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Abstract—Estimating quantiles is one of the foundational
problems of data sketching. Given n elements x1, z2, ..., z, from
some universe of size U arriving in a data stream, a quantile
sketch estimates the rank of any element with additive error at
most en. A low-space algorithm solving this task has applications
in database systems, network measurement, load balancing, and
many other practical scenarios.

Current quantile estimation algorithms described as optimal
include the GK sketch (Greenwald and Khanna 2001) using
O(¢7'logn) words (deterministic) and the KLL sketch (Karnin,
Lang, and Liberty 2016) using O(¢ ™' loglog(1/5)) words (ran-
domized, with failure probability §). However, both algorithms
are only optimal in the comparison-based model, whereas many
typical applications involve streams of integers that the sketch
can use aside from making comparisons.

If we go beyond the comparison-based model, the deterministic
q-digest sketch (Shrivastava, Buragohain, Agrawal, and Suri
2004) achieves a space complexity of O(s~'log U) words, which
is incomparable to the previously-mentioned sketches. It has long
been asked whether there is a quantile sketch using O(¢ ') words
of space (which is optimal as long as n < poly(U)). In this
work, we present a deterministic algorithm using O(¢~") words,
resolving this line of work.

Index Terms—streaming algorithm, quantiles, sketching

I. INTRODUCTION

Estimating basic statistics such as the mean, median, min-
imum/maximum, and variance of large datasets is a funda-
mental problem of wide practical interest. Nowadays, the
massive amount of data often exceeds the memory capacity
of the algorithm. This is captured by streaming model: The
bounded-memory algorithm makes one pass over the data
stream X1, 2, ..., %, from a universe [U] = {1,...,U} and,
in the end, outputs the statistic of interest. The memory state of
the algorithm is therefore a sketch of the data set that contains
the information about the statistic and allows future insertions.
Here, memory consumption is conventionally measured in
units of words, where 1 word equals logn + log U bits.
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Most of these simple statistics can be computed exactly
with a constant number of words. But the median, or more
generally, the ¢-quantile, is one exception. In their pioneering
paper, Munro and Paterson [1] showed that even an algorithm
that makes p passes over the data stream still needs Q(n'/?)
space to find the median. Fortunately, for many practical
applications, it suffices to find the e-approximate ¢-quantile:
Instead of outputting the element of rank exactly ¢n, the
algorithm only has to output an element of rank (¢+¢)n. Such
algorithms are called approximate quantile sketches. They are
actually implemented in practice, appearing in systems or
libraries such as Spark-SQL [2], the Apache DataSketches
project [3], GoogleSQL [4], and the popular machine learning
library XGBoost [5].

There are also other queries the sketch could need to answer:
For example, online queries asked in the middle of the stream,
or rank queries, where the algorithm is asked to estimate the
rank of an element up to en error. As finding approximate
quantiles is equivalent to answering rank queries. To solve all
of them, it suffices to solve the following strongest definition.

Problem I.1 (Quantile sketch). The problem of quantile
sketching (or specifically, c-approximate quantile sketching)
is to find a data structure A taking as little space as possible
in order to solve the following problem: Given a stream of el-
ements T = x1,Ta,..., T, € [U)], we define the partial stream
T4 = T1,%2,...,%Ls. For element x € [U), let rank,, (x) be
be the number of elements in m, that are at most x. When a
query x arrives at time t, then A must output an approximate
rank v, such that |r — rank,, (z)| < et.

Two notable quantile sketches include the Greenwald and
Khanna (GK) sketch [6] using O(¢ ™! logn) words (determin-
istic) and KLL sketch [7] using O(e~!loglog(1/d)) words
(randomized, with failure probability ). Both algorithms fol-
low the comparison-based paradigm, where the sketch cannot
see anything about the elements themselves and can only make
black-box comparisons between elements it has stored. They
are known to be optimal in this paradigm ( [8] shows the GK
is optimal for deterministic algorithms and [7] shows that KLL
is optimal for randomized algorithms).
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However, many applications of quantile sketches apply to
streams of integers (or elements of some finite universe),
rather than just to black-box comparable objects. For example,
the elements in the universe could be one of the following:
network response times (with a preset timeout), IP addresses,
file sizes, or any other data with fixed precision. This may
allow for a better quantile sketch than in the comparison-
based model. The best previously-known non-comparison-
based algorithm is the g-digest sketch introduced in [9],
which is a deterministic sketch using O(e~!logU) words.
Unfortunately, this isn’t really better than the GK sketch, as
n is typically much less than poly(U). On the other hand,
the only lower bound we know is the trivial lower bound of
Q(e~1) words in the regime where n < poly(U) (which holds
for both deterministic and randomized algorithms). Motivated
by this gap, Greenwald and Khanna, in their survey [10], asked
if the g-digest algorithm is already optimal, and as such, one
cannot substantially improve upon comparison-based sketches.

In this work, we resolve this question fully and provide
a deterministic quantile sketch that uses the optimal O(e~!)
words. This is the first quantile sketch that goes beyond the
comparison-based lower bound (in the natural regime of n <
poly(U)) and is the first direct improvement on the g-digest
sketch in the 20 years since it was proposed. (See Table I for
a detailed comparison.)

Theorem 1.2. There exists a deterministic streaming algo-
rithm for Problem I.1 using O(e™1) words (more specifically,
O(eY(log(en) + log(el))) bits) of space’.

Our sketch uses less space than not only the deterministic q-
digest and GK sketches but also the randomized KLL sketch,
when compared in words. Note that randomized algorithms,
like KLL sketch, have failure probabilities and retain their
theoretical guarantee only against non-adaptive adversaries.
The fact that our algorithm is deterministic provides stronger
robustness. As these sketches are already implemented in
practice, we hope that our algorithm can help improve the
performance of these libraries.

A. Discussion and further directions

a) Optimality of our algorithm: As we discussed earlier,
the quantile sketch lower bound of 2(¢~!) words only holds
in the regime where n < poly(U). However, we conjecture
that our algorithm is optimal in general for deterministic
algorithms. Specifically, there is a simple example showing
any sketch for Problem 1.1 requires at least e~*log(eU) bits
(see Section VII), but we also need to show a lower bound
of e~ 1log(en) bits. We make the following conjecture about
deterministic parallel counting, which would imply our lower
bound because any algorithm for Problem I.1 can also solve
the k-parallel counters problem for k = ©(1/e¢).

Here, technically, when we write log(en) and log(eU), it really should be
max{log(en), 1}, max{log(eU), 1} to avoid the uninteresting corner cases.
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Conjecture 1.3 (Deterministic parallel counters). We define
the k-parallel counters problem as following: There are
k counters initiated to 0. Given a stream of increments
i1,12,...,in € [k] where iy means to increment the i;-th
counter by 1, the algorithm has to output the final count of
each counter up to an additive error of n/k.

We conjecture that any deterministic algorithm for this
problem requires at least Q(klog(n/k)) bits of memory. ?

This conjecture essentially says that to maintain k£ counters
in parallel, one needs to maintain each counter independently.
Aden-Ali, Han, Nelson, and Yu [11] studied this problem
for randomized algorithms. We note that our conjecture is
resolved in a follow-up paper by Wang [12]. Thus proving
the optimality of our algorithm.

b) Improvements in the randomized setting: Determin-
istic algorithms are used at the heart of the randomized
ones. Many randomized algorithms (including the algorithm
by Felber and Ostrovsky [13], the KLL sketch [7], and the
mergeable summary of [14]) follow the paradigm of first
sampling a number of elements from the stream and then
maintaining them with a careful combination of deterministic
sketches.

As long as n < poly(U), our algorithm is optimal even
in the randomized setting, but when this condition is not
met, it is possible to do better in the randomized setting.
If n is known in advance, one can simply sample 10%5
elements and feeds them into our sketch.® It uses a mem-
ory of O(e~1(loglog(1/6) + logU) + logn) bits, which
strictly improves that of the KLL sketch. We note that, in
the most common regime where 6 > 1/2°", there is a
Q (e (loglog(1/6) +log eU))-bit lower bound for streaming
quantile sketches.* So our algorithm is also very close to
optimal in the randomized setting as well.

c) Finding a simpler algorithm: Although our basic
construction is relatively simple, to obtain the optimal bound,
we need to iterate our basic construction recursively. Then
it becomes quite intricate. Can the current algorithm be
simplified? Or, is there any other algorithm that is at same
time simple and optimal?

B. Related works

More on quantile sketches.: Early works on quantiles
sketches include [1], [15], [16]. Among them, the MRL
sketch [16] and its randomized variant from [14] lead to the
aforementioned KLL sketch. Another variant of the problem is

2This conjecture is recently sovled by

3If m is not known is advance, instead of simple sampling, one can replace
the use of GK sketch in KLL with our algorithm. As the compactor hierarchy
part of KLL stores only O(1/e) elements, it results in the same space
complexity as the known n case.

“This follows from the e~!logeU lower bound in Section VII (which
holds for both deterministic and randomized algorithms), and the afore-
mentioned k - min(log(n/k),loglog(1/d)) lower bound in [11] (setting
k=1/e).
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Algorithm Type

Space (words)

Space (bits)

deterministic

GK sketch [6] comparison-based

O(e~'log(en))

O(e~(log?(en) + log(en) - log U))

deterministic

q-digest [9] bounded-universe

O(e~tlogU)

O(e~1(log? U + log(en) - log U))

randomized

KLL sketch [7] comparison-based

O(e~loglog(1/6))

O(e~ ' loglog(1/6) - (loglog(1/8) + logU) +
logn

deterministic
bounded-universe

Our algorithm
(Theorem 1.2)

O™

O(e™ " (log(en) + log(el)))

TABLE I: The word and bit complexity of quantile sketches.

the biased quantile sketches (also called relative error quantile
sketches), meaning that for queries of rank 7, the algorithm
can only have an error of er instead of en. That is, we require
that the 0.1% quantiles are extremely accurate, while the 50%
quantile can allow much more error. This question was raised
in [17]; since then, people have proposed deterministic [18],
[19] and randomized [20] algorithms for this problem. There
are also other variants such as sliding windows [21], weighted
streams [22] and relative value error [23]. In practice, there are
also the t-digest sketch [24] and the moment-based sketch [25],
which do not have strict theoretical guarantees. In particular,
[26] shows that there exists a data distribution, such that even
1.i.d. samples from that distribution can cause t-digest to have
arbitrarily large error.

II. PRELIMINARIES
A. Definitions for streams

Define the rank of an element x in a stream m, denoted
rank, (), to be the total number of elements of 7 that are
less than or equal to x. We also define a notion of distance
between two streams. For two streams 7, 7’ of equal length,
define their distance as follows:

d(m,7’') = max |rank,(x) — rank, (z)|.
z€[1,U]
We observe that this distance satisfies some basic properties,
i.e., the triangle inequality, and subadditivity under concate-
nation of streams:

Observation II.1 (Triangle inequality). For all streams
m, 7', w" of the same length,

d(m,7') < d(m,7") + d(x",7")

Observation IL.2. For all streams 7,7’ of the same length
and p, p’ of the same length,

d(mop,n’op') < d(m,7") +d(p,p'),

where 7 o p denotes concatenation of the streams 7 and p.

B. Other notation

Throughout this paper, we use standard asymptotic nota-
tion, including big O and little o. For clarity, we sometimes
omit floor and ceiling signs where they might technically be
required.
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All logarithms in this paper are considered to be in base
2, and we define the iterated logarithm log™(m) to be the
number of times we need to apply a logarithm to the number
m to bring its value below 1.

We also define the function [[z]], for any = € R™, to be the
smallest power of 2 that is at least z. In particular, we always
have z < [[z]] < 2z.

III. TECHNICAL OVERVIEW

In this section, we explain the main idea of our algorithm.

First, we get a few technical details out of the way. We
will assume for now that we know n beforehand. For this
overview, we will focus on describing a data structure that
uses O(e!log(e71)loglog U) words of memory. After that,
we will briefly describe the modifications that we perform to
bring the space complexity down to O(s~!) words.

a) The eager g-digest sketch: Before explaining our
algorithm, it would be instructive to first reivew the g-digest
algorithm because our algorithm is based on it. At a high
level, this data structure is a tree where every node represents
some subset of the stream elements received so far. The node
doesn’t store each element exactly, but only an interval that
contains all of the elements it represents and a count of how
many elements it represents. The version we describe slightly
differs from the typical treatment, and we call it eager q-digest.
The data structure has the following structure and supports the
following operations.

o Structure: The eager g-digest is a binary tree of depth
log U. The nodes in the bottom level of the tree (which
we call the base level) correspond left-to-right to each
element 1,2,...,U in the universe. Each non-base level
node corresponds to a subinterval of [1, U] consisting of
the base level nodes below it. Each node u represents a
subset of Wu] elements (W[u] is the weight/count of
the node) that have been received so far; that is, when
an element is inserted, it increments the counter Wu)| at
some node. The W [u] elements that u represents must
all be within the node’s interval.

Insertion: We insert elements into the tree top-down as
follows: upon receiving an element = € [1, U], look at the
path from the root to  and increment the counter W [u]
of the first non-full node u. A node is full if its weight is

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 19,2025 at 17:23:38 UTC from IEEE Xplore. Restrictions apply.



already at capacity, which we set to be o := loZLU'

level nodes are permitted to exceed capacity.

Rank queries: We are given an element x € [U] for
which we want to return the rank. To do this, answer
with the total weight of everything on the path from the
root to the base node x and everything to the left of that
path in the tree. All the elements inserted in nodes to the
left of this path must have been less than = (since their
intervals only contain elements less than z) and all the
elements inserted to the right must be larger. As such,
the error in the rank estimate is only the sum of nodes
along the path (not including x), which is bounded by the
depth of the tree times the weight of each node above x,
at most awlog U = en.

Quantile queries: We are given a rank r € [n] for which
we want to return an element between the rank-(r — en)
and the rank-(r + en) element of the stream. The ability
to do this follows from the ability to answer rank queries,
since we can simply perform a binary search.’

Base

Let us look at an example of an eager g-digest. Each node
has capacity (maximum weight) o = 5 for this example.

In this example, triangle represents 5 elements in the interval
[1, 4], square represents 5 more elements in the interval [3,4],
and star represents 3 more elements exactly equal to 3. If we
insert the number 3 into the example, it would not get inserted
into triangle or square because they are full, and so it would
be put into star and increment the count by 1. If we want to
then find the rank of the number 3 (in the pictured tree exactly,
before the insertion), we return the sum of the weights on the
circled nodes plus the path to x, which is 94+5+5+3 = 22.
This can be off by at most 10 — we know the 9 elements
represented by the circled nodes are definitely less than 3, the
ones inserted directly to the star are exactly 3, the ones to
the right are definitely more than 3. The ones inserted to the
triangle and square are the only unknowns.

b) Analyzing the space complexity of eager g-digest: The
space complexity (in bits) of g-digest (and similarly of eager
g-digest) is well known to be O(e~*((log U)? +log U logn)).
Let us understand why, so we can see where we might improve
upon this. The space complexity is approximately the product
of the following two things:

(1) The number of non-empty nodes. This is at most
O(e7tlogU) since the number of full nodes (which is
within a constant factor of the number of non-empty
nodes) is n/a = e tlogU.

The amount of space necessary per non-empty node.
Naively, we would need to store the location of each
nonempty node (the interval it corresponds to) and the
weight of the node (the number of stream elements it
corresponds to). This would take log U + logn space.

@

As such, in total the space complexity is O(e~*(log U)? +
log U log n). In our sketch, we do not reduce (1), the number

SThis is true in a black-box way; see Section VI for details.
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of nodes. Therefore, we must reduce the storage in (2)
substantially. This has two parts: efficiently storing the cor-
responding interval (location in the binary tree) of each node
and efficiently storing the count.

It is actually quite simple to store the interval/location of
each node: To see this, notice that the non-empty nodes form
a connected tree of their own within the large binary tree.
Since the tree is binary, storing the edge from a parent to
child in the tree of nonempty nodes takes only O(1) space.
This observation is quite straightforward from the way we
formulated q-digest, but the usual implementation of q-digest
doesn’t push to the top eagerly, and so is unable to directly
save this log U term.

¢) The main challenge, avoiding storing counters: The
second challenge is to avoid storing a counter Wu] at each
node. One useful observation about the structure of the tree
of non-empty nodes is that all internal nodes are full (at
capacity) and only its leaves, which we call exposed nodes,
need counters. Unfortunately, a constant fraction of the non-
empty nodes are exposed nodes, so this doesn’t actually save
on space.

Another idea is to store only an approximate count at
each node. Unfortunately, we cannot just store an independent
approximate count at each node, or even only a counter
that estimates when the count surpasses the threshold «;
this is impossible to do deterministically without using log «
space (which is too large). Even in the randomized setting,
approximately counting each node independently does not
improve upon KLL.

The situation is summarized above in Figure 2. At
each of the exposed nodes, denoted vi,va,...,vs,, We
want to store some approximate version of counters
Wv1], Wva], ..., W{uv] that represent how many elements
are inserted into that node using significantly less than logn
space, ideally O(1) space.

For simplicity, assume that elements are received in
“batches” of size 7 (to be determined later), which we can use
unlimited space to process. Our only constraint is to minimize
storage space between batches. Let us assume that before the
batch, all the counters Wvy], Wvs], ..., W]v,| are less than
a/2 and set n = «/2 so the set of exposed nodes won’t
change within the batch. At the end /\Of the/laatch, we /Qeed
to find suitable approximate values Wvi], Wva]..., W/v]
to increment the counters by, based on the true counts
Clv1],Clvs], ..., Clvg] of the stream elements.

Let us quantify how “inaccurate” these approximate counts
can be compared to the true counts. The amount of additional
error (in rank-space) introduced by answering a rank query for
some universe element below a node v; should be at most en
— we can tolerate this much because it only doubles € and we
could’ve chosen ¢ to be half as big at the start. The value of
this rank query, or the total weight of all the nodes to the left

of v; and the path to v; changes by ’(/W[vl} +.. +/I/I7[vl]) -
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=

Fig. 2: The tree formed by non-empty nodes in eager g-digest. (The filled nodes are the full nodes.)

, and so we need to ensure for all ¢,

(C[vl] ot C[’ui])

‘ (W[vl] T iv\[v,;]) - (C[vﬂ T C[Ui]) ) <& (1)

Here is a simple way to make that happen: Take the O-
th element, the (¢n2)-th element, the (2¢7)-th element and so
on, and increment the counters W v;] corresponding to those
elements each by en. Then, Equation 1 is satisfied, and also
the counters can be stored in O(log(¢™!)) bits since they
are always multiples of e = /2 and so only have 2¢~!
possibilities.

d) The main idea: recursive quantile sketch: Of course,
the glaring issue is how to find (an approximation of) the
0-th element, the (en)-th element, the (2e7)-th element and
so on, or at least which v; each one corresponds to, without
storing the entire batch of 7 elements. In particular, we have
reduced to the following problem: We receive 1 elements in
a stream in the universe {v1,...,v,}, and we need to return
the approximate 0-th element, the (¢72)-th element, the (2en)-
th element and so on. These are just quantile queries! In
particular, we need a quantile sketch on a universe of size
¢ receiving n elements. The new universe size £ is at most
the number of exposed nodes of the eager q-digest, which is
at most e 'log U, and so we have a big saving — the new
quantile sketch is on a logarithmically smaller universe, and
so even naively using eager g-digest for the inner sketch will
save space.

This solves the problem. The outer quantile sketch re-
quires only O(e~!log(e~!)logU) space because it needs
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O(log(s~1) space per node, and the inner sketch requires only
e~ !loglog U(log log U+-log i) space because its universe size
is log U. Both of these are within O(e~*log(e™!)loglog U)
words of memory. An illustration of the recursive step is shown
in Figure 3, where we build a new eager g-digest whose
universe is the exposed nodes of our original eager q-digest.
This new eager g-digest will process 7 elements and ultimately
return the O-th element, the en-th element, 2en-th element, and
SO on.

e) Modifications to get the optimal bounds: We can
iterate this construction recursively by building a new eager
g-digest on the exposed nodes of the second eager q-digest.
This process will continue to reduce the universe size nearly
logarithmically each time. The number of layers before reach-
ing a constant sized universe is roughly log* U, and so to get
constant error and constant space, we will need to be careful
with how we set the error fraction ¢; for each recursive layer
and argue that the total size of the sketches converges.

We also made an assumption that when we started receiving
the batch of 7 elements, all the exposed nodes had weight at
most «/2. However, the node could have any weight jea. To
deal with this, we need the lower level g-digest to deal with
nodes getting “overfilled.”

Our final algorithm also manages to get rid of log(e™1)
factors in the space complexity. This takes a number of
additional considerations. One is that the nodes cannot even
store counts that require O(¢~!) bits, but truly need to just
be either empty or full. To deal with this, we will increase
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New base level nodes

Fig. 3: An inner eager q-digest tree whose universe is the exposed nodes of the original tree. (The filled nodes are the full

nodes.)

the batch size to na but now we will need to deal with nodes
getting overfilled again. A second issue is that, as described,
at the last layer of recursion, the number of nodes would be
e 'log(e~1), which is slightly too large. To deal with this,
we will have to use an optimized eager g-digest, which we
discuss in Section IV.

IV. WARM UP: OPTIMIZED EAGER Q-DIGEST

In this section, we will describe the optimized eager g-
digest algorithm. This slightly improves the g-digest al-
gorithm of [9]. The space complexity of optimized ea-
ger g-digest will be fairly similar to that of g-digest (it
achieves O(e ™1 logenlogel) bits instead of O(e~(log U +
logen)logU) bits).

Although it does not contain the main idea of this paper, we
need it as a building block of our algorithm. Also, we hope
that this section can be a warm-up that familiarizes readers
with our notation and the basics about g-digest.

Though we have already talked briefly about the eager q-
digest in the technical overview, we will start anew in this
section by building the algorithm up from the original g-
digest, since we make several more modifications than what
we described in that section.

Tree structure of the original q-digest sketch: In the
original g-digest sketch of [9], there is a underlying complete
binary tree 7" of depth log U. We say that those nodes at depth
log U are at the base-level of T'. These nodes correspond (from
left to right) to each element 1,2, ..., U in the universe.

We label each node in 7" with a subinterval of [1, U]. First,
the base-level node corresponding to i is labeled with [i, ). For
a node above u the base level, its interval is the union of all
its base-level descendants. For every node u € T, it also has
a weight Wu] associated to it. Intuitively, one can think of
the nodes u € T' with weight W [u] and interval label [a,,, b,,]
as a representative of W [u] many elements in the stream that
are within [a, by].
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In the original g-digest all nodes u except the base level
nodes can have weight at most Wu| < . This is the capacity
of the node and is usually set to o = 1o€gnU' When there is an
insertion of stream element z, the algorithm finds the base-
level node v whose interval equals [z, ] and increases W [z]
by 1. This is always possible as there is no capacity constraint
for base-level nodes.

Since this tree 7" has as many as 2U — 1 nodes, the g-
digest algorithm does not store the tree 7' nor the labels. It
only store the set S of non-empty nodes, those nodes v with
Wv] > 0. As there are more and more insertions, the set S
grows. Whenever |S| > loi Y  the g-digest algorithm performs
a compression.

One way of performing such compression is to find all nodes
w such that Wu] > 0 and W [parent(u)] < «, and move one
unit of weight from W{u| to Wparent(u)]. After there is
no such node u, let F¥ C S be the set of full nodes v with
W] = o. We know that |[F| < % = %. Now for every
nonempty node u € S, its parent must be a full node. So
compression gets the number of nonempty node down to |S| <
3|F| = O % . For every u € S, the actual information
stored by original g-digest are 1. the position of « in the tree T’
(which takes log U bits); 2. weight W [v] (which takes log o =
log(en) bits).

Finally, for all these to make sense, we have to be able to
answer rank queries. In order to estimate rank(z), we simply
add up the weights W u| of all nodes u whose intervals contain
at least one element less or equal to x. This might overcount
the number of actual stream elements which are at most z;
any node whose interval contains both an element which is at
most = and greater than = can contribute to the overcounting.
These nodes are all (strict) ancestors of the node in the base
level corresponding to x, so there are at most log U of them,
and their total weight is thus at most a-log U. Thus the answer
to the rank query is off by at most « - logU < en.

Now, having described the original q-digest algorithm, we
will describe the modifications we make to it to get the
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optimized eager g-digest.

Modification 0, Enforcing capacity constraints on base-
level nodes: In our algorithm, we will need every node,
including those at the base level, to satisfy the capacity
constraint. But an element x € [U] could potentially have
multiplicity > « in the input stream.

To handle this, rather than the trees ending at the base
level, we let them continue as infinite paths (i.e., unary trees)
descending from each node of the base level. Let u be a base-
level node that is labeled with interval [z, z]. All nodes on
the infinite path below u will also just be labeled [z, z]. As a
sanity check, since we are not storing the tree 7' anyway, it
makes sense to be infinite.

Modification 1: Use a forest of 1/¢ trees. : To improve
the log U factor to log(¢U), we have to equally divide the
universe into 1/e intervals and maintain a tree for each one.
This gives us a forest of 1/¢ trees, while allowing us to set «
to 5 6

log(eU) "

Roughly speaking, this change corresponds to removing the
top log(1/¢) levels of the q-digest tree while keeping the levels
below it. Although only offering a small improvement here,
this is actually essential for our final algorithm. It is one of the
ingredients that allow us to avoid the extra O(e~1log(e~1))
term in the number of words used.

Modification 2: Move weights up eagerly: Next we
describe how nodes are inserted into the eager g-digest. The
original g-digest algorithm moves weight up the tree lazily;
that is, it does so when the number of nodes stored exceeds
its limit. By contrast, the eager g-digest will do so eagerly:
upon receiving an element of the stream, it will immediately
move it up as much as possible.

More formally, when we receive an element x of the stream,
we do not increase the weight of the base-level node with
interval [z, x] as we would in a normal g-digest. Instead, we
immediately move this weight up. That is, we pick the highest
non-full node whose interval contains x, and we increment its
weight by 1.

Space Complexity: Full nodes and non-full nodes: We
now look at the space complexity of optimized eager g-
digest. An ordinary g-digest has to store, for every non-empty
node, both its location in 7" and its weight. However, in an
optimized eager g-digest, the non-empty nodes are upward
closed; that is, every parent of a non-empty node is also non-
empty. (In fact, every parent of an non-empty node is actually
full, since otherwise the weight would have been pushed up to
the parent.) Thus, the non-empty nodes form at most 1/¢ trees
which include the roots of their components in 7". Storing the
topology of a binary tree of size k£ only requires space k (it
is enough to use 2 bits for each node to record whether it has
left/right child). Thus the total space required to describe the

OThis is because the depth of each tree becomes at most log(U) and the
error for answering rank queries is at most the depth multiplied by a.
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locations of the non-empty nodes is only O(|S| + 1/¢) bits,
where |S] is the total number of non-empty nodes.

At this point, for all the full nodes, we are already done.
Since we know that their weight is exactly «, there is nothing
more to store. Since S| < 3|F| < 32 = O %
are able to store all the full nodes with only O(1/¢) words.
However, there are still the non-full nodes in .S. Since we have
to store the weight for each of them, this takes O(|S|log «) =

O (M . log(sn)) space.

This completes the description of eager g-digest. We have
saved an |S|logU term in the space complexity by not
having to store the location of each non-empty node, but the
|S|log  term from storing the weights of non-full nodes in
S still remains. In the following section, the main idea of our
algorithm is to recursively maintain these non-full nodes in S
with another recursive layer of our algorithm. When carefully
implemented, we are able to ensure that every node in our
trees are either full or empty, except at the very last layer of
recursion. This removes the extra |S|log o term.

), we

V. OUR O(¢™!)-WORD ALGORITHM

In this section, we will implement the sketch in Table II,
proving Theorem I.2. We assume throughout this section that
eU 1is at least a sufficiently large absolute constant, since
otherwise we can increase U without affecting our asymptotic
space complexity.

To start with, we will also assume that we know an upper
bound on n (this upper bound will become ng), and that it
is sufficiently large (that is, ng > n*, where n* is a function
of U, ¢). Furthermore, we will initially allow rank queries to
have error up to eng. We will maintain these assumptions until
Section V-E, where we will then describe how to dispense with
these assumptions.

We now outline how this section will proceed. In Sec-
tions V-A and V-B, we describe the data structure, and how
to handle insertions into the data structure, including how to
merge layers of the data structure. In Section V-C, we bound
the error introduced into the data structure with each merge.
Then, in Section V-D, we describe how to perform rank queries
and show a bound of eng on the error of a query. We next,
in Section V-E, describe how to make our data structure work
even when n < n*, and also improve our bound on error of
a query to €t (where t is the size of the stream so far). In
Section V-F, we pick the numerical parameters of our data
structure such that the claims of the previous section hold.
Finally, in Sections V-G and V-H, we analyze the space and
time complexity of our algorithm, respectively.

A. Structure of the sketch

As mentioned before, our sketch will be formed from
recursive applications of the eager q-digest. We now define the
structure of the recursive layers, which we number 0, 1, ..., k.
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Our c-approximate quantile sketch

Supported operations:

stream. (Algorithm 6)

Space complexity: O(e~! (log(en) + log(U))) bits.

o INSERT(z): Adds an element = € [U] to the stream. (Algorithm 1)
e RANK(z): Returns the rank of @ up to + et error where ¢ is the number of elements in the current

In Section V-H, we will show that each operation takes O(log(1/¢)) amortized time under mild assumptions.

TABLE II: Our quantile sketch.

The 0-th layer: We start with the top layer (layer 0) and
introduce our notation. The top layer has the same structure
as an ordinary optimized eager g-digest forest. We call this
underlying forest 7. It has universe size Uy = U and error
parameter &g €/8. We would like to emphasize that in
optimized eager g-digest, Tp is a forest with 1/e( infinite trees
where most nodes have weight 0. We call these nodes empty.

Whether empty or not, each node in this infinite forest
is labeled with an interval. The 1/ey roots of the trees are
labeled with [1,e0U], [eoU + 1, 250U, ..., [(1 —€0)U + 1, U],
respectively. Then, if a node is labeled with interval [a,b],
its two children are labeled with [a,(a + b — 1)/2] and
[(a+ b+ 1)/2,b] respectively. (Since we assumed that & and
U are powers of 2, these are all integers.) As a special case,
if a = b, the node is going to have only one child, labeled
[a, a].

In Tp, each node v has a weight Wy[u] that cannot exceed
capacity ag = eono/[[log(eoUs) + 17|, where ng is an upper
bound on n. We define the set of full nodes, Fy, as the set of
nodes that have a weight of exactly ay. Recall from optimized
eager g-digest that we know Fj is a upward-closed set of
nodes and is therefore itself a forest of at most 1/eg trees.
(See Section IV for details). We will enforce the invariant that
every node in the tree Ty is either full or empty. So nodes in
Fy are the only nodes in 7 that we actually use and store.
As mentioned before, this allows us to store each node with
only a constant number of bits.

Note that if we were to add new full nodes to this structure,
the empty children of full nodes in Fp, as well as the empty
roots of trees, are potentially positions for new nodes. We call
these empty nodes the exposed nodes. Formally, the exposed
nodes of T is the set of empty nodes that do not have a full
parent. For a concrete example, see the forest T in Figure 4.

a) Intuition: Batch processing of insertions: Let us first
jump ahead and sketch the purpose of having layer i (1 < ¢ <
k). Imagine if we insert a new element in the stream. Then,
an execution of the eager g-digest algorithm will increase the
weight of one exposed node in V to 1 < «g. However, our
algorithm cannot do the same, because it would break our
invariant of having only full nodes in 7. Instead, we maintain
the exposed nodes Vj with our recursive structure (layers > 1)
and insert the new element into layers > 1. These recursive
layers act like a “buffer”; once they accumulate n; elements,
we clear them and compress those elements into new full
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nodes in 1.

In general, for layer ¢ (1 <4 < k), we group n;11 insertions
in a batch and insert them to layer > ¢ + 1. After each batch,
we compress the elements in layer > ¢ 4 1 into full nodes in
layer 7 and clear layer > ¢ + 1. Full details of how we handle
insertion will be discussed in Section V-B.

The i-th layer (1 < i < k): Roughly speaking, the upper
part of the layer ¢ structure (which we call 7};) resembles an
optimized eager ¢-digest forest with whose “universe size”
is U;, which is an upper bound on |V;_1| (when we pick
the values of the parameters, we will prove this upper bound
in Claim V.19). At depth h; = log(e;U;), they have exactly
|Vi_1| nodes’. Each such node u will correspond to an exposed
node v € V;_1, in order (from left to right). We call this depth
the base level of T;. This is the upper part of T;.

For the interval labeling of the upper part, as each base level
node u corresponds to an empty node v € V;_;, naturally, u
just inherits the interval label of v. Strictly above the base
level, the interval of each node is the union of the intervals of
its base-level descendants.

Now we start to describe the lower part of T;. Unlike the
optimized eager g-digest, we will also allow 7; to grow beyond
the base level. (We give some intuition for this in Remark V.2,
which readers may skip on the first read.) For each base-level
node u that corresponds to v € V;_;, we copy the empty
infinite subtree of v in 7T;_1, and put it as the subtree of u in
T;. This also copies the interval labels on nodes in the subtree.
For a concrete example, see the forests 77,75 in Figure 4.

Remark V.1. Because we copied the subtrees from 7;_;, for
any node u below the base level (including the base level
itself), there exists a unique node u’ € T;_; corresponding to
it. (We will soon see that v’ is in fact an empty node.)

A node w in T; has weight W;[u] and capacity o; =
g;n;/log(e;U;)+1]]. We again call a node full when it reaches
its capacity. F; is defined to be the set of all full nodes in 7T;.
We maintain the similar invariant as layer 0: For all 0 < ¢ < k,
the forest T; will contain either full or empty nodes.

7Note that in an optimized eager g-digest, the base level contains U; nodes;
we just remove the remaining U; — |V;_1| nodes and their descendants, and
also any inner nodes with no descendants remaining.

8Note when ¢ = k, since there are no further recursive layers, we do not
require the invariant for it. Insertions to T}, are simply handled as in a normal
optimized eager g-digest. (See Section V-B for more details.)
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Note that this invariant means that, for layers ¢ < k, instead
of storing the weight map W, it suffices to only store Fj,
since the contents of W, are determined by F;.

Finally, V;, the set of exposed nodes of T}, is defined as the
set of of empty nodes which do not have a full parent (for
1 < i < k)°. Note that there may be some exposed nodes
above the base level. (This results in a subtlety in the interval
labels. See Remark V.3 for details. Readers may skip it on
their first read.)

Remark V.2. Suppose that we do not allow the tree T; to
grow beyond the base level. Then the total weight of it can
be at most 2c;|V;_1|. In other words, layer > i will not be
able to handle more than that many insertions. But it turns out
that we will later want to set n; > 2a;|V;_1|, so we have to
allow T; to grow beyond the base level. (More specifically,
we want to set n; so that ¢;n; > «;_1, which is essential for
Lemma V.13.)

Remark V.3. First, for the upper part of 7}, a node labeled
with [a,b] may not have children with evenly split interval
labels ([a,(a + b — 1)/2] and [(a + b + 1)/2,b]). This is
clear since the labels of nodes above base level are derived
bottom-up by taking the union of intervals at their base-level
descendants. It is, though, tempting to think that for the lower
part of T; (below the base level), all nodes labeled will have
two children with equally split intervals. This, however, is also
not always the case. It is possible that a base-level node u
corresponds to an exposed node v € V;_; that is in the upper
part of 7;_1. Then when we copy the subtree of v, those
two children will not have equally split interval labels. For
example, this happens in Figure 4, at the node labeled [1, 6]
in the tree T5. Its two children split into [1, 4] and [5, 6], while
an even split is [1, 3] and [3, 6].

Remark V4. In order to avoid interrupting the flow of the
paper, we will defer the precise definitions of the parameters
k,n;, U;, g; until Section V-F. However, so that the reader can
have a sense of the scale of each of these parameters, we will
give approximate values now that can be used as guidelines.
All the parameters except k will be powers of 2, to avoid
divisibility issues. We pick the following rough values:

o The number of layers will be k + 1 ~ log*(cU).

o The approximation parameters ¢; are all very close to ¢,
and can be thought of as essentially equal to €.

o The U; will satisfy the approximate recursion eU;;; ~
log(eU;), so by the last level we will have Uy ~ 1/e.

e The batch sizes m; will shrink very slowly (only by
polylogarithmic factors in €U), so they can all be thought
of as roughly n, though decreasing.

o In particular, even the last batch size nj is almost n
in this sense, so one can think of the algorithm as

9For i = k, we define V}, instead to be the set of non-full nodes without
a full parent.
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spending most of its time at layer &, with a “universe”
of size O(1/e).

« Similarly, the capacities «; are also all approximately en,
though also decreasing in 3.

B. Handling insertions

In this subsection, we formally explain how we handle
insertions.

Insertions: Recall that in Section V-A, we only require
our invariant to hold for layers ¢ # k. For layer k, it is
maintained by a normal eager g-digest. For any insertion z,
we first insert it into the layer k as we would in a normal
optimized eager g-digest. In other words, we find the exposed
node in 7}, whose interval contains z and increase its weight,
Wi [v], by 1. This node always exists due to the following
observation.

Observation V.5. For all layers 1 < ¢ < k. the intervals of
the exposed nodes V; are always disjoint and cover the entire
universe [1, U].

Then for i =k, k —1,...,1, we check if the total number
of elements inserted so far, denoted by ¢, is a multiple of n;.
If so, we need to compress layers > 4 into full nodes in layer
1—1. Specifically, we will chose these n;’s so that n; is always
a multiple of n;;; for all I (we prove this in Fact V.20(c)).
Therefore if w is @ multiple of n;, layers > 41 have already
been compressed into full nodes of layer <. We will only need
to compress layer ¢ into full nodes in layer ¢ — 1 and merge
them into 7;_;. We call this procedure MERGE(¢) and will
describe it next. The pseudocode for the insertion procedure
as a whole is summarized below in Algorithm 1.

Next, we explain how MERGE(¢) compresses layer ¢ into full
nodes in layer ¢ — 1. We follow a delicate three-step strategy.
On a high level, it is carefully designed so that we incur an
error (which is defined formally later in Section V-C) of at
most h; - o; + ;41 from the compression. (Recall that h; =
log(g;U;) is the depth of the base level in 7;.) This is important
to our analysis.

a) Merge Step 1 - move the weight into T;_1: In the first
step, we move all the weight in T} into empty nodes in T;_;.
There are two cases:

« For every node v with weight below the base level (in-
cluding the base level itself) in 7}, there is a unique empty
node v’ in T;_1 corresponding to it. (See Remark V.1.)
We move all the weights for v into that of «’. Formally,
we just increase weight Wi, _q[u'] by Wy [u].

For every node u strictly above the base level of 75, there
is no node in 7;_; that directly corresponds to it. Instead,
we will take an arbitrary descendant v € T; of it at the
base level. As v corresponds to an (exposed) empty node
v’ € T;_1, we will move the weight of u there. Formally,
we increase weight Wi._1[v'] by Wi [u].
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[] Exposed nodes in Ty

A Exposed nodes in T}

. full nodes

Fig. 4: The structure of different layers. Here ¢ = 0.5, so there are 1/ = 2 trees in each layer. The nodes below the base-level
of each layer is marked as gray. Note that when we construct 7;, we take all the exposed nodes in 7;_; and use them as the
base-level nodes to build 1/e trees. Then we copy their subtrees in 7;_; to be their subtrees in T;.

This is summarized in Algorithm 2. We defer the error
analysis of this step to later in this section. Before we proceed,
let us state a simple property about this step.

Observation V.6. We will choose the parameters so that a; -
h; < ;1 (this will be shown in Fact V.20(d)). (Recall that
h; = log(e;U;) is the depth of the base level in 7;.) Thus,
after this step, all nodes in 7;_1 still have weight at most cv; 1.

Therefore, this step does not exceed the capacity of nodes in
T;_1. But it does create a number of non-full nodes: It merges
T; into T;_; while breaking our invariant of having only full
or empty node in 7;_;. So the purpose of Step 2 and 3 is
exactly to restore this invariant.
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Merge Step 2 - Compressing into full nodes: Naturally,
given the non-full nodes in 7;_;, we want to first perform a
compression step similar to g-digest: Whenever a node v €
T;_1 has a parent that is not full, we move weight from v to
parent(v).

Let F;_ be the set of full nodes after this step. We call the
nodes that are neither full nor empty partial nodes. All the
partial nodes are now either non-full children of full nodes
in F;_; or an partially-full root. Importantly, we have the

1When i = k, this will actually be all w such that Wy[u] is nonzero,
rather than just all full nodes.

12We are keeping the algorithm description simple by moving weights one
unit at a time. In an actual implementation, one should of course move the
maximum amount possible at each time.
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Algorithm 1 Inserting an element of the stream

> Recall Wi[v] is the weight of v.

> t is the total number of stream elements inserted so far.

> Compress T} into full nodes of layer 1 — 1.

/I Note the set V;_; changes after MERGE(z). After we clear layer i, the structure of 7; implicitly changes

1: procedure INSERT(x)
2: // Insert x into T3..
3 v < the highest non-full node in 7} whose interval contains =
4: Wy, [U} — Wy ['U] +1
5: /I Compress and merge
6 t+—t+1
7 fori=Fk...1do
8 if ny, | t then
o: MERGE(%)
10: Clear the structure at layer <.
11:
according to the new V;_;.
12: if t = ng then
13 | DOUBLE()

> This handles unknown n (Section V-E); the reader may ignore it for now.

Algorithm 2 Moving the weights from layer ¢ to empty nodes
in layer 7 — 1

1: procedure MOVE(%)

2: for all w € F;'° do

3: if u is strictly above the base level of 7; then

4 Let v € T; be an arbitrary descendant of w at
the base level.

5: Let v' € T;_1 be the node corresponding to v
(by Remark V.1).

6: Wifl[’l}/] — Wifl[l)/} + W; [u]

7: else

8: Let v’ € T;_1 be the node corresponding to u
(by Remark V.1).

9 | W,;l[ul] — Wi,l[u’} + W; [u]

Algorithm 3 Compressing weights WW;_; into full nodes

1: procedure COMPRESS(7 — 1)

2: while there exists v € T;_1, W;_1[v] > 0 and
i—1[parent(v)] < a;—1 do
3: Wifl[’u] «— Wifl[v] -1
4 W, _1[parent(v)] < W;_q[parent(v)] +1 > Mov-
2

ing the weights.

following observation.

Observation V.7. After this step, the interval labels of the
partial nodes are all disjoint.

This is because no partial node can be an ancestor of
another. These partial nodes are the leftovers that we will
round up in Step 3.

Merge Step 3 - Round up the leftovers: As the interval
labels of these leftover partial nodes are disjoint by Obser-
vation V.7, we can sort these nodes by their interval. Then,
roughly speaking, we are going to take the (offline) quantile
sketch of these nodes as the result for rounding.
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More formally, suppose there are ¢ partial nodes. After
sorting, these nodes are vy, vs,...,v,. Suppose each partial
node v; is labeled [a;,b;]. We will have a; < by < ag <
by < -+ < ap < by. Let r ﬁZﬁ;l W,_1[v;] be the
number of full nodes that we are expected to round up to.'?
For every m € [r], we find the first g,, € [¢] such that

321 Wi_1[v;] > m - a;—1. These vq,, Vg, ..., v, are the
“quantiles” of these sorted partial nodes.

Then we set the weight of all v, ,’s (for all m € [r]) to a;—;
and the weight of all other v;’s to zero. Note these vy, ’s must
be disjoint since by Observation V.6, any node has weight
at most «;_1. This rounds up the partial nodes into r» many
full nodes and finishes this step. An implementation of this
procedure is given below in Algorithm 4.

Algorithm 4 Rounding the leftovers

: procedure ROUND(Z — 1)
: c+0 > c is the cumulative total weight
m <1
for all partial node v in left-to-right order do
¢+ c+ Wi_q[v]
if c>m - «;_1 then
Wifl[v] o1
m+—m—+1
else
L Wi_1[’U] ~—0

1
2
3
4:
5:
6
7
8
9

10: |

b) Conclusion: Finally, our merging operation is imple-
mented by performing these three steps sequentially.

C. Error analysis for merges

Before we analyze each step of MERGE(2), let us first define
the error metric.

3This is always an integer, because Z§:1 W,;_1[v;] is equal to n; minus
the total weight in the full nodes formed in Step 1 and 2, and we always choose
n; to be a multiple of ;1.
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Algorithm 5 Merging layer ¢ into layer ¢ — 1

1: procedure MERGE(%)

2: MOVE(2)

3: COMPRESS(i — 1)

4 ROUND(i — 1)

5 // During this process; the set of full nodes £;_; that

we store changes as we move weights around.

Consistency and Discrepancy: First, we define the notion
of consistency between our layer ¢ sketch 7; and a stream of
elements 7. Intuitively, this describes what layer ¢ should look
like upon receiving stream 7 if the merge had not introduced
any error.

Definition V.8 (Consistency). We say that a stream 7 is
consistent with a subset of nodes S C T; if and only if there
exists a map f that maps {1,2,...,|n|} to S satisfying the
following.

1) Each node u € S is mapped to exactly W;[u] times.

2) For every 1 < j < |x|, the interval label of node f(j)
contains ;.

Then we define the discrepancy between 7; and the stream
7. This quantifies the amount of additional error we have.

Definition V.9 (Discrepancy). We define the discrepancy
between a stream 7 and a subset of nodes S C T; as

disc(mr, S) = min d(m, ).

7/ consistent with S
Here, as defined in Section II, the distance between two
streams is

d(m, ") = mrer?)é]hankﬂ(x) — rank, (z)].

Analysis of Step 1: Now, we show that Step 1 increases
the discrepancy by at most €;n;.

Lemma V.10 (Step 1). Let T; be the layer-i sketch before
Algorithm 2 (Step 1). Also, let S be the set of originally empty
nodes in T;_1 whose weight increases during Algorithm 2.

For any stream m, we have

disc(mr, S) < disc(w, T;) + €ini.

Proof. Let m* := arg min, .« consistent with 7, (7, 7°) and f* be
the consistent mapping from m. to 7;. We will construct a
stream 7’ and a mapping f’ such that 7’ is consistent with S
with mapping f’ and d(7*, ') < g;n;. This finishes the proof
because the distance we define satisfies the triangle inequality
d(m,7") < d(m,7*) + &;in;.

For any element 7r;'-‘ (1 < j < |r*|) there are two cases:

1) If f*(j) = u for a node u below the base level of T;,
let u' € T;_; be the corresponding node (as in Line 9,
Algorithm 2). We let 77 = 77 and set f'(j) = '
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2) If f*(j) = u is a node u strictly above the base level of
T;, let v € T; be its descendant at the base level and v’ €
T;_1 be the corresponding exposed node (as in Line 5,
Algorithm 2). We select an arbitrary element y in the
interval of v (which is equal to that of v'), and let 7 = y.
Then we set f/(y) = v'.

From this construction, it is clear that 7’ is consistent with S

under f’. To upper bound d(7*,7), consider any query x €

[1, U], the difference of the rank of x in 7 and in 7’ is bounded

by the number of j’s such that z lies strictly between 7 and
/

ﬂ'j .

As 7} # }, this can only happen in Case 2. Moreover, as
7TJ’-‘ was initially in the interval of «, and 7, is in the interval of
v (wich is contained by that of u), we know that z must also
be in the interval of u. Since there are at most h; such nodes
u strictly above the base level of 75, and each is mapped to a;
times, we have at most h;«; many such j’s. We will choose
the parameters in Section V-F so that h;a; < g;n; (this will
follow from (3)). This proves d(7*,7) < g;n;. O

Then we need to argue that when S is merged with the
original nodes in 7;_1, their discrepancies at most add up.
This follows from the following observation, which is a
consequence of Observation II.2:

Observation V.11. For two disjoint sets of nodes 5,7 and
any two streams 7; and 7o, we have

disc(my o w2, SUT) < disc(my, S) + disc(ma, T),

where o means concatenating two streams.

Analysis of Step 2: It is not hard to see that Step 2 never
increases discrepancy.

Lemma V.12 (Step 2). For any stream w that is consistent
with T;_1, after we perform Algorithm 3 on T;_1, w is still
consistent with T;_1. This implies that for any stream ,
disc(m, T;—1) is always nonincreasing after perform Algo-
rithm 3 on T;_4.

Proof. We prove this for each operation we perform. When-
ever we move one unit of weight from v to parent(v), we
pick an arbitrary 1 < j < |«| such that f(j) = v and let
f(4) < parent(v). Since the interval of parent(v) contains
that of v, the consistency map remains valid. O

Analysis of Step 3: Finally, we show that the rounding
in Step 3 only increases the discrepancy by a;_1 = €;n;.

Lemma V.13 (Step 3). For any stream 7, whenever we
perform Step 3 (Algorithm 4) to T;_1 in our algorithm, the
discrepancy disc(m,T;—1) increases by at most ;1 (which
is equal to ;n;).

Proof. First, we only perform Algorithm 4 after Algorithm 3.
So, by Observation V.7, all the partial nodes have disjoint
intervals before Algorithm 4.
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Before the algorithm starts, let vy, vs, ..., v, be the partial
. 1 £

nodes of T;_; in sorted order, and r = - Zj:1 Wi_1[v,].
Suppose [a1, b1], [az, b2], . . ., [ar, be] are their disjoint interval
labels. Let 7 = argmin . .onsiseent with 7;_, ¢(7,7*) and f*
be corresponding consistency map. For every m € [r], let
vy,, be the first node such that 321" Wi_i[v;] > m - a;.
As discussed in Section V-B, these vg,,vq,,..., 0, are all
distinct.

After the algorithm, all partial nodes become empty, except
that vy, , Vg, . . ., Vg, become full nodes with weight o;_1. We
let go = 0. For all m € [r], we do the following to construct
stream 7’ and its consistency map f’ (with T;_; after the
algorithm):

 For all nodes v, with ¢,—1 < s < ¢ and all j €
{1,2,...,|7*[} such that f*(j) = vs, we set T} < ag,,
and f'(j) < vg,,.

« For the node v,,, ,, we take > o™ W;_1[vs] — (m —
1) - a;—1 many j’s such that f*(j) = v,,,_, and set
™ 4 ag,, and f'(j) < vg,,.

« For the node v,,,, we take m-a;_1 — Ziq:”i)_l Wi _1[vs]
many j’s such that f*(j) = v,,, and set 7; < 77 and

F'G) < 1) = v,

Now we prove that d(7*,7") < «;_1, which by our choice of
parameters in Section V-F, will be at most ¢;n;. This will end
the proof of this lemma by the triangle inequality d(m,7") <
d(m,7*) + d(r*,7') < d(m,7*) + &;n,.

For any query z, its rank in 7* and #’ differs by at most
the number of j’s such that z is strictly between 7 and 7.
As ] = 7%, this only happens in the first two cases. Suppose
I'(4) = vy, This implies 7 = a,,,. Then f*(j) must be a
node vg with ¢,,—1 < vs < ¢, and 7'('; > Qg -

This implies « is in the interval [a,,, ,,aq,,). Thus there is
a unique m for each query x, and by our construction, there
can be at most ;1 many j’s that are mapped to v,,, by f'.
This proves that d(7*,7") < a;_1. O

Putting everything together: We have essentially proved
the following lemma.

Lemma V.14. Let  be the partial stream that arrives at time
[s-m;+1,s-n;] for some integer s. According to Algorithm 1,
after the (s - n;)-th insertion, we will perform MERGE(k),
MERGE(k — 1), ..., MERGE(?) in order.

Let T; be the structure at layer i at the exact point that
MERGE(¢+ 1) returns and MERGE(%) has not started yet. Then
we have

dise(m, T;) < 2741 - N4y

where

Vit1 = Eit1 T Eipa 0+ g

Proof. We proceed by induction. In the base case where i = k,
the layer-k structure 7} is always consistent with the partial
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stream 7 by construction. Suppose that this holds for 7 4 1.
We split the stream 7 into its batches 7 = 7D o 7 0 ... 0
m(ni/ni+1) where each 7() has length n,, 1. For the ease of
notation, we define 71+ = 7(1) o 7D o... 0 79,

By the induction hypothesis, we know that after receiving
each 7(/) but immediately before we perform MERGE(i + 1),
we have disc(m), Tj1) < 27,40 - niy1.

Then let us look at the process of MERGE(z + 1) and do
another layer of induction. The induction hypothesis is that
immediately after receiving 7(/) and perform MERGE(i + 1),
we have disc(7(9) T;) < 2(yi42 + €i41) - j - nig1. When
J = mni/niy1, this is simply disc(m, T;) < 2(yi42+€it1) Ny
2v;+1 - n; and proves the outer induction.

In the base case, T; is empty, and we have disc(0,T;) = 0.
Suppose for j — 1, our induction hypothesis holds.

o It first performs MERGE(% 4+ 1) which, by Lemma V.10,
adds a set S of new non-empty nodes to 7;_; with
disc(w(j), S) < diSC(ﬂ'(j)7 Ti+1) +eit1 i1 < (27i+2 +
€i+1) Ni+1. Then by Observation V.11, after this step, we
have disc(n(" ) T;) < (29iq2-j+eiv1- (25— 1)) -niv1.

Then it performs COMPRESS(z) which, by Lemma V.12,
does not increase the discrepancy.

Finally, it performs ROUND(z) which, by Lemma V.13,
increases the discrepancy by at most €41 - n;41 and
results in disc(m("7), T3) < 2(yip2 + €i41) - J - Nig1.

This finishes the inner induction and the proof of this lemma.
O

The inner induction in the proof above actually proves the
natural corollary below.

Corollary V.15. Let 7 be the partial stream that arrives at
time [s-n; + 1,t] for some integer s and ¢ such that n;41 | ¢
and t < s - n;. After the ¢-th insertion and immediately after
MERGE( + 1) returns. We have

disc(m, T;) < 2741 - |7

where
Vi+1l = Eig1 +Eip2 + o+ Ege

D. Answering queries

To answer a rank query, we simply add up the weights of
all the nodes whose interval contains any element that is at
most x, as shown in Algorithm 6.

First, we bound the total weight of nodes v which could
cause over-counting. To this end, we say that a node is bad
if its interval contains z and, furthermore, its interval is not
the length-1 interval containing only x. Then, we show the
following.

Proposition V.16. The total weight of all bad nodes, across
all layers, is at most yony.
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Algorithm 6 Answering a rank query

: procedure RANK(x)

1

2: r<«0

3 for all i € {0,...,k} do

4 for all vertices v € T; do

5 if the interval of v contains any element less
r equal to = then

6: ﬁ r < r+ W;[v]

7: return r

Proof. Let w; denote the total weight of all bad nodes in 7T;
(for 7 < k, this is just «; times the number of full bad nodes
in layer 7). Moreover, let c¢; denote the total capacity of all
bad nodes in layer i, even the empty ones'* (this is ay, times
the total number of bad nodes in layer k).

We will prove the following statement for 0 < 7 < k by
induction:

(@)

wo+ - Fwi—1 +¢ Segno+ - FEn;.

For the base case ¢ = 0, there are hy bad nodes in layer O
(namely, the strict ancestors of the node in the base level which
corresponds to x). Therefore we have ¢y = hoag < ggng.

Now, assume that (2) holds for i — 1 (where 1 < ¢ < k); we
will show that it also holds for ¢. Consider the quantity ¢;, the
total capacity of bad nodes in layer i. Above the base level of
T;, at most one node in each level is bad (since the intervals
in a level are disjoint). Thus, the total contribution from these
nodes to ¢; is at most h;o; < g;n;.

On the other hand, each bad node in 7’; which is at or below
the base level corresponds to an empty bad node in 7;_;. Note
that the total capacity of empty bad nodes in 7;_; is just
¢;—1 — w;—1. Moreover, since a; < «;—1 (by Fact V.20(d)),
the capacity of each node at or below the base level of T; is
at most the capacity of the corresponding empty bad node in
T;_1. Thus, the total capacity of bad nodes in 7; which are at
or below the base level is at most ¢;_1 — w;_1. Therefore, in
total, the total capacity of all bad nodes in 7; is at most

¢ <en;+ci—1 —Wi—1.
Recall also that by the inductive hypothesis, we have
Wo + - FWi—g + i1 S €gno + -+ E€i—1Ni—1-

Combining these two inequalities, we recover (2).

Having proven (2), it remains to complete the proof of
Proposition V.16. Indeed, setting ¢ = k in (2) and using the
fact that ¢; > w;, the total weight of all bad nodes is at most

eong + - +ein; < (g0 + -+ + &:)no = Yono,

as desired.

4For layer i = k specifically, ¢; includes also the non-full nodes.
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Proposition V.17. At any time t, suppose that w is the stream
received so far. Then there exists a decomposition ™ = g o
7 0 -+ 0y such that

k
Z disc(m;, T;) < 271t.
i=0

Proof. Let m be the first [t/ni]| - ny elements of 7, 7 be
the next |t/ng| - na — |m1| elements, mo be the next |¢/ns] -
ng — |m o m2| elements, and so on. In general, 7; is the next
[t/niy1] nip1—|miomao- - -om;_1| elements in 7 after those
in m;_;. Specifically, we let ng11 = 1.

By Corollary V.15, we know that disc(m;, T3) < 27;41 - |-
Thus,

k
3 dise(mi, Ty) < 271lmol + 2y2lmi| + -+ + 2|
1=0

< 2vi(|mo| + |+ -+ + [7x])
= 2mt,

O

so we are done.

These two propositions imply a bound on the error of a rank
query:

Proposition V.18. Let w be the stream received so far at
time t. Then, the answer to a rank query, as performed by
Algorithm 6, for any element x differs from rank,(x) by at
most yono + 271t.

Proof. Let 1 = mg o m o --- o be the decomposition
from Proposition V.17. Combine Proposition V.17 with the
definition of discrepancy (Definition V.9), we know that there
exists a sequence of partial streams {7/}*_, such that 7/ is
consistent with 7; and Zf:o d(m;, m}) < 2qt.

Let 7' = 7} omh o--- om. By the triangle inequality
(Observation II.1), we know that d(m,7") < 2v;t. Since we
answered the query by counting the total weight of nodes
whose intervals include any element which is at most z, the
quantity obtained is at least rank,/(z), and may overcount
at nodes whose interval also contains an element larger than
z. However, note that any such node must be bad, so the
total amount by which the algorithm overcounts is at most
Yono by Proposition V.16. Thus, the output of the algorithm
differs from rank, (z) by at most ~gng. Furthermore, by
Proposition V.17 (and the definition of distance of streams),
we have |rank,(z) — rank,/(x)| < 271t, so the conclusion
follows. O

Now, since vg,71 < &/4 (by Fact V.20(f)), this already
means that the error of a rank query is at most eng. However,
so far we have still assumed that we know m in advance;
moreover, we would actually like the error to be at most &t,
where ¢ is the total number of elements received so far. In
Section V-E, we will explain how to rectify this.
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E. Removing assumptions about n

In this section, we will describe how to dispense with the
assumption that we know n, as well as the assumption that
n > n*. We will also prove that the error of any query is at
most et.

a) Unknown n: First, we describe how to maintain the
data structure when we don’t know n in advance, but still
assuming that all queries happen after ¢ > n*. At the start
of the algorithm, we initialize the data structure with ng =
n*. Then, whenever ¢, the number of elements so far in the
stream, reaches ng, we double ny (which has the effect of
doubling n; and «; for all 7). Note that when ¢ = ng, only
layer O exists, so we only need to describe how to update layer
0. Every node in layer O is now half-full instead of being
full; that is, the weight of every node in Fy is now ag/2.
Then, we just perform the push-up and rounding, as described
in Algorithms 3 and 4, to layer 0. The pseudocode of this
procedure is given in Algorithm 7, and it is called in Line 13
of Algorithm 1.

By Lemma V.13, this has the effect of changing the stream
represented by layer O by a distance of at most oy =
eono/[[log(eoUo) + 17| < €t/16 (since we assumed that eU
is sufficiently large). Then, at any point in the stream, the
total amount the represented stream has been changed by these
rounding operations is at most eng/16+eng/32+- - - < eng/8.
Therefore, the bound on distance between 7 and 7’ in Propo-
sition V.17 is increased by eng/16 after adding the doubling
step to the algorithm.

Therefore, after this modification to the algorithm, the proof
of Proposition V.18 now gives a bound of yyng+7y1t+eng/16.
Since ng < 2t (since we assumed that ¢ > n*), and v < ¢/4
and 11 < ¢/8 (by Fact V.20(f)), we have

Yono + Y1t + eng/16 < et.

In conclusion, for any ¢ > n*, the additive error of any rank
query after ¢ elements of the stream is at most t, as desired.
It remains, then, to handle the cases where ¢ < n*.

Algorithm 7 Doubling size of data structure

1: procedure DOUBLE()

2: for all i € {0,...,k} do

3: n; < 2n;

4 a; < 2a; > The algorithm doesn’t actually store
n; or «;; however, this does affect Fy since the
nodes in Wy are now half-full instead of full.

COMPRESS(0)
ROUND(0)

b) Dealing with 1/e <t < n*: Next, we describe how
to modify the algorithm to still be able to answer queries when
1/e <t < n*. Firstly, we still store the original data structure,
since we will need to use it after ¢ exceeds n*. However, in
addition, we create a new instantiation of the data structure
(with the same parameters), where upon receiving an element

of the stream, instead of inserting it once, we insert the same
element en* times (by Fact V.20(i), this is an integer). Then, as
long as t > 1/, we will have inserted at least n* elements into
this alternate data structure, so by the previous section, it will
be able to answer rank queries with relative error at most €, as
desired. Of course, the effective value of ¢ will have increased
by a factor of en*, which will have ramifications for the space
complexity. However, we will show in Section V-G that the
space complexity is still what we want it to be.

¢) Dealing with t < 1/e: Finally, while t < 1/e, we
will just store all the elements of the stream so far explicitly
(in addition to keeping the data structures of the previous two
sections). We will show in Section V-G that this can actually
be done using O(e~!log(sU)) space. Obviously, if we store
all the elements of the stream, rank queries can be answered
exactly.

FE. Choosing the parameters

We will now choose values for the parameters of the
algorithm (k, n;, U;, and ¢;) and verify that they satisfy some
necessary properties.

First, note that we may assume that n, U, and ¢ are all
powers of 2 (by rounding n and U up and € down to the
nearest power of 2, costing at most a constant factor). Indeed,
we will ensure that n;, U;, €;, and «; are always powers of
2, in order to stave off divisibility issues.

We then pick the following values. Let k = log*(eU). As
described in Section V-A, let Uy = U. Let ng be an upper
bound on ¢, the number of elements so far in the stream. As
previously described, we will imagine for now that we know
n in advance and that ng = n. Also, we assume, as we may,
that ng is a power of 2. We then pick ¢; as follows:

o /8, 1=0,
g/t i1

Also, define
Vi =€+ &1+t Eke

Also, recall from Section V-A that for all 7, we define the
capacities «; based on €;, n;, and U,as follows:
_ Eilg

Mog(e;U;) + 17
Now, we define the parameters n; and U; for layer ¢ + 1
recursively (for ¢ < k) as follows:

Uypsy = ’P N 1” _ HH Tog(e:Us) HW

3)

Qg

E; (67} &
U. 1
_ 2MNlog(e;U;) + ﬂ7 @
&
Q; iy
Ni+1 = ®

€it+1 o Eit1 Hlog(slUJ —+ lﬂ ’
We let h; be the depth of the base layer in 7T5:

hi = log(slUZ)
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We will show soon that indeed h; is always a positive integer.

Now, so far we have treated ng as fixed, but this assumption
will change later in Section V-E. In anticipation of this, we will
briefly discuss here the effects of changing ng. Treating €, U
as constants, note that the only parameters that are affected by
no are the n; and «;, which are all constant multiples of ny.
We will need all the n; and «; to be integers (or equivalently,
at least 1), so to this end, define

*

2, ©)
(€75

Then, n* is fixed (i.e., it depends only on €, U and not on ng).

Note that n* is the value of n( that causes aj, to equal 1 (and

we will show in Fact V.20(e) that it will also cause the rest of

the n;, a; to be integral).

Now we will check some properties of these parameters
which we will need. First, we will show the important property
of U;: that it is an upper bound on the number of exposed
nodes in the previous layer.

Claim V.19. For all 0 < i < k, we have U1 > |V;| (recall
that V; is the set of exposed nodes in layer 7).

Proof. The number of full nodes in layer ¢ is at most n;/«;
(since full nodes have weight «;. If there are no full nodes,
then we would have |V;| = 1/¢;, since V; would just be the
set of all the roots of trees in T;. Now, imagine building up the
set of full nodes by adding them one at a time (from bottom to
top). Each time we add a full node, we remove one exposed
node, and add back at most two exposed nodes. Thus, the
total number of exposed nodes after this process is at most
1/e; + n;/a;, which is indeed at most U, 11 by (4). O

Now, we will prove various other properties of the pa-
rameters which we will need throughout. We state all these
properties now, but we will defer their proof to Appendix A,
since they mostly just involve manipulation of the definitions
of the parameters.

Fact V.20. The parameters satisfy the following properties:

(a) For all ¢, n;, U;, €;, and «; are powers of 2.

(b) For all i, ¢;U; > 2 (and thus, h; is a positive integer).

(c) For all ¢ < k, n;y; is a factor of n;.

(d) For all i < k, a1 = a;/[[hiv1 + 1])-

(e) If ng > n*, then n;,a; > 1 for all 4.

() 0 <e/4, and v; < /8 for all i > 1.

(2) U =0(1/e).

() Uy + Uz + -+ U = Ot log(el))).

(i) et <n* < e (log(el)) o) (where o(1) refers to a
term that approaches 0 as eU — 00).

() ag—1=0(ng/n*).

G. Space complexity

Now we discuss the space complexity of the algorithm. All
space complexities in this section will be in bits, not words.
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There are two primary things to check: the space taken by the
sketch itself, and the space required during a merge step after
an insertion.

a) Space of sketch: The information stored by the algo-
rithm consists only of the full nodes F; for layers 0 < i < k
and the weights W, for layer k. (Note that we don’t need to
store T} since it is determined recursively by 7;_1 and F;_;.)

Each F; is an upward-closed subset of T;. In each of the
1/e; trees that comprise T;, the portion of F; in that tree (if
nonempty) is a connected subgraph including the root. Thus,
that portion of F; is uniquely determined by the topology of
the (rooted) tree that it forms (where in a tree topology we ).
We can store the topology of an /-vertex tree using O(¥) bits
(by storing the bracket representation of the tree). The total
number of full nodes in F; is at most n;/«; at any time, so
this means that the total space to store F; is O(1/e; +n;/ o),
which is just O(U;41) by (4). Thus, the total space to store
all the F; is O(Uy + - -- + Uy), which is O(e~!log(eU)) by
Fact V.20(h).

Now, it remains to check the space required to store Wj.
First, the keys of W} also form an upward-closed subset of
T;. This subset consists of full and partial nodes; by the same
argument, there are at most ny /ay, = O(1/¢) full nodes. Every
partial node is either a root (of which there are O(1/ey)
O(1/e)) or a child of a full node, so there are also at most
O(1/e) partial nodes. Therefore, as with the Fj, the space
required to store the set of all nonempty nodes is at most

O(1/er +1/e) = O(1/e).

After the set of nonempty nodes has been stored, we just
need to store their weights!> in some order (say pre-order of
the trees). The weights are all at most «, = ng/n*, and there
are O(1/e) of them, so the space required to store all the
weights is at most O(e~1log(ng/n*)). Since n* > 1/¢ (by
Fact V.20(1)) and ny < max(2n,n*) at all times, we have
O(etlog(ng/n*)) < O(e~log(en)).

Putting everything together, the total space complexity of
the data structure is at most

O(e ' (log(eU) + log(en)),

as desired.

b) Space of sketch while t is small: Recall that in section
Section V-E, we made two modifications to the data structure
that lasted while ¢ < n* and ¢ < 1/¢. We will show now that
(asymptotically) they don’t require any extra space.

First, while t < n*, we maintained a second data structure
identical to the first, except that we repeated each element en*
times. For this data structure, the space analysis that we just
performed still holds, except that ny may now be up to 2en*t.
The space to store the F; is unchanged. The space required

15 Actually, we only need to store the weights of the leaves of the forest
formed by the nonempty nodes, since the rest are full. Since it doesn’t make
a difference to the asymptotic space complexity, we store all the weights for
simplicity.
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to store the weights is now at most O(e~!log(ng/n*)) <
O(etlog(et)), which is still at most O(e~*log(en)), as
desired.

Finally, for ¢ < 1/e, we stored all the elements of the stream
explicitly. Naively, storing these as an ordered list would take
O(e‘1 logU) space, but actually, since the set is unordered,
we can improve this. Indeed, split the universe [1, U] into 1/e
buckets of size cU (based on the log ~! most significant bits).
Then, for each bucket, store an ordered list of the log(¢U)
least significant bits of every stream element in that bucket.
Storing such an ordered list of length ¢ takes O(1+/¢log(eU))
space, so the total space taken is at most O(1/e+tlog(eU)) <
O(e'log(el)), which is at most a constant multiple of the
desired space.

This completes the discussion of the space taken by the
sketch itself. Now we will show that the algorithm does not
require any extra space (asymptotically) during the merge
operation.

c) Space during merge: During the merge, the only extra
memory we require is that of storing the keys (i.e., vertices)
of the map W,_; which weren’t already stored in F;_;. There
are two parts of this: we need to store the new keys of W,_;
(that is, the vertices with newly added weight), and we need
to store the weights themselves.

Let S denote the set of new keys of W;_;. Note that every
node in S corresponds to at least one node from F; which
put its weight into that node. Thus, we have |S| < |Fj|.
Additionally, S U F;_; form an upward-closed set in T;_;.
Thus, just as we stored F;_1, we can also store S U F;_;
using |S U F;_1| < |F;| + |Fi_1]| space. Note that we already
used |F;| + |F;_1]| space for the original sketch, so storing S
does not require any more space asymptotically.

Now, it remains to store the weights in W;_;. Here we must
distinguish between the cases ¢ = k and ¢ < k. If ¢ = k, then
we store the weights explicitly. The weights always remain at
most a1 = O(ax) = O(ng/n*) (by Fact V.20(j)), so the
total space required to store the weights is O(]S|log(ng/n*)).
Since |S| < Fi, = O(1/e), this is then at most the weight
allocated to store Wj, originally, so again this does not require
extra asymptotic space.

If ¢ < k, then we first make one small optimization: as stated
in a footnote, in Algorithm 3 (the compression algorithm), we
do not need to move the weight up in increments of 1. Indeed,
the weights start out as multiples of «;, and the threshold
a;—1 is also a multiple of «;. Thus, we can move weight in
increments of «;_1, so that the weights in W}, always remain
multiples of «;. Now, since the weights are all multiples of
«;, we can store their ratios with «;; we store the ratios in
unary, so that storing a weight of fc; requires O(¢ + 1) bits
of space. Then, the total space needed to store the weights is
O(n;/a; + |S]). Again, |S| < F;, so we can see that this is
again at most the weight allocated to storing F; originally.

Thus, we have shown that in all cases, the merge step does
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not require any more space (asymptotically) than storing the
sketch already does.

H. Runtime

In this section, we prove that, for reasonably-sized n,
our algorithm processes updates and queries in O(log(1/¢))
amortized time. We will need a few technical assumptions
and simplifications to make our algorithm run in O(log(1/¢))
time. The first is that we relax the space requirement a bit
to O(s~(log(en) + logU)) bits, which still within O(s™1)
words. Secondly, we assume that n > (log )¢ /e? for some
absolute constant C' that depends on the computational model.
Also, we assume that there are no queries during the first
(log U)“ /<? insertions.

Insertion into the last layer: Our procedure for insertion,
Algorithm 1, contains two steps. The first step is to insert the
new element z into the last-layer sketch 7). The second step
is to merge the layer ¢ into ¢ — 1 (Algorithm 5).

Now, let us focus on the time complexity of the first step
(Lines 3 and 4 of Algorithm 1). The reason we relax the space
requirement a little is to allow us to store the tree 7}, at the
last layer explicitly, not in the bracket representation. There
are at most 3|Fy| < 3- 2% = O(1/¢) nodes in the last layer.
For each node u € T}, we store its weight Wj[u] (which
takes O(log(en)) bits) and the interval [a,, b,] (which takes
O(logU) bits).

To efficiently find the highest non-full node containing x,
we always maintain a sorted list of all exposed nodes (non-
full nodes whose parent is full and the non-full roots). By
Observation V.5, these nodes have disjoint intervals whose
union covers the entire [U]. Thus these nodes are simply sorted
in the increasing order of these intervals. A binary search in
O(log1/e) time finds the exposed node (which is also the
highest non-full node) v whose interval contains x. Then, we
increase the weight Wy[u] of that node by 1.

In the rare case where the node u becomes full after this,
we need to remove it from the list and add its two empty
children. Although this takes O(1/e) time as we have to
modify the entire list and the topology of the tree we store, it
only happens once every aj = ¢ (Equation (6)) insertions.
Here ng is the current estimate of string length, which keeps
doubling as explained Section V-E. Since we know that n >
(log )¢ /2 from our assumption, we can run the algorithm
starting with ng = (log U)“ /2. As n* < e~ (log(eU))' ToM)
(Fact V.20(i)), we have oy > O((logU)®~!/e). We can
amortize the O(1/¢) running time to these «y, insertions and
get O(1) amortized running time for updating the list.

Merging layer i into layer ¢ — 1: First of all, in each tree
T;, the number of all nodes is |F5] < 7t = O(log(e;U;)/e:)
(g; = 5/2’“_“‘4). We want to amortize the time cost to n;
insertions. For Algorithm 5, there are three procedures which
we will analyze one by one.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 19,2025 at 17:23:38 UTC from IEEE Xplore. Restrictions apply.



o MOVE(7) (Algorithm 2): At Line 5, we need to find the
base-level descendant v’ of v for every node v € F; above
the base level. This can be done by traversing the stored
part of tree T; once, which takes |F;| time.

In the rest of this algorithm, since we only maintain the
full nodes F;_1 in T;_1, in this step, all the empty nodes
in T;_1 whose weights increase are not stored before by
our algorithm. We simply store them and their weights
as a list using O((log U +log(en)) - |F;|) bits of memory
in the depth-first-search order. This takes O(|F;|) time.
COMPRESS(7 — 1) (Algorithm 3): In the time efficient
implementation of COMPRESS (i — 1), instead of moving
weights one unit at a time, we process the nodes in the
list we stored during Algorithm 2 in top-down order and
always move the maximum amount of weight that we can
move. Since this process moves weight up at most once
from each node, it also only takes O(|F;|) time.
ROUND(7 — 1) (Algorithm 4): Finally, Algorithm 4 finds
the partial nodes in our list while visiting each node at
most once. So this takes only |F;| time as well.

After these three steps, we also have to update the topology
of F;_; and add new full nodes to its bracket representation.
This takse |F;_1 | time. In total, the time complexity is |F;_1 |+
|F;|. So the amortized time is (| F;—1|+|Fi])/ni = O (1/ ) <
O(1/ay) per layer i. As there are k = log™ U many layers,
while ap > (logU)®~1/e, the amortized time cost is just

o(1).

Answering rank queries: For answering rank
queries, running exactly Algorithm 6 requires traversing
To, Tt .., Ty, which takes O(XF_ |Fi|) = O((logU)/e)
time. For simplicity, we assume that there are only queries
after first nog elements are inserted. After every ¢ - ng
insertions, we run Algorithm 6, compute each e-approximate
quantile and store them. This takes at most O((logU)/e?)
time. Then for every query x, we just binary search in
O(log1/e) time, and count the number of stored quantile
elements less than that z, multiply that by et (where ¢ is
the number of current insertions), and output the answer.
This has an error of at most 2en. Since we can amortize the
O((log U)/<?) time cost to € - ng > (logU)“/e? elements.
This takes O(log1/e) amortized time per query and O(1)
amortized time per insertion.

VI. PRACTICAL CONSIDERATIONS

a) Mergeability.: One popular feature with quantile
sketches is being fully-mergeable, meaning that any two
sketches with the error parameter € can be merged into a single
sketch without increasing the error parameter €. A weaker
notion of mergeability is the one-way mergeability, which,
informally speaking, means that it is possible to maintain an
accumulated sketch S and keep merging other small sketches
into S without increasing the error €. As pointed out in [10],
[14], every quantile sketch is one-way mergeable.
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Among these sketches, the GK sketch and the optimal
KLL sketch is not fully mergeable, while g-digest is fully
mergeable, and KLL sketch has a mode in which it is fully
mergeable but loses its optimal space bound. Our sketch is
based on the fully mergeable Q-digest sketch, but we do not
know whether it is fully mergeable in its current form. We
leave it as a future direction to come up with a fully mergeable
mode for our algorithm.

However, our algorithm is in a sense partially mergeable.
That is, if we have two instances of size at most n each
with error parameter €, we can merge them while incurring
an additional discrepancy of at most O(en/log(cU)) (as we
will soon describe). Though this is not as strong as a fully-
mergeable data structure, which incurs additional error of 0,
it is still better than the O(en) additional error incurred by
merging quantile sketches in a black-box sense (by querying
their quantiles to obtain an O(en)-approximation to their
streams). In practice, this means that one can merge up
to poly(U) of our sketches simultaneously (by performing
merges in a binary tree with depth O(log(¢U))), with only
a constant-factor loss in €.

We now sketch how to perform this partial merge. Suppose
we wish to merge the data structures D and D’, with current
sizes t > t'. To begin with, let us first imagine that only layer 0
is occupied (in both structures). Then, we simply add values
of the weight map W{ (of D’) into Wy (of D). Then, the
discrepancy of Wy is now et + et’. Now, the only problem is
that the invariant that all nodes are either full or empty may
not hold anymore, and the full nodes are no longer upward-
closed. To fix this, we perform the compression and rounding
steps of Algorithms 3 and 4 — by Lemmas V.12 and V.13, this
increases the discrepancy by at most g = O(et/ log(eU)). If
there is now a doubling step (Algorithm 7) to be performed
(that is, if to + t{, > ng), then we now do it as usual. Note
that though the discrepancy has increased, the data structure is
otherwise still a valid data structure for the error parameter ¢,
and we can continue to perform the usual operations (including
more merges) on the new data structure, while keeping track
of the increased discrepancy.

Now, suppose that there are occupied layers other than layer
0. Then, before merging the two data structures, we simply
perform the operation MERGE(?) early for¢ =k, k—1,...,1,
on both data structures. This proceeds identically to an ordi-
nary MERGE(o)peration, except that during the rounding step,
the total weight may not be a multiple of «;_1; we simply dis-
card the excess weight down to a multiple of «;_; (and insert
arbitrary elements to replace them at the end of the merge).
Overall, this has the effect of discarding elements down to
the nearest multiple of «y, so it will introduce a discrepancy
of at most ag = O(et/log(eU)). Additionally, the proof of
Lemma V.14 still shows that the discrepancy introduced by
this merge is at most yy3n; = O(et/log(¢U)). Thus, overall,
this partial merge still adds an additional O(et/log(eU)) to
the discrepancy, as desired.
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b) Constant factors.: The parameters that we selected in
Section V-F were chosen to make the analysis simple. There
is, however, a lot of leeway in choosing the parameters to still
satisfy the necessary properties, and our exact choices likely
do not attain the best constant factors on space complexity. We
use k + 1 =log™(¢U) + 1 layers, but in practice, we expect
that around 4 layers is probably enough, and the parameters
can then be chosen appropriately.

Additionally, beyond just the setting of our parameters, our
analysis has generally been wasteful in terms of constants for
ease of presentation and readability. There are several places
this can be improved. For example, we can improve the error €
by a factor of 2 by performing the moving and rounding steps
of the merge in different directions; that is, in the moving step,
we can move nodes only to their leftmost (least) descendant,
and in the rounding step, we round nodes upward only (which
is what we already do).

¢) Removing amortization.: Currently, our runtime anal-
ysis is amortized, since a step containing a merge can take
a long time compared to a normal insertion step. If one is
concerned about worst-case update time, then we can improve
performance by executing the time-consuming operations over
a longer time period while storing received elements in a
buffer, similarly to Claim 3.13 of [22].

d) Answering select queries with real elements.: One
feature of quantile queries is that they can also answer select
queries: that is, given a rank 7, one can query select(r) to
obtain an element x that is between the rank-(r —et) and rank-
(r + et) elements of the stream. This is equivalent to being
able to answer rank queries, since one can use a binary search
of rank queries to answer a select query (and vice versa).
One might also desire, though, that the answers to the select
queries are actual elements of the stream, rather than arbitrary
elements of [1,U]. As stated, our algorithm does not provide
a way to do this. It turns out, however, that given any quantile
sketch algorithm that can answer approximate rank queries, it
is possible to augment it (in a black-box manner) so that it
can answer select queries with real elements of the stream,
with only a constant-factor degradation in the error parameter
€. We will now sketch how to do so.

We initialize a quantile sketch with error parameter ¢, and
we maintain a list x; < z2 < --- < x, which are actual
elements of the stream (and by convention we write o = 0
and zyy; = U + 1), and rank estimates ry,...,r, (where
again by convention we say ro = 0) satisfying the following
properties at all times ¢:

1) For all 0 <i </, [rank,(x;) — r;| < et.
2) For all 0 < i < ¢, ranky(x;41 — 1) — r; < 2et.

(Note that the first item is trivially satisfied for ¢ = 0.) Now,
suppose that we receive an insertion z into the stream. First,
we increment r; for all ¢ such that x; > r;, to maintain
property 1 (note that ¢ increases by 1, but this only makes
property 1 easier to satisfy).
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Now, if x = z; for some j, then property 2 continues to
be satisfied since the left-hand side of the inequality remains
the same for all 7. Otherwise, suppose that z € (z;,z;41)
for some j. Then, 2 might become violated for 7 = j, since
the left-hand side will have increased by 1. To fix this, we
insert a new element z;;; = x (and shift the indices of the
existing z;,r; of all ¢ > 7 4+ 1 up by 1). Then, we execute
a rank query on z to get r such that |rank,(z) — r| < et.
Then, we set rj;1 = max{r,r; + 1}. Note that property I
continues to be satisfied by the accuracy of the rank query
and because 7; + 1 < rank,(r;) +et+1 < rank,(r;41) +¢t.
It remains to check that property 2 is now satisfied. Indeed,
for ¢ = j + 1, this follows from the fact that r; 1 > 7; + 1
and that the property was previously satisfied for ¢ = j. For
i = j, it follows from the fact that rank,(z — 1) is at most
the former value of rank,(z;41 — 1), and that the property
was previously satisfied for ¢ = j. Thus, we have established
that the properties both continue to hold.

Finally, while there is any j such that r; 4, —r;_; < €t,
we delete z; and r; (and shift the indices i > j down by 1
to accommodate). This preserves the properties: we only need
to check property 2 for ¢ = j — 1, and indeed, rank,(z; —
1) —rj_1 < (rj +et) —rj—1 < 2et by property 2 and by the
assumption that r; — r;_1 < et (note that the old r;,, has
become 7). Thus, this preserves the properties.

Now, we answer a select query as follows: on a query of
rank r, we pick the minimal ¢ such that » < r; + 2¢¢, and
return ;. As a special case, if » < 2¢t, we return x; instead
of xg 0. (Note that by property 2 applied to ¢ = ¢, we
never return z,41.) Then, assuming that r > 2¢t, we have by
property 1 that rank(x;) > r; —e > r— 3¢et. Also, by property
2, rank(x; — 1) < r;_1 + 2et < r (by minimality of %), so the
rank-r element is at least z;. Thus the error in the select query
is at most O(et) as long as r > 2¢t. Also, in the special case
r < 2et, we answer x1, and by property 2, rank(z1—1) < 2et,
so again the error is at most O(et). Thus, the answers to the
select queries are always approximately correct.

Finally, it remains to analyze the total space taken. Note
that we have r; 1 —r;_1 < et for all j, so the total number
of indices ¢ is at most O(1/¢). Therefore, we only need to
store the O(1/¢) elements x1,...,2, and r1,...,7, Which
takes O(1/¢) words. Indeed, since the z; are in increasing
order and the increments of the r; are at most O(en), we can
actually store these in O(e~!(log(eU) + log(en)) space, so
this does not take any additional asymptotic space over our
algorithm.

VII. LOWER BOUNDS

The space complexity of our algorithm is O (e~ (log(cU) +
log(en). In this section, we’ll discuss the optimality of this
result. The first term O(e~! log(eU)) must be incurred by any
quantile sketch, even a randomized one that succeeds with
reasonable probability, as we will now show. This already
implies that when n < poly(U), our algorithm is tight'®.
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When this is not the case, we conjecture that our algorithm
is optimal among deterministic sketches anyway. In particular,
Conjecture 1.3 implies a space lower bound of O(¢~! log(en))
for quantiles.

Theorem VIL.1. Any randomized streaming algorithm for
Problem 1.1 that succeeds with probability at least 0.9 (that is,
it can answer a rank query chosen by an oblivious adversary
with that probability) on a universe of size U > Ce™*! for
some sufficiently large C uses at least Q(e~*log(eU)) bits of
space.

Proof. 1t suffices to show that the final state of the algorithm
requires (¢! log(el)) bits of space. Let us restrict ourselves
to streams that only contain k = 3¢~1 distinct elements, each
of which occurs n/k times. Under this model, let the stream
be 7 < ... < m, (each with multiplicity n/k). Under this
model, the min-entropy of the stream (when the stream is
chosen uniformly randomly) is log (Z) We will show that
access to the sketch reduces the min-entropy considerably (by
at least a constant factor). To do this, we will describe an
algorithm for a party to make £~ log U queries to the sketch
and with probability at least 0.01, output at least 0.01 fraction
of the elements 7,75, ..., m}, correctly. The min-entropy of
this distribution of outputs is much lower: the only possibilities
are those that overlap on at least 0.01-fraction of 7} ...,
of which there are at most (0.(];11@) (0.591@)' The most likely
outcome therefore occurs with probability at least 0.01 times
the log of this quantity, so the min-entropy has decreased by
at least

k U

log <i) —log (100 <0.01k> (0.9%» > (e og(el))))

by Stirling’s approximation when U > Ce~* for a sufficiently
large C. Then, by the fact below, the sketch must have
contained at least this many bits of information.

Fact VIL2. Let H,,;,(-) denote the min-entropy of random
variables. For any two random variables, x and y supported
on X and Y respectively, we have

Hmin(x) - Hmin(x | Y) S H(y)

In our case, x is the elements 7,75, ..
memory state of our algorithm.

.,m, and y is the

16Technically speaking, this result alone only implies tightness when n <
poly(eU). However, if U > 1/&2, then poly(eU) and poly(U) are the same,
and when U < 1/¢2, then n < poly(U) implies that n < poly(1/e), and
as we discussed in Section I-A, a result of [11] implies that our algorithm is
tight when e =1 > log(en).
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Proof.
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Now we describe the list of queries to ask the sketch to
output least 0.01 fraction of the elements =} ...} correctly
with probability 0.01. For each rank ¢ € [k], binary search for
the rank 7’th element in a noise resilient way [27] (resilient to
0.2 fraction of adversarial error). At the end, this must find the
element at rank 7 exactly, since each element’s multiplicity is
more than the permissible error. The noisy binary search must
succeed whenever the fraction of error is at most 0.2, which
is true on at least 0.01 fraction of the elements at least 0.01
fraction of the time. ]

Theorem VIL3. Conjecture 1.3 implies that any determin-
istic streaming algorithm for Problem 1.1 uses at least
Q (e~ log(en)) bits of space.

Proof. We will show the following. Any data structure that
can compute a quantile sketch for 0.1e~! on n elements in
the range [¢7!] can also return counts of each element that
are accurate to within +en. Then, if there is a quantile sketch
using o(e ™! logn) bits of memory, there is also a deterministic
parallel approximate counter using that much space.

Let us try to comp estimate the count of i € [¢~1]. The true
count of 7 is the difference of the true ranks r; — r;_1, since
the rank r; is the number of elements at most j. We query
the rank of 7 in the quantile sketch and get the answer 7; and
the rank of ¢ — 1 and get 7;_1. Then,

(ri —ri1) — (7 = 75-1)| < 0.2en,

so we have a sufficiently accurate estimate of the count. [
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APPENDIX

Here, we will prove the various parts of Fact V.20, by
showing a series of claims. Note that Fact V.20(f) follows
directly from the definitions of ¢; and ;.

Claim A.1 (Fact V.20(a)). For all i, n;, U;, ¢;, and «; are

powers of 2.

Proof. This follows directly (inductively) from the definitions.
O
Claim A.2 (Fact V.20(b)). For all 4, ;U; > 2.
Proof. For ¢ = 0, this follows from the assumption (made at
the start of Section V) that U is sufficiently large. For i = 1,
we have U; = 2[[log(eU/8) + 1]//e and &1 = ¢/28F3, so
e1U; = [[log(eU/8)+17)/2'°8" (V)42 'which is at least 2 again
by the assumption that €U is sufficiently large. Finally, for

1 > 2, this follows by induction using the recursive definition
of U, and the fact that ¢;_1 < &;. O

Claim A.3. For all i < k, we have €;11U;+1 < 8log(&;U;).

Proof. Since €;11 < 2¢;, we have by the inductive definition
of U;, (4), that

git1Uit1 < 4”—10g(5zU1) + ].-H < 810g(E,U1)

(Here we have used the fact that log(e;U;) is a positive integer,
which follows from Claim A.1 and Claim A.2.) O

Now, define Q; = £;U;/16. Then we have the following.
Claim A4. For all i < k, we have Q; 1 < max{log Q;,8}.

Proof. By Claim A.3, we have

gir1Uip1 _ log(e;Us)
A <
Qi1 16 - 2
log(16Q;) 4 +1logQ;
< 0g(2 Qi) _ &t ;)g Qi < max{log Q;, 8},
as desired. -

Claim A.5 (Fact V.20(g)). Uy = O(1/e).
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Proof. We have k = log™(eU) > log"(Qo), so if we
iteratively take the logarithm of )y, we get down below 1
in at most k steps. Thus, by Claim A.4, we have QQ; < 8, so

Uk=16Qk/€k=O(1/8). |

Claim A.6 (Fact V.20(h)). Uy + Us + ---
O(e~tlog(el)).

+ Ui

Proof. We have U 2MMlog(eoUo + 1)]1/20
O(e71log(el)). Meanwhile, for i > 1, by Claim A.4,
we have Q; < O(loglog Qo) O(loglog(eU)). Also,
g; > 27k = (271987 (eU)g), Therefore, for i > 1, we
have U; = O(Q;/e;) < O(e~12"¢ (V) loglog(cU)). Thus,
since k = log™ (eU),

Us+ -+ Up < O(e og* (eU)2'¢ V) log log(eU))
< O(e 7 og(e)),

so we are done. O

Claim A.7 (Fact V.20(c)). For all i < k, n;y;1 is a factor of
;.

Proof. Since the n; are powers of 2, it is enough to check that
n;i41 < n;. For ¢ > 1, this follows directly from the definition
of n;y1 since €,41 > €; (and because of Claim A.2). For
1 =0, we get ng =n and

£0Mo 9log (€U)no

B e1[log(eoUp) + 1]] B Mog(cU/8) + 17’
which is at most ng by the assumption that U is sufficiently
large. O
Claim A.8 (Fact V20(d)). For all ¢ < k, Qi1 = ai/”hi+1 +
17.

Proof. We have, by the inductive definitions (3) and (5), that
Ei+1Mi+1 Q;

(677 = = .
T Thi+ 1] Nog(eis1Uirr) + 17

O

Claim A.9 (Fact V.20(e)). If ng > n*, then «;,n; > 1 for all
i.

Proof. Suppose that ng > n*. Firstly, by definition of n*, (6),
we have aj > 1. Also, by the definition of «;, (3), we also
have oy < ng, so ng > 1. By Claims A.7 and A.8, n; and «;
are decreasing in ¢, so the conclusion follows. |

Claim A.10 (Fact V.20(i)). ¢! < n* < e~ (log(el)) o)
(where o(1) refers to a term that approaches 0 as eU — o).

Proof. By successive applications of Claim A.8 and then using
the definition of «g, we have
_ o _ no€o
A1 The 1 [Tho + 17 oo The + 177
Thus, we have
o o _ ﬂho—l—lﬂn..-ﬂhk—l—lﬂ.
Qg €o

&9

1158

Since g9 = /8, the first inequality of the claim follows
immediately. Now, note that we have

Thi + 1] = O(log(e;U;)) = O(max{log Q;,1})

Now, this means that [[ho + 1T = O(log(¢U)), and for ¢ > 0,
by Claim A.4, we have [[h; +1]] < O(loglogeU). Thus, since
k =log*(eU), we have
O(log(e)) - (O(loglog el )" (V)

/8
= & H(log(eU)) o,

n* <

as desired.

Claim A.11 (Fact V.20(j)). ax_1 = O(ng/n*).

Proof. By Claim A .4, we have Q;; = O(1), so by Fact V.20(d),
we have a1 = aif[log Qr + 17| = O(ax) = O(ng/n*). O
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