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ABSTRACT

Leakage-abuse attacks using access pattern leakage from range
queries have been shown to reconstruct encrypted databases. How-
ever, prior work is either restricted to one-dimensional databases
or requires access to all possible responses in two-dimensions. In
this paper, we explore what an adversary can achieve with minimal
leakage, focusing on denser databases, and present a leakage abuse
attack from access pattern of range queries in multiple dimensions.
Our attack employs a novel technique to systematically amplify
access pattern leakage, inferring a large number of new query re-
sponses that have not been requested by the user. Let m be the size of
the database domain. Our attack works on d-dimensional databases
and achieves approximate reconstruction. For dense databases and
a parameter 0 < A < 1, our attack fully reconstructs an inner
portion of size Am of the database (referred to as the A-core) af-
ter observing O(mlog m) queries, uniformly at random. These are
significant improvements over previous attacks that require the
full set of responses, which has size O(m?). We are the first to
leverage graph drawing techniques for database reconstruction
attacks. We implement our attack and evaluate it with experiments
on real-world databases, achieving accurate reconstructions after
observing a small percentage of the responses.
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Figure 1: (Left) The (50 x 50) Cali dataset. (Right) Our reconstruction
of the dataset after observing 13,005 queries selected uniformly at
random, or 0.8% of the possible queries, using the Kamada Kawai
graph drawing algorithm, achieving mean error of 2.5. In comparison,
Falzon et al. [23] require ~ 1.6 million queries and Markatou et
al. [54] require at least 0.5 million queries.

1 INTRODUCTION

In the past few decades, cloud computing has been changing the
landscape of where data is stored and processed. People and com-
panies choose to export their computational needs to cloud service
providers. Along with the many benefits of cloud computing (e.g., ef-
ficiency, robustness and small set-up times), come some significant
privacy drawbacks. Cloud service providers have access not only
to plaintext data, but also to any computation the client wishes to
perform. This highlights the need for efficient privacy-preserving
technologies. In this work, we focus on the problem of private
range queries on outsourced databases over an arbitrary number
of attributes (dimensions).

There exist strong cryptographic primitives that allow for pri-
vate range queries, like fully-homomorphic encryption (FHE) [26]
or ORAM [30]. While offering very strong security, these solu-
tions have prohibitive complexity that limits their use in practical
applications. Searchable symmetric encryption (SSE) is a promis-
ing solution to the problem of searching encrypted databases. SSE
achieves a practical tradeoff between efficiency and security and
has attracted significant attention (see, e.g., [6, 7, 9-11, 13, 14, 17, 27,
28,39, 41, 43, 44, 57, 60, 62]). SSE can be used to answer a variety of
complex queries including boolean queries [10], range queries [24]
and graph queries [22, 29]. These techniques have a lot of possible
applications, including being used as a building block in creating a
secure national gun registry [42] or for public policy analytics [19].

SSE schemes are much more efficient than those based on stronger
cryptographic primitives such as FHE and ORAM, however they
achieve this efficiency at the expense of some information leak-
age. A common type of leakage in SSE schemes is access pattern
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leakage. A scheme leaks the access pattern, when an adversary
can observe individually encrypted records in each query response.
This information is useful as it may allow the adversary to analyze
co-occurrences of records across different responses. Other types
of leakage from SSE schemes include volume pattern, where an
adversary can observe the number of encrypted records in each
response, and search pattern, where an adversary can tell if a query
has been issued before. Exploiting leakage from SSE schemes to
reconstruct the original plaintext database is the subject of leakage
abuse attacks, an active area of research. The leakage abuse attacks
presented in this paper assume that only access pattern leakage is
available to the adversary. We do not use search pattern leakage
nor assume specific query distributions.

Leakage abuse attacks on SSE schemes using leakage from range
queries have been extensively studied. In the following, a range
query on d attributes is referred to as a d-dimensional, or dD, range
query. Also, an encrypted database on which dD range queries are
issued is referred to as a d-dimensional database, or d D database.
We assume that the d queried attributes take values from a finite
domain D = [m1] X - - - X [my], for positive integers m;, i € [1,d].

PriOoR WORK. In their seminal work, Kellaris et al. [45] were the
first to show how to reconstruct a 1D database from access pat-
tern leakage, assuming a uniform query distribution. Subsequently,
Grubbs et al. [33] achieved optimal approximate reconstruction of
1D databases, assuming access pattern leakage and a model of the
database distribution. Lacharité et al. [51] considered the common
scenario of dense databases, where there exists a record for every
value of the domain of queried attributes using access pattern. They
showed that dense 1D databases are more vulnerable to reconstruc-
tion attacks than general databases, and can be attacked using only
access pattern leakage (other attacks also used an assumption on
the query [45] or data distribution [33]).

Attacks on 2D databases were more recently investigated. Leak-
age from higher-dimensional range queries is harder to exploit
than leakage from one-dimensional queries. After the publication
of the first attacks on 1D queries [45], it took almost 5 years for
the first attacks on 2D queries to be developed [23]. The leakage
considered in our paper stems from range queries of an arbitrary
dimension and thus is fully general. Attacks on one-dimensional
queries are not effective against higher dimensional queries since
the adversary does not have access to the query ranges in each
dimension. A fundamental reason that makes higher dimensional
queries harder to attack is that as the dimensions increase there are
more possible spatial relationships between the records. For exam-
ple, given distinct one-dimensional points a and b, either a < b or
b < a. Now, given two distinct two-dimensional points there are
four possible relationships between them in terms of their order in
the two dimensions. The number of spatial relationships increases
exponentially in the number of dimensions. Correspondingly, the
techniques we developed for attacks on higher dimensional queries
are fundamentally different from techniques previously used in 1D.

Falzon et al. [23] achieved the first reconstruction attack on 2D
databases using access and search pattern leakage, which requires
that the adversary observes all possible queries and their responses.
Markatou et al. [54] followed up with an approximate database
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reconstruction attack on 2D databases using access pattern leakage
and partial search pattern leakage, which requires that the adver-
sary observes all possible responses, but not all possible queries
(two or more queries can have the same response). Note these at-
tacks on 2D databases require the entire set of responses from all
queries to be available to the adversary. In addition, the first attack
assumes the adversary has further observed the entire multiset of
responses as the same response can be returned by multiple queries.
Little is known beyond two dimensions. Markatou et al. [53] present
attacks on d-dimensional databases utilizing search pattern leakage
as well as a different form of leakage, called structure pattern. These
attacks work against specific schemes. For range queries on more
than two attributes, no reconstruction attacks have been published
against generic leakage (e.g. using access pattern).

Dense databases are an important class of databases as they arise
in a variety of real-world applications including medical datasets
(e.g., attributes “patient age,” “gender,” “blood type” and “hospi-
talization year”), census datasets (e.g., attributes “household size”
and “dwelling type”), and student datasets (e.g., attributes “gradua-
tion year”, “school district”, and “course grade”). We recall that a
database is dense, when it has at least one record with every possi-
ble domain value. A number of papers on reconstruction attacks
specifically consider dense databases [32, 35, 51, 54].

CoNTRIBUTIONS. In this work, we present a database reconstruction
attack on multidimensional databases and answer the following
questions:

(1) Are multi-dimensional dense databases more vulnerable to re-
construction attacks than non-dense ones?

(2) Is it possible to reconstruct a multi-dimensional database after
observing only a small subset of the query responses?

We consider a client who uses an SSE scheme that leaks access
patterns to outsource a database over a domain of size m with an
arbitrary number, d, of attributes, and a passive persistent adversary
who observes the leakage from d-dimensional range queries and
wishes to launch a reconstruction attack.

o Reconstruction Space of Dense Multidimensional Databases
(Section 4). We show that in two and higher dimensions, a dense
database has a reconstruction space of size exponentially smaller
(in the number of records) than a general database, and thus
leakage-abuse attacks are more effective against it. Previously,
the higher vulnerability of dense databases had been known only
in one dimension [51].

o Leakage Amplification (Section 5). We show how to system-
atically amplify the access pattern leakage by augmenting the
responses observed with inferred responses, thus allowing the
adversary to exploit responses that the client never asked for or
received. We are the first to propose an amplification method for
leakage abuse attacks that can be applied as a general prepro-
cessing step to any attack based on access pattern leakage.

o Approximate Reconstruction for Multidimensional Databases
(Section 6). We present an attack that uses only access pat-
terns to achieve approximate database reconstruction. Lever-
aging our leakage amplification method, we achieve a high level
of accuracy after observing a number of queries that is one to
two orders of magnitude smaller than in previous attacks. Ad-
ditionally, for dense databases, we are able to reconstruct the
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Assumptions Attack Reconstruction
Space
Database Query Data  Knowledge p Query ADR Leakage si
Dimension Distribution Distribution of Domain Complexity Amplification 1ze
Kellaris et al. [45] 1 Uniform v m*logm 2
Lacharité et al. [51] 1 Dense v mlogm v 2
Grubbs et al. [33] 1 Uniform v m*logm v 2
Markatou et al. [55] 1 v v v m?logm 2
Kornaropoulos et al. [49] 1 v v v - v 2
Falzon et al. [23] 2 v v v m?logm 2n
Markatou et al. [54] 2 v v v m*logm v 2n
Our Attack d v - v v d"
Our Attack (FDR) d Dense v m?logm v v dn
d
Our Attack (1-CFDR) d Dense v ( ; z%) mlogm vV v dn

Table 1: Comparison of our attack with selected prior reconstruction attacks from range queries on schemes that leak the access pattern. We
give the number of dimensions (attributes) over which range queries are issued, the data distribution of the database (dense or not), the query
distribution (uniform or arbitrary), and whether the domain (interval of values of each attribute) is known by the adversary. We also show
the leakage observed by the adversary, where AP refers to access pattern leakage and SP refers to search pattern leakage. We show the query
complexity of each attack, i.e., the asymptotic number of uniformly distributed queries required by the attack to achieve either full database
reconstruction (FDR) or A-core full database reconstruction (A-CFDR). Some attacks achieve approximate database reconstruction (ADR) when
fewer queries are observed. We also indicate when leakage amplification is employed. Finally, we indicate the size of the reconstruction space.
For simplicity, we omit big O notation. We denote with d the number of dimensions (attributes over which range queries are issued), with m
the size of the database domain (product of the sizes of the intervals of each attribute), and with n the number of database records.

A-core of the database (inner portion of size Am) after observing

d
0] ((ﬁﬁ) mlog m) queries, uniformly at random.

Graph Drawing (Section 6.1). When our attack achieves ap-
proximate database reconstruction, we introduce the use of graph
drawing methods to complete the reconstruction. Specifically,
we leverage techniques from force-directed graph drawing and
orthogonal grid drawing.

e Precision and Recall for Reconstruction Attack Evaluation
(Section 7). We introduce the notions of precision and recall for
the quantitative evaluation of the accuracy of reconstructions. We
are the first to adapt these classic information retrieval concepts
for use in the analysis of leakage abuse attacks.

o Implementation and Experimental Evaluation (Section 7).

We implement our attack and evaluate our results on real-world

databases, showing that our attack is effective in practice as it

relies on much less observed leakage than previous attacks. (See,

e.g., Figure 1.)

A comparison of our work with selected related prior work on
reconstruction attacks from encrypted range query schemes that
leak the access pattern is summarized in Table 1.

2 RELATED WORK

In this work, we consider a client who outsources an encrypted
database to a server and performs d-dimensional range queries on
it. We do not consider a system that includes false positives.

ScHEMES. In order to achieve an effective trade-off between security
and efficiency, we assume the client uses Searchable Symmetric
Encryption (SSE) and builds an encrypted index that stores the
responses to all possible range queries. A query response is then
obtained by looking up into this index. Falzon et al. [23] propose

such an approach for two-dimensional databases. This approach
can be easily extended to work with databases of arbitrary dimen-
sions. Demetrzis et al. [15, 16] and Faber et al. [21] have presented
schemes for performing 1D range queries based on the classic range
tree data structure. Wang and Chow [70] improve upon this work,
presenting forward and backward-secure range search schemes.
Falzon et al. [24] propose a number of range-reporting schemes
for d-dimensional databases that offer different security and effi-
ciency trade-offs. Espiritu et al. [20] present a framework for creat-
ing cryptographic schemes using SSE that handle aggregate range
queries. Leveraging public key encryption, the MRQED scheme by
Shi et al. [61] and the Maple scheme by Wang et al. [69] support
multi-dimensional range queries, both leaking the access pattern.
Order-revealing encryption [1, 5] can also support range queries.
However, its leakage is unacceptably high (see, e.g., [4, 18, 34]).

ATtTACKS. Kellaris et al. [45] initiated the study of access and volume
pattern leakage from 1D range queries and presented the first full
database reconstruction attacks. This work requires access to all
possible leakage and an assumption on how the queries are issued.
Lacharité et al. [51] followed up on this work, and showed that
dense 1D databases are much more vulnerable than general ones,
showing an optimal attack that requires only access pattern leakage.
Grubbs et al. [33] further improved upon the attack, showing an
optimal approximate database reconstruction attack for general
1D databases. Kornaropoulos et al. [49] explored approximate 1D
database reconstruction attacks that do not assume knowledge
of the query distribution. Access pattern leakage from k-nearest
neighbor queries in one-dimensional databases has also been shown
to be vulnerable to reconstruction attacks [48].

One-dimensional databases are also vulnerable to attacks that
use volume pattern leakage, as shown in [32, 35, 45, 50]. The first
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volume-based attack was by Kellaris et al. [45], which was then
improved in terms of query complexity by Grubbs et al. [32]. Gui
et al. [35] do not depend on a uniform query distribution and are
able to achieve partial reconstructions. Kornaropoulos et al. [50]
attack specific practical response-hiding schemes.

Our attack is also applicable to 1D datasets. The leakage am-
plification technique in 1D is related to using PQ trees, a classic
data structure used in 1D attacks [33, 55]. However, in multiple
dimensions, no data structure similar to PQ-trees has been used in
reconstruction attacks.

Falzon et al. [23] are the first to present a reconstruction attack
on two-dimensional databases. This attack achieves a full database
reconstruction attack when given complete access pattern and
search pattern leakage. Markatou et al. [54] further improve upon
this work by presenting an approximate database reconstruction
attack that requires complete access pattern leakage but only partial
search pattern leakage. Markatou et al. [53] present attacks on
databases of arbitrary dimensions by exploiting volume and search
pattern leakage, as well as structure pattern, a type of leakage that
is inherent in all efficient range search SSE schemes. Their attacks
focus on leakage of specific schemes, as opposed to more generic
leakage. A more thorough comparison can be found in Section 8.

Given the proliferation of leakage abuse attacks against SSE
schemes, mitigation techniques have also emerged. Examples in-
clude SEAL [14], which uses ORAM, Pancake [31], which adds
fictitious queries using a client-side preprocessor, and a related
method by Markatou and Tamassia [56]. Kornaropoulos et al. [47]
present a technique to quantify the privacy of searchable encryp-
tion schemes using leakage inversion. Kamara et al. [40] created
LEAKER, a framework for evaluating leakage attacks.

3 PRELIMINARIES

Basic Concepts. A d-dimensional database, D, maps each point
of adomain D = [m1] X --- X [mg] to a set of records. Let m =
my X- - -Xmg, which we call the domain size. Each database record
r has a domain value x = (x1,...,x4) € D, denoted as D[r] = x,
which comprises the tuple of its attributes. A d-dimensional
range query requests all records with domain value inside a query
hyperrectangle [a1,b1] X - -+ X [ag, bg], where [a;, b;] C [1,m;]
denotes the query range in the i-th dimension. A hyperrectangle is
the generalization of a 2D rectangle to higher dimensions.

We say that a point p = (p1,...pg) of domain D dominates
domain point ¢ = (q1,...,qq) if pi > q;,Vi € [1,d]. Two records
of the database are collocated if they have the same value. Two
records of the database are neighbors if their values are points at
euclidean distance 1. For example, records with values (0, 0,0) and
(0,0, 1) are neighbors, but records with values (0, 0,0) and (1, 1,1)
are not neighbors. An event happens with high probability if it
occurs with probability greater than 1 — %

A one-dimensional slice of the database is a range that only
extends in a single dimension. A one-dimensional section of the
database is a range that only extends in a single dimension and
covers it fully (e.g. a row or column in 2D). We say that a database
D over domain D is dense when for each domain point p € D,
there exists at least one record r € D with value p, i.e., such that

D[r] =p.
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We define the response (or access pattern) of a query to be the set
of encrypted record identifiers returned by that query. For example,
suppose the client wishes to query range [1, 5] X [4, 9], they generate
query token q and send it to the server, which then processes g and
sends back the appropriate (encrypted) records {ry, ra, ..., i }. The
client can then decrypt the results. We call response set, denoted
with RS, the set of responses observed by the adversary to the
queries issued by the client. The full response set of a database
D, denoted RS(D), is the response set associated with all possible
queries on D. In most practical scenarios, the response set is a small
subset of the full response set.

THREAT MODEL. We study the security of SSE database schemes that
support d-dimensional range queries and leak the access pattern.
We consider a passive persistent adversary who can observe the
leakage over an extended period of time. Unlike all previous attacks
in dimensions two and higher, we do not assume knowledge of
the database domain by the adversary, i.e., the adversary does not
know the intervals of the database attributes.

RECONSTRUCTION SPACE. As shown in [23, 54] it may be infor-
mation theoretically impossible for an adversary to distinguish
between two databases from the observed leakage of the scheme.
Such databases are called equivalent.

DEFINITION 1. Databases D and D’ over the same domain are
equivalent if RS(D) = RS(D’).

DEFINITION 2. The reconstruction space of D is the set of all
databases equivalent to D.

No adversary can distinguish between any two databases in the
reconstruction space, unless they have access to auxiliary informa-
tion.

DEFINITION 3. Full Database Reconstruction (FDR) of database
D is the problem of reconstructing the values of all the records of the
database D.

DEFINITION 4. Let D be a d-dimensional domain of size m. For
0 < A <1, the A-core of D is the hyperrectangular section of domain
D of size Amy x -+ x Wmd = Am centred around the midpoint of
D. The A-Core Full Database Reconstruction (A-CFDR) is the problem
of reconstructing the values of a database in the A-core of D.

RANGE SEARCH ScHEME. We consider a range search scheme based
on SSE. The client precomputes the answers to all range queries
and stores them in an index. Then, an SSE scheme for multimaps
like the one by Cash et al. [10] can be used to encrypt the index.
A version of this scheme has been used by Falzon et al. [23] and
Markatou et al. [54] in their 2D database reconstruction attacks.
Additionally, Demertzis et al. [15] and Falzon et al. [24] present a
version of this scheme and call it the quadratic scheme.

GRrRAPH DRAWING. Our attack algorithm produces a graph whose
nodes represent domain points with a nonempty set of records
and whose edges identify records with values at euclidean distance
~ 1 in the domain. In order to turn these combinatorial graphs
into geometric graphs where nodes are assigned values, we turn to
the field of graph drawing. We focus on two different approaches:
(i) force-directed drawings of general graphs and (ii) orthogo-
nal grid drawings of planar graphs. The first approach works in
arbitrary dimensions while the second approach only works in 2D.
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Force-directed drawings of graphs are obtained by simulating
the evolution of a physical system where forces are exerted on the
nodes of the graph. The output drawing is a stable configuration of
the system, i.e., achieving local minimum energy. There is a large
literature on force-directed drawings. Kamada and Kawai [38] is
a classic force-directed graph drawing algorithm whose goal is
to place the nodes such that the Euclidean distance between any
two nodes is about the same as the shortest path distance between
them in the graph. The algorithm runs in O(n®) time, where n is
the number of nodes. After experimenting also with other force-
directed algorithms such as Fruchterman and Reingold [25], we
found that the Kamada Kawai algorithm best suits our attacks, since
in our graphs, two neighboring nodes correspond to records that
generally have values at distance 1 in the domain.

Force-directed drawing algorithms can produce drawings in ar-
bitrary dimensions, and thus are suitable for our attacks on general
d-dimensional databases. However, they yield drawings where the
values of the nodes have real values (approximated as floating point
values). An orthogonal drawing of a graph is a 2D drawing such
that the edges of the graph are drawn as polygonal chains compris-
ing horizontal and vertical segments. An orthogonal grid drawing
places all the nodes at points with integer coordinates. Thus, or-
thogonal grid drawings overcome the aforementioned limitation
of force-directed methods. Many algorithms have been developed
for orthogonal drawings, with special attention given to planar
orthogonal grid drawings, where no two edges cross. For our 2D
attacks, we evaluate the classic orthogonal grid drawing algorithm
by Tamassia et al. [64, 66].

For an introduction to force-directed and orthogonal graph draw-
ing algorithms, see the relevant chapters in the book by Di Battista
el al. [3] and the handbook edited by Tamassia [65]. Force-directed
drawings are also discussed in the survey by Brandes [8].

4 RECONSTRUCTION SPACE

The size of the reconstruction space (Definition 2) is an important
metric in leakage abuse attacks since any two databases in the
reconstruction space "look the same” to the adversary. Thus, the
size of the reconstruction space provides an information-theoretic
bound on the effectiveness of any reconstruction attack. The recon-
struction space of dense databases is much smaller than the one
for general databases. In [23, 54], it is shown that the reconstruc-
tion space of a two-dimensional database could be exponential in
the number of records. This is a huge reconstruction space, which
makes it much harder for an adversary to pinpoint the original
data after a reconstruction attack. In this section, we show that the
result of [23, 54] generalizes in arbitrary dimensions (Theorem 1),
and further show that dense databases have a reconstruction space
that scales with the number of dimensions and is independent of
the domain size and the number of records of D (Theorem 2).

THEOREM 1. For every positive integer n, there exists a d-dimensional
database D with n records such that encrypting D using an SSE scheme
that leaks the the full response set (access pattern) from d-dimensional
range queries yields a reconstruction space of size O(d").

Proor. Consider the d-dimensional database D with n records,
numbered from 1 to n, where record i has value [2i,2i — 1, ..., 2i —
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1]. We generate a set of databases, Ep, that we will show are all
equivalent to D. A database D’ is in Ep if it can be generated by
copying D and then taking a subset of its records and replacing their
value with a permutation of it (a permutation of [2i, 2i—1, ..., 2i—1]).
In order to show that D and such D’ are equivalent, we have to
show that RS(D) = RS(D’).

Let us say response resp € RS(D) corresponds to a range start-
ing at domain point s = [sy,...s4] and ends at domain point e =
[e1,...eq]. We need to show that there exists a range such that
resp € RS(D’). We note that for each pair of records (ij, ij41),
i;,1 dominates ij. Suppose that the response in D contains records
[io, ..., ix]. The same query on D’ has to contain records numbered
i1, ..., ig_1, as s must be dominated by records iy, ..., iy since iy dom-
inates ip. Similarly, e dominates points iy, i1, ..., ix_1. If record ip in
D’ is different than the one in D, then its value is a permutation
7 of the one’s in D. We can apply this permutation on s and get
s’ = n(s). Similarly for ir, we can apply permutation 7’ to get
e’ = 7’ (e). Range [s’,e’] on D’ contains all records iy, i1, ..., ii.-

Thus, any resp € RS(D) exists in RS(D”). We can make a similar
argument showing that any resp € RS(D’) exists in RS(D). Thus,
we can conclude that D and D’ are equivalent databases. Since
there are n records in D and there are d unique ways to permute
each record’s values, we can generate O(d") distinct databases that
belong to Ep. O

THEOREM 2. The size of the reconstruction space of any d-dimensional
dense database D encrypted using an SSE scheme that leaks the full
response set (access pattern) is 0(24d)).

ProoF. We consider an adversary that has observed the access
pattern from all possible responses. We show that using this leakage
the adversary is able to reconstruct the order of all records and thus
the database grid. However, it is impossible for the adversary to
determine the orientation of the database grid (e.g. the adversary
can tell that record ry’s value is between the values of records rq
and r3 in the first dimension, but cannot determine if r; has the
smallest or largest value).

First, the adversary can find the smallest response s, that con-
tains each record r. Since the adversary has seen all possible re-
sponses, then all points in s, must be collocated. The adversary
can at this point create a graph G and add a node for each set of
collocated points. Then, the adversary can look for responses that
contain exactly two of these sets. If a response exists {s1, sz}, then
s1 and s correspond to neighboring domain points. The adversary
can then add an edge between the corresponding nodes for s; and s2
on the graph. At this point, the adversary has constructed a perfect
grid graph. However, without access to auxiliary information, the
adversary cannot determine the orientation of this grid (e.g. which
grid corner corresponds to the smallest value). All manipulations
that generate an equivalent database to D must maintain the grid
intact. Note that this is in contrast to the general case, where the
empty space allows for more manipulations. Thus, the only possible
ways to generate an equivalent database is by applying the symme-
tries of a hypercube that can be found in the hyperoctahedral group.
We conclude that there are O(de !) equivalent dense databases. O

Reconstruction attacks can be way more effective under a smaller
reconstruction space. Thus, we conclude that leakage-abuse attacks
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Figure 2: We see that no matter how the rectangles overlap, their

intersection forms a rectangle, potentially of lower dimension (i.e.,
a line segment or a point).

are more effective against dense multi-dimensional databases than
general multi-dimensional databases, due an exponential gap in the
sizes of the corresponding reconstruction spaces.

5 LEAKAGE AMPLIFICATION

In our preprocessing step, we show how to amplify the observed
response set and then how to identify and group together any
collocated records. This process does not produce new information
but allows us to explicitly derive information that was implicit in
the data, and improves the efficiency of our attack.

AMPLIFY RS. The first step of our attack is to generate more re-
sponses from the ones we have observed. The heart of this algorithm
comes from the following observation: The non-empty intersection
of two rectangles is a rectangle, a line segment or a point (Figure 2).
We generalize our observation to arbitrary dimensions in Lemma 1.

LEMMA 1. The non-empty intersection of two hyperrectangles is
always a hyperrectangle itself.

From Lemma 1, it follows that the non-empty intersection of two
responses must be a possible response. In Algorithm 1, we take the
intersection of every pair of responses, and if it is non-empty we
add it to our set of responses. This technique allows the adversary
to exploit responses that the user has not asked for or even seen.

Algorithm 1: AmplifyResponses(RS)

: Let set responses contain the unique responses in RS.
: Let new_responses be an empty list.
: for each ry in responses do
for each r; in responses do
Let r be the intersection of r; and r,
if r is non-empty and not in responses then
Add r to new_responses.
: Add new_responses to responses
: return responses

N = R

THEOREM 3. Let D be a d-dimensional dense database with n
records over domain D = [m1] X -+ X [mgy] of size m. Given the
response set RS of size £ observed by the adversary from access pattern
leakage of d-dimensional range queries, Algorithm 1 produces an
amplified response set of size O(£%) in time O(nt?).

Proor. Algorithm 1 takes the intersection of each pair of re-
sponses, and if it is not empty, adds it to the response set. It follows
from Lemma 1 that this intersection indeed corresponds to a real
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response. It takes ¢£2 iterations to look at each pair, and their inter-
section takes O(n) time. Thus, Algorithm 1 takes O(n¢?) time and
produces O(¢2) additional responses. O

It is possible to further augment the responses, but for efficiency
reasons, we intersect each pair of queries once. It is worth noting
that mitigation techniques (e.g. [56]) which work by restricting the
query space could be countered using Algorithm 1, since the adver-
sary is able to generate responses that were never even requested.

IDENTIFY AND GROUP COLLOCATED RECORDS. Once we have aug-
mented the response set, we move to identify which records are
collocated (have the same domain value). Intuitively, records with
the same domain value appear in exactly the same responses. Any
records that have the same domain value are called collocated.

A simple approach to finding the collocated nodes would be
to identify the smallest response that contains each record r, say
sy = {r,r’}, and denote all records in s, as collocated. However, it
is possible that the smallest response that contains r’ is actually
sp» = {r’}. In this case, we need to modify s, and remove r’ from it.

Algorithm 2 follows: We first identify the smallest response s,
that contains each record r. The nodes in s, are all the candidates
for the collocated C records of r. Then, for each record r, we find
all responses R, that contain it, and ensure that each element in
its collocated set C is also in all the responses in R, (Algorithm 3).
Any element that does not satisfy this is removed from C. Now, we
look for records whose collocated set is not consistent. For example,
record ry, could have collocated set C; = {r1,r2}, but record r2
has collocated set C2 = {rz}. This means that r; and ry are not
collocated. We take the intersection of C; and Cz, and identify the
two complements: {r1}, {rz2}, {}. Each record is assigned the set
that contains it: rq is assigned {r1} and r; is assigned {rz}. This
procedure ensures consistency in the sets. Once we have identified
the collocated sets (Algorithm 4), we translate the responses, such
that each collocated set is replaced by an ID in each response.

Algorithm 2 takes as input a set of responses and outputs a map,
whose keys are records and values are all the records collocated
with the key record. Algorithm 3 takes as input a set of responses
and the map output by Algorithm 2 and outputs a set of responses
where each response contains IDs corresponding to domain points
(as opposed to records).

Algorithm 2: FindColocatedRecords(responses)

1: Initialize dictionary Colocated.

2: for each record r do

3:  Find s,, the smallest response that contains r

4:  Colocated|[r] = s,

5: for each record r in Colocated do

6:  Find any records in Colocated|r] that do not appear in all the same
responses as r and remove them from Colocated|r]

7: return EnsureConsistency(Colocated)

LEMMA 2. Algorithm 2 identifies as many collocated records of
database D as allowed by the observed leakage, in time O(mn? + nf).

Proor. Given two non-collocated records i, j, one can only dis-
tinguish between them if there exists at least one response that
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Figure 3: Algorithm 5. (a) A 5 X 5 database. (b) The first step of the attack is the leakage amplification process, where we intersect the observed
responses and generate new responses (in dashed lines). Then, Algorithm 5 finds all responses of size 2 (Line 4), both observed and generated.

We then generate a graph representation of the database. (Line 8).

Algorithm 3: EnsureConsistency(Colocated)

1: Let todo be the a set of the keys of Colocated

2: while todo is not empty do

3:  Pop an element from fodo and set r

4:  for each record r’ in Colocated[r] do

5 if Colocated[r] + Colocated[r’] then

6: a = Colocated|r] — Colocated[r’]

7 b = Colocated[r'] — Colocated|[r]

8 ¢ = Colocated|r] N Colocated|r’]

9 Assign Colocated|r] to a, b or ¢ based on which contains r
10: Assign Colocated|[r’] to a, b or ¢ based on which contains r’
11: Add the elements of a, b, c to todo
12: return Colocated

Algorithm 4: Translate(Colocated, responses)

1: Let new-responses be an empty list

2: Assign each value of Colocated an ID, such that values that are
identical have the same ID.

: for resp in responses do

Let new-resp be an empty set.

for rinresp do
Add the ID of Colocated|[r] to new-resp

Add new-resp to new-responses

: return new-responses

® N> oew

contains i and not j. Additionally, both i and j must appear in some
response, otherwise we do not know they exist. Algorithm 2 first
finds an approximation of which records are collocated by deter-
mining the smallest response that contains each record. Given all
available leakage, the smallest response s, that contains a record
r, corresponds to a range that covers one domain point, r’s value.
Thus, any collocated records would be in the same smallest response.
However, our algorithm works with less leakage as well. Thus, for
each record r, we go through all the responses that contain it, and if
we find a record in s, that is not in any of the responses, we remove
it from s, as the records are not collocated. At this point, if we have
observed i and j and a response that contains i and not j, we have
successfully determined that i is not collocated with j and removed
Jj from s;. However, we need to propagate this knowledge to j. This
is where Algorithm 3 comes. It ensures consistency, such that if i is
not collocated with j, i is removed from s; (as j is not in s;).

The for loop in line 2 of Algorithm 2 takes O(n?) time, as we
find the smallest response that contains each record. Algorithm 3

executes O(n + m?) loops, as a range can only be split until a point
range. In each loop, O(n) work is done. Thus, Algorithm 2 takes
O(mn? + nt) time. o

6 DATABASE RECONSTRUCTION

We present our attack (Algorithm 5) which achieves approximate
database reconstruction given the access pattern leakage of range
queries on a multi-dimensional database. See Figure 3 for a 2D
example of Algorithm 5. Note that for simplicity in Figure 3, we
assume that there is exactly one record on each domain point,
which is formally addressed in Algorithm 2. We highlight that our
attack works on any database, but performs better the more dense
the database is. One of our goals with this attack is to see what
an adversary can achieve with very little information. We focus
on local information and do not build upon relationships we have
discovered, as they might be wrong and errors propagate.

Algorithm 5: DatabaseReconstruction(RS)

: responses = Amplif yResponses(RS) (Algorithm 1)

: Let Collocated = FindCollocatedPoints(responses) (Algorithm 2)
: new-responses = Translate(Colocated, responses) (Algorithm 4)

: Let pairs be all elements of new-responses of size 2

: Initialize empty graph G

: for each (a,b) € pairs do

Add edge (a,b) to graph G

: return G

[ S B N

After preprocessing the responses, we find all responses of size 2.
Then, we construct a graph G with nodes the responses’ identifiers,
and an edge between two nodes if there exists a response containing
just those two nodes.

LEmMA 3. Let D be a d-dimensional database with n records over
domain D = [mq] X - - - X [mg] of size m. Given the response set RS
of size ¢ observed by the adversary from access pattern leakage of
d-dimensional range queries, Algorithm 5 runs in time O(nf + mn?).

Amplifying the leakage takes O(mn? + nf) time and creating the
graph O(n?) time. Thus, Algorithm 5 runs in time O(n¢ + mn?).

6.1 Graph Drawing

The graph we construct contains information about neighboring
nodes of the database, but may not be a grid graph as (i) we may not
have observed all records or (ii) the database could be not dense. In
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order to approximately reconstruct the database based on this graph,
we turn to techniques from the field of graph drawing. We mainly
consider two classic graph drawing methods: (i) an algorithm by
Tamassia et al. [64, 66] which consists of three steps: Planarization,
Orthogonalization, and Compaction (POC) and (ii) a force directed
graph drawing method by Kamada and Kawai [38]. We note that
graph drawing is an integral part of the database reconstruction
attack. The graph we have constructed gives us spatial closeness
information of the record values; we use a graph drawing algorithm
to turn that information into reconstructed values.

Although we found that these two methods perform best for
database reconstruction, in Figure 4, we compare how a number of
methods perform on drawing a square grid graph (25 x 25). The
first plot (on the top right) shows a random placement of nodes
as a baseline. In the top left, we display the Chrobak & Payne [12]
method which depends on planar graph triangulation. Both these
methods fail to show the grid-nature of our graph. In the middle left,
we display the Fruchterman Reingold method [25], one of the first
force-directed graph drawing techniques, where “vertices behave as
atomic particles or celestial bodies, exerting attractive and repulsive
forces on one another” This is an improvement upon the previous
two methods and it does showcase the grid structure, however the
drawing is convoluted. In the middle right, we use the spectral
approach [46], which uses eigenvectors of the graph Laplacian to
compute the drawing. Here, we again see an improvement on the
grid layout, but the distance between the points is inconsistent.
Finally, in the bottom row, we showcase the Kamada Kawai [38]
and Tamassia et al. [64, 66] methods, which draw a perfect grid.

Random Placement

Chrobak & Payne [12]

Tamassia et al. [64, 66]

Figure 4: Graph drawing of a 25 x 25 grid with different techniques
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Figure 5: The original database is depicted on the top left and our
most compact reconstruction on the top right. On the bottom, we
can see less compact (and less accurate) possible reconstructions.

Note that only Tamassia et al. [64, 66] strive to draw edges along
horizontal and vertical lines.

In case Algorithm 5 returns a perfect grid graph, we do not
need to use a graph drawing technique. Instead, we can traverse
the grid assigning values to records. For example, the following
algorithm works for two-dimensional databases: First, identify the
four corners of the database, these are the elements with the smallest
number of edges. By finding the shortest path between two pairs
of corners, we can determine the “top” and “bottom” edges of the
database, and assign values to the records. Afterwards, we can align
the “top” and “bottom” edges, by finding the shortest path from
an element of the “top” edge to some element in the bottom edge.
Then, we assign values to all elements in that shortest path.

6.2 Orthogonal Layout Approach

The first step of the Tamassia et al. algorithm [64, 66] is planariza-
tion. This step extracts a planar embedding from the graph. Then,
the algorithm moves on the orthogonalization step. The goal is to
minimize the number of bends on the layout, which is achieved
by using network flow techniques. The final step is compaction,
where the layout area is minimized. We note that this approach
only works on planar graphs, and G may be non-planar. Since pla-
narization is an NP-hard problem, we take a heuristic approach to
create a maximal planar subgraph of G. We repeatedly compute the
Kuratowski subgraph and remove it from G until G is planar. Then,
we add back as many edges as we can from the ones we removed,
maintaining G’s planarity. Then, we run the planarization, orthog-
onalization, and compaction steps. Our heuristic planarization can
make different choices on which edges to remove/keep, resulting
in different graph drawings (Figure 5).

6.3 Force-Directed Approach

We utilize the Kamada-Kawai graph drawing algorithm [38] from
the force-directed graph literature to reconstruct a database of an
arbitrary number of dimensions. For simplicity we describe the
algorithm for the 2D case following the explanation of [65]. Let d; ;
denote the shortest path in G between nodes i and j. Then, the ideal
length of spring between these nodes is I; j = d; j. The strength of
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the coordinates of node i are given by (x;, y;), then minimizing the

following energy function E gives us the desired layout.

1 ki
E=%5 ;’l:i+1 - ((xi - xj)*+

(i —yj)* +1F; - Zli,j\/(xi = x)?+ (yi = yj)%)

the spring between i and j is k; ; = for some constant K. If

6.4 Information Theoretic Limitations

Recent work by Alegria et al. [2] has interesting applications on
our work for two-dimensional databases. The authors show that if
a graph can be drawn such that its outer face is a rectangle, then
the problem of testing for the existence of a unit-length rectangular
drawing, can be solved in polynomial time. Otherwise, it is NP-
complete. Thus, the reconstruction of certain databases (whose
outer face is rectangular) can be done very efficiently. If the database
is not rectangular, an optimal reconstruction becomes much harder.

6.5 Dense Database Reconstruction

Although our attack focuses on approximate database reconstruc-
tion, if the database is dense, we can achieve FDR and A-CFDR as
well. In our formal analysis, we assume a uniform query distribu-
tion, consistent with prior work [23, 32, 33, 48, 51, 54]. However,
our attack works under different query distributions, as we experi-
mentally show in Section 7.

THEOREM 4. Let D be a d-dimensional dense database with n
records over domain D = [m1] X --- X [my] of size m. Given the
response set RS observed by the adversary from access pattern leakage
of d-dimensional range queries, Algorithm 5 achieves Full Database
Reconstruction (FDR) after observing O(m? log m) queries issued uni-
formly at random with high probability.

We show a sketch proof for Theorem 4. Algorithm 5 can achieve
FDR after observing all the responses. Using a coupon collector
argument, we conclude that after observing O(m? log m) queries
uniformly at random, Algorithm 5 achieves FDR (since for all record
pairs p, g, we can observe a response that contains both of them
and two responses that each contain one of them, we can identify
all collocated records and their neighbors, which gives us a grid
representation of the original database). Given fewer responses,
Algorithm 5 achieves ADR as shown in Section 7.

Recall that the A-core of domain D is the hyperrectangular sec-
tion of domain D of size ¥Amyx- - -x Wmd = Am centered around
the midpoint of D (Definition 4). We show that Algorithm 5 can
reconstruct the value of all records in the A-core of the domain of
dense database D much faster than achieving FDR.

THEOREM 5. Let D be a d-dimensional dense database with n
records over domain D = [m1] X --- X [mgy] of size m. Given the
response set RS observed by the adversary from access pattern leakage
of d-dimensional range queries, Algorithm 5 achieves A-Core Full
Database Reconstruction (A\-CFDR) after observing

2d |
ol —=
((1— ma" Ogm)

queries issued uniformly at random, with high probability.
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Figure 6: (A 2D example) Algorithm 5 reconstructs the A-core of

d
the database (MM) after observing O( (127/1)(1 mlog m) queries uni-
formly at random. We show that for each pair p, g, with high proba-
bility, we observe a blue response, which starts at BL and ends at g,
and a red response, which starts at p and ends at TR. The intersection

of the two, gives us a response that contains only the neighbors p, g.

ProOF. Let us split the database in sections. Let MM be the A-
core of the database we want to reconstruct, BL be the section that
starts at the origin (1, ..., 1) and ends where MM starts and TR be
the section that starts at the end of MM and ends at the end of the
domain (my, ..., my). In Figure 6, we see a two dimensional database,
with the sections highlighted in gray.

If, for every neighboring pair p, g in the A-core (MM) (say ¢
dominates p), we observe or generate a response that contains
just the two of them and two responses that contain just q or just
p, then Algorithm 5 will be able to connect them in G, and fully
reconstruct MM. In order to generate a response p,q, we need
to intersect two responses. One response r; must start in BL and
end at g and the other response r, must start at p and end in TR.
MM’s domain size is ’ﬂiﬁml X ... X Wmd, Then, BL’s domain size

-9 1-92 1- W)d

is —~=my X ... X —5=myg. There are (—; m possible queries
that start at BL and end at g. The probability that a query picked

uniformly at random starts in BL and ends at q is smaller than

=y g
2 :( 2 )_’

m m

Letc = (#j)d. Suppose we observe %mlogm queries. The
probability that none of them satisfies the condition is greater than

1 1

€\ &mlogm
(1—%)" EM ~ oSlogm ~W.
Similarly, for a response that starts in TR and ends in q. We
can also use the same argument to find the probability that we can
generate a response that contains just p and a response that contains
just g. There are at most dm? pairs of points p, g. Thus, by union

bound, after observing O (# mlog m| queries uniformly at

random, Algorithm 5 can find all neighbors in MM with probability

2
greater than 1 — 6dm” Then, we can extract a maximal graph of the

database, reconstruct the A-core (MM) and achieve A-CFDR, with
high probability for m > d. O

7 EVALUATION

We implemented our attack and conducted experiments on real-
world 2D and 3D datasets. Our experimental results show that
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Figure 7: Leakage amplification ratio for Uniform(—#—), Beta(2,1)
(—e—) and Gaussian (——) distributions.

our attacks significantly outperform prior work in terms of query
complexity, requiring one to two orders of magnitude fewer query
responses (Table 2).

EvaLuaTioN METRICS. In order to evaluate our attack, we use a
variety of metrics. First, we introduce the usage of precision and
recall as accuracy metrics in reconstruction attacks that produce
an intermediate graph representation of the database. Our attack
creates a graph G, where an edge represents our belief that the two
graph nodes correspond to neighboring domain points Thus, we
define precision as the fraction of edges in our graph that correctly
identify neighboring domain points. Conversely, recall is defined
as the ration of the number of correct edges we have identified to
the total number of correct edges.

While precision and recall measure the accuracy of the interme-
diate graph representation, we further evaluate the final database
reconstruction obtained from the graph drawing techniques using
two metrics also used in previous work (e.g. [49, 54]): the mean
error, also known as the mean absolute error, and the directed
Hausdorff distance. The mean error (ME) is the average distance
of our approximation of the value of a record to the original value.
The Directed Hausdorff distance (DH) measures the similarity
between the set of original database points, R, and the set of recon-
structed points, R. DH is defined as max(dh(R, E), dh(E, R)), where
dh(R, E) = maxyer(mingeg dist(p, q)). Note that after computing
the graph drawing further processing is needed to scale the drawing
to the correct domain size and rotate/reflect it, in order to pick the
correct member of the reconstruction space to compare against.

DATASETS. We evaluate the effectiveness and complexity of our
attack with five real-world datasets and a synthetic one.

DG [58]. The 2D (65x3) DG dataset stores school enrollment data
for Massachusetts districts classifying students by gender (male,
female, and non-binary). The dataset is dense and has 6,362 student
records, each corresponding to 10 students (rounded up).

CGR [59]. The 3D (6 X 12 x 7) CGR dataset stores school enroll-
ment data from 6 counties of Massachusetts classifying students by
grade (1-12) and race. The dataset is dense and has 46,203 student
records, each one corresponding to 10 students (rounded up).
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Figure 8: Recall and precision of our attack on 2D datasets as a
function of the percentage of all responses observed by the adver-
sary, under different distributions (Uniform (—#—), Beta(2,1) (—e—),
Gaussian (——))

Cali [52]. The 2D California dataset contains 21,047 latitude-
longitude points of road intersections in California. This dataset has
been used in prior work (e.g. [53, 54]). We normalize this dataset to
domain (50 X 50).

Filled-Cali. A variation of the Cali dataset, where we added
records filling any “holes” inside the California shape.

NH [63]. This is a real-world 3D elevation dataset containing
4096 elevation points sampled from the United States Geological
Survey’s Elevation Data of the White Mountains of New Hampshire
and normalized to a 16 X 16 X 16 domain.

Boats. This 2D dense dataset with domain 52 X 22 contains the
number of recreational boating accidents (in the hundreds) per US
state per year (from 2000-2021). The reports come from the Bureau
of Transportation Statistics.

Grid. This 2D database is a synthetic dataset that contains exactly
one record per domain value.

IMPLEMENTATION. We have implemented our attack in Python, rely-
ing extensively on the Numpy [37], Scipy [68] and NetworkX [36]
libraries. We used the tsmpy library [67] for Tamassia et al. [64, 66].
Our experiments ran on a computing grid.

LEAKAGE AMPLIFICATION. In Figure 7, we evaluate our leakage
amplification method (Algorithm 1) against four datasets. We plot
the amplification ratio which is the number of unique observed and
generated responses over the number of unique responses observed.
We note that the method is very successful in practice. In all four
cases, after observing a small percentage of queries, we increase
the number of responses by an order of magnitude.

GRrAPH RECONSTRUCTION. We evaluate our attack on reconstruct-
ing our datasets under a Uniform, Beta(2,1) and Gaussian query
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Figure 9: Recall and precision of our attack on the 3D datasets as a
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under three query distributions (Uniform(—#—), Beta(2,1) (—e—),
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(horizontal axis) and measure the precision, and recall of Algorithm 5
on these databases of different density. The adversary observes 20%
(uniformly at random) of the responses on all runs.
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Figure 11: Recall and precision of our attack as a function of the
percentage of all responses observed by the adversary (Filled Cali
, Cali —@—), under a uniform query distribution.
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Figure 12: Mean Error and DH for Grid Database (20 X 20) under a
uniform query distribution (Tamassia et al. [64, 66](—®—), Kamada
Kawai [38] (—e—), Chrobak & Payne [12] (—4—), Fruchterman Rein-
gold [25] (—)).

distribution. In Figure 8, we see the precision and recall of our
attack against the 2D datasets. As expected, the attack works best
under a uniform query distribution and worst under the Gaussian
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Figure 13: Reconstruction for the Boats Database under a uniform
query distribution. We plot the original dataset and our reconstruc-
tion using the Kamada Kawai graph drawing technique.

distribution. This is due to the fact that the Gaussian distribution
samples queries that cover the edge of the domain less frequently,
and thus the attack does not have enough information to recover
the neighboring relationships towards the edges of the domain. We
observe similar results in the 3D datasets in Figure 9. In Figure 11,
we evaluate our attack when reconstructing the Cali dataset, and
a variant of it, where we added records filling any “holes” inside
the California shape, which we call Filled-Cali. We note that our
attack performs approximately the same with regards to recall, but
we can only achieve 100% precision on the filled version of Cali.
This is expected, as our attack cannot identify such holes. In order
to further examine the effectiveness of our database reconstruction
attack on databases of different density, we use the Grid dataset.
We evaluate the effectiveness of our attack after removing points
uniformly at random from the dataset. We observe that our recall
deteriorates much faster than the precision as the percentage of
empty domain points increases (Figure 10).

GRrAPH DRAWING. In Figure 12, we reconstruct the grid database
(20 % 20) and then evaluate four different graph drawing techniques
based on mean error and directed Hausdorff distance. We observe
that the Tamassia et al. [64, 66] and Kamada Kawai [38] methods out-
perform the Chrobak & Payne [12] and Fruchterman Reingold [25]
methods. Since the Kamada Kawai works in higher than two di-
mension and does outperform the Tamassia et al. [64, 66] method
for smaller percentages of observed responses, we used it for the
rest of our evaluation. In Figure 13, we evaluate our reconstruction
of the Boats dataset. We observe that with as little as 1% of the ob-
served responses (under a uniform query distribution) we achieve
a mean error of change~ 2 and below. Visually inspecting the re-
construction, we see that the core of the database clearly shows the
underlying grid structure and is much better reconstructed than the
records towards the edges. In Figure 14, we show our reconstruction
of the Boats Dataset under three different query distributions. As
expected, our attack performs best under the uniform distribution.
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Boats (52 X 22) Reconstruction at 2%
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Figure 14: Reconstruction of our Boats Dataset after observing 2% of
the responses under three different distributions using the Kamada
Kawai graph drawing technique.

The main difference between the three distributions is the recon-
struction of the neighboring relationships between nodes in the
edges of the database. In Figure 15, we evaluate our reconstruc-
tion of the Cali (50 X 50) dataset. We observe that with as little
as 0.8% of the responses, we can achieve a mean error of 2.5. In
Figure 16 we can see our reconstruction of the NH dataset after
observing 2.5% of the responses, achieving a mean error of 1.86. In
Figure 17 we show the runtime in seconds of our attack under the
three query distributions. Note that depending on the query distri-
bution and the number of queries observed, the graph we construct
may be disconnected, often comprising one large connected com-
ponent plus several small components (typically, single-vertex). In
Figure 15, we display these small components separately from the
main one. Instead, for clarity, these small components are omitted
from Figures 13 and 14.

CoMPARISON WITH PRIOR WORK. In Table 2, we compare the per-
formance of our attack against prior work. First, for the 2D dense
dataset, Boats, both Falzon et al. [23] and Markatou et al. [54] re-
quire all possible queries for their attack to work. However, they
both return a perfect reconstruction. Our work can achieve a data-
base reconstruction with a mean error of 2.2 after observing 1% of
the queries (uniformly sampled). After observing 10% of the queries,
our attack can achieve perfect precision and recall, leading to a
perfect reconstruction. On the 2D non-dense dataset Cali, Falzon et
al. [23] still need all possible queries for the attack to work. How-
ever, Markatou et al. [54] achieve database reconstruction with a
mean error of 0.03 after observing 33% of the queries. Our attack
can achieve a mean error of 2.5% after observing only 0.8% of the
queries. Our attack does not significantly improve after observing
more responses, achieving at best a mean error of 2.2. Our attack is
the only one that can reconstruct the 3D datasets CRG and NH.

Overall, our approach is suitable for practical scenarios where
the attacker observes a small fraction of the possible responses.
In situations where a large fraction of the queries is available, the
attacker can switch to one of the other methods to achieve improved
reconstruction.
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Figure 15: Reconstruction for the Cali (50 X 50) Database under a
uniform query distribution. We plot the original dataset and our
reconstruction using the Kamada Kawai graph drawing technique.

NH (16 X 16 X 16)
Reconstruction at 2.5%

Original

10

15 0

Figure 16: Reconstruction of our 3D Datasets: (Top) NH Recon-
struction after observing 2.5% of the observed responses (ME=1.86,
DH=5.76). We plot the original dataset and our reconstruction using
the Kamada Kawai graph drawing technique.

8 TAKEAWAYS

DENSE(R) DATABASES. In this work, we looked at access pattern
leakage in multidimensional databases. Lacharité et al. [51]’s re-
sult that dense 1D databases are more vulnerable to leakage-abuse
attacks than sparse ones, generalizes in multiple dimensions. Theo-
rem 1 shows the a d-dimensional database could have a reconstruc-
tion space exponential to the number of records in it. However, a
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Dataset Details Boats Cali CRG NH
Possible Queries 348,634 1,625,625 45,864 1,942,080
Domain 52x22 50x50 6x12x7 16x16x16

% Queries (uniformly sampled) 1% 10% 100%  0.8% 10% 33% 100% 3% 2.5%

Falzon et al. [23] ME - - 0 - - -0 - -
Full DH - - 0 - - - 0 - -
Markatou et al. [54] ME - - 0 - - 003 0 - -
Approximate DH - - 0 - - 03 0 - -
Our Work ME 22 0 0 25 22 22 22 1.2 1.9
Approximate DH 45 0 0 42 3.6 36 36 22 5.7

Table 2: Comparison of our reconstruction attack with [23, 54], as-
suming access and search pattern leakage.

dense d-dimensional database’s reconstruction space is indepen-
dent of the number of records and only depends on d, making
dense databases more prone to successful reconstruction attacks.
Our attack is much more effective against denser databases, as
range queries on dense databases reveal neighboring relationships.
For example, given a record in a dense 2D database (i, j), it has four
neighbors at (i — 1, j), (i, j — 1), (i + 1, j) and (i, j + 1). In this case
there are four range query responses that contain (i, j) and have
size 2. Each one of them reveals a neighbor. Now, if the database
was not dense, we could observe way more responses of size 2 that
contain (i, j). These responses would reveal local information, but
not these direct neighboring relations.

Our attack is heuristic in nature. We assume that if we observe a
response with two records (rg, r1), these records’ values are “close”,
but we cannot tell how close they are. Thus, local information, like
the “holes” in the original Cali dataset are lost in our reconstruction.
This is why we can achieve full database reconstruction against
dense datasets, but there is a limit to how well we can reconstruct
non-dense ones. For example, even with all possible queries, we
still have a mean error of 2.2 on the Cali dataset. Generally, any
response (ry, r1) that does not correspond to neighboring records
(at distance 1) lowers the maximum accuracy our attack can achieve.

LEAKAGE AMPLIFICATION. In this work, we show that observed leak-
age can be amplified to create new leakage. We are able to exploit
geometric information about the nature of the queries, allowing
us to generate responses that the user has never asked for or even
seen. Recall that we don’t create new information, but we derive
these responses from what we have observed already. Unless a
user is aware of the possible attacks to their system, they have no
way of knowing what leakage their adversary has access to. The
leakage amplification methods we developed can be quite effective,
especially when little leakage is available, sometimes generating
20X more responses than observed.

GRrRAPH DRAWING. Our attack generates a graph to represent neigh-
boring relations between records of the database. Many decades of
research have been invested in graph drawing techniques, finding
the best ways to embed a graph. These techniques allowed us to
elevate our graph representation to a database reconstruction. It is
important to note that this is only a starting point, graph drawing
algorithms specifically tailored to database reconstructions, could
lead to even better reconstructions.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Cali (50 x 50) NH (16 x 16 X 16)

.10° 104
o 1LSFT T T = P R e B 7
& 3
\u: 1 m \qj 4 —|
£ g
e 051 g e N
E 5
= oL Lo ~ L
2 4 6 8 10% 2 4 6 8 10%

Percentage of Observed Responses Percentage of Observed Responses

Figure 17: Attack runtimes in seconds under three query distribu-
tions (Uniform(—#—), Beta(2,1) (—@—), Gaussian (——)).

Graph drawing techniques could be applicable to leakage-abuse
attacks from other types of geometric queries, e.g. k-nearest neigh-
bor queries or radius queries. This is because we can use graphs to
represent relations between the records, given by geometric queries
(e.g. these two record values are in the same circle), and then graph
drawing can transform these relations into values. Additionally, a
promising topic of further research is using graph drawing tech-
niques for attacks on schemes that leak the structure pattern, e.g.,
the schemes of [24], by drawing graphs representing relations be-
tween search tokens. The attacks of [53] build and analyze such
graphs but do not employ graph drawing algorithms. Graph draw-
ing techniques could lead to general methods that transform a full
database reconstruction attack into an approximate one.

PRrECISION AND REcALL. We introduce the use of precision and re-
call as metrics to evaluate database reconstruction attacks. In our
attack, these metrics provide us with important insights of the ef-
fectiveness of our attack at a preliminary step. They allow us to
determine how well we deduced relations between record values
early, before these relations are used to reconstruct the actual val-
ues. An interesting future direction is determining how precision
and recall could be used on other leakage abuse attacks. For exam-
ple, some of the attacks in Markatou et al. [53] construct a graph
representation of the underlying data structure used by the scheme.
Similarly, Markatou et al. [54] construct a graph representation
of the dominance relations between the record values in order to
reconstruct the order of the records.

LEAKAGE PrOFILES. Markatou et al. [53] attack a number of schemes
from Falzon et al. [24], achieving full database reconstruction against
all of them, and approximate database reconstruction against the
Linear scheme. The leakage of the schemes from [24] depends on
the instantiation of the underlying searchable encryption scheme.
The concrete instantiations presented in [24] employ SSEs that hide
the access pattern and leak the search and volume pattern (see
Table 1 in [24]). Thus, these instantiations are not vulnerable to our
attack. However, different concrete instantiations of the schemes
of [24] based on SSEs leaking the access pattern would be vulnera-
ble to our attack, albeit more efficient in practice than the concrete
instantiations of [24].

Comparing our attack with the ones from [53], we note that the
attacks in [53] (with the exception of the Linear attack) require
access to all possible queries and yield full database reconstruction,
whereas our attack works after observing much fewer queries and
yields approximate database reconstruction. Additionally, the at-
tacks in [53] are tailored to the class of range schemes built from
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range-supporting data structures and to a specific concrete instan-
tiation of them (e.g., range tree with best range cover), while our
attack is general-purpose and can be launched on any range scheme
without customization. This means that in addition to being able
to exploit the geometric nature of the queries, Markatou et al. [53]
can also exploit knowledge of the data structure and its querying
algorithm. Finally, we believe that our leakage amplification tech-
nique could accelerate the attacks from [53], especially the Linear
attack. Their Linear attack achieves approximate database recon-
struction by exploiting range queries of prime size. Our leakage
amplification technique could generate more prime-sized queries
for the attack by intersecting the observed queries. The effective-
ness of this technique will of course depend on the distribution of
the queries.

MiticaTioN TECHNIQUES. Mitigating our attack can be tricky. Our
attack depends intrinsically in exploiting range queries of size two.
Hence, a natural mitigation technique would be to not respond to
any queries of size two. Applying this restriction naively, would still
allow us to deploy our attack by using the leakage amplification
technique and generating such queries ourselves. However, the
mitigation could be more sophisticated.

Following [24], we can use a tree-based construction where we
stop the tree earlier than the leaf nodes. For example, stop before
any ranges have size smaller than 4. In this case, any responses
must correspond to ranges greater than 4. Additionally, any inter-
sections of responses also must correspond to ranges greater than 4.
With this approach, more granular information is not stored in the
encrypted database. This approach is equivalent to making the do-
main coarser. However, in this case, the attacker can still apply our
technique to the coarser domain and reconstruct a coarser database.

9 CONCLUSION

Understanding access pattern leakage from range queries and how it
can lead to database reconstruction attacks is an important problem
with a long line of research. The first papers in the area showed
how to reconstruct one-dimensional databases. Then, came attacks
on two-dimensional databases, which are much more difficult to
reconstruct. We are the first to reconstruct a d-dimensional database
solely from access pattern leakage. We also show that the practically
relevant class of dense databases are especially vulnerable to attacks.
Our work introduces a systematic technique for expanding leakage
by inferring responses to queries not issued. We introduce using
graph drawing methods for database reconstruction.

There are a number of open problems prompted by our work.
It would be interesting to further explore attacks against sparse
d-dimensional databases, as our attacks work best against dense
ones. There is strong need for mitigation techniques. Our attacks
exploit local information (responses of size 2). It is unclear how
to restrict access to these responses, accounting for the leakage
amplification, while maintaining usability. A systematic exploration
of other graph drawing methods in addition to the development of
new graph drawing techniques for leakage-abuse attacks is another
open problem. Finally, it is important to explore how exploitable
volume leakage is from multidimensional range queries.
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