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Abstract

Computing the approximate quantiles or ranks of a stream is a fundamental task in data monitoring.
Given a stream of elements x1, x2, . . . , xn and a query x, a relative-error quantile estimation algorithm can
estimate the rank of x with respect to the stream, up to a multiplicative ±ϵ · rank(x) error. Notably, this
requires the sketch to obtain more precise estimates for the ranks of elements on the tails of the distribution,
as compared to the additive ±ϵn error regime. This is particularly favorable for some practical applications,
such as anomaly detection.

Previously, the best known algorithms for relative error achieved space Õ(ϵ−1 log1.5(ϵn)) (Cormode, Karnin,
Liberty, Thaler, Veselỳ, 2021) and Õ(ϵ−2 log(ϵn)) (Zhang, Lin, Xu, Korn, Wang, 2006). In this work, we present
a nearly-optimal streaming algorithm for the relative-error quantile estimation problem using Õ(ϵ−1 log(ϵn))
space, which almost matches the trivial Ω(ϵ−1 log(ϵn)) space lower bound.

To surpass the Ω(ϵ−1 log1.5(ϵn)) barrier of the previous approach, our algorithm crucially relies on a new
data structure, called an elastic compactor, which can be dynamically resized over the course of the stream.
Interestingly, we design a space allocation scheme which adaptively allocates space to each compactor based on
the “hardness” of the input stream. This approach allows us to avoid using the maximal space simultaneously

for every compactor and facilitates the improvement in the total space complexity.
Along the way, we also propose and study a new problem called the Top Quantiles Problem, which only

requires the sketch to provide estimates for the ranks of elements in a fixed-length tail of the distribution.
This problem serves as an important subproblem in our algorithm, though it is also an interesting problem of
its own right.

1 Introduction

Learning the distribution of data that are represented as a stream is an important task in streaming data analysis.
A concrete problem that captures this task is the streaming quantile estimation problem.

Given a stream of elements Ã = (x1, x2, . . . , xn), the quantile estimation problem asks us to process the
stream, while maintaining a small memory that stores a few input elements, such that at the end of the stream,
for any given query y, the algorithm must output an approximation of the rank of y in Ã with high probability,
i.e., an approximation of rankÃ(y) := |{i ∈ [n] : xi < y}|.1

The problem has been extensively studied [9, 13, 1, 8, 14, 2, 16] when we allow additive error, i.e., the

algorithm outputs an estimate r̂ankÃ(y) = rankÃ(y) ± ϵn with high probability. Optimal bounds are known in
this setting: Karnin, Lang, and Liberty proposed an algorithm with O((1/ϵ) log log(1/¶)) space, which matches
the best space one can hope for even for offline algorithms when the failure probability ¶ is a constant [13].2
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1In this work, we consider algorithms in comparison-based model, wherein stream elements are drawn from a universe equipped

with a total-ordering. At any time, the algorithm may only performed comparisons between any two elements stored in memory, and
does not depend on the true value of each element.

2An offline algorithm sees the elements all at once and computes a small sketch that can answer rank queries approximately.
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On the other hand, oftentimes, the application needs to accurately learn the tail distribution of the data
stream. For instance, this need arises when monitoring network latencies: the distribution of response times is
often very long-tailed, and understanding the occasional, yet problematic, high response times is a key purpose
of the task [4]. For such applications, algorithms that guarantee relative errors give high accuracy on the tail
distribution, and are thus more aligned with this stricter requirement. That is, the algorithm must return

r̂ankÃ(y) = (1± ϵ)rankÃ(y).
3 The relative-error quantile estimation task also arises when approximately counting

the inversions in a stream [11].
The optimal bound for offline algorithms with relative error is Θ(ϵ−1 log(ϵn)), by simply storing elements

with ranks {1, 2, . . . , ϵ−1} and {ϵ−1(1 + ϵ), ϵ−1(1 + ϵ)2, . . .}. Best-known streaming algorithms are Multi-Layer
Randomization (“MR” algorithm) by Zhang, Lin, Xu, Korn and Wang [20] with O(ϵ−2 log(ϵ2n)) space, and a
recent breakthrough [3] by Cormode, Karnin, Liberty, Thaler and Veselỳ with O(ϵ−1 log1.5(ϵn)) space (we will
refer to it as the CKLTV algorithm below).

The MR algorithm [20] maintains logarithmically many sketches of size O(ϵ−2). Each sketch is responsible
for queries with rank in [ϵ−22i, ϵ−22i+1) for some i. More recently, Cormode et al. [3] introduced “relative
compactors”. Roughly speaking, a relative compactor takes a stream of elements as input and outputs a shorter
stream such that the rank of any query in the input stream can be approximated with small relative error based
on its rank in the output stream (see Section 5 for a more detailed overview). Then, the algorithm of [3] “connects”
logarithmically many relative compactors, i.e., the output stream of the previous relative compactor is fed (online,
in the streaming sense) to the next relative compactor as its input stream. However, both of the aforementioned
algorithms ([3], [20]) have the optimal dependence on one of the parameters ϵ and n, while are suboptimal by a
polynomial factor on the other.

A natural question is whether we can improve the sketch size in the MR algorithm, or improve the relative
compactor space in CKLTV, so that the offline optimal space for this problem can also be achieved in streaming.
It turns out that the answer to this question is yes and no. Neither of the two subroutines can be improved in
general, due to a lower bound that we prove in Section 7. On the other hand, the “bad” streams that lead to
such lower bounds inherently cannot be combined – the algorithm maintains logarithmically many sketches of
relative compactors, there are bad streams that would force one of them to consume large space, but not all of
them simultaneously.

Based on this observation, we propose a new streaming algorithm for quantile estimation with relative errors
using nearly optimal space Õ(ϵ−1 log ϵn)4, nearly matching the trivial Ω(ϵ−1 log(ϵn)) offline lower bound5. We
use the framework of MR, and maintain logarithmically many sketches such that each sketch is responsible for
answering queries with rank in [ϵ−12i, ϵ−12i+1). Now, each sketch is implemented using a collection of new data
structures, which we call elastic compactors. Elastic compactors are inspired by relative compactors, but they
have one crucial additional feature: they are resizable. Since our sketch for each of the (logarithmically-many)
scales will be built using these elastic compactors, we will actually be able to resize the entire sketch for each scale
as needed. Depending on how “difficult” the input stream for each sketch is, our algorithm dynamically allocates
space to the sketches, and resizes them to the current space on-the-fly as the stream is observed. Whenever a
piece of “bad input stream” targeting a specific sketch occurs (i.e. the one that we construct in Section 7), the
algorithm automatically allocates more space to that sketch temporarily, while still guaranteeing that the total
space of all sketches is always bounded by Õ(ϵ−1 log ϵn) with high probability.

Theorem 1.1. Let 0 < ¶ f 0.5 and 0 < ϵ f 1. There is a randomized, comparison-based, one-pass streaming
algorithm that, when processing a stream Ã consisting of n elements, produces a sketch satisfying the following:

for any query x ∈ U , the sketch returns an estimate r̂ankÃ(x) for rankÃ(x) such that with probability 1− ¶,

|r̂ankÃ(x)− rankÃ(x)| f ϵ · rankÃ(x),

3The definition as-is gives higher accuracy for queries with small ranks. By running the algorithm with a reversed total-ordering
of stream elements, we can obtain high accuracy at the tail of the distribution.

4The Õ hides the dominated log(1/ϵ), log logn and log log(1/¶) terms. For a precise space bound, see Theorem 1.1.
5The Ω(ϵ−1 log(ϵn)) lower bound can be shown by inserting ϵ−1 log(ϵn) many distinct elements x1 < x2 < · · · < x

ϵ−1
·log(ϵn)

where for any 1 f i f log(ϵn), the elements x
ϵ−1(i−1)+1, . . . , xϵ−1i are inserted 2i times each. Any algorithm, even offline one that

can see the entire stream, must keep all elements x1, x2, . . . , xϵ−1
·log(ϵn) in memory to satisfy the error guarantee.
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where the probability is over the internal randomness of the streaming algorithm. Moreover, the total space used
by the sketch is

O(ϵ−1 log(ϵn) · log(1/ϵ) · (log log n+ log(1/ϵ)) · (log log 1/¶)3).
There are several consequences of our construction, which to recall, consists of logarithmically-many resizable

sketches for each scale [ϵ−12i, ϵ−12i+1). First, since the sketch can be easily resized, our algorithm actually does
not need to know the stream length n in advance, and the same algorithm works as the stream length increases.
Another important feature in practice is mergeability, i.e. it is useful to be able to summarize two substreams
Ã1 and Ã2 separately into sketchesM1,M2, and then create a merged sketchM which applies to the combined
stream Ã = Ã1

⊔
Ã2 with similar error and space guarantees. Currently, it is not clear whether our relative-error

quantiles sketch is fully-mergeable (See Section 8 for more discussion).
All-quantiles estimation. As a straight-forward corollary of Theorem 1.1, we obtain a sketch that satisfies

the all-quantiles guarantee, meaning that for all queries x ∈ U simultaneously, the sketch provides an accurate
estimate with high probability. The proof proceeds by a standard union bound over an ϵ-net, and is nearly
identical to argument given in Appendix B of [3].

Corollary 1.2. Let 0 < ¶ f 0.5 and 0 < ϵ f 1. There is a randomized, comparison-based, one pass streaming
algorithm that, when processing a stream Ã consisting of n elements, produces a sketch satisfying the all-quantiles

guarantee: for all queries x ∈ U simultaneously, the sketch returns an estimate r̂ankÃ(x) such that with probability
1− ¶,

|r̂ankÃ(x)− rankÃ(x)| g ϵ · rankÃ(x),
where the probability is over the internal randomness of the streaming algorithm. The total space used by the
sketch is

O

(
ϵ−1 log(ϵn) · log(1/ϵ) · (log log n+ log(1/ϵ)) ·

(
log log

(
log(ϵn)

¶ϵ

))3
)

1.1 Further Related Works

Deterministic Sketches. In the deterministic additive-error setting, Greenwald and Khanna constructed
the GK sketch that stores O(ϵ−1 log(ϵn)) elements [9]; more recently, [6] showed that the GK sketch is optimal
and [10] gave a simplification of the GK sketch which still achieves optimal space. In the relative-error case,
Zhang et al. [19] proposed a deterministic algorithm that uses O(ϵ−1 log3(ϵn)) space. This algorithm maintains
logarithmically many sketches based on the chronological order of the elements, and keeps merging sketches with

similar sizes. Currently, the best known lower bound is Ω
(

log2(ϵn)
ϵ

)
[6].

Sketches with Known Universe. Additionally, some works focus on the case when the universe U is known
in advance to the streaming algorithm [5, 17]. In the additive error regime, the classical q-digest algorithm gave
an optimal deterministic quantile summary using O(ϵ−1 log |U|) words of memory. A recent work of [12] improved
this bound to O(ϵ−1) words, achieving an optimal space if the stream length n f poly(|U|). For the relative error
setting, [5] designed a deterministic bq-summary algorithm using O

(
log(ϵn) log |U|

ϵ

)
words of memory, while the

offline lower bound is only Ω
(

log ϵn
ϵ

)
words.

Resizable Sketches. During the past ten years, there has been a flurry of works on “resizable sketches,”
wherein the goal is to design sketches that provide a fixed guarantee on the accuracy while allowing the space
allocation to be dynamically adjusted throughout the runtime of the algorithm. This is especially important in
practice, where the sketch size may start out being very small, but may need to grow sublinearly until it reaches
some fixed maximum size. In particular, resizable sketches have been designed for filters [15, 7] 6. Recently in
[18], it was posed as an open question to design resizable sketches for the quantile estimation problem. In fact, we
actually answer this question since our final sketch for the relative-error quantile estimation problem is actually
resizable. Thus, we show that our sketch can achieve near-optimal space Õ(ϵ−1 log(ϵn)) while also having this
practically-favorable “resizability” feature.

6In a talk on “Resizable Sketches” at the Simons Institute Workshop on “Sketching and Algorithm Design” in October 2023, it
was mentioned that there are also expandable sketches for the k-minimum values problem and the well-known Misra-Gries sketch for
deterministic heavy-hitter detection [18].
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A full compactor with b = 3 blocks each with size k = 4

Compact the largest ℓ = 2 blocks

Output even/odd elements

Empty these blocks.

Figure 1: Compacting the largest ℓ blocks in a relative compactor.

2 Technical Overview

2.1 Relative Compactors Before describing our algorithm, it is helpful to have a quick overview of the
(relative) compactors, which form the main building block for the recent relative-error quantile estimation
algorithm of [3]. A compactor C takes an input stream Ã, keeps a small number of elements in memory, and
outputs a substream Ã′ of length at most |Ã|/2, while “preserving” the rank of any query x approximately:

(2.1) rankÃ(x) ≈ 2 · rankÃ′(x) + rankC(x).

That is, except for the few elements kept in the memory at the end of the stream, the compactor reduces the
length of the stream by half. If we view the elements in the output as having weight two, then the rank of any x is
preserved approximately. For relative compactors, we want the approximation in this building block to eventually
lead to an overall “small relative error,” i.e., the difference of the two sides of (2.1) needs to be smaller for x with
a smaller rank.

To implement such a reduction in the stream length, a relative compactor maintains a sorted array. The
array is divided into b blocks of size k, hence, of total size s = k · b. The compactor keeps inserting elements from
the stream Ã to the array. When the array is full, the algorithm performs a compaction, which empties a few
blocks. To perform a compaction,

• the algorithm first decides the number of blocks ℓ to compact;

• then for the largest ℓ blocks (i.e., the largest ℓ · k elements), it outputs either all even-indexed elements or
all odd-indexed elements in those blocks, each with probability 1/2;

• finally, it removes all elements in those blocks.

See Figure 1 for an example. These compactions are crucial in order to make room for future insertions,
yet they are the only source of errors in rank estimation. Consider any fixed query x and the error incurred
to (2.1) during a compaction. If all ℓ blocks only contain elements greater than x, then clearly, this operation
does not incur any error. Otherwise, since the compaction outputs every other element, it makes an error of at
most 1 (in its absolute value). In fact, this only happens when an odd number of elements smaller than x is
involved in the compaction, and the error is 1 or −1 with probability 1/2. At the very least, when this happens,
the compaction has to involve at least one element that is smaller than x. We adopt the terminology of [3] and
call the elements smaller than x, the important elements, and we call the compactions which involve important
elements the important compactions. Note all these definitions are with respect to a fixed query x.

The crucial piece of the algorithm is to set the number of compaction blocks ℓ each time, so that for any fixed
query x, the total error is small, or equivalently, there are only few important compactions. One way to do this
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is to sample ℓ from a geometric distribution with p = 1/2 independently each time.7 It is not hard to see that if
we set the number of blocks bk log n, then for each compaction, conditioned on it involving at least one element
smaller than x, there is a constant probability that the compaction involves (at least) one entire block of elements
smaller than x, due to the geometric distribution.8 Intuitively, this implies that if a compaction incurs error,
then it involves Ω(k) elements smaller than x on average. Since there are only rankÃ(x) elements smaller than
x, this intuition leads to an O(rankÃ(x)/k) upper bound on the number of important compactions on average.9

Since each such compaction incurs a ±1 error independently, one can conclude that the difference on the two sides
of (2.1) is typically

(2.2) O(
√
rankÃ(x)/k).

Furthermore, for x with a very small rank, there is no important compaction with high probability, in which case,
the error is zero.

Their final streaming algorithm simply maintains a chain of O(log n) relative compactors. The first compactor
reads the input stream directly; the output of the i-th compactor is passed to the (i+1)-st compactor; the input
to the last compactor is sufficiently short so that it never needs to perform compactions, hence, it has no output.

By (2.1), the rank of a query x is approximately reduced by half between the input and output of a relative
compactor. The error analysis divides the chain of compactors into two parts based on the rank of x in the input
of the compactor:

(a) for the first few compactors, when the query still has large rank, the relative error is tiny due to the square
root in (2.2);

(b) after these compactors, the rank gets small enough so that there are no more important compactions – the
error is zero.

It turns out that by setting b = 2 log n and k = Θ
(

1
ϵ·
√
logn

)
, the space is O(ϵ−1 log1.5 n), and the accumulated

relative error from all compactors is at most O(ϵ).
To see this, consider a query of rank r, the relative error from the first compactor is O(

√
r/k/r) = O(

√
1/rk)

by (2.2), the relative error from j-th compactor is O(
√

2j/rk) due to the reduction in r. The errors form a
geometric series, and the sum is dominated by the last term. Note because b k log n, when the rank becomes
smaller than b

2 ·k, there is no important compactions with respect to this query with high probability. Hence, the

last term in the geometric series has r/2j = Θ(bk), the sum gives the total relative error O(
√

1/bk2) = O(ϵ).

2.2 Our approach Our algorithm maintains O(log n) sketches, such that the i-th sketch is maintained for
elements with rank roughly ϵ−1 · 2i with respect to the input stream so far. In particular, we will ensure that the
sketches are in order: All elements in sketch i are smaller than those in sketch i+ 1. For each element from the
input stream, we insert it into the sketch so that the ordering is preserved, i.e., we insert it into the largest sketch
where the smallest element is smaller than the new element. We will also ensure that the sketches always store
approximately the right number of elements: When a total number of Ω(ϵ−1 ·2i) elements have been inserted into
sketch i, i.e., sketch i “overflows,” we will move the largest half of its elements to sketch i + 1, so that sketch i
only contains elements of current rank roughly ϵ−1 · 2i and all sketches are still in order.10

Now let us focus on one such sketch, and see what properties we will need from it. First, we can insert an
element into the sketch, delete the largest elements, and can make approximate rank queries at the end. Since all
sketches are in order, sketch i is only relevant for queries with rank Θ(ϵ−1 · 2i). Hence, we can afford an additive
error of O(2i) from sketch i. Note that while it looks similar to additive error quantile estimation, there is in fact

7This means we have Pr[ℓ = t] = 2−t for integer t g 1.
8When there is less than one entire block of important elements, the statement is technically not true. However, in this case, all

these elements will be in the smallest block, and when b k logn, there is a negligible probability that a compaction involves this
block, i.e., we may assume the condition never happens.

9The work of [3] has another deterministic strategy for choosing ℓ with the same bound on the number of important compactions.
The algorithm fixes a sequence of integers, called the compaction schedule, and chooses deterministically the next integer from the
sequence as ℓ each time. We in fact build on this deterministic version. See Section 5.1 for an overview of the deterministic version.

10Note that the sketches will necessarily have to only store a subset of the inserted elements to save space, so some elements may
have already been deleted when the time comes for them to be moved. We will make this step more explicit later in the overview.
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a key difference – we may insert up to nk ϵ−1 ·2i elements to a single sketch. Even though we only need to focus
on queries of rank O(ϵ−1 · 2i), there may actually be much more elements inserted in total. This key difference
makes the sketches with O(1/ϵ) space [13] with additive error inapplicable to this setting.

Consider the i-th sketch, observe that we can always first sample each insertion to it with probability
Θ(ϵ−1 · 2−i). This is because for a query of (final) rank Θ(ϵ−1 · 2i), its rank after the sampling would be
roughly Θ(1/ϵ2) ± O(1/ϵ), i.e., the relative error incurred due to sampling is O(ϵ). By maintaining the smallest
O(1/ϵ2) elements that survive the sampling, one could answer all such queries with small required error. This is
the main idea of [20] with space O(ϵ−2 · log n), but it has suboptimal dependence on ϵ.

To further improve the space, we could maintain a chain of O(log 1/ϵ) relative compactors for all sampled

elements with k = Θ
(

1
ϵ·
√
logn

)
and b = O(log n). That is, we feed all sampled elements to the first compactor,

and connect the output of compactor j to the input of compactor j + 1. By the same error analysis as in the
last subsection, for a query of rank roughly r = Θ(1/ϵ2) (after sampling), the total relative error incurred by the
compactors is √

1/rk +
√

2/rk +
√
22/rk + · · ·+

√
1/bk2 = O(ϵ).

Note that when the sketch reaches its capacity, we can simply move the largest elements from all compactors
to the next sketch. This allows us to delete the largest elements. However, since we set the parameters of each
compactor same as before (this is necessary, since otherwise the relative error just from the last compactor would
already be more than ϵ), and there will be more than one relative compactor for each of the log n sketches, this
does not give an improvement as is.

Although this data structure still uses Ω̃(ϵ−1 log1.5 n) space, this reformulation of the algorithm in [3] facilitates
the space improvement in our work. In particular, we observe the following.

• Let ni be the number of insertions to the i-th sketch. Inside the relative compactors of the i-th sketch, we
need really b = Θ(log ni) instead of Θ(log n) blocks. In order to force the i-th sketch to actually use all
Θ(ϵ−1 ·

√
log n) space, we must insert ni = nΘ(1) elements into it.

• Suppose we indeed frequently insert many elements to sketch i, then this makes the task of later sketches
easier. This is because for every O(ϵ−1 · 2i) insertions to sketch i, we will have to move the largest half to
the next sketch i+ 1.11 Note that these elements are smaller than any element in sketch i+ 1. Also, when
this happens O(1) times, sketch i+1 must have reached its capacity, and will have to move the largest half
of its elements to sketch i+ 2.

In particular, this means that all elements that were previous stored in sketch i+ 1 will be “pushed away”
to later sketches after sketch i overflows a constant number of times. As original elements in sketch i + 1
are pushed away, we can now effectively start the count ni+1 from zero again and use a smaller space for
sketch i+ 1.

Combining these two observations, we argue that not all sketches need as much as Θ(ϵ−1 ·
√
log n) space.

If there is a large number and very frequent insertions to sketch i, then for a large number of sketches after i,
they would only need b = O(1) and O(1/ϵ) space. As a proof-of-concept, consider an input stream such that
between any two adjacent insertions to sketch i, there are roughly ´i+1 insertions to sketch i + 1. Then by
the above argument, before all current elements in sketch i + 1 are pushed away to i + 2 due to the overflows
from sketch i, there will be only roughly ´i+1 · ϵ−1 · 2i+1 new insertions to sketch i + 1. It turns out that
we can maintain a smaller sketch i + 1 by setting the number of blocks b to Θ(log ´i+1), and a sketch of size
O(ϵ−1 ·

√
log ´i+1) would be sufficient. Since the stream length is n, implying that

∏
i ´i ≈ n, the total sketch

size is
∑

i O(ϵ−1 ·
√
log ´i) f

∑
i O(ϵ−1 · log ´i) f O(ϵ−1 · log n).

To carry out the full details for general streams, we face the following concrete challenges.

• The stream may insert new elements to a sketch at different rates at different times. It may even temporarily
stop inserting into a sketch, and resume at a later time. This means that the sketch sizes need to actively
and dynamically change over time based on how frequent the insertions to the sketches currently are.

11As sketch i only has a bounded memory, we cannot remember exactly the largest half of elements inserted and move them to the

next sketch i+ 1. However, we can move our current sketch of the largest half from sketch i to sketch i+ 1. In fact, it turns out to
be easy to integrate this sketch into sketch i+ 1, as it only has error 2i, smaller than that of sketch i+ 1.
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• We have no way to predict the insertion frequencies to different sketches, yet we need to allocate the fixed
amount of total space to different sketches so that each of them has small error as required.

In the following two subsections, we give an overview of how we tackle the challenges.

2.3 Elastic Compactors It turns out that the relative compactors can naturally be made resizable: when we
need to downsize it to make space for other sketches, we simply do a compaction to empty the largest blocks,
and then resize the array. The main question then is under what conditions we can have the same error bound
as before.

To be more specific, we introduce elastic compactors. In addition to what a relative compactor can do, the
user may request an elastic compactor to resize to a given size, possibly after every element from the input stream.
Elastic compactors are constructed based on relative compactors. We fix the block size k, and let the array resize
by only adjusting the number of blocks b (this turns out to be sufficient for our application). Let us assume after
every insertion, the user may specify a new number of blocks bj that the array has to resize to.

• To resize, if the array has at most kbj elements, then the new size is large enough to contain all elements,
we simply set the number of blocks to bj .

• Otherwise, the algorithm samples the number of blocks to do compaction from a geometric distribution
conditioned on having at most bj nonempty blocks, i.e., it compacts the largest bj−1 − bj blocks with
probability 1/2, the largest bj−1 − bj + 1 blocks with probability 1/4, etc.

Note that when bj remains the same for all j, this is the same as relative compactors. The error analysis is also
similar. Consider any fixed query x, and consider a compaction. Conditioned on the compaction involving at
least one element smaller than x, there is a constant probability that it involves at least one entire block of k
elements. The only exception is when the compaction decides to empty the entire array. We discussed in the
review of relative compactors that when b k log n, this does not happen except with negligible probability. A
simple calculation shows that as long as

∑
j 2

−bj j 1, we have the same guarantee. Hence, the same bound on
the number of important compactions holds, and so does the error bound.

In other words, throughout our algorithm, suppose we require the compactor to resize to size s1, s2, . . . , sℓ,
then as long as

(2.3)
ℓ∑

j=1

2−sj/k j 1,

the error bound of (2.2) holds. Such elastic compactors can be used to construct the O(log n) sketches we discussed
above. It turns out that by replacing the O(log 1/ϵ) relative compactors in each sketch by elastic compactors
and setting k = O(1/ϵ), the sketches can also be resized (with a factor of O(log 1/ϵ) more space than an elastic
compactor) while having the same error guarantee as before.12

2.4 Allocating space As we discussed earlier, the stream may insert elements to each sketch at different
frequencies at different times. Therefore, we may have to allocate a different amount of space to each sketch at
different times. To demonstrate the space allocation strategy, let us first consider the following special case.

A tree instance. Suppose the input stream inserts elements in the following way.

• It inserts a batch of n0.1 elements to the 1st sketch almost consecutively, except that it may “pause” at any
100 time points in the middle.

• During each “pause,” the stream inserts a batch of n0.1 elements to the 2nd sketch almost consecutively,
and it may again “pause” 100 times during each batch.

• During each “pause” in inserting elements to sketch i, the stream inserts n0.1 elements to sketch i + 1
and later sketches recursively. We recurse for i = 1, 2, . . . , 0.1 log n. At the end of the recursion when
i = 0.1 log n, we just inserts n0.1 elements to sketch i+ 1 but not later sketches.

12A single elastic compactor may use more space than before by setting k = O(1/ϵ). In the worst case, it may use space as much
as O(ϵ−1 logn), but we will show that the total space is bounded.
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Let us also assume that there are sufficiently many insertions to sketch i between adjacent pauses of sketch i. In
this case, the stream has a tree structure: the root corresponds to the insertion (sub)stream to sketch 1, each
child of the root corresponds to an insertion substream to sketch 2 during each pause in the root, etc. When there
are sufficiently many insertions between adjacent pauses, different subtrees do not interfere with each other.

For such streams, we must drastically resize its sketches during each pause. This is because during each pause
in inserting to sketch i, the stream only inserts elements to larger sketches. Hence, when the pause ends, the
elements that sketch i are supposed to maintain remain unchanged, and the insertions to sketch i will continue
from there. Effectively, we are inserting n0.1 elements to it, which forces the sketch to use Ω(ϵ−1 ·

√
log n) space if

we do not resize it during the pause. It leads to a total space of Ω(ϵ−1 · log1.5 n) at the bottom of the recursion,
when we have 0.1 log n levels of pauses happening at the same time.

Our solution to this special case is to downsize the sketches during its pauses according to its length and the
length of its current child. That is, in the above tree view of the stream, let us consider the length of the stream
corresponding to each node. For a node u with length lu and its child v with length lv, we will resize the sketch
maintained for u to Õ(k log(lu/lv)) during the pause at v (for now, let us assume that we know these lengths
in advance). This guarantees that the requested space sequence satisfies (2.3), since

∑
v:child of u lv < lu. Hence,

the sketches provide the same error guarantee as before. Importantly, the total space of all sketches is always
bounded by O(k log n) = O(ϵ−1 log n), because the spaces allocated to the sketches form a telescoping sum and
the length of the root is n.

General streams. Our final algorithm, which works for general streams, uses a similar idea. In the above
tree example, adjacent children of a node are essentially independent because we assumed that sufficiently many
small elements are inserted in between. We first make an analogue of it for general streams. Consider sketch i
and a time t1. Suppose sketch i− 1 overflows a constant number of times between t1 and some later time t2, then
all elements in sketch i at t1 will have been pushed away to later sketches. This effectively resets sketch i, making
the sketch at time t2 “independent” of the sketch at time t1. Hence, (for the analysis) we will divide the timeline
of sketch i into intervals of various lengths based on its “resets,” i.e., we start a new interval when sketch i resets.
These intervals will correspond to (the substreams of) the nodes in the tree instance, but they do not form an
exact tree structure as before. However, we observe that each interval of sketch i only intersects O(1) intervals
of sketch i − 1 (this is because when sketch i − 1 resets O(1) times due to the overflow of sketch i − 2, it must
also have overflown O(1) times itself, causing sketch i to reset). Hence, we can view each interval of sketch i as
having O(1) “parents,” i.e., the intervals of sketch i− 1 it intersects with. We inductively assign a weight to each
interval, generalizing the length, such that the weight of an interval I is the sum of all weights of intervals that
have I as one parent, and the weight of an interval of the last sketch is one. Now suppose we know the weights
of all intervals in advance. Then when sketch i is currently in an interval u with weight wu and sketch i+ 1 is in
interval v with weight wv (note that then, u is a parent of v), we allocate space O(k log(wu/wv)) to sketch i. A
similar analysis gives the same error bound. By using the fact that the weight of any interval is at most nO(1),
since each interval has O(1) parents, the total space is again O(k log n) by a telescoping sum.

To calculate the weights, we need full information about the stream, including how the intervals intersect in
the future. We show that this is not necessary, the same algorithm works (up to factors of log log n and log 1/ϵ)
even if we simply use the interval intersection information so far to calculate the weights. See Section 4.4 for more
details.

3 Preliminaries

All logarithms in this paper are base 2. Without loss of generality, we will also assume that 1/ϵ, n, and 1/¶ are
all powers of 2.

The Comparison-based Model. In this work, we focus on the comparison-based model : this means that
at any time t, the memory of the streaming algorithm is a tuple (Mt, It) where Mt is a subset of the stream
elements and at any time, the algorithm can only compare two elements inMt. It contains auxiliary information
which is stored by the algorithm (e.g. information about previous comparisons, etc). Note that the memory usage
of the algorithm is measured by the size of |Mt| only.

Probability. We will use the following probability fact in our analysis.

Fact 3.1. For any two (not necessarily independent) random variables X and Y , when we add them, their
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standard deviation at most adds, that is,

E[(X + Y )2]1/2 f E[X2]1/2 + E[Y 2]1/2.

Proof.

E[(X + Y )2] = E[X2] + E[Y 2] + 2E[XY ]

f E[X2] + E[Y 2] + 2E[X2]1/2E[Y 2]1/2(by Cauchy-Schwarz)

=
(
E[X2]1/2 + E[Y 2]1/2

)2

.

We will also need properties of subgaussian random variables. A mean-zero variable X is Ã2-subgaussian if

E[e¼X ] f e
¼2Ã2

2 for all ¼ ∈ R. If a random variable X is not mean-zero, we say it is Ã2-subgaussian if the mean
zero variable (X − E[X]) is Ã2-subgaussian.

Fact 3.2. If X is Ã2
1-subgaussian and random variable Y is an independent Ã2

2-subgaussian. Then X + Y is
Ã2
1 + Ã2

2-subgaussian.

4 Description of the Algorithm

Before we present our full algorithm, we first provide a high-level overview of our strategy.
High-level Overview. Recall the definition of an ϵ-relative-error quantile sketch: for any query x ∈ U , after

processing a stream Ã the sketch must return an estimate r̂ankÃ(x) such that

|r̂ankÃ(x)− rankÃ(x)| f ϵ · rankÃ(x)

holds with probability at least 1− ¶. Importantly, observe that (up to a factor of 2) the relative error guarantee
is equivalent to the following: for all queries x such that rank(x) ∈ [ϵ−1 · 2i−1, ϵ−1 · 2i], the answer of the sketch
can tolerate an absolute error of at most 2i.

The general strategy of our algorithm naturally follows from the above observation: we decompose the
relative-error quantile estimation problem into +log2(ϵn),-many absolute-error quantile problems. In particular,
we partition the rank-space into +log2(ϵn), ranges, where range i contains all inserted elements with rank (roughly)
between [ϵ−1 · 2i−1, ϵ−1 · 2i] with respect to all elements inserted so far. Then, we maintain a separate sub-sketch
Hi for each range i and maintain the guarantee that each sub-sketch Hi will have absolute error of at most 2i (See
Figure 2). For each new element xt that appears in the stream, we find the range i such that xt is smaller than
all elements in Hi+1 and larger than or equal to all elements in Hi−1, and we insert xt into that sub-sketch Hi.
At any point in the stream, if Hi contains many more than O(ϵ−1 · 2i) elements, we remove the largest elements
from Hi and insert them into the next sub-sketch Hi+1.

· · · Hi−1 Hi · · ·Hi+1

rank

ϵ
−1

· 2
i−2

ϵ
−1

· 2
i−1

ϵ
−1

· 2
i

ϵ
−1

· 2
i+1

error ≤ 2
i−1 ≤ 2

i
≤ 2

i+1

Figure 2: Our basic strategy.

Observe that in this construction, each sub-sketch Hi is different from an (insertion-only) additive-error
quantile sketch, as we are periodically deleting the largest elements in Hi and moving them into Hi+1. We call
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such a sub-sketch Hi a top-quantiles sketch.1314 Moreover, to achieve a total space of Õ(ϵ−1 log(ϵn)), on average

we can only afford to allocate Õ(1/ϵ) space per sub-sketch Hi. However, as we show in Lemma 4.3, there is a

Ω
(
ϵ−1 ·

√
log(ϵn)

)
space lower bound for any such top-quantiles sketch Hi. This becomes the main technical

barrier of our work.
To get around this barrier, we make the following key observation: this lower bound says that for each sub-

sketch, there exists an input stream that forces the sketch to use maximum space at some time point during the
execution of the algorithm. However, the lower bound in Lemma 4.3 does not imply the existence of a single hard
input stream that simultaneously forces every sub-sketch Hi for rank interval [ϵ−1 · 2i−1, ϵ−1 · 2i] to achieve its
maximum space usage. As a result, there is still hope to design a near-optimal Õ(ϵ−1 log(ϵn)) algorithm.

Our data structure Hi is based on the relative compactor from the previous relative error quantile sketch of
[3]. There are two main deviations of our algorithm from previous work: (1) as discussed earlier, we maintain a
separate data structure (or “sub-sketch”) for stream elements that are roughly in rank range [ϵ−1 · 2i−1, ϵ−1 · 2i]
for each i = 1, ..., +log(ϵn),, and (2) our sketch is made up of elastic compactors which are dynamically resizable.
In particular, our sub-sketches can change their space usage dynamically based on “demand”: for example, if the
number of insertions into range i is very high, we may choose to strategically allocate more space to Hi while
allocating less space to data structures for other ranges. Using this idea, the main task becomes to define a scheme
to dynamically allocate space to the sub-sketches and constantly resize them. Surprisingly, this approach results
in a reduced total space of Õ

(
ϵ−1 · log(ϵn)

)
without contradicting the aforementioned lower bound.

The rest of this section is organized as follows.

• In Section 4.1, we will introduce the most basic component of our resizable sketch, which constitutes our
elastic compactor. However, we defer the detailed implementation of this data structure to Section 5.

• Then, in Section 4.2, we will explain how to construct each sub-sketch Hi from these elastic compactors.

• Finally, in Section 4.3, we describe the strategy for dynamically allocating space to different sub-sketches
Hi, which finishes the high-level overview of our algorithm.

Throughout this section, we only provide bounds on the expected squared error, and some proofs are deferred
to Section 6.1. For the high probability bounds, we refer the reader to Section 6.2.

4.1 Elastic Compactors The most basic building block of our algorithm is what we call an elastic compactor.
Specifically, this is a compactor whose size can be dynamically adjusted. For our case, we will eventually choose
(and dynamically adjust) the size of the elastic compactor in an online manner, based on the input stream. See
Table 1 for the definition.

Error Guarantee. For any query x ∈ U , we define the error associated to x by

(4.4) ∆(x) :=
(
RankC(x) + 2 · rankÃ′(x)

)
− rankÃ(x)

We enforce the following guarantee for elastic compactors.

Lemma 4.1. Let Ã be the input stream and s1, s2, . . . , sℓ be the sequence of space parameters after each
resize/insert operation. There is a randomized elastic compactor C such that, if we condition on

(4.5)

ℓ∑

t=1

2−st/k f 0.5,

for any query x ∈ U , C achieves expected squared error

E
[
∆(x)2

]
f rankÃ(x)

k
,

where the expectation is taken over the randomness of the compactor.

13In fact, we formalize this as a separate problem of independent interest (See Section 4.2).
14Note that the name “Top Quantiles” refers to the task of estimating the bottom ranks. This is generally in contrast with the rest

of our work, in which we consider Quantile(x) = rank(x)/n.
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Elastic Compactor

Parameters. Let C be an (s, k)-elastic compactor: C may store at most s
elements in memory, and let k be a parameter related to the total error allowed
for C.

Input: A stream Ã of elements in U .
Output: As a result of each compaction, C can output elements to a compacted
stream Ã′. In the end, Ã′ contains at most |Ã|/2 elements.

Operations:

- Resize(C, s′): Expand or compress the space of the compactor C to s′

and set s← s′.

Whenever a resize operation compresses the space to a smaller size (i.e.
s′ < s), we will perform compaction, and some elements stored in C will
be outputted to the output stream Ã′.

- Insert(C, x1, x2, . . . , xm): Add x1, x2, . . . , xm to the input stream Ã of
compactor C, where m f s. We will implement it using Resize(C, s′):

– First, we call Resize(C, 2s), insert x1, x2, . . . , xm into the new open
space of size s in memory.

– Then, we callResize(C, s) to compress the space back to the original
size.

Note that some elements may be outputted to the output stream Ã′ during
this last compression.

- RankC(x): Return the rank of x among the elements Ã that are still in
the memory of compactor C.

Let r̂ankÃ(x) denote the estimated rank of x with respect to stream Ã.

Then, we define r̂ankÃ(x) = RankC(x) + 2 · rankÃ′(x).

Table 1: Elastic Compactor.
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Intuitively, Equation (4.5) ensures that the space used by the compactor cannot be too small. Note that we
modify the implementation of the relative compactor of [3] in our definition of the elastic compactor. We defer
the proof of Lemma 4.1 to Section 5.

Additional operations. Finally, we define two more operations for our elastic compactor, which we call
”reset” and ”remove” operations. These will be required in Section 5.

• Reset(C): This operation resets the sum in Equation (4.5) that we have accumulated so far to zero, while
maintaining all the elements that are stored in C. Essentially, by resetting the sum, we allow the compactor
to handle more operations, but at the cost of introducing more error into the rank estimate.

• Removemax(C): This operation removes the largest element in the compactor C and outputs it to another
stream Ãremove. When this operation is present, we define the error attributed to x ∈ U to be

(4.6) ∆(x) :=
(
RankC(x) + 2 · rankÃ′(x) + rankÃremove

(x)
)
− rankÃ(x).

Suppose we fix a query x ∈ U . Then, we call a reset important if at the time of reset, there is at least one
element in the compactor C that is smaller than x. Formally, we have the following guarantee.

Lemma 4.2. Suppose between any two adjacent resets, the sequence of space constraints in the resize operations
satisfies Equation (4.5). Let S be an upper bound on the number of elements in the compactor at any time. Then
for any query x ∈ U , if there are t important resets, the randomized compactor achieves expected squared error

E
[
∆(x)2

]
f rankÃ(x) + t · S

k
.

Here ∆(x) is defined as in Equation (4.6).

The proof of Lemma 4.2 is also deferred to Section 5.15

4.2 The Top Quantiles Sketch As mentioned before, our basic strategy is to maintain sub-sketches Hi’s
that each handles elements of rank roughly around Ri := ϵ−1 · 2i and has absolute error less than 2i. The main
challenge of this task can be formalized as the following natural problem.

The Top-R Quantiles Problem.

Input. A stream Ã of length |Ã| k R.
Output. For any query x ∈ U (given at the end of the stream) with the

promise that rankÃ(x) f R, the sketch has to output an estimate r̂ankÃ(x)
such that, ∣∣∣rankÃ(x)− r̂ankÃ(x)

∣∣∣ f ϵ ·R.

Table 2: The Top Quantiles Problem.

Note when input stream length |Ã| f R, this problem can be solved by a standard additive-error quantile
sketch, because the additive-error sketch will incur error at most ϵ · |Ã| f ϵ ·R. However, this becomes a different
problem when |Ã| k R. In fact, this is evidenced by the fact that the additive-error quantile sketch takes only
O(ϵ−1 log log ¶) space (KLL sketch [13]), while for this problem, as mentioned before, we have the following lower
bound saying Ω(ϵ−1

√
log n) space is necessary (for a specific ϵ) to achieve failure probability ¶ < 0.1.

Lemma 4.3. Let n = |Ã| be the stream length. When ϵ = 1/
√
log n, any comparison-based algorithm that solves

the top quantiles problem for R = log n with ¶ < 0.1 failure probability requires at least Ω(log n) space.

15In fact, Lemma 4.1 is a direct application of Lemma 4.2 when t = 0.
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The proof of Lemma 4.3 is deferred to Section 7. Note that there are some natural motivations for studying
this problem; e.g. when monitoring system latency, we may only care about an abnormal tail of the data and
wish to construct sketches that incur the smaller error ϵ ·R instead of ϵ · |Ã|.

Outline of our approach. First, we design a resizable sketch H which solves the top-R quantiles problem.
Later on, we will augment this sketch H with additional features in order to obtain our final sub-sketches Hi’s,
which will be used to solve the overall relative error quantile estimation problem.

Compactor Hierarchy. Similar to the KLL sketch [13], our sketch H is a hierarchy that consists of a
sampler, a chain of elastic compactors C1, ..., Clog(1/ϵ)−1, and finally a buffer B which stores O(1/ϵ) elements, as
shown in Figure 3 below.

Sampler

Figure 3: Structure of H

Note that our resizable sketch H has two tuneable parameters: an error parameter ϵ > 0, and a space
parameter sH (eventually, the total space used by sketch H will be sH · +log2(1/ϵ),). Next, we define the same
set of operations for H (which consists of a sampler followed by a hierarchy of elastic compactors), just as we
defined earlier for each elastic compactor C:

- Insert(H,x): Add x into the input stream Ã of H.

- Resize(H, s′): Expand or compress the space of H so that we set the space parameter to be sH ← s′.

- RankH(x): Return an estimate for the rank of x. To compute the estimate RankH(x), we output the total
weight of the elements in H that are smaller than x. That is,

(4.7) RankH(x) :=

log(1/ϵ)−1∑

j=0

2j · ϵ2R ·RankCj
(x) + ϵR ·RankB(x)

where RankCj
(x) and RankB(x) denote the rank of x among all elements contained in compactor Cj and

buffer B, respectively.

Recall that for all x with rankÃ(x) f R, we want

|RankH(x)− rankÃ(x)| f O(ϵ) ·R.

We now describe the operation of each component as the stream travels through the sketch H from left to
right. Additionally, for every element x stored in the memory of H, we define the weight of x to represent the
number of stream elements that are “represented” by x.

1. Sampler: first, each element x in input stream Ã is passed through the sampler: with probability 1
ϵ2R , the

sampler inserts x into the first elastic compactor C0, and x is discarded otherwise. Note that if there are
|Ã| = n elements in the input stream, roughly ℓ = n

ϵ2R elements will be inserted into C0.

Additionally, when element x first appears in the stream Ã, x has weight 1. After passing through the
sampler, each sampled element carries weight ϵ2R.

2. Elastic compactors: for each 0 f j < log2(1/ϵ), the elastic compactor Cj has block-size parameter k = 1/ϵ
and space parameter s = sH . After each operation to Cj , it might output m (m f s) element x1, x2, . . . , xm.
We call Insert(Cj+1, x1, x2, . . . , xm) to insert them into the next compactor. Eventually, the output of the
last compactor is inserted into the buffer.

Note that for each 0 f j < log2(1/ϵ), elements in Cj all have weight ϵ2R · 2j .
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3. Buffer: the buffer B stores the smallest 1/ϵ elements inserted to it, and throws away the largest element
whenever it is full.

Each element in the buffer has weight ϵ ·R.

Intuitively, as the smallest 1/ϵ elements in the buffer already have total weight R, and we only care about
top-R quantiles, this explains why we can afford to throw away all other elements from the buffer.

Remark 4.4. For the corner case when R < 1
ϵ2 , we omit the sampler and directly insert stream elements into

the compactor Cj such that 2j · ϵ2R = 1.

Implementation of Operations. For Insert(H,x), we feed x to the sampler, which inserts x into C0

with probability 1
ϵ2R . (See Algorithm 1.) To simplify the notation, we will define Clog(1/ϵ) to be the buffer B at

the last level of the hierarchy.

Algorithm 1 Insert an element.

1: procedure Insert(H,x)
2: with probability 1

ϵ2R do

3: Insert(C0, x).
4: for i = 0, 1, . . . log(1/ϵ)− 1 do

5: Let x1, x2, . . . , xm be the elements that Ci outputs after insertion.
6: Insert(Ci+1, x1, x2, . . . , xm).

Likewise, we insert elements into the buffer B (i.e. the last compactor Clog(1ϵ)) as follows. Here, we note
that if the new insertion causes there to be more than 1/ϵ elements stored in the buffer, we remove the largest
elements until there are only 1/ϵ remaining.

Algorithm 2 Insert elements to buffer B.

1: procedure Insert(B, x1, x2, . . . , xm)
2: Add x1, x2, . . . , xm to the buffer B.
3: while the buffer B has more than 1/ϵ elements do
4: Remove the largest elements in the buffer.

Now, to implement Resize(H, s′) on the full sub-sketch H, we simply call Resize(Cj , s
′) for each level j of

the compactor hierarchy (See Algorithm 3).

Algorithm 3 Resize the hierarchy.

1: procedure Resize(H, s′)
2: Resize(C0, s

′).
3: for j = 0, 1, . . . log(1/ϵ)− 1 do

4: Let x1, x2, . . . , xm be the elements that Ci outputs after insertion.
5: Insert(Cj+1, x1, x2, . . . , xm).
6: Resize(Cj+1, s

′) unless j = log(1/ϵ)− 1. (The buffer is always of fixed size 1/ϵ.)

Error Guarantee. In conclusion, we have the following lemma.

Lemma 4.5. Let Ã be the input stream and s1, s2, . . . , sℓ be the sequence of space parameters after each resize /
insertion from the sampler into C0. Our randomized top-R quantiles sketch H, conditioning on

(4.8)
ℓ∑

t=1

2−ϵ·st f 0.25,

for any query x with rankÃ(x) f R, achieves standard deviation

E
[
|rankH(x)− rankÃ(x)|2

]1/2 f O(ϵ) ·R.
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We defer the proof to Section 6.1. The main idea is to apply Lemma 4.1 to analyze the error introduced by
each Cj .

Remark 4.6. Let n = |Ã|. Then there are in expectation ℓ = n
ϵ2R many insertions into C0. Setting

s1 = s2 = · · · = sℓ = ϵ−1 log ℓ = O
(
ϵ−1 log n

)
gives an O

(
ϵ−1 log n

)
space algorithm for the top-R quantiles

problem. We will later improve it in Section 7. By setting s1 = s2 = · · · = sℓ = O(ϵ−1
√
log n), we obtain an

optimal algorithm for Top-R Quantiles problem, matching the lower bound in Lemma 4.3. For this section, the
simpler bound in Lemma 4.5 suffices.

Final Description of Sub-sketch Hi. Finally, we augment the top-R quantiles sketch H described above
to obtain the final version of our sketches Hi, which we will use to build our final algorithm for the relative error
quantile estimation problem. In particular, we add three additional features, which are described in detail below.
Note that we denote Ri := ϵ−1 · 2i and let ÃHi

be the input stream of Hi.

1. Limiting the maximum total weight in H. In our algorithm, we will always ensure that the total
weight of elements in each Hi is less than 3Ri. Also, we will set the buffer size to 3

ϵ . Since each element
in the buffer has weight ϵRi, the buffer will never be full (as long as the total weight is bounded by 3Ri).
Thus, each subsketch Hi no longer needs to throw away elements when the buffer is full (Remove Line 4
from Algorithm 2).

Instead, Hi operates as follows: whenever the total weight exceeds 3Ri, the sub-sketch Hi outputs the
largest element x stored in Hi into the output stream Ã′

Hi
, with multiplicity equal to the weight of x. Then,

we remove x from Hi (Note: the largest element x may not be in the final buffer B, rather it may be in
one of the elastic compactors in the hierarchy). We repeat this removal process until the total weight of
H becomes less than 2Ri again. See Algorithm 4 for the pseudocode. Observe that once the total weight
(which is initially 0) exceeds Ri, it will always be within [Ri, 3Ri].

Algorithm 4 Maintaining the total weight of Hi.

1: Ri ← ϵ−1 · 2i
2: if total weight of elements in Hi exceeds 3Ri then

3: Reset(Hi+1). ▷ This line is for Section 4.3 and should now be ignored.
4: repeat

5: Suppose the largest element in Hi is in Cj (0 f j f log(1/ϵ)).
▷ Note this includes the buffer (j = log(1/ϵ)).

6: Removemax(Cj) and let x be the largest element that Cj outputs. 16

7: Output 2j · ϵ2Ri many copies of x to an output stream Ã′
Hi

.
▷ Later in Section 4.3, we will insert each element in Ã′

Hi
to Hi+1.

8: until total weight of elements in Hi is less or equal to 2Ri

In the final algorithm, we will then insert the elements in Ã′
Hi

into the next sub-sketch Hi+1. We observe
that by repeatedly removing the largest elements from Hi and adding them into Ã′

Hi
, we guarantee the

following “ordering” property:

Observation 4.7. The elements in the output stream Ã′
Hi

of Hi are naturally in non-decreasing order, and
are always larger than all elements in Hi. Furthermore, it follows that all elements in Hi+1 are always
larger than all elements in Hi.

2. Error guarantee for all queries: Instead of only those queries x with rankÃHi
(x) f Ri, we are going to

define a notion of error for arbitrary query. We define the estimate of rankÃHi
(x) by Hi as

̂rankÃHi
(x) := rankHi

(x) + rankÃ′
Hi
(x).

15For the buffer B, Removemax(B) is defined naturally as removing the largest element in the buffer and output it.
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Here Ã′
Hi

is the ordered output we defined above. The error is therefore defined as

∆Hi
(x) := ̂rankÃHi

(x)− rankÃHi
(x).

3. Resets: Just as we defined a reset operation for elastic compactors, we also define resets for our sub-sketch
Hi.

• Reset(Hi): This operation resets the sum in Equation (4.8) at the cost of introducing more error.
Concretely, this operation simply calls Reset(Ci,j) for every compactor Ci,j (0 f j < log(1/ϵ)) in the
sampler/compactor hierarchy defined in Section 4.2.

Fixing a query x ∈ U , we say a reset is important if at the time of reset, there exists at least one element
in Hi that is smaller than x.

To summarize, we have the following lemma.

Lemma 4.8. Consider an arbitrary query x. Suppose there are ti(x) important resets. Given the same condition
as Lemma 4.5, we have

E
[
∆Hi(x)

2
]1/2

= O(ϵ) ·
√

Ri · rankÃHi
(x) + ti(x) ·R2

i .

Notably, this lemma plays an important role in the proof of Lemma 4.11; we defer the proof to Section 6.1.

4.3 All Quantiles Relative Error Sketch Now, we are ready to describe the complete algorithm for the
relative error quantile estimation problem in the streaming model.

· · · Hi−1 Hi · · ·Hi+1

rank

ϵ
−1

· 2
i−2

ϵ
−1

· 2
i−1

ϵ
−1

· 2
i

ϵ
−1

· 2
i+1

error ≤ 2
i−1 ≤ 2

i
≤ 2

i+1

Figure 2: Our basic strategy. (repeated from page 9)

The Full Relative Error Quantile Sketch. As explained at the beginning of the section, for each
0 f i f log2(ϵn), our algorithm will maintain one sub-sketch Hi for elements of rank roughly Ri := ϵ−1 · 2i.17 We
now describe the operation of the algorithm on each inserted stream element x.

1. First, we insert x into the hierarchy Hi whose range contains x. More precisely, we feed x to the sampler of
the first Hi such that Hi+1 is either empty, or contains only elements that are greater than x.

2. As we mentioned earlier, Hi might have total weight exceeding 3Ri after this insertion; in this case, Hi will
move at least Ri elements into the output steam Ã′

i; these elements will eventually be added to the input
stream of the next hierarchy Hi+1.

3. Importantly, whenever Item 2 happens, we first reset the sketch Hi+1 (Line 3, Algorithm 4) and then insert
those newly added elements in Ã′

i into Hi+1.

17For the first log(1/ϵ) many Hi’s, we have Ri ≤
1
ϵ2

, thus they have the structure described in Remark 4.4.
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Our estimator is a natural extension of Equation (4.7): to estimate the rank of any query x, we output

(4.9) r̂ankÃ(x) :=

log2(ϵn)∑

i=0

RankHi
(x)

Before we proceed, we make a few observations about the structure of our overall sketch.

Lemma 4.9. Our all quantiles relative error sketch maintains the following properties:

1. Throughout the execution of the algorithm, all sub-sketches Hi maintain the invariant that the total weight
of elements stored in Hi is within [Ri, 3Ri] (excluding the last non-empty sub-sketch Hi′ which may have
total weight less than Ri′).

2. Moreover, the ranges of the Hi’s are disjoint, that is, all elements in Hi−1 are always smaller than those in
Hi.

Proof. We note that the first property follows directly from the definition of Hi. So, we proceed to check the
second property, which we prove by induction. Suppose that before an operation, the Hi’s ranges are disjoint.
Consider the following two cases:

• If this operation is an insertion (Item 1), because we insert x into the Hi whose range contains x. The
disjointness is preserved.

• If this operation is moving elements from Hi to Hi+1 (Item 2 and Item 3), by Observation 4.7, these elements
we moved to Hi+1 are larger than all elements in Hi. Thus the range of Hi and Hi+1 are still disjoint.

At this point, it suffices for us to show that this sketch achieves the relative error guarantee, assuming that we
can allocate an appropriate amount of space to each sub-sketch Hi (we will address our space allocation strategy
next, in Section 4.4).

Claim 4.10. For any sub-sketch Hi, the number of important reset ti(x) f 2 · rankÃHi
(x)

Ri
.

Proof. This is because whenever we have a important reset for Hi, there must be at least Ri−1 = Ri/2 many
elements that are smaller than x being inserted into Hi.

Lemma 4.11. For any input stream Ã, assuming that the space we allocate to each Hi satisfies the premise of
Lemma 4.5 (Equation (4.8)), we always have that for any query x,

E



∣∣∣rankÃ(x)−

log2(ϵ·rankÃ(x))∑

i=0

RankHi
(x)

∣∣∣
2



1/2

f O(ϵ) · rankÃ(x).

where the expectation is taken over the randomness of the Hi’s.

Remark 4.12. Before we prove this lemma, we remark that it suffices to prove that our algorithm succeeds with
constant probability. This is because by Chebyshev’s inequality, there is an absolute constant c > 0 such that

Pr



∣∣∣rankÃ(x)−

log2(ϵ·rankÃ(x))∑

i=0

RankHi
(x)

∣∣∣ g c · ϵ · rankÃ(x)


 f 1

3
.

But we know the total weight of H1, . . . , Hlog2(ϵ·rankÃ(x)) is at least R1+R2+· · ·+Rϵ·log2(ϵ·rankÃ(x)) > 1.5·rankÃ(x).
As long as, we pick ϵ < 1/(2c), there must be elements in these hierarchies that are larger than x. In this case,
RankHi

(x) = 0 for all i > log2(ϵ · rankÃ(x).
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Proof. By Claim 4.10, for any sub-sketch Hi, the number of important resets ti(x) = O

(
rankÃHi

(x)

Ri

)
. Together

with E[rankÃHi
(x)] f rankÃ(x), plug in Lemma 4.8, we get

E
[
∆Hi

(x)2
]1/2 f O(ϵ) ·

√
Ri · rankÃ(x) + E[ti(x)] ·R2

i = O(ϵ) ·
√

Ri · rankÃ(x).

Finally we use Fact 3.1 and sum over all the sub-sketches H1, H2, . . . , Hlog2(ϵ·rankÃ(x)).

E



∣∣∣rankÃ(x)−

log2(ϵ·rankÃ(x))∑

i=0

RankHi(x)
∣∣∣
2



1/2

=E




∣∣∣∣∣∣

log2(ϵ·rankÃ(x))∑

i=0

rankÃHi
(x)− rankÃ′

i
(x)−RankHi(x)

∣∣∣∣∣∣

2



1/2

f
log2(ϵ·rankÃ(x))∑

i=0

E
[
∆Hi(x)

2
]1/2

f
log2(ϵ·rankÃ(x))∑

i=0

O(ϵ) ·
√
Ri · rankÃ(x)

=O(ϵ) · rankÃ(x).

Here Ã′
Hi

is the stream of elements we move from Hi to Hi+1, and the last step follows since the values Ri’s are
exponentially increasing.

4.4 Dynamic Space Allocation The only piece left from Lemma 4.11 is to specify the allocation of space
for each Hi. Naively, the most straightforward approach is to give each Hi the same amount of space. However,

since each Hi solves a top quantiles problem, we need at least O

(√
log(ϵn)

ϵ

)
space for each Hi and can at best get

an algorithm with O
(

log1.5(ϵn)
ϵ

)
space. To go beyond this lower bound, we will need to dynamically adjust the

space used by each subsketch Hi on-the-fly. Before we give a complete description of the online space allocation
procedure, we describe a way to allocate space in the restricted (offline) case, when all reset times are known in
advance to the algorithm.

The offline space allocation problem. Our strategy for allocating space affects the behavior of each Hi

and also changes the time when different levels reset. To best illustrate our idea, let us first consider the offline
version, where the compactor reset times are fixed and known in advance.

First, we will view each operation call that changes the memory of the Hi’s (i.e. for instance, an insertion of
a sampled element into the zero-th level compactor Ci,0 or a resize call to Hi) as one time step18. Notably, it is
clear from the algorithm description that there are O(poly(n)) time steps in total, where n is the stream length.
Also, let ti,j denote the time step at which Hi resets for the j-th time. We use Wi,j to denote the set of time
points within the interval [ti,j , ti,j+1) at which we resize Hi/insert from the sampler into Ci,0, and si,t is the space
we allocate to Hi at time t (which must be positive).

Our strategy satisfies the following two constraints:

• (The total space is bounded.) At any time t,

log(ϵn)∑

i=0

si,t = O(ϵ−1 log n log(1/ϵ)).

18Importantly, observe that this definition does not count those insertions that are not sampled in the “sampler” step, as these do
not affect the state of the Hi’s.
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• (The space sequence is feasible.) For any Hi and time interval [ti,j , ti,j+1), we have

∑

t∈Wi,j

2−ϵ·si,t f 0.5.

Concretely, the offline space allocation question is defined as follows: given fixed time intervals [ti,j , ti,j+1)
and the time of operations Wi,j ’s, we need to find the proper sequence of space allocations si,t’s satisfying both
of the constraints above.

Remark 4.13. To handle the edge case where some of the Hi’s are empty, we reset those sub-sketches Hi at
every time-step until they become non-empty. Note that this does not change the state of those empty Hi’s at all,
but ensures that when Hi is empty, the corresponding time intervals between consecutive resets are all of length
1. We will need this fact later when handling unknown stream length n.

Space allocation for tree-like intervals. As a warm up, we will first describe the space allocation strategy
for the following (simpler) special case: suppose that for all the intervals [ti+1,j , ti+1,j+1), there always exists an
interval

[
ti,parent(j), ti,parent(j)+1

)
that contains it. In this case, these intervals form a tree-like structure, which is

shown in Figure 4.

Hi

Hi+1

Hi−1

Figure 4: Tree-like intervals.

Our strategy for this case is easy to state: For all t ∈ [ti+1,j , ti+1,j+1), we set the space of Hi (the parent) as

(4.10) si,t = ϵ−1 ·
(
log

ti,parent(j)+1 − ti,parent(j)

ti+1,j+1 − ti+1,j
+ 5 log(1/ϵ)

)
.

For the corner case when i = log(ϵn), we pretend that there is Hlog(ϵn)+1 which resets every step. That is, there
is one addition level at the bottom with all length-1 intervals. We know that si,t is always positive because
[ti+1,j , ti+1,j+1) is always shorter or equal to its parent.

We need to verify that it satisfies the two constraints:

• (The total space is bounded.) This part is straightforward to verify. We first fix a time t. Let ji be the
index of the interval [ti,ji , ti,ji+1) that contains time t. Then, we obtain the following telescoping sum.

log(ϵn)∑

i=0

si,t =

log(ϵn)∑

i=0

ϵ−1 ·
(
log

ti,ji+1 − ti,ji
ti+1,ji+1+1 − ti+1,ji+1

+ 5 log(1/ϵ)

)

= ϵ−1 · log poly(n)

1
+ ϵ−1 · log(ϵn) · 5 log(1/ϵ)

= O(ϵ−1 log n log(1/ϵ)).

Thus the total space is at most O(ϵ−1 log n log2(1/ϵ)) because the space used by each hierarchy Hi is
si,t · +log2(1/ϵ),.

• (The space sequence is feasible.) To prove this, we need the following claim.

Claim 4.14. Within any interval [ti+1,j , ti+1,j+1), Hi has at most 3/ϵ2 many insertions into Ci,0. We
observe that this is true in general, i.e. not only for the case that all resets occur in tree-like intervals.
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Proof. This is because each element in Ci,0 has weight ϵ2Ri. If there are more than 3/ϵ2 such insertions,
it will triger a reset of Hi+1. As ti+1,j+1 is the next reset after ti+1,j , we know there can be at most 3/ϵ2

insertions between them.

Consider any interval [ti,j , ti,j+1). Suppose it is the union of its children [ti+1,ℓ, ti+1,ℓ+1), [ti+1,ℓ+1,
ti+1,ℓ+2), . . . , [ti+1,r−1, ti+1,r). We know that Hi only resizes at time step ti+1,ℓ, ti+1,ℓ+1, . . . , ti+1,r.
Thus, together with Claim 4.14, we know that for each [ti+1,m, ti+1,m+1) (l f m f r − 1), we have
|Wi,j ∩ [ti+1,m, ti+1,m+1)| f 3/ϵ2 + 2. Thus, we know

∑

t∈Wi,j

2−ϵ·si,t f
r−1∑

m=ℓ

∑

t
t∈Wi,j∩[ti+1,m,ti+1,m+1)

2−ϵ·si,t

f
r−1∑

m=ℓ

(3/ϵ2 + 2) · ti+1,m+1 − ti+1,m

ti,j+1 − ti,j
· ϵ5 f 0.25 ·

∑r−1
m=ℓ ti+1,m+1 − ti+1,m

ti,j+1 − ti,j
f 0.25

Space allocation for general intervals. In the general case, a single interval for Hi+1 may intersect with
multiple “parent” intervals for Hi above it. It might also be longer than any such “parent” interval, which could
cause Equation (4.10) to allocate negative space. Thus, we need to carefully generalize our strategy.

Hi

Hi+1

Hi−1

Figure 5: In general, the incidence relation between intervals can be far more complex than a tree.

First, we need the following claim, which upper bounds the number of “parent intervals” for a single interval
by a constant.

Claim 4.15. Within the time interval
[
t
(i)
j , t

(i)
j+4

)
, Hi+1 resets at least once.

Proof. Each time Hi resets, the total weight of Hi increases by at least Ri−1 = ϵ−1 ·2i−1 due to the corresponding
batched insertion. Initially, the total weight of Hi is at least 2i/ϵ. Within at most four such resets, its weight
increases to at least 3 · 2i/ϵ, which triggers a reset of Hi+1.

To handle the corner case, again we imagine there is a Hlog(ϵn)+1 which resets every step. So there is a
imaginary level at the bottom full of length-1 intervals. We define the potential ϕi,j for each interval [ti,j , ti,j+1)
recursively as follows:

• For i = log(ϵn) + 1 (the imaginary level at the bottom), we simply let ϕi,j = 1 for all j.

• For 0 f i f log(ϵn), suppose [ti,j , ti,j+1) intersects with “children” intervals [ti+1,ℓ, ti+1,ℓ+1], [ti+1,ℓ+1,
ti+1,ℓ+2], . . . , [ti+1,r−1, ti+1,r]. We define

ϕi,j =

r−1∑

m=ℓ

ϕi+1,m.

Intuitively speaking, the potential ϕi,j is a the “generalized length” of each interval. We then assign the space
similar to the tree-like case. For all t ∈ [ti,j , ti,j+1) ∩ [ti+1,m, ti+1,m+1), set

(4.11) si,t = ϵ−1 ·
(
log

ϕi,j

ϕi+1,m
+ 5 log(1/ϵ)

)
.
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In this case, we know that si,t is always positive because ϕi,j is always larger than ϕi+1,m by definition. We
defer the analysis to Section 6. In the analysis, we crucially use the fact that all ϕi,j ’s are at most poly(n) so
that the telescoping sum for calculating total space will sum up to O(log n). The rest of the analysis are almost
identical to the tree-like case.

Claim 4.16. For any 0 f i f log(ϵn) + 1, suppose there are ℓi intervals in total for Hi. Suppose that there are
T time steps (counting insertion into Ci,0’s and resizes of Hi’s) in total.

Then,
ℓi∑

j=1

ϕi,j f 4log(ϵn)+1−i · ℓlog(ϵn)+1.

Specifically, the potential ϕi,j of any interval is bounded by 4log(ϵn)+1 · T = poly(ϵn) · T .

Proof. We prove this by induction. When i = log(ϵn) + 1, we know that every ϕi,j = 1. Thus
∑ℓi

j=1 ϕi,j =
ℓlog(ϵn)+1, which equals T .

Suppose this is true for i+ 1. From Claim 4.15, we know that each interval [ti+1,j′ , ti+1,j′+1) intersects with
at most 4 “parent” intervals [ti,j , ti,j+1]’s.

Thus
ℓi∑

j=1

ϕi,j f 4 ·
ℓi+1∑

j=1

ϕi,j+1 f 4 · 4log(ϵn)−i · ℓlog(ϵn)+1,

where in the last step we use the induction hypothesis.

Online space allocation. In the actual streaming model, we do not know the intervals in advance, so we
need to adjust our strategy in order to allocate the space of each Hi on-the-fly.

Let t be the current time. For all unfinished intervals, we pretend that the interval ends (i.e. the
corresponding sub-sketch Hi resets) at the current time t; then, we calculate all the potentials which we denote

by ϕ
(t)
i,j . We then round them up to the closest power of 2, which we denote by Vϕ

(t)
i,jW. We also calculate

ŝi,t = ϵ−1 ·
(
log

Vϕ
(t)
i,jW

Vϕ
(t)
i+1,mW

+ 5 log(1/ϵ) + 5 log log n

)
. We then allocate to Hi space ŝi,t.

Hi

Hi+1

Hi−1

t

· · · · · ·

Figure 6: We calculate ϕ
(t)
i,j ’s using partial information.

Intuitively, this works because the rounding guaranteed that the space ŝi,t does not change too often. Roughly
speaking the number of resize operations multiplies by O(log2 n), which offsets by the extra log log n term in ŝi,t.
We again leave the detailed analysis to Section 6.

Handling unknown stream length. One side benefit of our algorithm is that it handle unknown n
naturally. In our algorithm, none of the parameters (k,Ri and buffer size) for each Hi depends on n. Thus,
we can imagine running our algorithm with infinite many subsketches, H0, H1, H2, . . . .

The only potential issue is that, our recursive definition of the potential ϕ
(t)
i,j ’s needs a base case. Recall that

by Remark 4.13, all empty Hi’s have intervals of length 1. We can the potential of those intervals to 1. Because
whenever Hi is empty, Hi+1 must also be empty, any such length-1 interval of Hi can only intersect with a single
length-1 interval of Hi+1. So the recurrence relation still holds for all intervals.
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5 Implementation of the Elastic Compactor

In this section, we fill in the remaining implementation details for the elastic compactors Ci,j ’s used in our
subsketches. Before we proceed with this, we first provide a necessary overview of relative compactor, which was
introduced in [3]; importantly, some basic operations of our elastic compactor data structure will be partially
adapted from the relative compactor.19

5.1 Overview of the Relative Compactor

Blocks and Compaction. A relative compactor [3] stores s elements (indexed 1 through s), which are
subdivided into b = + sk , blocks of size k. 20 Let {Bi}i∈[b] denote the blocks in C, and note that each block Bi

contains elements indexed from (i− 1) · k + 1 to i · k. The elements stored in C are always maintained in sorted
increasing order.

As new elements arrive in the stream, they are inserted directly into the relative compactor C while
maintaining the increasing sorted order in C. When C is full, the suffix of ℓ blocks is fed as input to the
compaction operation, which is defined below. This operation compacts the (b− ℓ+ 1) · k elements in the suffix
of blocks into (b− ℓ+ 1) · k/2 outputted elements. In particular, the compaction always frees-up space for future
insertions.

Algorithm 5 Compacting suffix [Bℓ, Bℓ+1, . . . , Bb]

1: procedure Compact(C, ℓ)
2: Let y ∈R {0, 1} be a fair coin flip.
3: if y = 0 then

4: Output all odd indexed elements in blocks Bℓ, Bℓ+1, . . . , Bb.
5: else

6: Output all even indexed elements in blocks Bℓ, Bℓ+1, . . . , Bb.

7: Remove all elements in suffix [Bℓ, Bℓ+1, . . . , Bb] from C.

Compaction Schedule. However, we have not specified how to pick ℓ when calling Compact(C, ℓ). Indeed,
the work of [3] presents an intricate method to select the number of blocks ℓ which will be compacted in a particular
iteration; the sequence of choices of ℓ is called the compaction schedule. This schedule is essential for the error
analysis in [3]. In the context of our work, we rephrase their strategy as follows.

Initially, each block Bi is associated with a bit zi that is initialized to 0. The compactor C has a “progress
measure”, z := (.z1z2...zb)2, where 0 f z < 1 is a binary fraction. To ensure that the total accumulated error
stays small, the compactor C only has the capacity to handle a limited number of compactions. Intuitively, the
bit-string z indicates how much of the “capacity” of C we have used already, and represents the “progress” of
the compaction schedule. Eventually, if z = 1 − 2−b, C cannot perform any more compactions. The scheduling
strategy of [3] is to do the following for each compaction21:

1. Update z ← z + 2−(b−1).

2. Find the least significant bit zr such that zr = 1.

3. Call Compact(C, r + 1).

Note that in the furst line, we always add 2−(b−1) instead of 2−b to z, as a result, the last bit zb is always zero.
So r f b− 1, and in the last line we always compact at least one block.

19Although we presented a sketch of relative compactor in Section 2, the presentation here will be based on the deterministic
compaction schedule of [3] (as we mentioned in Footnote 8), which is easier to formally analyze and helps up the basic notations for
our elastic compactor.

20k is a even integer parameter which relates to the error incurred by compactor C.
21In [3], the authors maintain a counter Z for the number of compactions that have already been performed. Then, the number

of blocks to compact is determined by the number of trailing ones in the binary representation of Z + 1. We note that these two
definitions are equivalent. Numerically, the sequence of these numbers are {1, 2, 1, 3, 1, 2, 1, 4, ...}.
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For any query x ∈ U , the compactor should provide an estimate of the rank of x with respect to the current
contents of C (each element has weight 1) and with respect to the output stream Ã′ of C (each element in Ã′ has
weight 2). Specifically, this estimator is defined as

r̂ankÃ(x) = rankC(x) + 2 · rankÃ′(x).

Recall that to achieve the relative error guarantee, we need to ensure that our estimate r̂ankÃ(x) is very
accurate when rankÃ(x) is small (in fact, the first 1/ϵ ranks should be known exactly). The compaction schedule
chosen in [3] facilitates this guarantee by ensuring that the “smaller” elements of the stream will get compacted
much less frequently than the “larger” elements, so they will naturally incur a smaller amount of error over all
time-steps of the algorithm.

Error Analysis Now, we examine the source of error for rank queries in the compaction procedure. Note
that Compact(C, ℓ) introduces no error for x if all elements in block Bℓ, Bℓ+1, . . . , Bb are larger than x. So a
compaction may introduce error, only when the involved blocks contains at least one “important” element (i.e.
an element that is smaller than the query x). This notion is defined more formally in the next definition.

Definition 5.1. (Important element for query x) For a fixed query x ∈ U , we say a stream element y is
important if and only if y f x. We also say a compaction Compact(C, ℓ) is important if the Bℓ, Bℓ+1, . . . , Bb

contains at least one important element.

Since each important compaction induces an independent ±1 error to the rank estimate, if there are N important
compactions in total, the standard deviation of our estimation will be bounded by ±

√
N . Thus, it suffices for us

to upper bound the total number of important compactions.
In the previous work [3], the authors showed that the compaction schedule described above, the number of

important compactions is upper-bounded by rankÃ(x)
k , and C is able to handle roughly k2b insertions before the

“progress measure” z overflows. By chaining O(log(ϵn)) such compactors together, they construct a relative-error
quantile sketch using space Õ(ϵ−1 log1.5(ϵn)).

5.2 Implementation of Elastic Compactors Now, we are ready to describe the implementation of our
elastic compactor. Notably, the basic compaction operation and the compaction schedule will be generalized from
those of relative compactors. Additionally, our elastic compactor is augmented with a resize operation, which can
be used to adjust the memory allocated to C, as well as a reset operation which simply zero-outs the “progress
measure” z at the cost of introducing more error.

As before, we consider Celastic to have blocks of size k, but unlike the original relative compactor, we will
allocate the number of blocks in Celastic dynamically; as a result, we can think of Celastic as having possibly
infinitely-many blocks {Bi}ig1 available, but only a specific number of blocks will actually be in-use at each
time-step. As for the relative compactor, each block Bi will be equipped with a bit zi, which is initialized to
0. Analogously to the progress measure for the relative compactor, the compaction procedure keeps track of its
progress measure z := (.z1z2...)2 (observe that the number of bits is no longer fixed in advance).

Basic Operations. Recall that we have the following basic operations of the elastic compactor Celastic. (See
Table 3 on the next page.) In the description below, we let st denote the total amount of space allocated to
Celastic at time t (i.e. if the space allocated is st, then there are + stk , blocks allocated to Celastic at time t).

Recall that in Lemma 4.1, we require that Celastic can handle any sequence of insert and resize calls with a
sequence of space constraints s1, s2..., sm (after a reset) which satisfy

∑m
t=1 2

−st/k f 0.5. Since we implement
insertions using resizes, each “external” insert call with parameter s generates two “internal” resize calls with
parameters s and 2s (See Table 3). Let sequence s′1, s

′
2, . . . , s

′
m′ be the space parameters for all (internal and

external) resize calls after a reset. As 2s + 2−2s f 2 · 2−s, we know that
∑m′

t=1 2
−s′t/k f 1.

Now, let us relate the running sum
∑m′

t=1 2
−s′t/k to our “progress measure” z.

Lemma 5.2. Let sequence s′1, s
′
2, . . . , s

′
m′ be the space parameters for all (internal and external) resize calls after

a reset. At any time in the operation sequence, we always have z f
∑m′

t=1 2
−s′t/k. That is, the “progress measure”

z is always upper-bounded by the running sum.

Proof. We prove this by induction. Initially, after a reset, both z and the running sum are zero.
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Basic operations for Elastic Compactor C

- Compact(C, ℓ): This operation is the same as Algorithm 5, while the number of blocks
is b = + stk , for current time t.

- Resize(C, s′): Expand or compress the space allocated to C. Suppose that C had
space s previously. Then:

1. If s′ > s, this corresponds to expanding the space for C. Allocate + s′k , − + sk ,
additional blocks at the end of C. For each of these block Bi, we initialize zi to
0.

2. If s′ < s, this corresponds to compressing the space for C. Let ℓ = + s′k , be the
target number of blocks after the resize. We do the following:

– Increase z to the next multiple of 2−ℓ.

– Find the least significant bit zr such that zr = 1.

– Call Compact(C, r + 1).

– Release all blocks B>ℓ.

See Figure 7 for an example.

- Insert(C, x1, ..., xm): Suppose C has space s. As described in Section 4.1, we
implement insertion using Resize(C, ·) (implemented below).

– First, we call Resize(C, 2s), and insert x1, x2, . . . , xm into the new open spaces
in memory (note that m f s necessarily).

– Then, we call Resize(C, s) to compress the space back to the original size s.

Note that some elements may be outputted to the output stream Ã′ during this last
compression.

- Reset(C): Set z ← 0.

Table 3: Implementations of basic operations to Elastic Compactors.

Suppose that this is true for t− 1. When there is a resize call Resize(C, s′t), the running sum is increased by

2−s′t/k. We will have ℓ = + s
′

t

k , and z is increase to the next multiple of 2−ℓ. Because that multiple is at most 2−ℓ

away and 2−ℓ f 2−s′t/k, we know that this lemma is true for time t.

Having this lemma, we know that as long as
∑m

t=1 2
−st f 0.5 (Equation (4.8)) holds, we always have 0 f z < 1.

Then resizes can always be performed because the least significant bit zr such that zr = 1 always exists. Moreover,
we always have r f ℓ because z is a multiple of 2−ℓ. Then after Compact(C, r + 1), when we release the blocks
B>ℓ, these blocks are guaranteed to be empty. Finally, Insert can also always be performed (again conditioning
on Equation (4.8) holds) because it is implemented by calls to resize.

5.3 Proof of Lemma 4.1 and Lemma 4.2 In this subsection, we will prove Lemma 4.2. If we set t = 0
(having no reset at all) in Lemma 4.2, it directly implies Lemma 4.1.

Let x ∈ U be a fixed query. We first recall the following definition of important elements, and provide a
definition for an “important reset”:

Definition 5.3. Recall the following definition from Definition 5.1: for a fixed query x ∈ U , we say a stream
element y is important if y f x. Also, we say a reset operation is important if, at the time of reset, at least one
of the elements in the compactor is important.
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A elastic compact with s = 14 and k = 2 that is not full.

z = 0 1 0 1 1 0 0
.

z = 0 1 1 0 0 0 0
.

Resize(10) so target number of blocks ℓ = 5

Increase z to the next multiple of 2−5

r = 3 and zr is the least significant bit with zr = 1

z = 0 1 1 0 0 0 0
.

Compact(C, r + 1)

z = 0 1 1 0 0
.

Release all blocks B>5

Figure 7: An example of the resize opeation.

Lemma 4.2 states the following:

Lemma 4.2. Suppose between any two adjacent resets, the sequence of space constraints in the resize operations
satisfies Equation (4.5). Let S be an upper bound on the number of elements in the compactor at any time. Then
for any query x ∈ U , if there are t important resets, the randomized compactor achieves expected squared error

E
[
∆(x)2

]
f rankÃ(x) + t · S

k
.

Here ∆(x) is defined as in Equation (4.6).

Recall that the estimation error solely stems from important compactions for query x (See Definition 5.1).
Let N be the number of important compactions. Then, the error distribution ∆(x) is the sum of (at most)
N independent ±1 random variables. As a result, we have E

[
∆(x)2

]
f N . Therefore, it suffices show that

N f rankÃ(x)+t·S
k . Going forward, we will have a charging argument similar to that of [3]:

Initially all the blocks of the compactor are unmarked.

• For each important compaction, we will “mark” an unmarked block.

• A marked block will only be unmarked at a reset, or when k important elements are compacted from it.

This allows us to upper bound the total number of marks by rankÃ(x)+t·S
k .

Combining the two bullets above, we obtain the desired upper bound for N and conclude the proof of Lemma 4.2.
Mark the elements. Consider a call Compact(C, r+1), for it to be important, there must be at least one

important element (an element y such that y f x) in blocks Bgr+1. We mark the block Br if Compact(C, r+1)
is important. We unmark block Bi when one of the following happens:

1. There is a compaction call Compact(C, ℓ) involving Bi (i.e., ℓ f i).
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2. There is a reset.

Let us prove that in our resizes, whenever we call Compact(C, r+1), the block Br must be unmarked before.

Claim 5.4. The block Bi is marked only when zi = 1.

Proof. Fisrt, whenver we call Compact(C, r+1) and mark a block Br, zr is always the least significant bit with
zr = 1. So when Bi is marked, we must have zi = 1.

Second, when we change zi to 0 in a resize call, suppose that the target number of blocks of the reset is ℓ and
we call Compact(C, r + 1). If Bi is not unmarked, we must have i f r. But all the bits z1, z2, . . . , zr−1 are not
changed during this resize, and zr is changed to 1. Therefore, zi must remains 1 if Bi is still marked.

Corollary 5.5. Whenever we call Compact(C, r+1) (in the resize operation), the block Br must be unmarked
before.

Proof. In a resize, we first increase z to a multiple of 2−ℓ. Because zr is the least significant bit equal to 1 after
the increment, we know that before the increment, it must be the case that zr = 0. Then the block Br must be
unmarked by Claim 5.4.

Bound the number of marks To bound the number of marks, we first formalize the following claim, which
suggests that we can bound the numebr of marks by the number of important elements.

Claim 5.6. A marked block contains only important elements.

Proof. Initially, suppose that a block Br is marked because the compaction Compact(C, r + 1) is important.
Because elements in C are in sorted increasing order, all blocks Bfr must also be smaller than or equal to x.
Thus, Br contains only important elements.

Afterward, if Br is not unmarked, it cannot be involved in any compaction. The only way the elements in
Br can change is due to insertions. Because we always sort the elements in C after insertions, the elements in Br

can only monotonely become smaller. Thus Br still contains only important elements after the insertions.

Lemma 5.7. Suppose there are t important resets, the total number of blocks we mark is bounded by rankÃ(x)+t·S
k

where S is an upper bound on the number of elements in C.

Proof. For every block that is marked, it is either unmarked due to (1) a compaction or (2) a reset; or it stays
marked at the end of the algorithm.

If it is unmarked due to compaction (or stays marked at the end of the algorithm). By Claim 5.6, we know
at the time of that compaction (or at the end of the algorithm) it must contain only important elements. These
k important elements are removed from C during the compaction (or stays in C till the end). This bounds the

number of such marked blocks by rankÃ(x)
k .

If it is unmarked due to a reset, we note that during a reset, there are at most S
k many blocks in C. So

it unmarks at most S
k blocks. There are t important resets in total that umarks at most t·S

k blocks. For the
unimportant resets, by Claim 5.6, they never unmark any block.

Adding these two together finishes the proof.

Putting together Lemma 5.7 and Corollary 5.5, we conclude that the number of important compactions can

be at most rankÃ(x)+t·S
k . So the final error is a sum of this many ±1 Rademacher random variables. We conclude

that the variance E[∆(x)2] f rankÃ(x)+t·S
k .

6 Analysis of the Full Sketch

In this section, we fill in the gaps in our algorithm analysis: we first finish the upper bound on the expected
square error in Section 6.1. Then, we show that our algorithm succeeds with high probability in Section 6.2.
Furthermore, to improve the space complexity from Õ(ϵ−1 log n) to Õ(ϵ−1 log(ϵn)), we make a small modification
to our algorithm, which is presented in Section 6.3. Finally, we finish the analysis of our dynamic space allocation
rules and prove the final space complexity bound in Section 6.4.
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6.1 Expectation Bound In this subsection, we first provide the error analysis for a single compactor hierarchy
H which solves the top quantiles problem (i.e. supporting queries of rank at most R). Later, we generalize our
analysis to our overall algorithm for the relative-error quantile estimation problem, in which sub-sketches Hi also
have “reset” operations and support arbitrary queries.

To address the first objective above, we recall Lemma 4.5, which gives an upper-bound on the expected
squared error of the top-R quantiles sketch H defined in section Section 4.2.

Lemma 4.5. Let Ã be the input stream and s1, s2, . . . , sℓ be the sequence of space parameters after each resize /
insertion from the sampler into C0. Our randomized top-R quantiles sketch H, conditioning on

(4.8)

ℓ∑

t=1

2−ϵ·st f 0.25,

for any query x with rankÃ(x) f R, achieves standard deviation

E
[
|rankH(x)− rankÃ(x)|2

]1/2 f O(ϵ) ·R.

Proof. We first decompose the error. Again let C0, . . . , Clog(1/ϵ)−1 be the compactors in H, and Clog(1/ϵ) denotes
the buffer. We use Ãj to denote the input stream of Cj (which is the output stream of Cj−1).

RankH(x)− rankÃ(x) =

log(1/ϵ)∑

j=0

RankCj
(x) · 2j · ϵ2 ·R− rankÃ(x)

=

log(1/ϵ)−1∑

j=0

(
(RankCj

(x) + 2rankÃj+1
(x))− rankÃj

(x)
)
· 2j · ϵ2R

+
(
rankÃ0(x) · ϵ2R− rankÃ(x)

)

+
(
RankClog(1/ϵ)

(x)− rankÃlog(1/ϵ)
(x)

)
· ϵR.(6.12)

The first term is the error of each compactor Cj . The second one is the error of the sampler. Third one is the
buffer.

We first argue that the buffer (the third term) never contributes to the total error:

• If rankÃlog(1/ϵ)
(x) f 1/ϵ, because the buffer always keep the smallest 1/ϵ elements, we always have

rankClog(1/ϵ)
(x) = rankÃlog(1/ϵ)

(x). Thus the third term is zero.

• If rankÃlog(1/ϵ)
(x) > 1/ϵ, intuitively, because rankÃ(x) f R, the compactors already over estimate the rank

of x. By only keep the first 1/ϵ elements, the buffer only reduces the error.

Formally, the sum of the first two terms equals




log(1/ϵ)−1∑

j=0

RankCj (x) · 2j · ϵ2R+ rankÃlog(1/ϵ)
(x) · ϵR


− rankÃ(x).

This sum, because rankÃ(x) f R, is at least
(
rankÃlog(1/ϵ)

(x)− 1/ϵ
)
· ϵR. Thus as the buffer Clog(1/ϵ) keeps

the first 1/ϵ elements and throw away the rest. It is negative and of a smaller magnitude than the first two
terms. So it can only reduce the error.

Second, let us analyze the first term. We apply Lemma 4.1 to each compactor Cj . We need to verify that
the condition (Equation (4.5)) holds. For Resize(Cj , ·), we only call it when we resize H. For Insert(Cj , ·), we
call it once only when either there is a resize of H or an insertion into C0. Thus we have

(4.5) f 2 ·
ℓ∑

t=1

2−st/k = 2 ·
ℓ∑

t=1

2−ϵ·st f 0.5.
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Let Ãj be the input stream of Cj and

∆j(x) = (RankCj
(x) + 2rankÃj+1

(x))− rankÃj
(x)

be the error of Cj as defined in Equation (4.4). As E[rankÃj
(x)] = rankÃ(x)

ϵ2R·2j f 1
ϵ2·2j (because rankÃ(x) f R), we

know (from Lemma 4.1) that,

E
[
∆j(x)

2
]1/2 f E

[
rankÃj

(x)

k

]1/2
f

√
1

kϵ2 · 2j =

√
1

ϵ · 2j .

The contribution from the first term is therefore (by Fact 3.1),

log2(1/ϵ)−1∑

j=0

ϵ2R · 2j · E
[
∆j(x)

2
]1/2 f

log2(1/ϵ)−1∑

j=0

ϵ2R · 2j ·
√

1

ϵ · 2j = O(ϵ) ·R.

Thirdly, we will also verify the error of the sampler (the second term) is O(ϵ) ·R. This is because we sample

with probability p = 1
ϵ2R . We have that the rank in the sampled stream rankÃ0

(x) =
∑rankÃ(x)

t=1 Bernoulli(p).
Thus

E
[(
rankÃ0

(x) · ϵ2R− rankÃ(x)
)2]1/2 f ϵ2R ·

√
R · p(1− p) f ϵ ·R.

Finally, we use Fact 3.1 again to add these parts together. This concludes our proof.

We can extend this proof to our subsketch Hi’s which have error guarantee for arbitrary queries and can
handle resets. Recall Lemma 4.8 which is for our subsketch Hi’s.

Lemma 4.8. Consider an arbitrary query x. Suppose there are ti(x) important resets. Given the same condition
as Lemma 4.5, we have

E
[
∆Hi

(x)2
]1/2

= O(ϵ) ·
√
Ri · rankÃHi

(x) + ti(x) ·R2
i .

Proof. Recall that we use ÃHi
to denote the input stream to Hi and Ã′

Hi
to denote the elements that we move

from Hi to Hi+1. Further more, we use Ãi,j to denote the input stream of compactor Ci,j and Ã′
i,j to denote the

output stream. Specially, Ãremove
i,j denotes the stream of maximum elements that we removed from Ci,j . Note

that each element in Ãremove
i,j is added 2j · ϵ2R times to Ã′

Hi
(Line 7, Algorithm 4).

We perform a similar decomposition of error that is slightly more complicated than (6.12) and get

∆Hi(x) =rankHi(x) + rankÃ′
Hi
(x)− rankÃHi

(x)

=

log(1/ϵ)∑

j=0

(
RankCi,j (x) + rankÃremove

i,j
(x)

)
· 2j · ϵ2Ri − rankÃHi

(x)

=

log(1/ϵ)−1∑

j=0

(
(RankCi,j

(x) + 2rankÃi,j+1
(x) + rankÃremove

i,j
(x))− rankÃi,j

(x)
)
· 2j · ϵ2Ri

+
(
rankÃi,0

(x) · ϵ2R− rankÃHi
(x)

)

+
(
(RankCi,log(1/ϵ)

(x) + rankÃremove
i,log(1/ϵ)

(x))− rankÃi,log(1/ϵ)
(x)

)
· ϵR

In this case, the error from the buffer (the third term) is identically zero. This is because the buffer can store
3/ϵ many elements each of weight ϵRi, and we keep the total weight in Hi below 3Ri. As a result, the buffer
is never full. The elements in the buffer (Ci,log(1/ϵ)) plus the elements remove from the buffer (Ãremove

i,log(1/ϵ)) equal

exactly the elements that are ever inserted into the buffer (Ãi,log(1/ϵ)).
Then for the first term, we use Lemma 4.2 instead of Lemma 4.1. We plug the following definition from

Equation (4.6) into Lemma 4.2.

∆i,j(x) := (RankCi,j (x) + 2rankÃi,j+1(x) + rankÃremove
i,j

(x))− rankÃi,j (x).
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Also we note because the total weight is at most 3Ri, each compactor Ci,j has at most 3Ri

2j ·ϵ2·Ri
= 3

2j ·ϵ2 elements

in it. Same as the previous proof, we have E[rankÃi,j
(x)] f rankÃHi

(x)

2j ·ϵ2Ri
.

We get the contribution from the first term satisfies (using Fact 3.1),

log(1/ϵ)−1∑

j=0

ϵ2Ri · 2j · E
[
∆i,j(x)

2
]1/2 f

log(1/ϵ)−1∑

j=0

ϵ2Ri · 2j · E
[
rankÃi,j (x) + ti(x) · 3

2j ·ϵ2
k

]1/2

f
log(1/ϵ)−1∑

j=0

ϵ2Ri · 2j ·
(
rankÃHi

(x)

2j · ϵ2Ri · k
+

3ti(x)

2j · ϵ2 · k

)1/2

= O(ϵ) ·
√
Ri · rankÃHi

(x) + ti(x) ·R2
i .

Here in the last step, we plug in k = 1/ϵ and sum over all j.
Finally, for the second term, we have that the rank in the sampled stream rankÃi,0

(x) =
∑rankÃHi

(x)

t=1 Bernoulli(pi) where pi =
1

ϵ2Ri
. Thus,

E
[(
rankÃi,0

(x) · ϵ2Ri − rankÃHi
(x)

)2]1/2 f ϵ2Ri ·
√
rankÃHi

(x) · p(1− p) f ϵ ·
√
Ri · rankÃHi

(x).

We conclude the proof by applying Fact 3.1 to sum up the contribution from different parts.

Now that we have error bounds for the Hi’s, Lemma 4.11 tells us, for any query x, the total error of the
algorithm is at most

E



∣∣∣rankÃ(x)−

log2(ϵn)∑

i=0

RankHi
(x)

∣∣∣
2



1/2

f O(ϵ) · rankÃ(x).

This finishes the error analysis.

6.2 Extremely High Probability Bound Now let us prove that our algorithm answers a single query x
approximately correct with high probability. Note from the expectation bound and Chebyshev’s inequality, we
know that our algorithm outputs an estimate that is within (1± ϵ)rankÃ(x) with constant probability. The näıve
amplification of maintaining log(1/¶) copies of our algorithm in parallel and outputting their median already gives
an algorithm that succeeds with 1− ¶ probability.

In the following, we will change a few parameters of our algorithm and focus on getting an extremely high
probability bound (double logarithmic dependency on ¶). If combined with a small optimization which we will
explain in Section 6.3, our final space complexity will be

Õ(ϵ−1 · log(ϵn) · (log log 1/¶)3).
The analysis uses the idea of analyzing top compactors deterministically, which first appears in [13].

Remark 6.1. (Connection to deterministic algorithms) We note that the previous work [3], also gives
an extremely high probability bound with space

O(ϵ−1 · log2(ϵn) · log log(1/¶)).
Our algorithm improves the previous bound for not-too-small ¶.

In comparison model, there are at most n! many possible input streams Ã. So, for a single query, if the success
probability ¶ < 1/n! (that is, log log(1/¶) = O(log n)), there must exist a fixing of the randomness that works for
all possible input streams Ã. Then, by selecting ¶ < 1/n!, we can obtain a deterministic algorithm. Using this
connection, the previous algorithm implies the same Õ(ϵ−1 · log3(ϵn)) space deterministic upper bound, matching
the state-of-the-art result of Zhang and Wang [19].

However, since our improvement is conditioned on ¶ being not-too-small, we are not able to directly improve
upon the known upper bound for deterministic algorithms; in fact, our bound is actually worse in this extreme
setting. Thus, improving the upper bound for deterministic quantile estimation in the relative-error regime remains
an interesting open problem. We will discuss this more in the Open Problem section (Section 8).
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Now let us specify the parameter changes for each Hi.

• We will set the block length of compactors k = c · (log log(1/¶))2

ϵ with a large enough constant c (say c = 128)
throughout the algorithm.

• For the sampler, we adjust the sampling probability of each sampler to c·log(1/¶)
ϵ2·Ri

, as a result, now each

element outputted by the sampler has weight ϵ2·Ri

c·log(1/¶) .

• We set hi := log log(1/¶) + log(c/(kϵ2)). For each 0 f j < hi, the compactor Ci,j has elements of weight

wi,j :=
ϵ2·Ri·2j
c·log(1/¶) .

• The buffer now has size 3k, each element in the buffer (which we denote by Ci,hi
) has weight wi,hi

=
ϵ2·Ri·2hi

c·log(1/¶) =
Ri

k .

The rest of the algorithm stays the same.
In our analysis we define h′

i = hi− log log(1/¶) = log(1/(kϵ2)). For levels 0 f j f h′
i, we are going to analyze

compactor Ci,j ’s using Chernoff bounds. But, for the top level compactors with h′
i < j f hi, we analyze the error

deterministically as done in [13] and [3]. We defer the full analysis of the high probability bound to Appendix A.

6.3 Optimizing Space with Batch Insertions The algorithm we described in Section 4 gives a relative-
error solution to the quantile estimation problem using space Õ(ϵ−1 log n) with constant success probability. In
this subsection, we add a simple optimization to our algorithm which reduces the space to Õ(ϵ−1 log(ϵn)). In
particular, consider the following adjustment to our original sub-sketches Hi, which were described in Section 4:

• For each Hi, we create an additional “temporary” buffer B′
i which will store incoming stream elements

before they are passed as a “batch” to the sampler. We set the batch-size |B′
i| = 1/ϵ.

• To insert an element x into Hi, we first place x into the temporary buffer B′
i, and once B′

i becomes full,
we pass all of the elements stored in B′

i to the sampler (as a batch). The sampler operates in the same
way as defined previously, i.e. it samples the elements in B′

i with probability 1
ϵ2Ri

(or alternatively, with

probability c·log(1/¶)
ϵ2Ri

to obtain an extremely high-probability bound), and then inserts the sampled elements
into the first level compactor Ci,0 together.

Now, recall that in Section 4.4, we defined a single time step to correspond to an insertion operation to Ci,0

or a resize of Hi. Also, recall that operation Insert(Ci,0, x1, x2, . . . , xm) can handle m f s elements in one
step where s is the current space for Ci,0. Since we never resize Ci,0 to a have space smaller than 1/ϵ (see e.g.
Equation (4.11)), the elements from B′

i can be inserted together in one time step even when they are all sampled.
As a result of the observation above, the total number of time steps goes from poly(n) to poly(ϵn). We will

see in Section 6.4 that this reduces the space to Õ(ϵ−1 log(ϵn)) as claimed.

6.4 Space Allocation Analysis In this section, we will assume the optimization in Section 6.3 is applied so
that the total number of time steps is T = poly(ϵn). When proving the total space is bounded, we now aim for a
space bound of Õ(ϵ−1 log(ϵn)).

Analysis for offline general intervals. Recall that ti,j denotes the time step at which Hi resets for the

j-th time. We defined the potential function ϕi,j = 1 for i = log(ϵn)+1 and ϕi,j =
∑r−1

m=ℓ ϕi+1,m when [ti,j , ti,j+1)
intersects with “children” intervals [ti+1,ℓ, ti+1,ℓ+1], [ti+1,ℓ+1, ti+1,ℓ+2]. Also the choice of space parameters

si,t = ϵ−1 ·
(
log

ϕi,j

ϕi+1,m
+ 5 log(1/ϵ)

)
.

We will need Claim 4.14 and Claim 4.16, which we recall below:

Claim 4.14. Within any interval [ti+1,j , ti+1,j+1), Hi has at most 3/ϵ2 many insertions into Ci,0. We observe
that this is true in general, i.e. not only for the case that all resets occur in tree-like intervals.

Claim 4.16. For any 0 f i f log(ϵn) + 1, suppose there are ℓi intervals in total for Hi. Suppose that there are
T time steps (counting insertion into Ci,0’s and resizes of Hi’s) in total.
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Then,
ℓi∑

j=1

ϕi,j f 4log(ϵn)+1−i · ℓlog(ϵn)+1.

Specifically, the potential ϕi,j of any interval is bounded by 4log(ϵn)+1 · T = poly(ϵn) · T .

We need to verify the two constraints are satisfied:

• (The total space is bounded.) Fix a time t. We also let ji be the index of the interval [ti,ji , ti,ji+1) that
contains t.

From a similar telescoping sum as the tree-like case, we have

log(ϵn)∑

i=0

si,t =

log(ϵn)∑

i=0

ϵ−1 ·
(
log

ϕi,ji

ϕi+1,ji+1

+ 5 log(1/ϵ)

)

= ϵ−1 · log2
ϕ0,j0

1
+ ϵ−1 · log(ϵn) · 5 log(1/ϵ)

To bound the total space,+log2(1/ϵ), ·
∑log(ϵn)

i=0 si,t
22, by O(ϵ−1 log(ϵn) log2(1/ϵ)), we only need that

ϕ0,j0 = poly(ϵn), which is exactly Claim 4.16 with T = poly(ϵn).

• (The space sequence is feasible.) Similar as the tree-like case, we consider any interval [ti,j , ti,j+1). Suppose it
now intersects with children [ti+1,ℓ, ti+1,ℓ+1), [ti+1,ℓ+1, ti+1,ℓ+2), . . . , [ti+1,r−1, ti+1,r). Again by Claim 4.14,
we know that |Wi,j ∩ [ti+1,m, ti+1,m+1)| f 3/ϵ2 + 2. Then,

∑

t∈Wi,j

2−ϵ·si,t f
r−1∑

m=ℓ

∑

t
t∈Wi,j∩[ti+1,m,ti+1,m+1)

2−ϵ·si,t

f
r−1∑

m=ℓ

(3/ϵ2 + 2) · ϕi+1,m

ϕi,j
· ϵ5 f 0.25 ·

∑r−1
m=ℓ ϕi+1,m

ϕi,j
f 0.25.

Thus, the space we allocate satisfies the premise of Lemma 4.5 (Equation (4.8)).

Analysis for online space allocation. Recall that for all unfinished intervals, we pretend that the interval
ends (i.e. the corresponding sub-sketch Hi resets) at the current time t; then, we calculate all the potentials

which we denote by ϕ
(t)
i,j . We then round them up to the closest power of 2, which we denote by Vϕ

(t)
i,jW, and let

ŝi,t = ϵ−1 ·
(
log

Vϕ
(t)
i,jW

Vϕ
(t)
i+1,mW

+ 5 log(1/ϵ) + 5 log log n

)
.

To see why it works, we again need to verify the two constraints:

• (The total space is bounded.) This follows from exactly the same telescoping sum as before with ϕi,j ’s

replaced by ϕ
(t)
i,j ’s, and the total space is now O(ϵ−1 · log(1/ϵ) · log(ϵn)(log(1/ϵ) + log log n)).

• (The space sequence is feasible.) This is the more subtle part. Again suppose interval [ti,j , ti,j+1) intersects
with children [ti+1,ℓ, ti+1,ℓ+1), [ti+1,ℓ+1, ti+1,ℓ+2), . . . , [ti+1,r−1, ti+1,r). First, we need to prove that we do
not have too many resizes within each children interval. That is,

(6.13) |Wi,j ∩ [ti+1,m, ti+1,m+1)| f 3/ϵ2 + 2 +O(log2(ϵn))

This is because the only changing term in ŝi,t is log
Vϕ

(t)
i,jW

Vϕ
(t)
i+1,mW

. Within each intersection [ti,j , ti,j+1) ∩
[ti+1,m, ti+1,m+1), both numerator and denominator are increasing, and by Claim 4.16 have at most

22Note each hierarchy Hi has +log2(1/ϵ), compactors in it and uses space +log2(1/ϵ), · si,t
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O(log(ϵn)) different values. This means we have at most O(log2(ϵn)) extra resizes due to online allocation.
This will be offset by the extra 5 log log n term in ŝi,t.

Second, we need to upper bound

∑

t∈Wi,j

2−ϵ·si,t f
r−1∑

m=ℓ

∑

t
t∈Wi,j∩[ti+1,m,ti+1,m+1)

2−ϵ·si,t

=
r−1∑

m=ℓ

∑

t
t∈Wi,j∩[ti+1,m,ti+1,m+1)

Vϕ
(t)
i+1,mW

Vϕ
(t)
i,jW

· ϵ−5 · (log n)−5

Note Vϕ
(t)
i,jW is monotone in t and has O(log(ϵn)) many different values. For each possible value 2x, we let

[a(x), b(x)] ¦ [ti, tj+1) be the time interval such that Vϕ
(t)
i,jW = 2x, and suppose it intersects with children

[ti+1,ℓ(x), ti+1,ℓ(x)+1), [ti+1,ℓ(x)+1, ti+1,ℓ(x)+2), . . . , [ti+1,r(x)−1, ti+1,r(x)).

Then for every 0 f x f O(log(ϵn)), we have

r(x)−1∑

m=ℓ(x)

∑

t
t∈Wi,j∩[ti+1,m,ti+1,m+1)

∩[a(x),b(x)]

Vϕ
(t)
i+1,mW

Vϕ
(t)
i,jW

· ϵ−5 · (log n)−5

f
r(x)−1∑

m=ℓ(x)

(
3/ϵ2 + 2 +O(log2(ϵn))

)
·
2 · ϕ(b(x))

i+1,m

2x
· ϵ−5 · (log n)−5

(Here we use |Wi,j ∩ [ti+1,m, ti+1,m+1)| f 3/ϵ2 + 2 +O(log2(ϵn)).)

f0.25 ·
∑r(x)−1

m=ℓ(x) ϕ
b(x)
i+1,m

2x
f 0.25

Here the last step is because, by definition of V·W, we know that ϕ
b(x)
i,j f 2x. On the other hand, we know

ϕ
b(x)
i,j g

∑r(x)−1
m=ℓ(x) ϕ

b(x)
i+1,m. Thus, the space sequence is always feasible.

This finishes our proof. For the space allocation of the algorithm with extremely-high success probability, see
Appendix A.

7 Lower and Upper bounds for the Top-R Quantiles Problem

7.1 Lower bound This subsection is devoted to the proof of Lemma 4.3. We first recall its statement:

Lemma 4.3. Let n = |Ã| be the stream length. When ϵ = 1/
√
log n, any comparison-based algorithm that solves

the top quantiles problem for R = log n with ¶ < 0.1 failure probability requires at least Ω(log n) space.

The idea is to construct the hard input stream Ã = x1x2 · · ·xn recursively, randomly, and adaptively. For
any (possibly randomized) algorithm A, we useMt to denote the set of elements in its memory after reading xt.
We say that A remembers an element e at time t if and only if Pr[e ∈ Mt] g 1/2 where the probability is taken
both over the randomized algorithm and the potentially randomized input stream.

Construction of the hard input stream. For any randomized algorithm A, we can construct a length
2k−1 (partial) input stream ÃA

k as follows. Suppose here A takes n elements as input and we allow n to be larger
or equal to 2k − 1.

• We first insert one element e as the first element in ÃA
k .

• Let A′ be the algorithm A with the first input hard-coded to e. It takes n− 1 inputs. We insert the stream
ÃA′

k−1 and let all these elements be strictly larger than e.
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e

ÃA′

k−1

arbitrary

time

larger

element

Case 1

e

ÃA′

k−1

time

larger

element

ÃA′′

k−1

ÃA′′

k−1

Case 2

with equal

probability

Figure 8: Construction of the hard stream ÃA
k .

• Now we have two cases:

– Case 1: The algorithm A remembers e (by the definition above) at this time (1 + |ÃA′

k−1| = 2k−1).

In this case, we simply insert arbitrary 2k−1 − 1 elements that are larger than element e and those
elements in ÃA′

k−1.

– Case 2: Otherwise, we let A′′ be the algorithm with input prefix hard-coded to the length-2k−1 partial
stream we have constructed so far. We then insert ÃA′′

k−1. With probability 1/2, we let elements in it

be greater than e but smaller than elements in ÃA′

k−1. With probability 1/2, we let elements in ÃA′

k−1 be
smaller than e.

In the base case, when k = 0, the stream is just empty. It is easy to see that |Ãk| = 1 + 2|Ãk−1| =
1 + 2 · (2k−1 − 1) = 2k − 1. See Figure 8 for an illustration.

The idea behind this construction is as follows. In Case 1, the algorithm A remembers e throughout the first
half of the stream. Intuitively, this means that the algorithm A′ has one less space in memory to store other
elements in ÃA′

k−1. Alternatively, in Case 2, the algorithm A does not remember e through the first half. By

letting e be either greater than ÃA′′

k−1 or less than ÃA′′

k−1 with equal probability, we create more uncertainty for rank

queries. Thus, the algorithm A′′ must estimate the ranks in ÃA′′

k−1 with a smaller error. In conclusion, from level
k to k − 1, either the space or error constraint of the algorithm are more strained. If we further expand out the
recursion like this, finally in the base case, neither the space nor the error can be negative. Thus, the original
algorithm A must either have a large enough space or large error in the beginning.

Space & Error Analysis. Now, we carry out the idea described above and prove the lower bound via
induction.

Lemma 7.1. For any algorithm A, let St be the space it use at time t. After reading the (partial) input stream
ÃA
k = x1x2 . . . x2k−1, we will choose an index i (1 f i f |ÃA

k |) depending on A but independent of the randomness
of ÃA

k and A.
Let r̂ankÃA

k
(xi) be any estimator for the rank of xi based on the memory content of A (after reading this
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partial stream). We can choose i so that we always have rankÃA
k
(xi) f k and

max
1ftf|ÃA

k |
E[St] + E

[(
r̂ankÃA

k
(xi)− rankÃA

k
(xi)

)2]
g 0.1k.

Proof. We prove this lemma by induction. In the base case where k = 0, this is true because none of the terms
can be negative.

Now we verify it is true for both cases:

• Case 1: In this case, the first element e satisfies Pr[e ∈ M2k−1 ] g 1/2. Let A′ be the algorithm A with the
first element fixed to e as before, and S′

1, S
′
2, . . . , S

′
2k−1−1 be its space after reading each element in ÃA′

k−1

(not counting the element e).

Let ÃA′

k−1 = x′
1x

′
2 . . . x

′
2k−1−1. By our induction hypothesis, we know that we can choose an i with

rankÃA′

k
(x′

i) f k − 1 and

(7.14) max
1ftf2k−1−1

E[S′
t] + E

[(
r̂ankÃA′

k
(x′

i)− rankÃA′

k
(x′

i)
)2]
g 0.1(k − 1)

for any estimator r̂ankÃA
k
(x′

i) that only depends on the memory of A′ after reading ÃA′

k−1.

For all 1 f t f 2k−1 − 1, we have E[St+1] = E[S′
t] + Pr[e ∈ Mt], and Pr[e ∈ Mt] g Pr[e ∈ M2k−1 ] g 1/2

(because once A removes one element from the memory it cannot get it back). Also, the second half of the
stream consists of only elements with rank larger than e and ÃA′

k−1, so they are irrelavant for the rank of x′
i

and the second term of (7.14) does not change. Thus, we conclude that, for ÃA
k = x1x2 . . . xk (with x1 = e),

we have

max
1ftf|ÃA

k |
E[St] + E

[(
r̂ankÃA

k
(xi+1)− rankÃA

k
(xi+1)

)2]
g 0.1(k − 1) + 1/2 g 0.1k.

Finally, we verify that rankÃA
k
(xi+1) = rankÃA′

k
(x′

i) + 1 f k.

• Case 2: In this case, the first element e satisfies Pr[e ∈ M2k−1 ] f 1/2. Let A′′ be the algorihtm A′′ with
prefix fixed to the concatenation of e and ÃA′

k−1, and S′′
1 , S

′′
2 , . . . , S

′′
2k−1−1 be the space after reading each

element in ÃA′′

k−1 (not counting the element e nor the elements in ÃA′

k−1).

Let ÃA′′

k−1 = x′′
1x

′′
2 . . . x

′′
2k−1−1. Again, by our induction hypothesis, we can select an index i (independent of

all the randomness) such that

max
1ftf2k−1−1

E[S′′
t ] + E

[(
r̂ankÃA′′

k
(x′′

i )− rankÃA′′

k
(x′′

i )
)2]
g 0.1(k − 1).

For all 1 f t f 2k−1 − 1, we have E[St+2k−1 ] g E[S′′
t ]. For the second term, let Ek be the event that

e ∈M2k . We know that

E

[(
r̂ankÃA

k
(xi+2k−1)− rankÃA

k
(xi+2k−1)

)2 ∣∣∣∣ Ek

]

gE
[(

r̂ankÃA′′

k
(x′′

i )− rankÃA′′

k
(x′′

i )
)2 ∣∣∣∣ Ek

]

because xi+2k−1 and x′′
i are the same element and e is hard-coded in A′′. For any estimator r̂ankÃA

k
(xi+2k−1),

we can always compare e with xi+2k−1 for free and get the estimator r̂ankÃA′′

k
(x′′

i ).

On the other hand, we have

E

[(
r̂ankÃA

k
(xi+2k−1)− rankÃA

k
(xi+2k−1)

)2 ∣∣∣∣ ¬Ek

]

gE
[(

r̂ankÃA′′

k
(x′′

i )− rankÃA′′

k
(x′′

i )
)2 ∣∣∣∣ ¬Ek

]
+ 0.25
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The reasoning is as follows. First, the event Ek only depends on e and ÃA′

k−1 and is independent of ÃA′′

k−1.

Second, conditioning on ¬Ek, any estimator r̂ankÃA
k
(xi+2k−1) can never distinguish the two possibilities of

the relative order between e and ÃA′′

k−1. (Because the element e is never able to be compared elements in

ÃA′′

k−1, including xi+2k−1 .).

So, the optimal strategy for the estimator is to simply estimate the rank of xi+2k−1 in ÃA′′

k and plus 1/2.

The squared error of this is lower bounded by E

[(
r̂ankÃA′′

k
(x′′

i )− rankÃA′′

k
(x′′

i )
)2 ∣∣∣∣ ¬Ek

]
plus 1/4 squared

error because the ground truth rankÃA
k
(xi+2k−1) differs by 1 in these two indistinguishable possibilities.

Combining these and Pr[Ek] f 1/2, we conclude that

E

[(
r̂ankÃA

k
(xi+2k−1)− rankÃA

k
(xi+2k−1)

)2]
g E

[(
r̂ankÃA′′

k
(x′′

i )− rankÃA′′

k
(x′′

i )
)2]

+ 0.125.

Thus we have,

max
1ftf|ÃA

k |
E[St] + E

[(
r̂ankÃA

k
(xi+1)− rankÃA

k
(xi+1)

)2]
g 0.1(k − 1) + 0.125 g 0.1k.

Having this lemma and letting k = Θ(log n), we see that for any algorithm A, it either uses Ω(logn) space, or
for an element of rank at most log n, introduce an error of at least Ω(

√
log n) with 0.99 probability (by Chebyshev’s

inequality). This proves Lemma 4.3.

7.2 Upper bound In this subsection, we provide a matching upper bound for the top-R quantiles problem,
as defined in Table 2. For this problem, recall that the algorithm should provide the following guarantee:

given any query x ∈ U such that rank(x) f R, the algorithm should return an estimate r̂ank(x) such that

|r̂ank(x) − rank(x)| f ϵ · R. Our algorithm for this problem will closely mimic the construction given earlier in
Section 4, but we will replace the resizable elastic compactors with ordinary relative compactors (as originally
defined in [3], see the description in Section 6).

Sampler

Figure 9: Structure of sketchM for Top Quantiles

As shown above, the sketchM will consist of the following components:

1. Sampler: For each new stream element x in Ã, the sampler inserts x into the first relative compactor C0

with probability 1
ϵ2R , and discards x otherwise.

As before, we attach a weight to each new element x: when x first appears in the stream Ã, x initially has
weight 1. After passing through the sampler, each sampled element has weight ϵ2R.

2. Relative compactors: for each 0 f j < O(log2(1/ϵ)), we maintain a relative compactor Cj with block-size

k = O

(
1

ϵ
√

log(n)

)
, such that each Cj can store at most s = O

(√
log(n)

ϵ

)
elements.23 After each compaction

23Throughout this subsection, we assume the range of parameter ϵ f d
√

logn
for some sufficiently small universal constant d > 0.

This bound enables us to pick k to be an integer.
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of Cj , Cj may output some elements x1, x2, . . . , xm, which we insert into the next compactor Cj+1 in the
hierarchy. Eventually, the output of the last compactor is inserted into the buffer.

For each 0 f j < log2(1/ϵ), elements in Cj all have weight ϵ2R · 2j .

3. Buffer: At the end of the compactor hierarchy (i.e. after compactor CO(log(1/ϵ))−1), we have a buffer B
which stores O(1/ϵ) elements.

Note that each element in the buffer has weight ϵR.

Additionally, observe that since the smallest 1/ϵ elements in the buffer already have total weight R and we
only need to estimate the first R ranks, we can afford to throw away other elements from the buffer (just as we
did previously, in Section 4.2).

To estimate the rank for any query x ∈ U , we use the same estimator as we previously in Section 4.2: let

(7.15) RankM(x) :=

O(log(1/ϵ))−1∑

j=0

2j

ϵ2R
·RankCj (x) +

1

ϵR
·RankB(x)

Now, we show that this construction will solve the Top-R Quantiles problem using space Õ(ϵ−1
√
log n) with

constant probability.

Lemma 7.2. Let Ã be the input stream and let s = O(ϵ−1
√
log n) be the space allocated to each compactor Cj in

the hierarchy, for 0 f j f O(log(1/ϵ))− 1. Then, we have that for any query x ∈ U such that rankÃ(x) f R, our
sketchM achieves standard deviation

E
[
|RankM(x)− rankÃ(x)|2

]
f O(ϵ) ·R

with constant probability.

Proof. Just as we did in the proof of Lemma 4.5, we begin by decomposing the error incurred by the rank estimate
RankM(x). Let C0, . . . , CO(log(1/ϵ))−1 be the compactors in M, and CO(log(1/ϵ)) denotes the buffer. As before,
we use Ãj to denote the input stream of Cj (which is the output stream of Cj−1).

RankM(x)− rankÃ(x) =

O(log(1/ϵ))∑

j=0

RankCj (x) · 2j · ϵ2 ·R− rankÃ(x)

=

O(log(1/ϵ))−1∑

j=0

(
(RankCj (x) + 2rankÃj+1(x))− rankÃj (x)

)
· 2j · ϵ2R

+
(
rankÃ0

(x) · ϵ2R− rankÃ(x)
)

+
(
RankClog(1/ϵ)

(x)− rankÃlog(1/ϵ)
(x)
)
· ϵR.(7.16)

We examine each term in Equation (7.16) above: the first term is the error contribution from the compactor
hierarchy, and the second and third terms represent the error from the sampler and buffer, respectively. By the
same argument as given in the proof of Lemma 4.5, we note that the third term (corresponding to the buffer) will
never contribute to the error of the sketch. Next, we take a closer look at the first term. Let us denote

∆j(x) = (RankCj
(x) + 2rankÃj+1

(x))− rankÃj
(x)

Since each Cj is a relative compactor, we can apply Lemma 5 from [3] to bound the standard deviation.
Moreover, recall that since we are guaranteed that rankÃ(x) f R and stream elements are sampled with probability
1

ϵ2R , we have E[rankÃj (x)] =
rankÃj

(x)

ϵ2R2j f 1
ϵ22j . Thus, we get

E
[
∆j(x)

2
]1/2 f E

[
rankÃj

(x)

k

]1/2
f
√

1

ϵ2 · 2j · k
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Then, we see that the first term incurs standard deviation

O(log(1/ϵ))−1∑

j=0

E[∆j(x)
2]1/2 · 2j · ϵ2R f

O(log(1/ϵ))−1∑

j=0

√
1

ϵ2 · 2j · k · 2
j · ϵ2R f O(ϵ)R ·

√
poly(1/ϵ) ·

√
log n

f O(ϵ) ·R

Finally, we upper bound the error resulting from the sampler, i.e. the second term. Since we sample each

stream element with probability p = 1
ϵ2R , we have that rankÃ0

(x) =
∑rankÃ(x)

t=1 Bernoulli(p), i.e. we get

E
[
(rankÃ0

(x) · ϵ2R− rankÃ(x))
2
]1/2 f ϵ2R ·

√
R · p(1− p) f ϵR

Therefore, by applying Fact 3.1, we obtain the desired bound on the standard deviation.

Corollary 7.3. Suppose that ϵ f d√
logn

for some sufficiently small universal constant d > 0. Then the sketch

M solves the Top-R Quantiles problem using space O(ϵ−1
√

log(n) · log(1/ϵ)) with constant probability.

Proof. This follows directly from Lemma 7.2 together with Chebyshev’s inequality.

Remark 7.4. Using the analysis in Section 6.2, we can similarly obtain the same result with a high success
probability by analyzing the top compactors deterministically.

8 Open Problems

Several variants of the quantile estimation problem in the streaming model still remain open. In the next few
paragraphs, we describe some open problems which relate to our work.

Obtaining optimal bounds for relative-error quantile estimation. Our algorithm achieves a (1 ± ϵ)
relative-error guarantee using total space O(ϵ−1 log(ϵn) · (log log n + log(1/ϵ)) · (log log 1/¶)3). The main open
question in the randomized, relative-error regime is to close the gap between our upper bound and the best
known lower bound Ω(ϵ−1 log(ϵn)).

Full-mergeability. Before we state the next open question, we recall the definition of a fully-mergeable
sketch. Suppose we arbitrarily partition the input stream Ã =

⊔ℓ
i=1 Ãi and summarize each piece Ãi of the stream

using a separate sketch Mi. Then, a sketch is fully-mergeable if any sequence of pairwise merging operations
that merges these ℓ sketches M1, ...,Mℓ together results in a new sketch with essentially the same error and
space guarantees as if the stream had been summarized using one sketch directly. Notably, this full-mergeability
property is very important in practice: since massive datasets are often partitioned and stored on multiple servers,
it is often useful to sketch the data stored locally on each device, and re-combine the sketches later to obtain a
summary of the entire dataset. Since our sketch relies on an intricate dynamic space allocation scheme for the
compactor hierarchy Hi stored for each scale [ϵ−12i, ϵ−12i+1], it is not immediately clear how to “merge” the
separate flushing patterns of the two sketches in order to obtain a valid resizable sketch Hi for each scale, while
maintaining total space Õ(ϵ−1 log(ϵn)). With this in mind, we ask whether our sketch is fully mergeable, or if it
is not, we ask if there is a way to adjust our construction to prove a mergeability guarantee.

Comparison-based, deterministic relative-error quantiles. Additionally, we ask whether it is possible
to close the gap for comparison-based, deterministic relative-error quantile estimation. Currently, the only

known lower bound is Ω
(

log2(ϵn)
ϵ

)
[6], and the best known upper bound is O

(
log3(ϵn)

ϵ

)
, via the merge-and-

prune algorithm of [19]. To this end, we ask whether it is possible to apply our dynamic space allocation and
sketch resizing techniques to improve the space used in the deterministic setting. Perhaps, as an intermediate
step, it is an interesting open problem to resolve the deterministic space complexity for the Top Quantiles problem

that we defined in Table 2. Again, the only known lower bound is Ω
(

log(ϵn)
ϵ

)
from the additive error setting [6],

and the best upper bound is O
(

log2(ϵn)
ϵ

)
from the same merge-and-prune algorithm.
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Non-comparison-based relative-error quantiles. Although comparison-based algorithms are more
powerful and can handle quantile queries for an unknown (totally-ordered) universe, there are many applications
where the universe in fixed and known in advance. Then, the goal shifts from minimizing the number of elements
stored to a more fine-grained measure: the number of bits used in total.

Previously, [5] gave a non-comparison-based bq-summary algorithm using O
(

log(ϵn) logU
ϵ

)
words of memory

(where each word is logU+log(ϵn) bits), while the offline lower bound is Ω
(

logn
ϵ

)
words. Although our algorithm

almost closes the gap for randomized relative-error quantile estimation, we ask whether there is a non-comparison-
based approach that could result in simpler deterministic algorithm.

As a remark, the bq-summary algorithm is based on the q-digest, which is a deterministic non-comparison-
based algorithm for the additive-error quantiles problem [17]. Recently, the upper bound for q-digest was improved

from O
(

logU
ϵ

)
to only O

(
1
ϵ

)
words [12], which is optimal. We ask whether it is possible to use similar ideas as

in [12] to improve the upper bound in the deterministic relative-error setting as well.
Tight characterization for resizable sketches. Suppose a resizable sketch is given space st after reading

the t-th element in the input. Our resizable sketch for the Top Quantiles problem (Lemma 4.5) works for space
sequences s1, s2, . . . , sn satisfying

∑n
t=1 2

−si f 0.5. By following a more careful analysis and adjusting the block

size k, one could actually improve this condition to
∑n

t=1 2
−ϵ2s2t f 0.5. On the other hand, it is conceivable that

one might be able to prove a lower bound saying that under the opposite condition for the space sequence (i.e.∑n
t=1 2

−ϵ2s2t > 0.5), there is no comparison-based algorithm for the Top Quantiles Problem.
Motivated by this, we ask whether one can give such a tight characterization for resizable sketches for the

Top Quantile Problem, or analogously, if we can prove similar space-sequence bounds for other natural streaming
problems.
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A Proof of the Extremely High Probability Bound

We first recall the parameter changes for extremely high probability bound:

• We will set the block length of compactors k = c · (log log(1/¶))2

ϵ with a large enough constant c (say c = 128)
throughout the algorithm.

• For the sampler, we adjust the sampling probability of each sampler to c·log(1/¶)
ϵ2·Ri

, as a result, now each

element outputted by the sampler has weight ϵ2·Ri

c·log(1/¶) .

• We set hi := log log(1/¶) + log(c/(kϵ2)). For each 0 f j < hi, the compactor Ci,j has elements of weight

wi,j :=
ϵ2·Ri·2j
c·log(1/¶) .

• The buffer now has size 3k, each element in the buffer (which we denote by Ci,hi
) has weight wi,hi

=
ϵ2·Ri·2hi

c·log(1/¶) =
Ri

k .

Error Analysis Recall that Ãi,j is the input stream of compactor Ci,j and ÃHi is the input stream of
sub-sketch Hi while Ã′

Hi
is the output of the sub-sketch Hi. wi,j is the weight of elements in Ci,j .

In addition, we let ÃI
Hi

be the elements in the original input stream Ã that we directly inserts into Hi. The

difference with ÃHi is that, ÃI
Hi

do not contains those elements in Ã′
Hi−1

.
We first show that with probability 1 − ¶, the rank of query x in every Ãi,j cannot be too large. This will

later be used to upper bound the number of relevant compactions.

Lemma A.1. With probability 1−O(¶), for all 0 f i f log(ϵ · rankÃ(x)) and 0 f j f hi, we have

(A.1) rankÃi,j (x) f 2 · rankÃ(x)
wi,j

and rankÃHi
(x) f 2 · rankÃ(x).

where wi,j :=
ϵ2·Ri·2j
log(1/¶) is the weight of elements in Ci,j.

Proof. We prove by induction for 0 f i < log(ϵ · rankÃ(x)) that, conditioning on Equation (A.1) holds for all i′

with 0 f i′ < i, it holds for i with probability 1− ¶ · Ri

rankÃ(x)
for some absolute constant c. Then a union bound

over all i proves this lemma.
Now suppose this holds for all i′ with 0 f i′ < i. We first completely unroll the expression for rankÃi,j

(x)
and rankÃHi

(x):
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First for ÃHi
, we decompose the rank of x similar to Lemma 4.8:

rankÃHi
(x) = rankÃI

Hi

(x) + rankÃ′
Hi−1

(x)

= rankÃI
Hi

(x) +

hi−1∑

j=0

wi−1,j · rankremove
Ãi,j

(x)

f rankÃI
Hi

(x) + wi−1,0 · rankÃi−1,0
(x)

+

hi−1−1∑

j=0

wi−1,j+1 · (2rankÃi−1,j+1
(x) + rankremove

Ãi−1,j
(x)− rankÃi−1,j

(x))

(Note wi−1,j = 2wi−1,j−1 and rankremove
Ãi,hi

(x) f 2rankÃi,hi−1
(x).)

f rankÃI
Hi

(x) + wi−1,0 · rankÃi−1,0
(x) +

hi−1∑

j=0

wi−1,j ·∆i−1,j(x)

where ÃI
Hi

and Ã′
Hi

are defined at the beginning of this section. In the last line we use the fact that

∆i,j(x) :=
(
RankCi,j

(x) + 2 · rankÃi,j+1
(x) + rankÃremove

i,j
(x)
)
− rankÃi,j

(x).

For the third term
∑hi−1

j=0 wi−1,j · ∆i−1,j(x), note there are at most
rankÃi−1,j

(x)+ti(x)·S
k important flushes

for Ci,j . Here S f 3Ri

wi,j
is a upper bound on the number of elements in Ci,j . By Claim 4.10, we know

ti(x) f 2 · rankHi
(x)

Ri
. Together with our inductive hypothesis, we get

rankÃi−1,j
(x) + ti(x) · S
k

f 2 · rankÃ(x) + 6 · rankHi(x)

wi,j · k
f 14 · rankÃ(x)

wi,j · k
.

Thus conditioning on any fixed realization of Ãi−1,j , ∆i−1,j(x) is still statistically dominated by

(A.2)

14·rankÃ(x)/(wi,j ·k)∑

t=1

(Bernoulli(1/2)− 1/2)) .

On the other hand, ∆i−1,j(x) is always deterministically at most

(A.3)
14 · rankÃ(x)

wi,j · k
· wi,j =

14 · rankÃ(x)
k

.

We will choose when to use these two bounds. Then, we keep unrolling the second term.

wi−1,0 · rankÃi−1,0
(x) = wi−1,0 ·

rankÃHi−1
(x)∑

t=1

Bernoulli(1/wi,0),

which by our inductive hypothesis, is stochastic dominated by

rankÃHi−1
(x) + wi,0 ·




2·rankÃ(x)∑

t=1

Bernoulli(1/wi,0)− 1/wi,0




even when conditioned on any realization on ÃHi−1
.
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We keep unrolling rankÃHi−1
(x) in the same way as we unroll rankÃHi

(x). Eventually, we get that rankÃHi
(x)

is stochastically dominated by the following sum (which we will explain how we get it):

Zi =

i∑

i′=1

rankIHi′
(x)

+

i−1∑

i′=1




hi′−1∑

j=0

wi′,j ·




14·rankÃ(x)/(wi′,j ·k)∑

t=1

Bernoulli(1/2)− 1/2


 · 1[wi′,j f wi,h′

i
]

+

hi′−1∑

j=0

14rankÃ(x)

k
· 1[wi′,j > wi,h′

i
]

+ wi′,0 ·




2·rankÃ(x)∑

t=1

Bernoulli(1/wi′,0)− 1/wi′,0






Here we are using bound (A.2) for those ∆i′,j(x) with wi′,j f wi,h′
i
and bound (A.3) for those with wi′,j > wi,h′

i
.

This is the idea of analyzing top compactors deterministically in [13].
We know that h′

i = hi − log log 1/¶. Thus there are log log 1/¶ − (i− i′) many j’s pairs with wi′,j > wi,h′
i
for

each i. In total, there are (log log 1/¶)2 many such (i′, j) pairs. As a result,

(A.4)

hi′−1∑

j=0

14rankÃ(x)

k
· 1[wi′,j > wi,h′

i
] f 14rankÃ(x)

k
· (log log 1/¶)2 f ϵ · rankÃ(x).

We can without loss of generality assume that ϵ < 0.1, so that this is less than 0.1 · rankÃ(x).
Note we also have

∑i
i′=1 rank

I
Hi′

(x) f rankÃ(x). The rest is a sum of the deviation of Bernoulli random
variables. We upper bound it using the Chernoff bound for subguassian random variables. Because Bernoulli
random variable X is Var[X] subgaussian, by Fact 3.2, we know Z is also Var[Z]-subgaussian.

The following calculation bounds its variance:

Var[Zi] =
i−1∑

i′=1




hi−1∑

j=0

w2
i′,j ·

14 · rankÃ(x)
wi′,j · k

· 1[wi′,j f wi,h′
i
]


+ w2

i′,0 · 2rankÃ(x) ·
1

wi′,0
.

= O(1) ·
i−log log(1/¶)∑

i′=1

wi′,hi′
· rankÃ(x)

k
+ log log(1/¶) · wi,h′

i
· rankÃ(x)

k
+ wi′,0 · rankÃ(x)

(Because wi′,j ’s are exponential in j.)

= O(1) ·
(
log log(1/¶) · wi,h′

i
· rankÃ(x)

k
+ wi−1,0 · rankÃ(x)

)
.

(Because wi′,j ’s are exponential in i′ as well.)

Since we know
wi,h′

i

k f Ri

k2 log(1/¶) f ϵ2

c·log(1/¶)·log log(1/¶) · Ri and wi−1,0 f ϵ2

c·log(1/¶) · Ri, plug them in we get

Var[Zi] f O(1) · ϵ2

c·log(1/¶) · Ri · rankÃ(x). (Here c is the constant factor we picked in our algorithm.) Then, we

upper bound the error we have using the Chernoff bound for subgaussian random variables. We conclude that
there exists an absolute constant d > 0 such that

Pr[Zi g 0.1 · rankÃi
(x)] f exp

(
− (0.1 · rankÃ(x))2

2Var[Zi]

)

f exp

(
−d · c · log(1/¶)

ϵ2
· rankÃ(x)

Ri

)

f ¶ · Ri

rankÃ(x)
· 1

log(1/ϵ) + log log(1/¶)
(As long as we pick c > 2/d.)
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This finishes the proof for rankÃHi
(x). For those rankÃi,j

(x), we note that the same decomposition shows
that rankÃi,j

(x) is stochastically dominated by Zi+1. Since there are at most O(log(1/¶) + log log(1/¶)) many j’s
for each i, we can simply union bound over all those j’s. This finishes the proof of the lemma.

Then let us prove that, conditioning on rankHi
(x)’s and rankÃi,j

(x)’s being not too large, our estimate

̂rankÃ(x) is approximately correct with probability 1−O(¶).

Lemma A.2. For any input stream Ã, assuming that the space we allocate to each Hi satisfies the premise of
Lemma 4.5 (Equation (4.8)), For any query x, with probability 1−O(¶), we have

∣∣∣∣∣∣
rankÃ(x)−

log2(ϵn)∑

i=0

RankHi
(x)

∣∣∣∣∣∣
f O(ϵ) · rankÃ(x).

Proof. First of all, let ℓ = log(ϵ · rankÃ(x)). From the same logic as Remark 4.12, we know that it suffices to prove
that with probability 1−O(¶),

∣∣∣∣∣rankÃ(x)−
ℓ∑

i=0

RankHi
(x)

∣∣∣∣∣ f O(ϵ) · rankÃ(x).

We first unroll the error similar to Lemma 4.11 and Lemma A.1.

rankÃ(x)−
ℓ∑

i=0

RankHi
(x)

=

ℓ∑

i=0

rankÃHi
(x)− rankÃ′

i
(x)−RankHi(x)

=

ℓ∑

i=0


(rankÃHi

(x)− wi,0 · rankÃi,0
(x)
)
+

hi∑

j=0

wi,j ·
(
rankÃi,j

(x)− 2rankÃi,j+1
(x)− rankÃremove

i,j
(x)
)



From Lemma A.1, we know that with probability 1− O(¶), Equation (A.1) holds. Conditioning on it holds and
follow the same argument as Lemma A.1, we know that the absolute value of error is stochastically dominated

by |Z ′
ℓ|+

∑ℓ
i=0

∑hi−1
j=0

14rankÃ(x)

k · 1
[
wi,j > wℓ,h′

ℓ

]
, where Z ′

ℓ is defined as following:

Z ′
ℓ =

ℓ∑

i=0




hi−1∑

j=0

wi,j ·




14·rankÃ(x)/(wi,j ·k)∑

t=1

Bernoulli(1/2)− 1/2


 · 1

[
wi,j f wℓ,h′

ℓ

]

+ wi,0 ·




2rankÃ(x)∑

t=1

Bernoulli(1/wi,0)− 1/wi,0




 .

Since Z ′
ℓ is only Zℓ shifted, they have the same variance. We get that

Var [Z ′
ℓ] = Var [Zℓ] f O(1) · ϵ2

c · log(1/¶) ·Rℓ · rankÃ(x).

= O(1) · ϵ2

c · log(1/¶) ·R
2
ℓ(Because Rℓ = rankÃ(x) by defintion.)

As Z ′
ℓ is the sum of Bernoulli random variables, it is Var [Z ′

ℓ]-subgaussian. We then apply Chernoff bound for
subgaussian random variables and conclude that when constant c is picked to be large enough, we have

Pr [Z ′
ℓ g ϵ · rankÃ(x)] f ¶.

For the
∑ℓ

i=0

∑hi−1
j=0

14rankÃ(x)

k · 1
[
wi,j > wℓ,h′

ℓ

]
part, we use Equation (A.4) to conclude that it is at most

ϵ · rankÃ(x). This finishes the proof.
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Space Allocation Since now we set k = c · (log log(1/¶))2

ϵ , the condition for each compactor Ci,j becomes as
follows: Before it resets, let s1, s2, . . . , sℓ be the space parameters after each resize/insert operation. Then we

need
∑ℓ

t=1 2
−st/k =

∑ℓ
t=1 2

−c· ϵ
(log log(1/¶))2

·st f 1. (Note this is the same condition as Lemma 4.1.)
For each subset Hi, suppose s1, s2, . . . , sℓ is the sequence of space parameters after each reize / insertion from

the sampler into Ci,0, instead of
∑ℓ

t=1 2
−ϵ·st f 0.5 (Equation (4.8)), we now require that

∑ℓ
t=1 2

−c· ϵ
(log log(1/¶))2

·st f
0.5. Same as the proof of Lemma 4.5, as long as this condition is satisfied for each Hi, the condition for each
compactor Ci,j will be then satisfied.

When allocating space, we now define

ŝi,t = ϵ−1 · (log log(1/¶))3 ·
(
log

Vϕ
(t)
i,jW

Vϕ
(t)
i+1,mW

+ 5 log(1/ϵ) + 5 log log n

)
.

Here (log log(1/¶))2 comes from the larger value for k, the one extra log log(1/¶) factor is because the
weight of elements in Ci,0 now reduces by a factor of log(1/¶), so the bound in Equation (6.13) now becomes

|Wi,j ∩ [ti+1,m, ti+1,m+1)| f 3 · log(1/¶)ϵ2 + 2 + O(log2(ϵn)). Then we need the extra log log(1/¶) factor to account
for this.

With these changes, the rest of the proofs follow from the exact same calculations as that of Section 6.4. For
completeness, we repeat the calculations here:

• (The total space is bounded.) Fix a time t. Let ji be the index of the interval [ti,ji , ti,ji+1) that contains t.

log(ϵn)∑

i=0

ŝi,t =

log(ϵn)∑

i=0

ϵ−1 · (log log(1/¶))3 ·
(
log

Vϕ
(t)
i,jW

Vϕ
(t)
i+1,mW

+ 5 log(1/ϵ) + 5 log log n

)

= O

(
ϵ−1 · (log log(1/¶))3 · log2

ϕ0,j0

1
+ ϵ−1 · (log log(1/¶))3 · log(ϵn) · (log(1/ϵ) + log log n)

)

= O
(
ϵ−1 · log(ϵn) · (log log n+ log(1/ϵ)) · (log log 1/¶)3

)

The last step follow from ϕ0,j0 = poly(ϵn) (invoking Claim 4.16 with T = poly(ϵn)). The total space is then
O
(
ϵ−1 · log(1/ϵ) · log(ϵn) · (log log n+ log(1/ϵ)) · (log log 1/¶)3

)
because each Hi uses space +log2(1/ϵ), · ŝi,t.

• (The space sequence is feasible.) Again suppose interval [ti,j , ti,j+1) intersects with children [ti+1,ℓ, ti+1,ℓ+1),
[ti+1,ℓ+1, ti+1,ℓ+2), . . . , [ti+1,r−1, ti+1,r). We use the new bound

|Wi,j ∩ [ti+1,m, ti+1,m+1)| f 3 · log(1/¶)
ϵ2

+ 2 +O(log2(ϵn))

Then,

∑

t∈Wi,j

2
−c· ϵ

(log log(1/¶))2
·st f

r−1∑

m=ℓ

∑

t
t∈Wi,j∩[ti+1,m,ti+1,m+1)

2
−c· ϵ

(log log(1/¶))2
·st

=
r−1∑

m=ℓ

∑

t
t∈Wi,j∩[ti+1,m,ti+1,m+1)

Vϕ
(t)
i+1,mW

Vϕ
(t)
i,jW

· ϵ−5 · (log n)−5 · (log(1/¶))−1(c g 1.)

Exactly the same as Section 6.4, note Vϕ
(t)
i,jW is monotone in t and has O(log(ϵn)) many different values.

For each possible value 2x, we let [a(x), b(x)] ¦ [ti, tj+1) be the time interval such that Vϕ
(t)
i,jW = 2x, and

suppose it intersects with children [ti+1,ℓ(x), ti+1,ℓ(x)+1), [ti+1,ℓ(x)+1, ti+1,ℓ(x)+2), . . . , [ti+1,r(x)−1, ti+1,r(x)).
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Then for every 0 f x f O(log(ϵn)), we have

r(x)−1∑

m=ℓ(x)

∑

t
t∈Wi,j∩[ti+1,m,ti+1,m+1)

∩[a(x),b(x)]

Vϕ
(t)
i+1,mW

Vϕ
(t)
i,jW

· ϵ−5 · (log n)−5 · (log n)−5 · (log(1/¶))−1

f
r(x)−1∑

m=ℓ(x)

(
3 · log(1/¶)/ϵ2 + 2 +O(log2(ϵn))

)
·
2 · ϕ(b(x))

i+1,m

2x
· ϵ−5 · (log n)−5 · (log n)−5 · (log(1/¶))−1

(Here we use |Wi,j ∩ [ti+1,m, ti+1,m+1)| f 3 · log(1/¶)ϵ2 + 2 +O(log2(ϵn)).)

f0.25 ·
∑r(x)−1

m=ℓ(x) ϕ
b(x)
i+1,m

2x
f 0.25

Thus, the space sequence is always feasible.
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