti−1 to be their subtrees in Ti.

This is summarized in Algorithm 2. We defer the error

analysis of this step to later in this section. Before we proceed,

let us state a simple property about this step.

Observation V.6. We will choose the parameters so that ³i ·
hi f ³i−1 (this will be shown in Fact V.20(d)). (Recall that

hi := log(εiUi) is the depth of the base level in Ti.) Thus,

after this step, all nodes in Ti−1 still have weight at most ³i−1.

Therefore, this step does not exceed the capacity of nodes in

Ti−1. But it does create a number of non-full nodes: It merges

Ti into Ti−1 while breaking our invariant of having only full

or empty node in Ti−1. So the purpose of Step 2 and 3 is

exactly to restore this invariant.

Merge Step 2 - Compressing into full nodes: Naturally,

given the non-full nodes in Ti−1, we want to first perform a

compression step similar to q-digest: Whenever a node v ∈
Ti−1 has a parent that is not full, we move weight from v to

parent(v).

Let Fi−1 be the set of full nodes after this step. We call the

nodes that are neither full nor empty partial nodes. All the

partial nodes are now either non-full children of full nodes

in Fi−1 or an partially-full root. Importantly, we have the

10When i = k, this will actually be all u such that Wk[u] is nonzero,
rather than just all full nodes.

12We are keeping the algorithm description simple by moving weights one
unit at a time. In an actual implementation, one should of course move the
maximum amount possible at each time.
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Algorithm 1 Inserting an element of the stream

1: procedure INSERT(x)

2: // Insert x into Tk.

3: v ← the highest non-full node in Tk whose interval contains x
4: Wk[v]←Wk[v] + 1 ▷ Recall Wk[v] is the weight of v.

5: // Compress and merge

6: t← t+ 1 ▷ t is the total number of stream elements inserted so far.

7: for i = k . . . 1 do

8: if nk | t then

9: MERGE(i) ▷ Compress Ti into full nodes of layer i− 1.

10: Clear the structure at layer i.
11: // Note the set Vi−1 changes after MERGE(i). After we clear layer i, the structure of Ti implicitly changes

according to the new Vi−1.

12: if t = n0 then

13: DOUBLE() ▷ This handles unknown n (Section V-E); the reader may ignore it for now.

Algorithm 2 Moving the weights from layer i to empty nodes

in layer i− 1

1: procedure MOVE(i)
2: for all u ∈ Fi

10 do

3: if u is strictly above the base level of Ti then

4: Let v ∈ Ti be an arbitrary descendant of u at

the base level.

5: Let v′ ∈ Ti−1 be the node corresponding to v
(by Remark V.1).

6: Wi−1[v
′]←Wi−1[v

′] +Wi[u]
7: else

8: Let u′ ∈ Ti−1 be the node corresponding to u
(by Remark V.1).

9: Wi−1[u
′]←Wi−1[u

′] +Wi[u]

Algorithm 3 Compressing weights Wi−1 into full nodes

1: procedure COMPRESS(i− 1)

2: while there exists v ∈ Ti−1, Wi−1[v] > 0 and

Wi−1[parent(v)] < ³i−1 do

3: Wi−1[v]←Wi−1[v]− 1
4: Wi−1[parent(v)]←Wi−1[parent(v)] + 1 ▷ Mov-

ing the weights.12

following observation.

Observation V.7. After this step, the interval labels of the

partial nodes are all disjoint.

This is because no partial node can be an ancestor of

another. These partial nodes are the leftovers that we will

round up in Step 3.

Merge Step 3 - Round up the leftovers: As the interval

labels of these leftover partial nodes are disjoint by Obser-

vation V.7, we can sort these nodes by their interval. Then,

roughly speaking, we are going to take the (offline) quantile

sketch of these nodes as the result for rounding.

More formally, suppose there are ℓ partial nodes. After

sorting, these nodes are v1, v2, . . . , vℓ. Suppose each partial

node vj is labeled [aj , bj ]. We will have a1 f b1 < a2 f
b2 < · · · < aℓ f bℓ. Let r = 1

³i−1

∑ℓ
j=1 Wi−1[vj ] be the

number of full nodes that we are expected to round up to.13

For every m ∈ [r], we find the first qm ∈ [ℓ] such that∑qm
j=1 Wi−1[vj ] g m · ³i−1. These vq1 , vq2 . . . , vqr are the

“quantiles” of these sorted partial nodes.

Then we set the weight of all vqm ’s (for all m ∈ [r]) to ³i−1

and the weight of all other vj’s to zero. Note these vqm ’s must

be disjoint since by Observation V.6, any node has weight

at most ³i−1. This rounds up the partial nodes into r many

full nodes and finishes this step. An implementation of this

procedure is given below in Algorithm 4.

Algorithm 4 Rounding the leftovers

1: procedure ROUND(i− 1)

2: c← 0 ▷ c is the cumulative total weight

3: m← 1
4: for all partial node v in left-to-right order do

5: c← c+Wi−1[v]
6: if c g m · ³i−1 then

7: Wi−1[v]← ³i−1

8: m← m+ 1
9: else

10: Wi−1[v]← 0

b) Conclusion: Finally, our merging operation is imple-

mented by performing these three steps sequentially.

C. Error analysis for merges

Before we analyze each step of MERGE(i), let us first define

the error metric.

13This is always an integer, because
∑ℓ

j=1
Wi−1[vj ] is equal to ni minus

the total weight in the full nodes formed in Step 1 and 2, and we always choose
ni to be a multiple of αi−1.
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Algorithm 5 Merging layer i into layer i− 1

1: procedure MERGE(i)
2: MOVE(i)
3: COMPRESS(i− 1)

4: ROUND(i− 1)

5: // During this process; the set of full nodes Fi−1 that

we store changes as we move weights around.

Consistency and Discrepancy: First, we define the notion

of consistency between our layer i sketch Ti and a stream of

elements Ã. Intuitively, this describes what layer i should look

like upon receiving stream Ã if the merge had not introduced

any error.

Definition V.8 (Consistency). We say that a stream Ã is

consistent with a subset of nodes S ¦ Ti if and only if there

exists a map f that maps {1, 2, . . . , |Ã|} to S satisfying the

following.

1) Each node u ∈ S is mapped to exactly Wi[u] times.

2) For every 1 f j f |Ã|, the interval label of node f(j)
contains Ãj .

Then we define the discrepancy between Ti and the stream

Ã. This quantifies the amount of additional error we have.

Definition V.9 (Discrepancy). We define the discrepancy

between a stream Ã and a subset of nodes S ¦ Ti as

disc(Ã, S) := min
Ã′ consistent with S

d(Ã, Ã′).

Here, as defined in Section II, the distance between two

streams is

d(Ã, Ã′) = max
x∈[1,U ]

|rankÃ(x)− rankÃ′(x)|.

Analysis of Step 1: Now, we show that Step 1 increases

the discrepancy by at most εini.

Lemma V.10 (Step 1). Let Ti be the layer-i sketch before

Algorithm 2 (Step 1). Also, let S be the set of originally empty

nodes in Ti−1 whose weight increases during Algorithm 2.

For any stream Ã, we have

disc(Ã, S) f disc(Ã, Ti) + εini.

Proof. Let Ã∗ := argminÃ∗ consistent with Ti
d(Ã, Ã∗) and f∗ be

the consistent mapping from Ã∗ to Ti. We will construct a

stream Ã′ and a mapping f ′ such that Ã′ is consistent with S
with mapping f ′ and d(Ã∗, Ã′) f εini. This finishes the proof

because the distance we define satisfies the triangle inequality

d(Ã, Ã′) f d(Ã, Ã∗) + εini.

For any element Ã∗

j (1 f j f |Ã∗|) there are two cases:

1) If f∗(j) = u for a node u below the base level of Ti,

let u′ ∈ Ti−1 be the corresponding node (as in Line 9,

Algorithm 2). We let Ã′

j = Ã∗

j and set f ′(j) = u′.

2) If f∗(j) = u is a node u strictly above the base level of

Ti, let v ∈ Ti be its descendant at the base level and v′ ∈
Ti−1 be the corresponding exposed node (as in Line 5,

Algorithm 2). We select an arbitrary element y in the

interval of v (which is equal to that of v′), and let Ã′

j = y.

Then we set f ′(y) = v′.

From this construction, it is clear that Ã′ is consistent with S
under f ′. To upper bound d(Ã∗, Ã), consider any query x ∈
[1, U ], the difference of the rank of x in Ã and in Ã′ is bounded

by the number of j’s such that x lies strictly between Ã∗

j and

Ã′

j .

As Ã∗

j ̸= Ã′

j , this can only happen in Case 2. Moreover, as

Ã∗

j was initially in the interval of u, and Ã′

j is in the interval of

v (wich is contained by that of u), we know that x must also

be in the interval of u. Since there are at most hi such nodes

u strictly above the base level of Ti, and each is mapped to ³i

times, we have at most hi³i many such j’s. We will choose

the parameters in Section V-F so that hi³i f εini (this will

follow from (3)). This proves d(Ã∗, Ã) f εini.

Then we need to argue that when S is merged with the

original nodes in Ti−1, their discrepancies at most add up.

This follows from the following observation, which is a

consequence of Observation II.2:

Observation V.11. For two disjoint sets of nodes S, T and

any two streams Ã1 and Ã2, we have

disc(Ã1 ◦ Ã2, S ∪ T ) f disc(Ã1, S) + disc(Ã2, T ),

where ◦ means concatenating two streams.

Analysis of Step 2: It is not hard to see that Step 2 never

increases discrepancy.

Lemma V.12 (Step 2). For any stream Ã that is consistent

with Ti−1, after we perform Algorithm 3 on Ti−1, Ã is still

consistent with Ti−1. This implies that for any stream Ã,

disc(Ã, Ti−1) is always nonincreasing after perform Algo-

rithm 3 on Ti−1.

Proof. We prove this for each operation we perform. When-

ever we move one unit of weight from v to parent(v), we

pick an arbitrary 1 f j f |Ã| such that f(j) = v and let

f(j) ← parent(v). Since the interval of parent(v) contains

that of v, the consistency map remains valid.

Analysis of Step 3: Finally, we show that the rounding

in Step 3 only increases the discrepancy by ³i−1 = εini.

Lemma V.13 (Step 3). For any stream Ã, whenever we

perform Step 3 (Algorithm 4) to Ti−1 in our algorithm, the

discrepancy disc(Ã, Ti−1) increases by at most ³i−1 (which

is equal to εini).

Proof. First, we only perform Algorithm 4 after Algorithm 3.

So, by Observation V.7, all the partial nodes have disjoint

intervals before Algorithm 4.
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Before the algorithm starts, let v1, v2, . . . , vℓ be the partial

nodes of Ti−1 in sorted order, and r = 1
³i−1

∑ℓ
j=1 Wi−1[vj ].

Suppose [a1, b1], [a2, b2], . . . , [aℓ, bℓ] are their disjoint interval

labels. Let Ã∗ = argminÃ∗ consistent with Ti−1
d(Ã, Ã∗) and f∗

be corresponding consistency map. For every m ∈ [r], let

vqm be the first node such that
∑qm

j=1 Wi−1[vj ] g m · ³i−1.

As discussed in Section V-B, these vq1 , vq2 , . . . , vqr are all

distinct.

After the algorithm, all partial nodes become empty, except

that vq1 , vq2 , . . . , vqr become full nodes with weight ³i−1. We

let q0 = 0. For all m ∈ [r], we do the following to construct

stream Ã′ and its consistency map f ′ (with Ti−1 after the

algorithm):

• For all nodes vs with qm−1 < s < qm and all j ∈
{1, 2, . . . , |Ã∗|} such that f∗(j) = vs, we set Ã′

j ← aqm
and f ′(j)← vqm .

• For the node vqm−1
, we take

∑q(m−1)

s=1 Wi−1[vs]− (m−
1) · ³i−1 many j’s such that f∗(j) = vqm−1 and set

Ã′

j ← aqm and f ′(j)← vqm .

• For the node vqm , we take m ·³i−1−
∑(qm)−1

s=1 Wi−1[vs]
many j’s such that f∗(j) = vqm and set Ã′

j ← Ã∗

j and

f ′(j)← f∗(j) = vqm .

Now we prove that d(Ã∗, Ã′) f ³i−1, which by our choice of

parameters in Section V-F, will be at most εini. This will end

the proof of this lemma by the triangle inequality d(Ã, Ã′) f
d(Ã, Ã∗) + d(Ã∗, Ã′) f d(Ã, Ã∗) + εini.

For any query x, its rank in Ã∗ and Ã′ differs by at most

the number of j’s such that x is strictly between Ã∗

j and Ã′

j .

As Ã∗

j ̸= Ã′

j , this only happens in the first two cases. Suppose

f ′(j) = vqm . This implies Ã′

j = aqm . Then f∗(j) must be a

node vs with qm−1 f vs < qm, and Ã∗

j g aqm−1
.

This implies x is in the interval [aqm−1
, aqm). Thus there is

a unique m for each query x, and by our construction, there

can be at most ³i−1 many j’s that are mapped to vqm by f ′.

This proves that d(Ã∗, Ã′) f ³i−1.

Putting everything together: We have essentially proved

the following lemma.

Lemma V.14. Let Ã be the partial stream that arrives at time

[s ·ni+1, s ·ni] for some integer s. According to Algorithm 1,

after the (s · ni)-th insertion, we will perform MERGE(k),

MERGE(k − 1), . . . , MERGE(i) in order.

Let Ti be the structure at layer i at the exact point that

MERGE(i+1) returns and MERGE(i) has not started yet. Then

we have

disc(Ã, Ti) f 2µi+1 · ni,

where

µi+1 = εi+1 + εi+2 + · · ·+ εk.

Proof. We proceed by induction. In the base case where i = k,

the layer-k structure Tk is always consistent with the partial

stream Ã by construction. Suppose that this holds for i + 1.

We split the stream Ã into its batches Ã = Ã(1) ◦ Ã(2) ◦ · · · ◦
Ã(ni/ni+1) where each Ã(j) has length ni+1. For the ease of

notation, we define Ã(1...j) = Ã(1) ◦ Ã(2) ◦ · · · ◦ Ã(j).

By the induction hypothesis, we know that after receiving

each Ã(j) but immediately before we perform MERGE(i+ 1),

we have disc(Ã(j), Ti+1) f 2µi+2 · ni+1.

Then let us look at the process of MERGE(i + 1) and do

another layer of induction. The induction hypothesis is that

immediately after receiving Ã(j) and perform MERGE(i+ 1),

we have disc(Ã(1...j), Ti) f 2(µi+2 + εi+1) · j · ni+1. When

j = ni/ni+1, this is simply disc(Ã, Ti) f 2(µi+2+εi+1)·ni =
2µi+1 · ni and proves the outer induction.

In the base case, Ti is empty, and we have disc(∅, Ti) = 0.

Suppose for j − 1, our induction hypothesis holds.

• It first performs MERGE(i + 1) which, by Lemma V.10,

adds a set S of new non-empty nodes to Ti−1 with

disc(Ã(j), S) f disc(Ã(j), Ti+1)+εi+1 ·ni+1 f (2µi+2+
εi+1)·ni+1. Then by Observation V.11, after this step, we

have disc(Ã(1...j), Ti) f (2µi+2 ·j+εi+1 ·(2j−1)) ·ni+1.

• Then it performs COMPRESS(i) which, by Lemma V.12,

does not increase the discrepancy.

• Finally, it performs ROUND(i) which, by Lemma V.13,

increases the discrepancy by at most εi+1 · ni+1 and

results in disc(Ã(1...j), Ti) f 2(µi+2 + εi+1) · j · ni+1.

This finishes the inner induction and the proof of this lemma.

The inner induction in the proof above actually proves the

natural corollary below.

Corollary V.15. Let Ã be the partial stream that arrives at

time [s · ni + 1, t] for some integer s and t such that ni+1 | t
and t f s · ni. After the t-th insertion and immediately after

MERGE(i+ 1) returns. We have

disc(Ã, Ti) f 2µi+1 · |Ã|

where

µi+1 = εi+1 + εi+2 + · · ·+ εk.

D. Answering queries

To answer a rank query, we simply add up the weights of

all the nodes whose interval contains any element that is at

most x, as shown in Algorithm 6.

First, we bound the total weight of nodes v which could

cause over-counting. To this end, we say that a node is bad

if its interval contains x and, furthermore, its interval is not

the length-1 interval containing only x. Then, we show the

following.

Proposition V.16. The total weight of all bad nodes, across

all layers, is at most µ0n0.
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Algorithm 6 Answering a rank query

1: procedure RANK(x)

2: r ← 0
3: for all i ∈ {0, . . . , k} do

4: for all vertices v ∈ Ti do

5: if the interval of v contains any element less

or equal to x then

6: r ← r +Wi[v]
7: return r

Proof. Let wi denote the total weight of all bad nodes in Ti

(for i < k, this is just ³i times the number of full bad nodes

in layer i). Moreover, let ci denote the total capacity of all

bad nodes in layer i, even the empty ones14 (this is ³k times

the total number of bad nodes in layer k).

We will prove the following statement for 0 f i f k by

induction:

w0 + · · ·+ wi−1 + ci f ε0n0 + · · ·+ εini. (2)

For the base case i = 0, there are h0 bad nodes in layer 0
(namely, the strict ancestors of the node in the base level which

corresponds to x). Therefore we have c0 = h0³0 f ε0n0.

Now, assume that (2) holds for i−1 (where 1 f i f k); we

will show that it also holds for i. Consider the quantity ci, the

total capacity of bad nodes in layer i. Above the base level of

Ti, at most one node in each level is bad (since the intervals

in a level are disjoint). Thus, the total contribution from these

nodes to ci is at most hi³i f εini.

On the other hand, each bad node in Ti which is at or below

the base level corresponds to an empty bad node in Ti−1. Note

that the total capacity of empty bad nodes in Ti−1 is just

ci−1 − wi−1. Moreover, since ³i f ³i−1 (by Fact V.20(d)),

the capacity of each node at or below the base level of Ti is

at most the capacity of the corresponding empty bad node in

Ti−1. Thus, the total capacity of bad nodes in Ti which are at

or below the base level is at most ci−1 −wi−1. Therefore, in

total, the total capacity of all bad nodes in Ti is at most

ci f εini + ci−1 − wi−1.

Recall also that by the inductive hypothesis, we have

w0 + · · ·+ wi−2 + ci−1 f ε0n0 + · · ·+ εi−1ni−1.

Combining these two inequalities, we recover (2).

Having proven (2), it remains to complete the proof of

Proposition V.16. Indeed, setting i = k in (2) and using the

fact that ci g wi, the total weight of all bad nodes is at most

ε0n0 + · · ·+ εini f (ε0 + · · ·+ εi)n0 = µ0n0,

as desired.

14For layer i = k specifically, ci includes also the non-full nodes.

Proposition V.17. At any time t, suppose that Ã is the stream

received so far. Then there exists a decomposition Ã = Ã0 ◦
Ã1 ◦ · · · ◦ Ãk such that

k∑

i=0

disc(Ãi, Ti) f 2µ1t.

Proof. Let Ã0 be the first +t/n1, · n1 elements of Ã, Ã1 be

the next +t/n2, · n2 − |Ã1| elements, Ã2 be the next +t/n3, ·
n3 − |Ã1 ◦ Ã2| elements, and so on. In general, Ãi is the next

+t/ni+1,·ni+1−|Ã1 ◦Ã2 ◦· · ·◦Ãi−1| elements in Ã after those

in Ãi−1. Specifically, we let nk+1 = 1.

By Corollary V.15, we know that disc(Ãi, Ti) f 2µi+1 · |Ãi|.
Thus,

k∑

i=0

disc(Ãi, Ti) f 2µ1|Ã0|+ 2µ2|Ã1|+ · · ·+ 2µk|Ãk|

f 2µ1(|Ã0|+ |Ã1|+ · · ·+ |Ãk|)

= 2µ1t,

so we are done.

These two propositions imply a bound on the error of a rank

query:

Proposition V.18. Let Ã be the stream received so far at

time t. Then, the answer to a rank query, as performed by

Algorithm 6, for any element x differs from rankÃ(x) by at

most µ0n0 + 2µ1t.

Proof. Let Ã = Ã0 ◦ Ã1 ◦ · · · ◦ Ãk be the decomposition

from Proposition V.17. Combine Proposition V.17 with the

definition of discrepancy (Definition V.9), we know that there

exists a sequence of partial streams {Ã′

i}
k
i=0 such that Ã′

i is

consistent with Ti and
∑k

i=0 d(Ãi, Ã
′

i) f 2µ1t.

Let Ã′ = Ã′

1 ◦ Ã
′

2 ◦ · · · ◦ Ã
′

k. By the triangle inequality

(Observation II.1), we know that d(Ã, Ã′) f 2µ1t. Since we

answered the query by counting the total weight of nodes

whose intervals include any element which is at most x, the

quantity obtained is at least rankÃ′(x), and may overcount

at nodes whose interval also contains an element larger than

x. However, note that any such node must be bad, so the

total amount by which the algorithm overcounts is at most

µ0n0 by Proposition V.16. Thus, the output of the algorithm

differs from rankÃ′(x) by at most µ0n0. Furthermore, by

Proposition V.17 (and the definition of distance of streams),

we have |rankÃ(x) − rankÃ′(x)| f 2µ1t, so the conclusion

follows.

Now, since µ0, µ1 f ε/4 (by Fact V.20(f)), this already

means that the error of a rank query is at most εn0. However,

so far we have still assumed that we know n in advance;

moreover, we would actually like the error to be at most εt,
where t is the total number of elements received so far. In

Section V-E, we will explain how to rectify this.
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E. Removing assumptions about n

In this section, we will describe how to dispense with the

assumption that we know n, as well as the assumption that

n g n∗. We will also prove that the error of any query is at

most εt.

a) Unknown n: First, we describe how to maintain the

data structure when we don’t know n in advance, but still

assuming that all queries happen after t g n∗. At the start

of the algorithm, we initialize the data structure with n0 =
n∗. Then, whenever t, the number of elements so far in the

stream, reaches n0, we double n0 (which has the effect of

doubling ni and ³i for all i). Note that when t = n0, only

layer 0 exists, so we only need to describe how to update layer

0. Every node in layer 0 is now half-full instead of being

full; that is, the weight of every node in F0 is now ³0/2.

Then, we just perform the push-up and rounding, as described

in Algorithms 3 and 4, to layer 0. The pseudocode of this

procedure is given in Algorithm 7, and it is called in Line 13

of Algorithm 1.

By Lemma V.13, this has the effect of changing the stream

represented by layer 0 by a distance of at most ³0 =
ε0n0/Vlog(ε0U0) + 1W f εt/16 (since we assumed that εU
is sufficiently large). Then, at any point in the stream, the

total amount the represented stream has been changed by these

rounding operations is at most εn0/16+εn0/32+· · · f εn0/8.

Therefore, the bound on distance between Ã and Ã′ in Propo-

sition V.17 is increased by εn0/16 after adding the doubling

step to the algorithm.

Therefore, after this modification to the algorithm, the proof

of Proposition V.18 now gives a bound of µ0n0+µ1t+εn0/16.

Since n0 f 2t (since we assumed that t g n∗), and µ0 f ε/4
and µ1 f ε/8 (by Fact V.20(f)), we have

µ0n0 + µ1t+ εn0/16 f εt.

In conclusion, for any t g n∗, the additive error of any rank

query after t elements of the stream is at most εt, as desired.

It remains, then, to handle the cases where t < n∗.

Algorithm 7 Doubling size of data structure

1: procedure DOUBLE()

2: for all i ∈ {0, . . . , k} do

3: ni ← 2ni

4: ³i ← 2³i ▷ The algorithm doesn’t actually store

ni or ³i; however, this does affect F0 since the

nodes in W0 are now half-full instead of full.

5: COMPRESS(0)

6: ROUND(0)

b) Dealing with 1/ε f t < n∗: Next, we describe how

to modify the algorithm to still be able to answer queries when

1/ε f t < n∗. Firstly, we still store the original data structure,

since we will need to use it after t exceeds n∗. However, in

addition, we create a new instantiation of the data structure

(with the same parameters), where upon receiving an element

of the stream, instead of inserting it once, we insert the same

element εn∗ times (by Fact V.20(i), this is an integer). Then, as

long as t g 1/ε, we will have inserted at least n∗ elements into

this alternate data structure, so by the previous section, it will

be able to answer rank queries with relative error at most ε, as

desired. Of course, the effective value of t will have increased

by a factor of εn∗, which will have ramifications for the space

complexity. However, we will show in Section V-G that the

space complexity is still what we want it to be.

c) Dealing with t < 1/ε: Finally, while t < 1/ε, we

will just store all the elements of the stream so far explicitly

(in addition to keeping the data structures of the previous two

sections). We will show in Section V-G that this can actually

be done using O(ε−1 log(εU)) space. Obviously, if we store

all the elements of the stream, rank queries can be answered

exactly.

F. Choosing the parameters

We will now choose values for the parameters of the

algorithm (k, ni, Ui, and εi) and verify that they satisfy some

necessary properties.

First, note that we may assume that n, U , and ε are all

powers of 2 (by rounding n and U up and ε down to the

nearest power of 2, costing at most a constant factor). Indeed,

we will ensure that ni, Ui, εi, and ³i are always powers of

2, in order to stave off divisibility issues.

We then pick the following values. Let k = log∗(εU). As

described in Section V-A, let U0 = U . Let n0 be an upper

bound on t, the number of elements so far in the stream. As

previously described, we will imagine for now that we know

n in advance and that n0 = n. Also, we assume, as we may,

that n0 is a power of 2. We then pick εi as follows:

εi =

{
ε/8, i = 0,

ε/2k−i+4, i g 1.

Also, define

µi = εi + εi+1 + · · ·+ εk.

Also, recall from Section V-A that for all i, we define the

capacities ³i based on εi, ni, and Uias follows:

³i =
εini

Vlog(εiUi) + 1W
. (3)

Now, we define the parameters ni and Ui for layer i + 1
recursively (for i < k) as follows:

Ui+1 =

⌈⌈
1

εi
+

ni

³i

⌉⌉
=

⌈⌈
1 + Vlog(εiUi) + 1W

εi

⌉⌉

=
2Vlog(εiUi) + 1W

εi
, (4)

ni+1 =
³i

εi+1
=

εini

εi+1Vlog(εiUi) + 1W
. (5)

We let hi be the depth of the base layer in Ti:

hi = log(εiUi).
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We will show soon that indeed hi is always a positive integer.

Now, so far we have treated n0 as fixed, but this assumption

will change later in Section V-E. In anticipation of this, we will

briefly discuss here the effects of changing n0. Treating ε, U
as constants, note that the only parameters that are affected by

n0 are the ni and ³i, which are all constant multiples of n0.

We will need all the ni and ³i to be integers (or equivalently,

at least 1), so to this end, define

n∗ =
n0

³k
. (6)

Then, n∗ is fixed (i.e., it depends only on ε, U and not on n0).

Note that n∗ is the value of n0 that causes ³k to equal 1 (and

we will show in Fact V.20(e) that it will also cause the rest of

the ni, ³i to be integral).

Now we will check some properties of these parameters

which we will need. First, we will show the important property

of Ui: that it is an upper bound on the number of exposed

nodes in the previous layer.

Claim V.19. For all 0 f i < k, we have Ui+1 g |Vi| (recall

that Vi is the set of exposed nodes in layer i).

Proof. The number of full nodes in layer i is at most ni/³i

(since full nodes have weight ³i. If there are no full nodes,

then we would have |Vi| = 1/εi, since Vi would just be the

set of all the roots of trees in Ti. Now, imagine building up the

set of full nodes by adding them one at a time (from bottom to

top). Each time we add a full node, we remove one exposed

node, and add back at most two exposed nodes. Thus, the

total number of exposed nodes after this process is at most

1/εi + ni/³i, which is indeed at most Ui+1 by (4).

Now, we will prove various other properties of the pa-

rameters which we will need throughout. We state all these

properties now, but we will defer their proof to Appendix A,

since they mostly just involve manipulation of the definitions

of the parameters.

Fact V.20. The parameters satisfy the following properties:

(a) For all i, ni, Ui, εi, and ³i are powers of 2.

(b) For all i, εiUi g 2 (and thus, hi is a positive integer).

(c) For all i < k, ni+1 is a factor of ni.

(d) For all i < k, ³i+1 = ³i/Vhi+1 + 1W.

(e) If n0 g n∗, then ni, ³i g 1 for all i.
(f) µ0 f ε/4, and µi f ε/8 for all i > 1.

(g) Uk = O(1/ε).
(h) U1 + U2 + · · ·+ Uk = O(ε−1 log(εU)).
(i) ε−1 f n∗ f ε−1(log(εU))1+o(1) (where o(1) refers to a

term that approaches 0 as εU →∞).

(j) ³k−1 = O(n0/n
∗).

G. Space complexity

Now we discuss the space complexity of the algorithm. All

space complexities in this section will be in bits, not words.

There are two primary things to check: the space taken by the

sketch itself, and the space required during a merge step after

an insertion.

a) Space of sketch: The information stored by the algo-

rithm consists only of the full nodes Fi for layers 0 f i < k
and the weights Wk for layer k. (Note that we don’t need to

store Ti since it is determined recursively by Ti−1 and Fi−1.)

Each Fi is an upward-closed subset of Ti. In each of the

1/εi trees that comprise Ti, the portion of Fi in that tree (if

nonempty) is a connected subgraph including the root. Thus,

that portion of Fi is uniquely determined by the topology of

the (rooted) tree that it forms (where in a tree topology we ).

We can store the topology of an ℓ-vertex tree using O(ℓ) bits

(by storing the bracket representation of the tree). The total

number of full nodes in Fi is at most ni/³i at any time, so

this means that the total space to store Fi is O(1/εi+ni/³i),
which is just O(Ui+1) by (4). Thus, the total space to store

all the Fi is O(U1 + · · ·+ Uk), which is O(ε−1 log(εU)) by

Fact V.20(h).

Now, it remains to check the space required to store Wk.

First, the keys of Wk also form an upward-closed subset of

Ti. This subset consists of full and partial nodes; by the same

argument, there are at most nk/³k = O(1/ε) full nodes. Every

partial node is either a root (of which there are O(1/εk) =
O(1/ε)) or a child of a full node, so there are also at most

O(1/ε) partial nodes. Therefore, as with the Fi, the space

required to store the set of all nonempty nodes is at most

O(1/εk + 1/ε) = O(1/ε).

After the set of nonempty nodes has been stored, we just

need to store their weights15 in some order (say pre-order of

the trees). The weights are all at most ³k = n0/n
∗, and there

are O(1/ε) of them, so the space required to store all the

weights is at most O(ε−1 log(n0/n
∗)). Since n∗ g 1/ε (by

Fact V.20(i)) and n0 f max(2n, n∗) at all times, we have

O(ε−1 log(n0/n
∗)) f O(ε−1 log(εn)).

Putting everything together, the total space complexity of

the data structure is at most

O(ε−1(log(εU) + log(εn)),

as desired.

b) Space of sketch while t is small: Recall that in section

Section V-E, we made two modifications to the data structure

that lasted while t < n∗ and t < 1/ε. We will show now that

(asymptotically) they don’t require any extra space.

First, while t < n∗, we maintained a second data structure

identical to the first, except that we repeated each element εn∗

times. For this data structure, the space analysis that we just

performed still holds, except that n0 may now be up to 2εn∗t.
The space to store the Fi is unchanged. The space required

15Actually, we only need to store the weights of the leaves of the forest
formed by the nonempty nodes, since the rest are full. Since it doesn’t make
a difference to the asymptotic space complexity, we store all the weights for
simplicity.

1152

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 19,2025 at 17:23:38 UTC from IEEE Xplore.  Restrictions apply. 



to store the weights is now at most O(ε−1 log(n0/n
∗)) f

O(ε−1 log(εt)), which is still at most O(ε−1 log(εn)), as

desired.

Finally, for t < 1/ε, we stored all the elements of the stream

explicitly. Naively, storing these as an ordered list would take

O(e−1 logU) space, but actually, since the set is unordered,

we can improve this. Indeed, split the universe [1, U ] into 1/ε
buckets of size εU (based on the log ε−1 most significant bits).

Then, for each bucket, store an ordered list of the log(εU)
least significant bits of every stream element in that bucket.

Storing such an ordered list of length ℓ takes O(1+ℓ log(εU))
space, so the total space taken is at most O(1/ε+t log(εU)) f
O(ε−1 log(εU)), which is at most a constant multiple of the

desired space.

This completes the discussion of the space taken by the

sketch itself. Now we will show that the algorithm does not

require any extra space (asymptotically) during the merge

operation.

c) Space during merge: During the merge, the only extra

memory we require is that of storing the keys (i.e., vertices)

of the map Wi−1 which weren’t already stored in Fi−1. There

are two parts of this: we need to store the new keys of Wi−1

(that is, the vertices with newly added weight), and we need

to store the weights themselves.

Let S denote the set of new keys of Wi−1. Note that every

node in S corresponds to at least one node from Fi which

put its weight into that node. Thus, we have |S| f |Fi|.
Additionally, S ∪ Fi−1 form an upward-closed set in Ti−1.

Thus, just as we stored Fi−1, we can also store S ∪ Fi−1

using |S ∪ Fi−1| f |Fi|+ |Fi−1| space. Note that we already

used |Fi|+ |Fi−1| space for the original sketch, so storing S
does not require any more space asymptotically.

Now, it remains to store the weights in Wi−1. Here we must

distinguish between the cases i = k and i < k. If i = k, then

we store the weights explicitly. The weights always remain at

most ³k−1 = O(³k) = O(n0/n
∗) (by Fact V.20(j)), so the

total space required to store the weights is O(|S| log(n0/n
∗)).

Since |S| f Fk = O(1/ε), this is then at most the weight

allocated to store Wk originally, so again this does not require

extra asymptotic space.

If i < k, then we first make one small optimization: as stated

in a footnote, in Algorithm 3 (the compression algorithm), we

do not need to move the weight up in increments of 1. Indeed,

the weights start out as multiples of ³i, and the threshold

³i−1 is also a multiple of ³i. Thus, we can move weight in

increments of ³i−1, so that the weights in Wk always remain

multiples of ³i. Now, since the weights are all multiples of

³i, we can store their ratios with ³i; we store the ratios in

unary, so that storing a weight of ℓ³i requires O(ℓ + 1) bits

of space. Then, the total space needed to store the weights is

O(ni/³i + |S|). Again, |S| f Fi, so we can see that this is

again at most the weight allocated to storing Fi originally.

Thus, we have shown that in all cases, the merge step does

not require any more space (asymptotically) than storing the

sketch already does.

H. Runtime

In this section, we prove that, for reasonably-sized n,

our algorithm processes updates and queries in O(log(1/ε))
amortized time. We will need a few technical assumptions

and simplifications to make our algorithm run in O(log(1/ε))
time. The first is that we relax the space requirement a bit

to O(ε−1(log(εn) + logU)) bits, which still within O(ε−1)
words. Secondly, we assume that n > (logU)C/ε2 for some

absolute constant C that depends on the computational model.

Also, we assume that there are no queries during the first

(logU)C/ε2 insertions.

Insertion into the last layer: Our procedure for insertion,

Algorithm 1, contains two steps. The first step is to insert the

new element x into the last-layer sketch Tk. The second step

is to merge the layer i into i− 1 (Algorithm 5).

Now, let us focus on the time complexity of the first step

(Lines 3 and 4 of Algorithm 1). The reason we relax the space

requirement a little is to allow us to store the tree Tk at the

last layer explicitly, not in the bracket representation. There

are at most 3|Fk| f 3 · nk

³k

= O(1/ε) nodes in the last layer.

For each node u ∈ Tk, we store its weight Wk[u] (which

takes O(log(εn)) bits) and the interval [au, bu] (which takes

O(logU) bits).

To efficiently find the highest non-full node containing x,

we always maintain a sorted list of all exposed nodes (non-

full nodes whose parent is full and the non-full roots). By

Observation V.5, these nodes have disjoint intervals whose

union covers the entire [U ]. Thus these nodes are simply sorted

in the increasing order of these intervals. A binary search in

O(log 1/ε) time finds the exposed node (which is also the

highest non-full node) u whose interval contains x. Then, we

increase the weight Wk[u] of that node by 1.

In the rare case where the node u becomes full after this,

we need to remove it from the list and add its two empty

children. Although this takes O(1/ε) time as we have to

modify the entire list and the topology of the tree we store, it

only happens once every ³k = n0

n∗
(Equation (6)) insertions.

Here n0 is the current estimate of string length, which keeps

doubling as explained Section V-E. Since we know that n >
(logU)C/ε2 from our assumption, we can run the algorithm

starting with n0 = (logU)C/ε2. As n∗ f ε−1(log(εU))1+o(1)

(Fact V.20(i)), we have ³k g O((logU)C−1/ε). We can

amortize the O(1/ε) running time to these ³k insertions and

get O(1) amortized running time for updating the list.

Merging layer i into layer i−1: First of all, in each tree

Ti, the number of all nodes is |Fi| f
ni

³i

= O(log(εiUi)/εi)

(εi = ε/2k−i+4). We want to amortize the time cost to ni

insertions. For Algorithm 5, there are three procedures which

we will analyze one by one.
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• MOVE(i) (Algorithm 2): At Line 5, we need to find the

base-level descendant v′ of v for every node v ∈ Fi above

the base level. This can be done by traversing the stored

part of tree Ti once, which takes |Fi| time.

In the rest of this algorithm, since we only maintain the

full nodes Fi−1 in Ti−1, in this step, all the empty nodes

in Ti−1 whose weights increase are not stored before by

our algorithm. We simply store them and their weights

as a list using O((logU +log(εn)) · |Fi|) bits of memory

in the depth-first-search order. This takes O(|Fi|) time.

• COMPRESS(i − 1) (Algorithm 3): In the time efficient

implementation of COMPRESS(i− 1), instead of moving

weights one unit at a time, we process the nodes in the

list we stored during Algorithm 2 in top-down order and

always move the maximum amount of weight that we can

move. Since this process moves weight up at most once

from each node, it also only takes O(|Fi|) time.

• ROUND(i− 1) (Algorithm 4): Finally, Algorithm 4 finds

the partial nodes in our list while visiting each node at

most once. So this takes only |Fi| time as well.

After these three steps, we also have to update the topology

of Fi−1 and add new full nodes to its bracket representation.

This takse |Fi−1| time. In total, the time complexity is |Fi−1|+
|Fi|. So the amortized time is (|Fi−1|+|Fi|)/ni = O (1/³i) f
O(1/³k) per layer i. As there are k = log∗ U many layers,

while ³k g (logU)C−1/ε, the amortized time cost is just

O(1).

Answering rank queries: For answering rank

queries, running exactly Algorithm 6 requires traversing

T0, T1, . . . , Tk, which takes O(
∑k

i=0 |Fi|) = O((logU)/ε)
time. For simplicity, we assume that there are only queries

after first n0 elements are inserted. After every ε · n0

insertions, we run Algorithm 6, compute each ε-approximate

quantile and store them. This takes at most O((logU)/ε2)
time. Then for every query x, we just binary search in

O(log 1/ε) time, and count the number of stored quantile

elements less than that x, multiply that by εt (where t is

the number of current insertions), and output the answer.

This has an error of at most 2εn. Since we can amortize the

O((logU)/ε2) time cost to ε · n0 g (logU)C/ε2 elements.

This takes O(log 1/ε) amortized time per query and O(1)
amortized time per insertion.

VI. PRACTICAL CONSIDERATIONS

a) Mergeability.: One popular feature with quantile

sketches is being fully-mergeable, meaning that any two

sketches with the error parameter ε can be merged into a single

sketch without increasing the error parameter ε. A weaker

notion of mergeability is the one-way mergeability, which,

informally speaking, means that it is possible to maintain an

accumulated sketch S and keep merging other small sketches

into S without increasing the error ε. As pointed out in [10],

[14], every quantile sketch is one-way mergeable.

Among these sketches, the GK sketch and the optimal

KLL sketch is not fully mergeable, while q-digest is fully

mergeable, and KLL sketch has a mode in which it is fully

mergeable but loses its optimal space bound. Our sketch is

based on the fully mergeable Q-digest sketch, but we do not

know whether it is fully mergeable in its current form. We

leave it as a future direction to come up with a fully mergeable

mode for our algorithm.

However, our algorithm is in a sense partially mergeable.

That is, if we have two instances of size at most n each

with error parameter ε, we can merge them while incurring

an additional discrepancy of at most O(εn/ log(εU)) (as we

will soon describe). Though this is not as strong as a fully-

mergeable data structure, which incurs additional error of 0,

it is still better than the O(εn) additional error incurred by

merging quantile sketches in a black-box sense (by querying

their quantiles to obtain an O(εn)-approximation to their

streams). In practice, this means that one can merge up

to poly(U) of our sketches simultaneously (by performing

merges in a binary tree with depth O(log(εU))), with only

a constant-factor loss in ε.

We now sketch how to perform this partial merge. Suppose

we wish to merge the data structures D and D′, with current

sizes t > t′. To begin with, let us first imagine that only layer 0

is occupied (in both structures). Then, we simply add values

of the weight map W ′

0 (of D′) into W0 (of D). Then, the

discrepancy of W0 is now εt+ εt′. Now, the only problem is

that the invariant that all nodes are either full or empty may

not hold anymore, and the full nodes are no longer upward-

closed. To fix this, we perform the compression and rounding

steps of Algorithms 3 and 4 — by Lemmas V.12 and V.13, this

increases the discrepancy by at most ³0 = O(εt/ log(εU)). If

there is now a doubling step (Algorithm 7) to be performed

(that is, if t0 + t′0 g n0), then we now do it as usual. Note

that though the discrepancy has increased, the data structure is

otherwise still a valid data structure for the error parameter ε,

and we can continue to perform the usual operations (including

more merges) on the new data structure, while keeping track

of the increased discrepancy.

Now, suppose that there are occupied layers other than layer

0. Then, before merging the two data structures, we simply

perform the operation MERGE(i) early for i = k, k−1, . . . , 1,

on both data structures. This proceeds identically to an ordi-

nary MERGE(o)peration, except that during the rounding step,

the total weight may not be a multiple of ³i−1; we simply dis-

card the excess weight down to a multiple of ³i−1 (and insert

arbitrary elements to replace them at the end of the merge).

Overall, this has the effect of discarding elements down to

the nearest multiple of ³0, so it will introduce a discrepancy

of at most ³0 = O(εt/ log(εU)). Additionally, the proof of

Lemma V.14 still shows that the discrepancy introduced by

this merge is at most µ1n1 = O(εt/ log(εU)). Thus, overall,

this partial merge still adds an additional O(εt/ log(εU)) to

the discrepancy, as desired.
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b) Constant factors.: The parameters that we selected in

Section V-F were chosen to make the analysis simple. There

is, however, a lot of leeway in choosing the parameters to still

satisfy the necessary properties, and our exact choices likely

do not attain the best constant factors on space complexity. We

use k + 1 = log∗(εU) + 1 layers, but in practice, we expect

that around 4 layers is probably enough, and the parameters

can then be chosen appropriately.

Additionally, beyond just the setting of our parameters, our

analysis has generally been wasteful in terms of constants for

ease of presentation and readability. There are several places

this can be improved. For example, we can improve the error ε
by a factor of 2 by performing the moving and rounding steps

of the merge in different directions; that is, in the moving step,

we can move nodes only to their leftmost (least) descendant,

and in the rounding step, we round nodes upward only (which

is what we already do).

c) Removing amortization.: Currently, our runtime anal-

ysis is amortized, since a step containing a merge can take

a long time compared to a normal insertion step. If one is

concerned about worst-case update time, then we can improve

performance by executing the time-consuming operations over

a longer time period while storing received elements in a

buffer, similarly to Claim 3.13 of [22].

d) Answering select queries with real elements.: One

feature of quantile queries is that they can also answer select

queries: that is, given a rank r, one can query select(r) to

obtain an element x that is between the rank-(r−εt) and rank-

(r + εt) elements of the stream. This is equivalent to being

able to answer rank queries, since one can use a binary search

of rank queries to answer a select query (and vice versa).

One might also desire, though, that the answers to the select

queries are actual elements of the stream, rather than arbitrary

elements of [1, U ]. As stated, our algorithm does not provide

a way to do this. It turns out, however, that given any quantile

sketch algorithm that can answer approximate rank queries, it

is possible to augment it (in a black-box manner) so that it

can answer select queries with real elements of the stream,

with only a constant-factor degradation in the error parameter

ε. We will now sketch how to do so.

We initialize a quantile sketch with error parameter ε, and

we maintain a list x1 < x2 < · · · < xℓ which are actual

elements of the stream (and by convention we write x0 = 0
and xℓ+1 = U + 1), and rank estimates r1, . . . , rℓ (where

again by convention we say r0 = 0) satisfying the following

properties at all times t:

1) For all 0 f i f ℓ, |rankÃ(xi)− ri| f εt.
2) For all 0 f i f ℓ, rankÃ(xi+1 − 1)− ri f 2εt.

(Note that the first item is trivially satisfied for i = 0.) Now,

suppose that we receive an insertion x into the stream. First,

we increment ri for all i such that xi g ri, to maintain

property 1 (note that t increases by 1, but this only makes

property 1 easier to satisfy).

Now, if x = xj for some j, then property 2 continues to

be satisfied since the left-hand side of the inequality remains

the same for all i. Otherwise, suppose that x ∈ (xj , xj+1)
for some j. Then, 2 might become violated for i = j, since

the left-hand side will have increased by 1. To fix this, we

insert a new element xj+1 = x (and shift the indices of the

existing xi, ri of all i g j + 1 up by 1). Then, we execute

a rank query on x to get r such that | rankÃ(x) − r| f εt.
Then, we set rj+1 = max{r, rj + 1}. Note that property 1

continues to be satisfied by the accuracy of the rank query

and because rj +1 f rankÃ(rj)+εt+1 f rankÃ(rj+1)+εt.
It remains to check that property 2 is now satisfied. Indeed,

for i = j + 1, this follows from the fact that rj+1 g rj + 1
and that the property was previously satisfied for i = j. For

i = j, it follows from the fact that rankÃ(x − 1) is at most

the former value of rankÃ(xj+1 − 1), and that the property

was previously satisfied for i = j. Thus, we have established

that the properties both continue to hold.

Finally, while there is any j such that rj+1 − rj−1 f εt,
we delete xj and rj (and shift the indices i > j down by 1

to accommodate). This preserves the properties: we only need

to check property 2 for i = j − 1, and indeed, rankÃ(xj −
1)− rj−1 f (rj + εt)− rj−1 f 2εt by property 2 and by the

assumption that rj − rj−1 f εt (note that the old rj+1 has

become rj). Thus, this preserves the properties.

Now, we answer a select query as follows: on a query of

rank r, we pick the minimal i such that r f ri + 2εt, and

return xi. As a special case, if r < 2εt, we return x1 instead

of x0 = 0. (Note that by property 2 applied to i = ℓ, we

never return xℓ+1.) Then, assuming that r g 2εt, we have by

property 1 that rank(xi) g ri−ε g r−3εt. Also, by property

2, rank(xi− 1) f ri−1+2εt < r (by minimality of i), so the

rank-r element is at least xi. Thus the error in the select query

is at most O(εt) as long as r g 2εt. Also, in the special case

r < 2εt, we answer x1, and by property 2, rank(x1−1) f 2εt,
so again the error is at most O(εt). Thus, the answers to the

select queries are always approximately correct.

Finally, it remains to analyze the total space taken. Note

that we have rj+1 − rj−1 f εt for all j, so the total number

of indices ℓ is at most O(1/ε). Therefore, we only need to

store the O(1/ε) elements x1, . . . , xℓ and r1, . . . , rℓ, which

takes O(1/ε) words. Indeed, since the xi are in increasing

order and the increments of the ri are at most O(εn), we can

actually store these in O(ε−1(log(εU) + log(εn)) space, so

this does not take any additional asymptotic space over our

algorithm.

VII. LOWER BOUNDS

The space complexity of our algorithm is O(ε−1(log(εU)+
log(εn). In this section, we’ll discuss the optimality of this

result. The first term O(ε−1 log(εU)) must be incurred by any

quantile sketch, even a randomized one that succeeds with

reasonable probability, as we will now show. This already

implies that when n f poly(U), our algorithm is tight16.

1155

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 19,2025 at 17:23:38 UTC from IEEE Xplore.  Restrictions apply. 



When this is not the case, we conjecture that our algorithm

is optimal among deterministic sketches anyway. In particular,

Conjecture I.3 implies a space lower bound of O(ε−1 log(εn))
for quantiles.

Theorem VII.1. Any randomized streaming algorithm for

Problem I.1 that succeeds with probability at least 0.9 (that is,

it can answer a rank query chosen by an oblivious adversary

with that probability) on a universe of size U > Cε−1 for

some sufficiently large C uses at least Ω(ε−1 log(εU)) bits of

space.

Proof. It suffices to show that the final state of the algorithm

requires Ω(ε−1 log(εU)) bits of space. Let us restrict ourselves

to streams that only contain k = 3ε−1 distinct elements, each

of which occurs n/k times. Under this model, let the stream

be Ã′

1 < . . . < Ã′

k (each with multiplicity n/k). Under this

model, the min-entropy of the stream (when the stream is

chosen uniformly randomly) is log
(
U
k

)
. We will show that

access to the sketch reduces the min-entropy considerably (by

at least a constant factor). To do this, we will describe an

algorithm for a party to make ε−1 logU queries to the sketch

and with probability at least 0.01, output at least 0.01 fraction

of the elements Ã′

1, Ã
′

2, . . . , Ã
′

k correctly. The min-entropy of

this distribution of outputs is much lower: the only possibilities

are those that overlap on at least 0.01-fraction of Ã′

1 . . . Ã
′

k,

of which there are at most
(

k
0.01k

)(
U

0.99k

)
. The most likely

outcome therefore occurs with probability at least 0.01 times

the log of this quantity, so the min-entropy has decreased by

at least

log

(
U

k

)
−log

(
100

(
k

0.01k

)(
U

0.99k

))
g

(
Ω(ε−1 log(εU))

)

by Stirling’s approximation when U > Cε−1 for a sufficiently

large C. Then, by the fact below, the sketch must have

contained at least this many bits of information.

Fact VII.2. Let Hmin(·) denote the min-entropy of random

variables. For any two random variables, x and y supported

on X and Y respectively, we have

Hmin(x)−Hmin(x | y) f H(y).

In our case, x is the elements Ã′

1, Ã
′

2, . . . , Ã
′

k and y is the

memory state of our algorithm.

16Technically speaking, this result alone only implies tightness when n f
poly(εU). However, if U > 1/ε2, then poly(εU) and poly(U) are the same,
and when U < 1/ε2, then n f poly(U) implies that n j poly(1/ε), and
as we discussed in Section I-A, a result of [11] implies that our algorithm is
tight when ε−1 > log(εn).

Proof.

Hmin(x)−Hmin(x | y)

= Hmin(x)−
∑

y∈Y

Pr(y = y) min
x∈X

log
1

Pr(x = x | y = y)

= Hmin(x)−
∑

y∈Y

Pr(y = y) min
x∈X

log
Pr(y = y)

Pr(x = x,y = y)

f Hmin(x)−
∑

y∈Y

Pr(y = y) min
x∈X

log
Pr(y = y)

Pr(x = x)

= Hmin(x)−min
x∈X

log
1

Pr(x = x)
+

∑

y∈Y

Pr(y = y)
1

Pr(y = y)

= H(y)

Now we describe the list of queries to ask the sketch to

output least 0.01 fraction of the elements Ã′

1 . . . Ã
′

k correctly

with probability 0.01. For each rank i ∈ [k], binary search for

the rank i’th element in a noise resilient way [27] (resilient to

0.2 fraction of adversarial error). At the end, this must find the

element at rank i exactly, since each element’s multiplicity is

more than the permissible error. The noisy binary search must

succeed whenever the fraction of error is at most 0.2, which

is true on at least 0.01 fraction of the elements at least 0.01
fraction of the time.

Theorem VII.3. Conjecture I.3 implies that any determin-

istic streaming algorithm for Problem I.1 uses at least

Ω(ε−1 log(εn)) bits of space.

Proof. We will show the following. Any data structure that

can compute a quantile sketch for 0.1ε−1 on n elements in

the range [ε−1] can also return counts of each element that

are accurate to within ±εn. Then, if there is a quantile sketch

using o(ε−1 log n) bits of memory, there is also a deterministic

parallel approximate counter using that much space.

Let us try to comp estimate the count of i ∈ [ε−1]. The true

count of i is the difference of the true ranks ri − ri−1, since

the rank rj is the number of elements at most j. We query

the rank of i in the quantile sketch and get the answer r̂i and

the rank of i− 1 and get r̂i−1. Then,
∣∣∣(ri − ri−1)− (r̂i − r̂i−1)

∣∣∣ f 0.2εn,

so we have a sufficiently accurate estimate of the count.
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[8] G. Cormode and P. Veselỳ, “A tight lower bound for comparison-
based quantile summaries,” in Proceedings of the 39th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, 2020,
pp. 81–93. 1

[9] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians and
beyond: new aggregation techniques for sensor networks,” in Proceed-

ings of the 2nd international conference on Embedded networked sensor

systems, 2004, pp. 239–249. 2, 3, 6

[10] M. B. Greenwald and S. Khanna, “Quantiles and equi-depth histograms
over streams,” in Data Stream Management: Processing High-Speed

Data Streams. Springer, 2016, pp. 45–86. 2, 18

[11] I. Aden-Ali, Y. Han, J. Nelson, and H. Yu, “On the amortized complexity
of approximate counting,” arXiv preprint arXiv:2211.03917, 2022. 2,
20

[12] Y. Wang, “Tight streaming lower bounds for deterministic approximate
counting,” arXiv preprint arXiv:2406.12149, 2024. 2

[13] D. Felber and R. Ostrovsky, “A randomized online quantile summary
in O((1/ε) log(1/ε)) words,” Theory of Computing, vol. 13, no. 1, pp.
1–17, 2017. 2

[14] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei, and
K. Yi, “Mergeable summaries,” ACM Transactions on Database Systems

(TODS), vol. 38, no. 4, pp. 1–28, 2013. 2, 18

[15] K. Alsabti, S. Ranka, and V. Singh, “A one-pass algorithm for
accurately estimating quantiles for disk-resident data,” in Very

Large Data Bases Conference, 1997. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:2157195 2

[16] G. S. Manku, S. Rajagopalan, and B. G. Lindsay, “Approximate medians
and other quantiles in one pass and with limited memory,” ACM

SIGMOD Record, vol. 27, no. 2, pp. 426–435, 1998. 2

[17] A. Gupta and F. Zane, “Counting inversions in lists,” in SODA, vol. 3,
2003, pp. 253–254. 3

[18] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Space-
and time-efficient deterministic algorithms for biased quantiles over data
streams,” in Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, 2006, pp. 263–
272. 3

[19] Q. Zhang and W. Wang, “An efficient algorithm for approximate
biased quantile computation in data streams,” in Proceedings of the

sixteenth ACM conference on Conference on information and knowledge

management, 2007, pp. 1023–1026. 3

[20] G. Cormode, Z. Karnin, E. Liberty, J. Thaler, and P. Veselỳ, “Relative
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APPENDIX

Here, we will prove the various parts of Fact V.20, by

showing a series of claims. Note that Fact V.20(f) follows

directly from the definitions of εi and µi.

Claim A.1 (Fact V.20(a)). For all i, ni, Ui, εi, and ³i are

powers of 2.

Proof. This follows directly (inductively) from the definitions.

Claim A.2 (Fact V.20(b)). For all i, εiUi g 2.

Proof. For i = 0, this follows from the assumption (made at

the start of Section V) that εU is sufficiently large. For i = 1,

we have U1 = 2Vlog(εU/8) + 1W/ε and ε1 = ε/2k+3, so

ε1U1 = Vlog(εU/8)+1W/2log
∗(εU)+2, which is at least 2 again

by the assumption that εU is sufficiently large. Finally, for

i g 2, this follows by induction using the recursive definition

of Ui and the fact that εi−1 < εi.

Claim A.3. For all i < k, we have εi+1Ui+1 f 8 log(εiUi).

Proof. Since εi+1 f 2εi, we have by the inductive definition

of Ui, (4), that

εi+1Ui+1 f 4Vlog(εiUi) + 1W f 8 log(εiUi).

(Here we have used the fact that log(εiUi) is a positive integer,

which follows from Claim A.1 and Claim A.2.)

Now, define Qi = εiUi/16. Then we have the following.

Claim A.4. For all i < k, we have Qi+1 f max{logQi, 8}.

Proof. By Claim A.3, we have

Qi+1 =
εi+1Ui+1

16
f

log(εiUi)

2

f
log(16Qi)

2
=

4 + logQi

2
f max{logQi, 8},

as desired.

Claim A.5 (Fact V.20(g)). Uk = O(1/ε).

1157

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 19,2025 at 17:23:38 UTC from IEEE Xplore.  Restrictions apply. 



Proof. We have k = log∗(εU) g log∗(Q0), so if we

iteratively take the logarithm of Q0, we get down below 1

in at most k steps. Thus, by Claim A.4, we have Qk f 8, so

Uk = 16Qk/εk = O(1/ε).

Claim A.6 (Fact V.20(h)). U1 + U2 + · · · + Uk =
O(ε−1 log(εU)).

Proof. We have U1 = 2Vlog(ε0U0 + 1)W/ε0 =
O(ε−1 log(εU)). Meanwhile, for i > 1, by Claim A.4,

we have Qi f O(log logQ0) = O(log log(εU)). Also,

εi g 2−k+3ε = Ω(2− log∗(εU)ε). Therefore, for i > 1, we

have Ui = O(Qi/εi) f O(ε−12log
∗(εU) log log(εU)). Thus,

since k = log∗(εU),

U2 + · · ·+ Uk f O(ε−1 log∗(εU)2log
∗(εU) log log(εU))

< O(ε−1 log(εU)),

so we are done.

Claim A.7 (Fact V.20(c)). For all i < k, ni+1 is a factor of

ni.

Proof. Since the ni are powers of 2, it is enough to check that

ni+1 f ni. For i g 1, this follows directly from the definition

of ni+1 since εi+1 > εi (and because of Claim A.2). For

i = 0, we get n0 = n and

n1 =
ε0n0

ε1Vlog(ε0U0) + 1W
=

2log
∗(εU)n0

Vlog(εU/8) + 1W
,

which is at most n0 by the assumption that εU is sufficiently

large.

Claim A.8 (Fact V.20(d)). For all i < k, ³i+1 = ³i/Vhi+1 +
1W.

Proof. We have, by the inductive definitions (3) and (5), that

³i+1 =
εi+1ni+1

Vhi + 1W
=

³i

Vlog(εi+1Ui+1) + 1W
.

Claim A.9 (Fact V.20(e)). If n0 g n∗, then ³i, ni g 1 for all

i.

Proof. Suppose that n0 g n∗. Firstly, by definition of n∗, (6),

we have ³k g 1. Also, by the definition of ³i, (3), we also

have ³k f nk, so nk g 1. By Claims A.7 and A.8, ni and ³i

are decreasing in i, so the conclusion follows.

Claim A.10 (Fact V.20(i)). ε−1 f n∗ f ε−1(log(εU))1+o(1)

(where o(1) refers to a term that approaches 0 as εU →∞).

Proof. By successive applications of Claim A.8 and then using

the definition of ³0, we have

³k =
³0

Vh1 + 1W · . . . · Vhk + 1W
=

n0ε0
Vh0 + 1W · . . . · Vhk + 1W

.

Thus, we have

n∗ =
n0

³k
=

Vh0 + 1W · . . . · Vhk + 1W

ε0
.

Since ε0 = ε/8, the first inequality of the claim follows

immediately. Now, note that we have

Vhi + 1W = O(log(εiUi)) = O(max{logQi, 1})

Now, this means that Vh0 +1W = O(log(εU)), and for i > 0,

by Claim A.4, we have Vhi+1W f O(log log εU). Thus, since

k = log∗(εU), we have

n∗ f
O(log(εU)) · (O(log log εU))log

∗(εU)

ε/8

= ε−1(log(εU))1+o(1),

as desired.

Claim A.11 (Fact V.20(j)). ³k−1 = O(n0/n
∗).

Proof. By Claim A.4, we have Qk = O(1), so by Fact V.20(d),

we have ³k−1 = ³kVlogQk+1W = O(³k) = O(n0/n
∗).
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