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ABSTRACT
The increasing importance of graph databases and cloud storage
services prompts the study of private queries on graphs.We propose
PathGES, a graph encryption scheme (GES) for single-pair shortest
path queries. PathGES is e"cient and mitigates the state-of-the-
art attack by Falzon and Paterson (2022) on the GES by Ghosh,
Kamara, and Tamassia (2021), while only incurring an additional
logarithmic factor in storage overhead. PathGES leverages a novel
data structure that minimizes leakage and server computation.

We generalize what it means for one leakage function to leak
less than another by de#ning a relation with respect to a family
of query sequences and show that our scheme provably leaks less
than the GKT scheme when all queries have been issued. We com-
plement our security proof with a cryptanalysis that demonstrates
an information-theoretic gap in the size of the query reconstruc-
tion space of our scheme as compared to the GKT scheme and
provide concrete examples of the gap for several graph families.
Our prototype implementation of PathGES is e"cient in practice
for real-world social network and geographic data sets. In compari-
son with the GKT scheme, PathGES has the same response size on
average and up to 1.5x faster round-trip query time.
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1 INTRODUCTION
Graphs model data in numerous large-scale real-world applications
ranging from fraud detection to biological networks to recommen-
dation systems. Plaintext graph databases have consequently been
heavily studied andwidely deployed in industry including Facebook
Tao [65], Amazon Neptune [1], GraphDB [56], and Neo4j [54].

When a graph database is outsourced to a cloud service, one
naive solution for privacy is to upload the encrypted database and
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download it each time a query is issued. An alternative solution is
to use strong, but computationally expensive cryptographic tech-
niques such as fully-homomorphic encryption [25] or oblivious
RAM [30]. These approaches are either bandwidth ine"cient or not
yet scalable, which begs the question of whether e"cient server-
side query processing on an encrypted graph is possible.

Chase andKamara introduced structured encryption (STE) [14]
as a generalization of searchable symmetric encryption (SSE) [3,
6, 9, 10, 14, 17, 26, 34, 35, 53, 64]. STE enables the encryption of
structured data such that the data can be privately queried in sub-
linear time. STE gains its e"ciency by sacri#cing security to an
extent: these schemes leak some information about the queries
or underlying data. Security of STE is typically proven using the
real-ideal paradigm, which states that the scheme does not leak any
information beyond some well-de#ned leakage function. A long
line of work has shown that such leakage can be detrimental to the
security of schemes supporting key-word search (e.g., [8, 18, 57])
and range queries (e.g.[22, 31, 36, 39–41, 50]), emphasizing the im-
portance of cryptanalyzing proposed schemes.

A graph encryption scheme (GES) is a form of STE that en-
ables one to encrypt a graph, outsource it to an untrusted server,
and then process queries over the encrypted graph. These schemes
are e"cient, often incurring only a constant overhead over plain-
text variants. Our understanding of GESs is still in its infancy, and
existing schemes typically support only a single query type, such as
adjacency queries [14], approximate shortest distance queries [51],
or single-pair shortest path queries [27].

A single-pair shortest path (SPSP) query on a graph𝐿 takes
as input a pair of vertices, 𝑀 and 𝑁 , of 𝐿 and outputs a shortest
path between 𝑀 and 𝑁 . SPSP queries have important applications to
social network analysis, routing, resource management, and biol-
ogy [68]. To support SPSP queries, one could use the trivial solution
of running the all-pairs-shortest-paths algorithm on 𝐿 , computing
a dictionary that maps each query to the corresponding shortest
path, and then using a standard encrypted multimap scheme (such
as [9]) to encrypt the dictionary. Although this approach is straight-
forward to implement and o!ers optimal bandwidth complexity, the
storage overhead is quadratic. As a result, alternative GES construc-
tions have been proposed to reduce this storage overhead, while
still o!ering similar security guarantees. One such work is the GES
by Ghosh, Kamara, and Tamassia [27] – hence forth referred to as
the GKT scheme – which supports SPSP queries.

While there are a variety of leakage abuse attacks against STE
schemes supporting range queries, work on attacks against GESs is
limited. Assuming a passive server-side honest-but-curious adver-
sary that knows the plaintext graph, 𝐿 , and observes SPSP queries
issued on the GKT scheme for𝐿 , Falzon and Paterson [24] recently
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Scheme Scheme Complexity Attack Size of Query Reconstruction Space
Resp size Query time Space Citation 𝐿𝐿 𝑀𝐿 𝑁𝐿 𝑂𝐿

GKT [27] 𝑃 𝑃 𝑄2 [24] (𝑄!)𝐿+1 2𝐿/2 1 →
(
2
7𝐿↑2↓𝐿+4

4

)

PathGES 2𝑃 log𝑄 + 2𝑃 𝑄2 log𝑄 – (𝑄2)! ↔ (𝑄!) log𝐿↑1 ↔ 𝑄
∏log(𝐿+1)↑3

𝑀=0 (2𝑀 !) ↔
( ↓

𝐿
4 !

) ↓
𝐿
2 𝐿

Table 1: Comparison of our PathGES scheme with the GKT scheme [27] for SPSP queries. Here, 𝑄 is the number of vertices of the graph, 𝑃 is the
length of the shortest path returned by a query, 𝐿𝐿 is the complete graph, 𝑀𝐿 is the line graph and 𝑁𝐿 is the “asymmetric star” with one central
vertex and log(𝑄 + 1) ↑ 1 incident paths of lengths 21, . . . , 2log(𝐿+1)↑1, and𝑂𝐿 is the grid graph of size

↓
𝑄 ↗ ↓

𝑄.

demonstrated an attack that aims at reconstructing the plaintext
queries issued by the client. Their attack is optimal in the absence
of auxiliary information. It recovers the plaintext queries up to
an equivalence set of queries that are indistinguishable from the
leakage. They show that this set can be as small as 3 to 5 queries
on real-world social network graphs.

We propose PathGES, a new GES supporting SPSP queries. Our
scheme has quanti#ably less leakage for a large class of graphs
than the GKT scheme and is designed in light of the attack of
Falzon and Paterson [24]. The key to our reduced leakage is our
new data structure for SPSP queries that minimizes leakage and
server computation. First, we compute the spanning shortest-path
trees rooted at each node in the graph 𝐿 that we wish to encrypt.
These trees are decomposed into edge-disjoint paths, which are
further processed into a set of fragments and stored in a sequence
of two encrypted multimaps.

Unlike in the GKT scheme, PathGES prevents a server-side ad-
versary from computing the query trees (trees that are isomorphic
to spanning trees of the underlying graph𝐿 and whose paths corre-
spond to the queried shortest paths) in all but trivial cases, and thus
defends against the #rst essential step of the attack in [24]. Infor-
mally, the query reconstruction space of a GES is the number of
unique assignments of plaintext queries to each issued query that
produces that same leakage. We characterize the query reconstruc-
tion space of our scheme and show that for many graph families,
the gap in the size of the query reconstruction space between our
scheme and the GKT scheme is at least super-polynomial in the
number of vertices in 𝐿 (See Table 1).

We generalize the order relation on leakage functions by Bost
and Fouque [5] to families of query sequences; our relation implies
an upper bound on the size of the query reconstruction space. We
then show that our scheme leaks less than the GKT scheme for
the family of query sequences in which each SPSP query has been
issued at least once. While this is a slightly weaker notion, we note
that many leakage functions are not directly comparable under
Bost and Fouque’s de#nition since the order relation on leakage
functions is a partial ordering [5]. This highlights the subtleties of
comparing two complex leakage functions.

Our scheme o!ers 𝑂 (𝑃2 log𝑃) storage overhead (vs. 𝑂 (𝑃3) for
the trivial solution). Compared to the GKT scheme, it o!ers a re-
duced leakage function at the expense of only a logarithmic factor
increase in storage and slightly longer setup times (i.e., at most
4.1↗ constant factor increase for the real-world datasets tested).
PathGES also achieves optimal asymptotic bandwidth complexity,
incurring no more than a 2x constant factor over the trivial solution.

We support our scheme with a proof of security, cryptanalysis,
and an implementation to demonstrate the scheme’s practicality
on real-world datasets. On average, the response size of PathGES
is similar to that of the GKT scheme, while its query time is up
to 1.5x faster for longer paths with the potential for further speed-up
through parallelism. In contrast, the GKT scheme’s query algorithm
cannot be parallelized due to its inherently sequential processing.

1.1 Prior work
S!"#$#%. Meng et al. [51] present three schemes that leverage
sketch-based distance oracles to support shortest distance queries.
Liu et al. [48] and Shen et al. [62] also use distance oracles to pre-
compute the shortest distances between queries; the former uses
order-preserving encryption for e"ciency at the expense of leaking
the orders of the distances at setup, and the latter only supports
constrained shortest path distance queries. Wang et al. [66] utilize
additive homomorphic encryption and garbled circuits to encrypt
graph data and support shortest distance queries, however, their
scheme relies on a third party, the proxy. Ghosh et al. [27] describe
a scheme based on the SP-matrix of the graph and whose setup
time, query time, and storage are asymptotically optimal. An attack
on this scheme was presented in [24].

Most recently, Chamani et al. [12] propose GraphOS; in contrast
to PathGES which preprocesses the shortest paths in a multimap
and then encrypts the data structure, GraphOS takes a more gen-
eral approach that uses a trusted server-side enclave and doubly-
oblivious primitives to access the vertices/edges of a graph and
execute graph queries in an online manner. Their scheme assumes
a di!erent threat model and leaks less information than our scheme,
at the expense of multiple expensive oblivious look-ups. As an exam-
ple, querying for the shortest path using GraphOS requires running
Dijkstra’s algorithm on the encrypted graph and the query time is
thus orders of magnitude larger than the standard multimap lookup
of our scheme (e.g., 102.5-103s for a graph with 213 nodes, com-
pared to 102.9-103.4𝑄s for a graph of 213.4 nodes for our scheme,
when run on broadly comparable hardware).

A number of STE schemes supporting other query types and
graphs have been described such as GES supporting top-𝑅-nearest
neighbors [47], STE for conceptual graphs [58], STE for knowledge
graphs [45], and dynamic STE for bipartite graphs [42, 46]. Solu-
tions for graph queries in other security models have also been
proposed, but are outside the scope of this work. These approaches
include SGX [20], private information retrieval [67], di!erential
privacy [61], and structural anonymization [7].
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A&&’!(%. Goetschmann [28] presents the #rst leakage abuse attack
on a GES, which succeeds against one of the schemes by Meng
et al. [51] by estimating distances between nodes of the graph
and then using this information to infer the issued queries. Falzon
and Paterson [24] give a query recovery attack against the GKT
scheme [27]. They show that a server-side adversary with knowl-
edge of the plaintext graph𝐿 and the leakage of certain queries can
recover the set of possible plaintext queries for each issued query.

1.2 Contributions
In this work, we let 𝐿 = (𝑆 , 𝑇) denote a graph, 𝑃 = |𝑆 | the number
of vertices, and𝑈 = |𝑇 | the number of edges. An SPSP query on
a graph can be answered online using a single-source shortest
path algorithm, such as Dijkstra’s algorithm which runs in time
𝑂 (𝑈 + 𝑃 log𝑃). This approach is very costly when multiple queries
are processed. To avoid such overhead, one can pre-process the
graph and store the shortest path information in a data structure
such as an SP-matrix [16] or distance oracle [15]. Existing attacks
are against GESs that use the SP-matrix or distance oracles. One
could instead use other pre-processing techniques for answering
SPSP queries e.g. [29]. However, a number of nearby nodes must
still be scanned; this could result in more leakage or require the use
of other cryptographic primitives and we leave this as future work.

We propose a new data structure that mitigates previous attacks.
This data structure enables our scheme to be non-interactive whilst
minimizing server computation, resulting in fast query time in
theory and practice. Let 𝐿 = (𝑆 , 𝑇) be the graph that we wish to
encrypt. At a high level, our GES works as follows. For each vertex
𝑁 ↘ 𝑆 we compute the shortest path tree rooted at 𝑁 whose paths
correspond to shortest paths in 𝐿 ; we denote this tree as 𝑉𝑅 . We
then decompose each tree 𝑉𝑅 into edge-disjoint paths.

We could stop here and store the disjoint paths, however, the
path returned might still have length 𝑂 (𝑃). Given a disjoint path 𝑊 ,
we extract subpaths of 𝑊 of lengths that are powers of two, called
canonical fragments. These fragments are stored in a multimap. A
second multimap associates SPSP queries with the identi#ers of
fragments used to assemble the shortest path for the given query.
The multimaps are encrypted using standard encrypted multimap
schemes. The fragments ensure that the bandwidth is asymptoti-
cally optimal and the indirection keeps storage costs down by only
storing each fragment once.

To query the graph, the server computes one lookup to learn
the identi#ers of the fragments and a second lookup to retrieve the
actual fragments. This is done non-interactively in one roundtrip be-
tween the client and server by using a response-revealing encrypted
multi-map (EMM) to encrypt the #rst multimap. Our approach is
computationally and bandwidth e"cient, and mitigates the attack
from prior work [24].

Our contributions can be summarized as follows:

• We present PathGES, a non-interactive GES for SPSP queries
with reduced query leakage. (Section 4)

• We describe a new data structure for responding to SPSP queries.
This data structure contributes to the enhanced security ofPathGES
whilst maintaining optimal bandwidth complexity. (Section 4)

• We introduce a generalized relation on leakage functions with
respect to a family of query sequences and prove that our scheme

leaks less than the GKT scheme for the family of query sequences
in which each SPSP query is issued at least once. (Section 5)

• We support our scheme with a thorough cryptanalysis and prove
that for several graph families, the size of the reconstruction space
of PathGES is strictly greater (by a superpolynomial factor) than
that of GKT when all queries have been issued. (Section 5)

• We evaluate the performance of PathGES on a number of real-
world datasets and show improved round-trip query time over
the GKT scheme. (Section 6)
All proofs of theorems and lemmas in this work can be found in

the full version [21].

2 PRELIMINARIES
N)&’&*)+. For an integer 𝑃, let [𝑃] = {1, 2, . . . ,𝑃}. We denote the
concatenation of strings 𝑋 and 𝑌 as 𝑋 | |𝑌. Given a set 𝑍 , we use
𝑎 ≃$𝑍 to denote that the element 𝑎 was sampled uniformly at
random from 𝑍 . We denote the security parameter using 𝑏 and
the state using st. We denote a function negligible in 𝑏 by negl(𝑏).
Unless otherwise stated, we write log𝑃 for log2 𝑃.
G,’-"%. A graph 𝐿 = (𝑆 , 𝑇) comprises of a set of vertices 𝑆 (of
size 𝑃) and a set of edges 𝑇 = 𝑆 ↗ 𝑆 (of size 𝑈). If the graph is
simple then the pairs of vertices in 𝑇 are unordered and if the
graph is directed, then the pairs of vertices in 𝑇 are ordered. A
tree 𝑉 = (𝑆 , 𝑇) is a graph that is connected and contains no cycles.
A rooted tree 𝑉 = (𝑆 , 𝑇, 𝑐 ) is a tree in which a special (“labeled")
node 𝑐 ↘ 𝑆 is singled out; we refer to 𝑐 as the root of the tree.

A single pair shortest path (SPSP) queries on a graph 𝐿 =
(𝑆 , 𝑇). An SPSP query is the evaluation of a function SPSP that
takes as input two vertices 𝑀, 𝑁 ↘ 𝑆 , and outputs a path 𝑊𝑆,𝑅 =
(𝑀,𝑑1, . . . ,𝑑𝑃 , 𝑁) of minimal length in 𝐿 if 𝑀 and 𝑁 are connected,
and outputs ⇐ otherwise. For simplicity, we assume connected
graphs, however, our scheme applies directly to general graphs.
D*!&*)+’,*#% ’+.M/0&*$’-%. A dictionary D is a map from a
label space L to a value space V. Amultimap is a generalization
of a dictionary in which each label may be associated with multiple
values. Formally, a multimap M is a map from a label space L to
the powerset of a value space 2V. If lab ⇒⇑ val then we write val ≃
D[lab]. We denote the assignment of val to lab as D[lab] ≃ val
(and correspondingly for multimaps).

2.1 Graph Encryption Scheme
D#1*+*&*)+ 1. A graph encryption scheme is a tuple of algo-

rithms GES = (KeyGen, Encrypt, Token, Search,Reveal) with the
following syntax:
• KeyGen is probabilistic; it takes a security parameter 𝑏 and outputs
a secret key 𝑒 .

• Encrypt is probabilistic; it takes a secret key 𝑒 and a graph 𝐿 and
outputs an encrypted database ED.

• Token takes a key 𝑒 and query 𝑓 and returns a search token tk.
• Search takes an encrypted database ED and a search token tk and
outputs a response resp.

• Reveal takes a key 𝑒 and response resp and outputs plaintext𝑈.

This is a purely syntactical de#nition. In practice, algorithms
KeyGen, Encrypt, Token, and Reveal are executed by the client, and
Search is executed by the server.
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RealGESA (1𝑇)

I+*&’0*2#(1𝑁)
1 : 𝑂 ≃ A
2 : 𝐿 ≃ GES.KeyGen(1𝑁)
3 : ED ≃ GES.Encrypt(𝐿,𝑂)
4 : return ED
3#,4(𝑈)
5 : tk ≃ GES.Token(𝐿,𝑈)
6 : return tk
F*+’0*2#(𝑉)
7 : return 𝑉

IdealGESA,S (1
𝑇)

I+*&’0*2#(1𝑁)
1 : 𝑂 ≃ A
2 : (𝑊, stL) ≃ LS (𝑂)
3 : (ED, stS) ≃ S(𝑊)
4 : return ED
3#,4(𝑈)
5 : (𝑊, stL) ≃ LQ (𝑂,𝑈)
6 : (tk, stS) ≃ S(𝑊)
7 : return tk
F*+’0*2#(𝑉)
8 : return 𝑉

Figure 1: Games RealGESA and IdealGESA,S .

A graph encryption scheme for SPSP queries GES is correct if
for all graphs 𝐿 = (𝑆 , 𝑇) and all SPSP queries 𝑓 = (𝑀, 𝑁) ↘ 𝑆 ↗𝑆 ,
if 𝑒 ≃ GES.KeyGen(1𝑇) and ED ≃ GES.Encrypt(𝑒,𝐿), then
𝑈 ≃ GES.Reveal(𝑒, resp) is a shortest path from𝑀 to 𝑁 in𝐿 where
tk ≃ GES.Token(𝑒,𝑓), resp ≃ GES.Search(ED, tk).
2.1.1 Security. Security of GESs is parameterized by a leakage
function L = (LS,LQ ) that speci#es an upper bound on the in-
formation leaked at setup (LS) and at query time (LQ ). We de#ne
security using the real-ideal paradigmwith respect to passive persis-
tent adversaries who execute the protocol honestly and who learn
the output of the leakage functions. Such adversaries include an
honest-but-curious server or a network adversary that has compro-
mised the communication channel. For the purpose of cryptanalysis
and to be comparable to previous attack works [24, 28], we are con-
cerned with query privacy, though we emphasize that the goal
of a GES is also to hide the graph. We assume that the adversary
knows or even chooses the graph 𝐿 and we wish to prevent the
adversary from inferring the plaintext queries from the leakage.
The public graph assumption is standard for schemes that support
private graph queries [27, 52, 61]. This setting is ideal for routing
scenarios in which the road network may be public (e.g., Google
Maps), but the routing information of users is sensitive.

D#1*+*&*)+ 2. Let GES be a graph encryption scheme and let
L = (LS,LQ ) be a tuple of stateful algorithms. We say that GES
is L-secure if for all polynomial-time adversaries A, there exists a
polynomial-time simulator S such that

| Pr[RealGESA (1𝑇) = 1] ↑ Pr[IdealGESA,S (1
𝑇) = 1] | → negl(𝑏) .

and games RealGESA (𝑏) and IdealGESA,S (𝑏) are de!ned as in Figure 1.

2.2 Encrypted Multimap Scheme
Encrypted multimap schemes are a fundamental building block of
our GES. They allow one to encrypt and outsource a multimap, and
then later query labels in the multimap. EMM schemes can be ei-
ther response-revealing or response-hiding. Informally, a response-
revealing scheme reveals the plaintext answer of a query to the
server whereas a response-hiding scheme does not.

D#1*+*&*)+ 3. A response-hiding encryptedmultimap (EMM)
scheme is a tuple of algorithms EMM-RH = (KeyGen, Encrypt,
Token, Get, Reveal) with the following syntax:

• KeyGen is probabilistic and takes a security parameter 𝑏, and
outputs a secret key 𝑒 .

• Encrypt is probabilistic and takes a key 𝑒 and multimapM, and
outputs encrypted multimap EM.

• Token takes a key 𝑒 and a label lab, and outputs a search token tk.
• Get takes a search token tk and an encrypted multimap EM and
returns response resp.

• Reveal takes a key𝑒 and response resp and returns a set of plaintext
values {val𝑋 }𝑋↘ [𝑌 ] .

A response-revealing EMM scheme EMM-RR comprises of
four algorithms (KeyGen, Encrypt, Token,Get) such that KeyGen,
Encrypt, and Token are as in De#nition 3 and Get instead takes as
input an encrypted multimap EM and a search token tk and returns
a set of plaintext values {val𝑋 }𝑋↘ [𝑌 ] . Our GES makes black-box use
of one response-revealing and one response-hiding EMM scheme.
We assume the storage complexity of the EMMs is linear in the
number of values in the plaintext multimap. We ignore the number
of bits needed to encode the actual values themselves as this is
typically smaller than the security parameter (which we can take
to be a large constant in practice).

Correctness requires that for all multimapsM and labels lab inM,
if 𝑒 ≃ EMM.KeyGen(𝑏), EM ≃ EMM.Encrypt(𝑒,M), then exe-
cuting EMM.Reveal(𝑒, resp) such that tk ≃ EMM.Token(𝑒, lab)
and resp ≃ EMM.Get(EM, tk), results in the outputM[lab].

2.2.1 Security. The security of an EMM scheme is also de#ned
using the real-ideal paradigm. The RealEMM

A and IdealEMM
A games

are the same as in Figure 1, except that the adversary picks M,
I+*&*’0*2# is executed using EMM.KeyGen and EMM.Encrypt, and
3#,4 is executed using EMM.Token.

2.2.2 Leakage Functions of EMMs. We consider EMM schemes
with the following standard leakage.
• Multimap size (Size): This setup leakage refers to the total
number of values in the multi-map. Formally, for a multimap M
with label space L, Size(M) = ∑

lab↘L |M[lab] |.
• Query pattern (QP): This reveals whether two queries are equal.
Let M be a multimap and lab1, . . . , lab𝑌 be a sequence of queries.
Then QP(M, (lab1, . . . , lab𝑌 )) = 𝑔 where 𝑔 is a 𝑅 ↗ 𝑅 matrix of
bits such that 𝑔[𝑕, 𝑖] = 1 if and only if lab𝑋 = lab𝑍 .

• Access pattern (AP): This reveals the individual values returned
for each query. Let M be a multimap and lab1, . . . , lab𝑌 be a se-
quence of queries. ThenAP(M, (lab1, . . . , lab𝑌 )) = (M[lab𝑋 ])𝑋↘ [𝑌 ] .

• Volume pattern (Vol): Reveals the number of values returned
per query. Let M be a multimap and lab1, . . . , lab𝑌 be a sequence
of queries. Then Vol(M, (lab1, . . . , lab𝑌 )) = ( |M[lab𝑋 ] |)𝑋↘ [𝑌 ] .
Our GES requires two EMM schemes, EMM-RR and EMM-RH;

EMM-RR is response-revealing to make the GES non-interactive
and EMM-RH is response-hiding for added security. For concrete-
ness, we assume EMM-RR to be (Size, (QP,AP))-secure and EMM-RH
to be to be (Size, (QP,Vol))-secure.

3 TECHNICAL BACKGROUND
The leakage function of the GKT scheme leaks the edges along
which two paths with the same destination vertex intersect. This
leakage is detrimental to the security of the queries and Falzon
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and Paterson [24] demonstrate how the plaintext queries can be
recovered from this leakage. Our goal is to reduce this leakage.

Let𝐿 = (𝑆 , 𝑇) be the graph that wewish to encrypt.We #rst com-
pute 𝑃 shortest path trees {𝑉𝑅}𝑅↘𝑎 e.g. using an all-pairs shortest
paths (APSP) algorithm: each tree𝑉𝑅 is rooted at a vertex 𝑁 ↘ 𝑆 and
the paths correspond to shortest paths in𝐿 . These trees are then de-
composed into edge-disjoint paths. Our scheme can be instantiated
using any algorithm that decomposes trees into edge-disjoint paths.
To concretize our schemes we employ a data-structure technique
called heavy-light decomposition (HLD) [63] to decompose the
trees (we describe the algorithm in detail in Appendix A). HLD is a
general and standard method for decomposing trees into disjoint
paths and answering graph queries. HLD is well-studied, easily
implementable, and o!ers good e"ciency guarantees, thus making
it a good candidate for deployment.

We start by proving that many common APSP algorithms output
collections of paths from which spanning rooted shortest path trees
can be computed. This is a necessary condition, since we must
apply HLD to a rooted tree.

D#1*+*&*)+ 4. Let 𝐿 = (𝑆 , 𝑇) be a graph and 𝑗 be a collection of
paths of 𝐿 . The graph induced by 𝑗 is de!ned as 𝐿 |𝑏 = (𝑆𝑏 , 𝑇𝑏 )
where 𝑆𝑏 = {𝑁 : 𝑁 ↘ 𝑘, 𝑘 ↘ 𝑊, 𝑊 ↘ 𝑗} and 𝑇𝑏 = {𝑘 : 𝑘 ↘ 𝑊, 𝑊 ↘ 𝑗}. By
de!nition, 𝑆𝑏 ⇓ 𝑆 and 𝑇𝑏 ⇓ 𝑇.

L#$$’ 5. Let 𝐿 = (𝑆 , 𝑇) be a graph and 𝑗 be the collection of
paths that results from running Floyd-Warshall on 𝐿 . 1 Let 𝑗𝑅 denote
the set of paths in 𝑗 that terminate at 𝑁 . Then for all 𝑁 ↘ 𝑆 , the graph
𝐿 |𝑏𝑂 forms a tree with 𝑁 as its root.

C),)00’,4 6. Let 𝐿 = (𝑆 , 𝑇) be a graph and 𝑗 the collection of
paths resulting from running Floyd-Warshall on 𝐿 . For any vertex
𝑁 ↘ 𝑆 , if two paths 𝑊, 𝑊 ⇔ ↘ 𝑗𝑅 coincide at a vertex 𝑀, then they must
coincide at each vertex along the path from 𝑀 to 𝑁 .

We denote tree 𝐿 |𝑏𝑂 as 𝑉𝑅 and refer to it as the single destina-
tion shortest path (SDSP) tree for 𝑁 in 𝐿 .

After computing 𝑃 SDSP trees, one for each 𝑁 in 𝑆 , our scheme
decomposes each tree into edge-disjoint paths using HLD. At a high
level, HLD works by labeling edges in a tree 𝑉 as either “heavy” or
“light” such that the light edges demarcate where an edge-disjoint
path ends and a new path starts. HLD guarantees that any path
in 𝑉 crosses no more than log𝑃 disjoint paths. Applying HLD to a
tree may, in the worst case, result in an edge-disjoint path of length
𝑂 (𝑃). This happens when most edges are heavy e.g. when 𝐿 is a
path. To address this, our scheme computes and stores what we call
the canonical fragments of each edge-disjoint path. The canonical
fragments of a path 𝑊𝑆,𝑅 are the subpaths ending at 𝑁 whose lengths
are powers of two. This allows us to optimize bandwidth at the
expense of a small additional overhead in storage.

D#1*+*&*)+ 7. Let 𝑊𝑆,𝑅 be a path padded up to the next smallest
power of 2 such that the padding vertices are pre-pended to 𝑀. Let
𝑊 ( 𝑍)𝑆,𝑅 denote the subpath comprised of the last 2𝑍 edges in 𝑊𝑆,𝑅 . The
canonical fragments of 𝑊𝑆,𝑅 are {𝑊 ( 𝑍)𝑆,𝑅 : 0 → 𝑖 → log2 |𝑊𝑆,𝑅 |}.

The dummy vertices should be clearly demarcated from the real
ones so that they can be #ltered out at decryption time. How this
1We prove this for the Floyd-Warshall algorithm, but this property holds for other
algorithms like those of Bellman-Ford and Dijkstra [16].

is done would depend on the low-level representation used for the
vertices. For example, one could label the vertices of𝐿 with integers
in [𝑃] and the dummy vertices with 0.

4 PATHGES: A GES FOR SPSP QUERIES
We now present PathGES, a GES for SPSP queries that leverages
indirection to ensure non-interactivity and reduce leakage. The
pseudocode can be found in Figure 2.

4.1 Scheme Description
4.1.1 High-level Description. Given a graph 𝐿 = (𝑆 , 𝑇), we com-
pute the set of SDSP trees {𝑉𝑅}𝑅↘𝑎 and decompose each tree into
disjoint paths (e.g., using HLD). We then encode the shortest path
information as a set of fragments which can be retrieved using a se-
quence of look-ups to two multimaps. The #rst multimapM1 maps
each query to a set of search tokens derived from the fragment iden-
ti#ers used to look up the corresponding canonical fragments in the
second multimap; this map is encrypted using a response-revealing
EMM scheme. The second multimap M2 maps each fragment iden-
ti#er to the respective canonical fragment; it is encrypted using a
response-hiding EMM scheme. We denote the encrypted versions
ofM1 andM2 as EM1 and EM2, respectively.

To issue query (𝑀, 𝑁) ↘ 𝑆 ↗ 𝑆 , the client computes a query-
speci#c search token tk𝑆,𝑅 which the server uses to retrieve the
token set 𝑉 from EM1. For each token tk ↘ 𝑉 , the server retrieves
the corresponding encrypted fragment from EM2 and adds it to the
response. By property of HLD, each shortest path is comprised of
no more than log𝑃 fragments and, thus, search requires at most
log𝑃 look-ups to EM2 (one look-up for each search token obtained
from EM1) to retrieve at most 2𝑙 edge where 𝑙 is the length of
the shortest path. Note that the 2x factor results from padding the
fragments up to the next power of 2. The server returns the set
of encrypted fragments to the client who then decrypts them to
recover the shortest path.

4.1.2 Formal description. KeyGen takes as input a security param-
eter 𝑏 and returns a pair of keys (𝑒1,𝑒2), one each for EM1 and
EM2, respectively.

Encrypt takes as input key 𝑒 = (𝑒1,𝑒2) and the graph 𝐿 =
(𝑆 , 𝑇) that the client wishes to encrypt. It initializes empty mul-
timapsM1 andM2. For each vertex 𝑐 ↘ 𝑆 it computes the SDSP tree
rooted at 𝑐 to obtain 𝑉𝑐 . For each 𝑉𝑐 , the client decomposes the tree
into edge-disjoint paths e.g. using the HLD algorithm (Algorithm 8).
We denote the decomposed tree as 𝑉𝑑

𝑐 .
Importantly, the disjoint paths are processed in a breadth #rst

search (BFS) manner, so that the multimap can be computed in one
traversal of each tree. For each path 𝑊𝑆,𝑅 in 𝑉𝑑

𝑐 , as it is discovered,
and for each canonical fragment 𝑊 ( 𝑍)𝑆,𝑅 of 𝑊𝑆,𝑅 , the client:
(1) Generates token tk ≃ EMM-RH.Token(𝑒2, (𝑐 ,𝑀, 𝑁, 𝑖)) using

the response-hiding EMM;
(2) Sets M2 [(𝑐 ,𝑀, 𝑁, 𝑖)] ≃ 𝑊 ( 𝑍)𝑆,𝑅 ;
(3) For each non-pad vertex𝑑 in 𝑊 ( 𝑍)𝑆,𝑅 \ 𝑊 ( 𝑍↑1)𝑆,𝑅 , sets M1 [(𝑑 , 𝑐 )] ≃

M1 [(𝑀, 𝑐 )] ↖ {tk}.
The key is that the fragments needed to reconstruct the shortest
path from 𝑀 to 𝑐 comprises the fragment from 𝑀 to 𝑁 , and the frag-
ments of the shortest path from 𝑁 to 𝑐 . Since 𝑉𝑑

𝑐 is processed in a
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1: // Generate secret key.
2: KeyGen(1𝑇)⇑ 𝑒
3: 𝑒1 ≃ EMM-RR.KeyGen(1𝑇)
4: 𝑒2 ≃ EMM-RH.KeyGen(1𝑇)
5: return (𝑒1,𝑒2)

6: // Compute the encrypted database.
7: Encrypt(𝑒,𝐿) ⇑ ED
8: Initialize multimapsM1 andM2
9: Parse (𝑒1,𝑒2) ≃ 𝑒
10: for 𝑐 ↘ 𝑆 do
11: Compute SDSP tree 𝑉𝑐 rooted at 𝑐 in 𝐿
12: 𝑉𝑑

𝑐 ≃ C)$-/&#H0.(𝑉𝑐 , 𝑐 )
13: for each subpath 𝑊𝑆,𝑅 ↘ 𝑉𝑑

𝑐 in BFS manner do
14: Let 𝑚 be the next power of 2 greater than |𝑊𝑆,𝑅 |
15: Pad 𝑊𝑆,𝑅 to length 𝑚
16: for 𝑖 ↘ [0, ↙log2 𝑚∝] do
17: // Compute fragment and add it toM2.
18: Let 𝑊 ( 𝑍)𝑆,𝑅 comprise the last 2𝑍 edges of 𝑊𝑆,𝑅
19: M2 [(𝑐 ,𝑀, 𝑁, 𝑖)] ≃ 𝑊 ( 𝑍)𝑆,𝑅
20: if 𝑖 = 0 then
21: 𝑛 ≃ 𝑊 (0)𝑆,𝑅

22: else 𝑛 ≃ 𝑊 ( 𝑍)𝑆,𝑅 \ 𝑊 ( 𝑍↑1)𝑆,𝑅

23: for non-pad vertex𝑑 in 𝑛 do
24: // Add tokenset of query (𝑑 , 𝑐 ) toM1
25: tk ≃ EMM-RH.Token(𝑒2, (𝑐 ,𝑀, 𝑁, 𝑖))
26: M1 [(𝑑 , 𝑐 )] ≃ M1 [(𝑁, 𝑐 )] ↖ {tk}
27: Permute M1 [(𝑑 , 𝑐 )]
28: PadM1 andM2 to 𝑃2 log𝑃 and 4𝑃2, respectively.
29: EM1 ≃ EMM-RR.Encrypt(𝑒1,M1)
30: EM2 ≃ EMM-RH.Encrypt(𝑒2,M2)

31: return (EM1, EM2)

32: // Compute search token.
33: TokenC(𝑒, (𝑀, 𝑁)) ⇑ tk
34: Parse (𝑒1,𝑒2) ≃ 𝑒
35: tk ≃ EMM-RR.Token(𝑒1, (𝑀, 𝑁))
36: return tk

37: // Look up shortest path.
38: SearchS(ED, tk) ⇑ resp
39: Initialize resp ≃⇐
40: Parse (EM1, EM2) ≃ ED
41: // Retrieve respective search tokens from EM1.
42: 𝑉 ≃ EMM-RR.Get(EM1, tk)
43: // Retrieve respective fragments from EM2.
44: for tk⇔ ↘ 𝑉 do
45: 𝑜 ≃ EMM-RH.Get(EM2, tk⇔)
46: resp ≃ resp ↖ {𝑜}
47: return resp

48: // Recover the shortest path.
49: RevealC(𝑒, resp)⇑ 𝑊
50: Parse (𝑒1,𝑒2) ≃ 𝑒
51: Initialize 𝑗 ≃ ′
52: // Decrypt each fragment.
53: for 𝑜 ↘ resp do
54: 𝑈 ≃ EMM-RH.Reveal(𝑒2, 𝑜)
55: Unpad𝑈
56: 𝑗 ≃ 𝑗 ↖ {𝑈}
57: // Process the collection of fragments.
58: Sort 𝑗 into path 𝑊 from 𝑀 to 𝑁
59: return 𝑊

Figure 2: Psuedocode for our scheme, PathGES, which supports single pair shortest path queries over an encrypted graph.

BFS manner,M1 [(𝑐 ,𝑀)] has already been computed. Each label in
M2 is associated with a set of values describing a canonical frag-
ment; each value consists of an edge in the fragment. How the
values are encrypted depends on the EMM scheme used.

Next, the multimaps are padded to prevent leaking informa-
tion about the underlying graph at setup. See Section 4.2 for a
discussion. M1 is padded up to 𝑃2 ∞log𝑃∈ entries where each entry
comprises of 𝑏 bits. One could implement this by adding su"-
ciently many dummy pairs to M1 such that each pair consists of
a single dummy value, e.g. the all-zero bit string of length 𝑏. In
M2, each fragment is stored as a set of edges; these edges form
the set of values to be encrypted by EMM-RH.M2 is thus padded
by adding su"ciently many dummy single-edge fragments until
the total length of the fragments (real and dummy) in the mul-
timap is 4𝑃2. If the vertices in 𝐿 are represented as integers in [𝑃],
then the edges of the dummy fragments can be encoded as the
pair (0, 0) (recall that EMM-RH uses randomized encryption). The
maps are encrypted to obtain EM1 ≃ EMM-RR.Encrypt(𝑒1,M1)
and EM2 ≃ EMM-RH.Encrypt(𝑒2,M2).

To query for (𝑀, 𝑁) ↘ 𝑆 ↗𝑆 , the client computes a search token
tk𝑆,𝑅 ≃ EMM-RR.Token(𝑒1, (𝑀, 𝑁)) which it sends to the server.
The server uses tk𝑆,𝑅 to look up the token set𝑉 inEM1 that is needed
to retrieve the corresponding encrypted canonical fragments in
EM2. The server initializes empty set resp and for each tk⇔ ↘ 𝑉
adds the encrypted fragment 𝑜 ≃ EMM-RH.Get(EM2, tk⇔) to resp.
Finally, resp is returned to the client who can then decrypt and sort
the fragments to recover the shortest path.

4.1.3 A remark on the use of Indirection. “Multimap chaining” was
#rst introduced by Chase and Kamara [14] and has been used in a
number of works to support various queries [11, 32, 55]. Using the
layered multimap approach to enable complex queries and reduce
storage costs is a standard technique in the structured encryption
literature. The technique uses at least two multimaps to index data
structures such that the tokens for accessing one multimap are
stored as values in another. Without this approach, our scheme
would require storing a copy of each fragment for each query that
the fragment corresponds to. Moreover, since we are able to encrypt
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the #rst multimap using a response revealing EMM scheme, we are
able to make query processing completely non-interactive.

4.2 Complexity and Correctness
The run time of Encrypt is upper bounded by the time needed to
compute the SDSP trees, which for general graphs takes time𝑂 (𝑃3).
Token entails a single call to the EMM-RR.Token. Our chosen im-
plementation of EMM-RH only requires two PRF evaluations [9].
Assuming use of HLD to decompose the trees, Search takes time
𝑂 (log𝑃 + 𝑙), since any shortest path results in at most 1 + log𝑃
look-ups to the EMMs to retrieve at most 2𝑙 edges. In the worst
case, the server must return 2𝑙 edges, where 𝑙 is the length of the
shortest path and so Reveal takes time 𝑂 (𝑙).

Encrypted multimaps EM1 and EM2 use 𝑂 (𝑃2 log𝑃) and 𝑂 (𝑃2)
space, respectively, for a total storage complexity of𝑂 (𝑃2 log𝑃). We
pad the multimaps up to the worst case size to prevent additional
leakage. In particular, M1 must be padded up to 𝑃2 ∞log𝑃∈ values
andM2 must be padded up to 4𝑃2 values. The upper bounds for the
sizes of M1 and M2 are met by the binary tree and the cycle graph,
respectively, and thus our bounds are tight.

T"#),#$ 8. Let𝐿 = (𝑆 , 𝑇) be a graph on 𝑃 vertices, 𝑏 be the secu-
rity parameter, and ED be the result of encrypting 𝐿 using PathGES
(Figure 2). Executing Encrypt on 𝐿 takes 𝑂 (𝑃3) time and produces
an encrypted database of size 𝑂 (𝑃2 log𝑃). Generating a token tk for
a query (𝑀, 𝑁) ↘ 𝑆 ↗𝑆 using Token requires 𝑂 (1) time, where tk is
of size 𝑂 (𝑏). Executing Search on tk and ED takes time 𝑂 (log𝑃 + 𝑙)
and produces a response resp of at most 2𝑙 encrypted edges, where
resp decrypts to the shortest path from 𝑀 to 𝑁 in 𝐿 and where 𝑙 is the
length of the queried shortest path. Reveal runs in 𝑂 (𝑙) time.

4.3 Leakage
The leakage of PathGES is a function of the leakage of the

underlying EMMs. For concreteness, we assume EMM-RR to be
(Size, (QP,AP))-secure and EMM-RH to be to be (Size, (QP,Vol))-
secure. Recall that the EMM schemes’ Encrypt algorithms are prob-
abilistic by de#nition and repeated values are not leaked at setup.
S#&/- 0#’(’5#. At setup, the scheme leaks the size of the EMMs,
which is a function of 𝑃. We thus have that

LS (𝐿) = 𝑃.

3#,4 0#’(’5#.Given a sequence of𝑅 SPSP queries, PathGES leaks
whether two queries are equal, whether two (encrypted) fragments
in a response are equal, and the length of each fragment. The query
pattern (QP) of a sequence of SPSP queries 𝑓1, . . . ,𝑓𝑌 is a matrix
𝑔 ↘ {0, 1}𝑌↗𝑌 such that 𝑔[𝑕, 𝑖] = 1 if and only if 𝑓𝑋 and 𝑓 𝑍 have the
same source and destination vertex.

Our scheme also leaks which canonical fragments co-occur in the
response of each query. In their work on range search schemes over
encrypted multi-attribute data, Falzon et al. [23] identi#ed a form of
leakage called structure pattern, i.e. the co-occurrence of subqueries
used to respond to each range query. The co-occurrence of sub-
ranges in the schemes of [23] is analogous to the co-occurrence of
fragments in our scheme, and thus a similar idea applies here.

Structure pattern can be viewed as a function of the underlying
EMM’s leakage and the underlying search data-structure. Formally,

the structure pattern (Str) of a sequence of SPSP queries𝑓1, . . . ,𝑓𝑌
can be viewed as a weighted bipartite graph 𝑝 = (𝑞 ↖ 𝑟 , 𝑇 ⇔) where
𝑞 is the set of possible queries, 𝑟 is the set of fragment identi#ers,

𝑇 ⇔ =
{
(𝑓, 𝑠 ) ↘ 𝑞 ↗ 𝑟 : Encrypted fragment 𝑠 is in

the response of query 𝑓.

}

and for each (𝑓, 𝑠 ) ↘ 𝑇 ⇔,𝑑𝑘𝑕𝑡𝑢𝑙 ((𝑓, 𝑠 )) is the length of 𝑠 . As queries
are issued, the adversary can update 𝑝 online.

In total, the query leakage of PathGES (Figure 2) is

LQ (𝐿, ((𝑀1, 𝑁1), . . . , (𝑀𝑌 , 𝑁𝑌 ))) = (QP, Str) .

D*%!/%%*)+ )+ 0#’(’5#. Similar to previous schemes, the setup
leaks the number of vertices in the graph. The query leakage of our
scheme, however, is more nuanced. It leaks the set of encrypted
canonical fragments. SinceM2 is encrypted using a response-hiding
EMM scheme that leaks query and volume pattern, the encrypted
fragments only leak the search pattern (as a result of retrieving
each fragment) and the length of the fragment. Consider queries
𝑓 = (𝑀, 𝑁) and 𝑓⇔ = (𝑀 ⇔, 𝑁 ⇔) associated with shortest paths 𝑊 and 𝑊 ⇔.
If the responses to 𝑓 and 𝑓⇔ have one or more fragments in common,
then the following conditions hold:

(1) The destination nodes 𝑁 and 𝑁 ⇔ are equal.
(2) For some edge-disjoint path 𝑊 ⇔⇔ in 𝑉𝑅 and integer 𝑚 , 𝑊 and 𝑊 ⇔

intersect 𝑊 ⇔⇔ in ↔ ↙𝑚/2∝ and → 𝑚 edges.
Note that condition (2) implies the underlying shortest paths inter-
sect in at least one edge.

In Figure 3d we depict the (encrypted) fragments produced when
encrypting the graph in Figure 3a with PathGES and querying all
queries with destination vertex 1. The path of length 3 is padded up
to length 4 (padding nodes are denoted with a dotted border). The
fragments’ search tokens are permuted before being adding to M1.

4.4 Security
T"#),#$ 9. Let EMM-RR and EMM-RH be (Size, (QP,AP))-

secure and (Size, (QP,Vol))-secure encrypted multimap schemes, re-
spectively. If PathGES (Figure 2) is instantiated using EMM-RR and
EMM-RH, then it is (LS,LQ )-secure according to De!nition 2 for
(LS,LQ ) = (𝑃, (QP, Str)).

5 CRYPTANALYSIS
We now describe the theoretical limitations of what an adversary
can learn from our scheme’s leakage. Our scheme mitigates the
attack described in [24], including for families of graphs that had
resulted in full query recovery.

Leakage abuse attacks can broadly be categorised into query
recovery attacks and database reconstruction attacks. In the context
of GESs, the goal of query recovery is to infer the plaintext value
of each issued query given the graph and the query leakage. The
goal of database reconstruction is to infer the graph given the setup
leakage and the query leakage of a set of 𝑅 queries. Because the goal
of our scheme is query privacy and we assume the graph is public,
we analyze the success of an attacker attempting query recovery
against our scheme. The adversary may attempt the attack using
all possible queries or a subset of them. The following de#nitions
have been adapted from [24] to follow the convention of [38].
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(a) Original graph𝑂 . (b) SDSP Tree𝑒1. (c) Decomposition of𝑒1. (d) Our scheme’s leakage.

Figure 3: (a) Graph𝑂 , (b) its SDSP tree rooted at vertex 1, and (c) the SDSP tree decomposed into edge-disjoint paths. The GKT scheme leaks trees
that are isomorphic to the SDSP trees. In contrast, our scheme only leaks edge-disjoint paths. In particular, it leaks (d) the set of minimal-length
canonical fragments comprising the queried path. These fragments may contain padding to pad lengths up to the next largest power of two;
padding vertices are depicted with a dotted border. Distinct queries may correspond to the same fragments.

D#1*+*&*)+ 10. (Structural Equivalence) Let 𝐿 = (𝑆 , 𝑇) be a
graph, and 𝑣 and 𝑣 ⇔ be sequences of SPSP queries on 𝐿 of the same
length. We say that𝑣 and𝑣 ⇔ are structurally equivalent if there is
a permutation 𝑤 : 𝑆 2 ⇑ 𝑆 2 such that LQ (𝐿, 𝑤 (𝑣)) = LQ (𝐿,𝑣 ⇔),
where 𝑤 (𝑣) replaces each query 𝑓 of sequence 𝑣 with 𝑤 (𝑓).

We say that 𝑤 is consistent with the leakage LQ (𝐿,𝑣).
In other words, the sequence of queries 𝑤 (𝑣) could have pro-

duced the observed leakage.

D#1*+*&*)+ 11. (QR) Let 𝐿 = (𝑆 , 𝑇) be a graph, 𝑣 be a sequence
of SPSP queries, and ω be the set of all permutations consistent with
L(𝐿,𝑣). The adversary achieves query recovery (QR) when it com-
putes and outputs a mapping: 𝑓 ⇒⇑ {𝑤 (𝑓) : 𝑤 ↘ ω} for all 𝑓 ↘ 𝑆 2.

The goal of query recovery is to compute the set of all possible
queries for each query issued by the client.

D#1*+*&*)+ 12. (Query reconstruction space) Let𝐿 = (𝑆 , 𝑇) be a
graph and 𝑣 be a sequence of SPSP queries. The query reconstruc-
tion space of L(𝐿,𝑣) is the set of all permutations, ω, consistent
with L(𝐿,𝑣). The size of the query reconstruction space is |ω |.

We denote the query reconstruction space of a graph encryption
scheme GES with respect to a graph 𝐿 and query sequence 𝑣 as
QRSGES (𝐿,𝑣).

5.1 Comparing Leakage Functions
A natural question is to ask whether PathGES “leaks less” than
GKT. Bost and Fouque [4, 5] introduced the notion of order relation
on leakage which states that a leakage function L leaks less than
L⇔, denotedL ∋Q L⇔, if and only if for any sequence of queries the
output of L can be simulated using the output of L⇔. See [4, 5] for
a formal statement; a similar notion was independently introduced
by Kamara et al. [33].

Bost and Fouque note that ∋ is a partial order on the set of leakage
functions. Many leakage functions are not directly comparable
using this relation, as is the case for our scheme and GKT. Recall
that the GKT scheme leaks “query trees” that are isomorphic to the
plaintext SDSP trees. If only a subgraph of the query tree has been
observed (i.e. only a fraction of SPSP queries have been issued),
then one cannot compute an HLD decomposition of the tree and
transform the GKT’s leakage into the leakage of PathGES.

Conversely, our scheme dis-associates paths that do not share
an edge, so the full query tree is often not recoverable using the
observed leakage. Depending on the set of queries issued and the
decomposition algorithm used, our scheme may, however, leak
some information that the GKT scheme does not. For example,
if the server observes a response comprising of two encrypted
fragments each of size one, then it can infer that this path of length
2 is connected to a larger subtree; this is a consequence of HLD.
The leakage of our scheme is thus, in part, a function of the chosen
decomposition algorithm. Di!erent tree decomposition algorithms
would provide di!erent security and e"ciency trade-o!s. Exploring
this space will be interesting future work.

Although we cannot transform the leakage of GKT to that of
PathGES for any sequence of queries, we can prove a weaker form
of the statement when all possible queries have been issued. Many
prior attacks assume that all possible queries have been issued
(e.g., [22, 24, 31, 36]) and we believe that proving our scheme’s
leakage is less than that of GKT’s in the setting when all queries
have been issued is an important #rst step. Below, we introduce a
generalization of the order relation on leakage functions [5].

D#1*+*&*)+ 13. De!ne two leakage functions for a GES scheme
as L = (LS,LQ ) and L⇔ = (L⇔

S,L
⇔
Q ). We say that L leaks

less than L⇔ under a family of query sequences Q (denoted
L ∋Q L⇔) if there exists a pair of polynomial-time algorithms
T = (TSetup, Tquery), such that, for any graph 𝐿 and any query
sequence 𝑣 ↘ Q,
• LS (𝐿) = TSetup(L⇔

S (𝐿)) and
• LQ (𝑣) = Tquery(L⇔

Q (𝐿,𝑣)).

Relation ∋Q is equivalent to relation ∋ in [5] when Q is the
family of all query sequences.

L#$$’ 14. Let Q be a family of query sequences. Relation ∋Q is
a partial ordering on the set of leakage functions with respect to Q.

Given any family of query sequences Q, the order ∋Q between
leakage functions implies a reverse size relation between the cor-
responding query reconstruction spaces. This theorem extends to
database reconstruction and to all structured encryption schemes,
but we state it with respect to the query reconstruction space of
GESs since that is the focus of this work.
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T"#),#$ 15. Let GES and GES⇔ be GESs with leakage functions
L and L⇔, respectively. Let Q be a family of query sequences. If
L ∋Q L⇔, then for all 𝑣 ↘ Q

|QRSGES (𝐿,𝑣) | ↔ |QRSGES⇔ (𝐿,𝑣) |.

A+ /--#, 6)/+. )+ &"# 0#’(’5# )1 P’&"GES. We now formally
describe the leakage of the GKT scheme. We assume that the GKT
scheme is instantiated using a response-revealing EMM scheme
that is (Size, (QP,AP))-secure. At setup, the GKT scheme leaks the
number of pairs of vertices that are connected:

LGKT
S (𝐿) = |{(𝑀, 𝑁) ↘ 𝑆 ↗𝑆 : 𝑀 and 𝑁 connected in 𝐿}|

For connected graphs, this is equal to the number of vertices. At
query time, the scheme leaks the query pattern (QP), the length of
the shortest path 𝑙 , and the path intersection, denoted as PIP (as
a consequence of the AP). In words, PIP reveals to the server the
edges that intersect along the shortest path. See [27] for a more
detailed description of the leakage. All together, we have that

LGKT
Q (𝐿, (𝑓1, . . . ,𝑓𝑌 )) = (QP, PIP, t)

where t = (𝑙1, . . . , 𝑙𝑌 ) is a vector and 𝑙𝑋 is the length of the shortest
path returned in response to query 𝑓𝑋 .

T"#),#$ 16. Let 𝐿 be a connected graph and let Q be the family
of query sequences in which each SPSP query is issued at least once.
Let LGKT and LPathGES denote the leakage functions of GKT [27]
and PathGES (Figure 2), respectively. Then LPathGES ∋Q LGKT.

Given the query leakage of the GKT scheme when all queries
have been issued, one can construct 𝑃 query trees {𝑥𝑋 }𝑋↘ [𝑄] . There
exists a 1-1 correspondence between {𝑥𝑋 }𝑋↘ [𝑄] and the SDSP trees
{𝑉𝑋 }𝑋↘ [𝑄] such that each pair of trees is isomorphic [24]. Our trans-
former T thus takes as input the leakage of GKT and computes
these query trees. From here, it can compute the edge-disjoint path
decomposition of each tree and the set of fragments for each path
in the decomposition.

C),)00’,4 17. Let 𝐿 be a connected graph and Q be the family
of query sequences such that each SPSP query appears at least once.
Then for any sequence 𝑣 ↘ Q, it holds that |QRSPathGES (𝐿,𝑣) | ↔
|QRSGKT (𝐿,𝑣) |.

Since many schemes are not comparable under ∋, Kornaropoulos
et al. [38] propose leakage inversion as a way to quantify the privacy
of schemes. They show how the size of the reconstruction space
and the distance of its members from the original plaintext database
are good metrics for quantifying scheme privacy. In the following
section, we characterize the query reconstruction space of our
PathGES scheme and show that its size is super-polynomially larger
than that of the GKT scheme for various graph families.

5.2 QR from the GKT scheme’s leakage
In remainder of this section, we assume that every possible query
in𝑆 ↗𝑆 has been issued once. This represents the strongest passive
adversary without auxiliary information. Yet even in this strong
setting, we demonstrate an information theoretical gap between
what the adversary can reconstruct from the leakage of PathGES
versus that of the GKT scheme.

Recall that if all possible SPSP queries are issued to the GKT
scheme, then an adversary can construct a set of 𝑃 query trees;
these query trees are one-to-one with the SDSP trees. Each SDSP
tree is rooted at a vertex in 𝑆 and the paths correspond to the
shortest paths whose destination is the root. Thus, queries can be
recovered up to the possible isomorphisms that exist between the
query trees and the SDSP trees. This notion is formalized as follows.

L#$$’ 18 ([24]). Let𝐿 = (𝑆 , 𝑇) be a graph encrypted using GKT,
{𝑉𝑐 }𝑐 ↘𝑎 be the SDSP trees of 𝐿 , 𝑣 be any sequence in which each
SPSP query is issued once, and 𝑓 = (𝑀, 𝑁) be a query in 𝑣 . If there
exists a vertex 𝑑 ↘ 𝑆 such that there is a rooted tree isomorphism
𝑦 : 𝑉𝑅 ⇑ 𝑉𝑓 , then there exists an assignment 𝑤 : 𝑆 2 ⇑ 𝑆 2 consistent
with the leakage LQ (𝐿,𝑣) such that 𝑤 (𝑓) = (𝑦 (𝑀),𝑑).

What this theorem tells us, is that queries can be recovered up to
the possible isomorphisms between the query trees and the SDSP
trees. If there only exists one possible matching between the query
trees and the SDSP trees and there only exists one isomorphism
between each pair of trees, then queries can be uniquely recov-
ered. This strong form of recovery is called full query recovery
(FQR) [24]. Falzon and Paterson note that there exist families of
trees for which FQR is always possible. One such family is the
family of graphs that have one central vertex 𝑁 and paths of distinct
lengths incident to 𝑁 . Figure 4 depicts such a graph.

5.3 QR from the PathGES scheme’s leakage
In contrast to the GKT scheme, PathGES decomposes each SDSP
tree into edge-disjoint paths before encrypting the paths using a
response hiding EMM. As a result, an adversary cannot necessarily
associate the leakage of SPSP queries with the same destination
vertex whose paths are edge disjoint. Speci#cally, for each SDSP tree
𝑉𝑐 , an adversary can at most recover the queries up to isomorphism
of the trees rooted at the children of 𝑐 .

For a concrete example, consider the graph in Figure 4 and the
leakage resulting from the SPSP queries (1, 2), (5, 2), and (4, 3). The
GKT scheme leaks the fact that paths 𝑊1,2 and 𝑊5,2 share the same
destination vertex and that path 𝑊4,3 has a di!erent destination. In
contrast, our scheme does not leak anything beyond the lengths of
their respective fragments and which fragments appear together.
All three queries result in fragments of the same length and these
fragments cannot be distinguished.

We now formally prove that QR is only possible up to isomor-
phisms of subtrees rooted at the children of the SDSP trees’ roots.

L#$$’ 19. Let 𝐿 = (𝑆 , 𝑇) be a graph encrypted using PathGES,
{𝑉𝑐 }𝑐 ↘𝑎 be the SDSP trees of 𝐿 , 𝑣 be any sequence in which each
SPSP query was issued once, and 𝑓 = (𝑀, 𝑁) be a query in 𝑣 . If there
exists a vertex 𝑑 ↘ 𝑆 and children 𝑜 and 𝑧 of the roots in 𝑉𝑅 and
𝑉𝑓 , respectively, such that there is a rooted tree isomorphism 𝑦 :
𝑉𝑅 [𝑜]↖(𝑜, 𝑁) ⇑ 𝑉𝑓 [𝑧]↖(𝑧,𝑑), then there exists an edge-disjoint path
decomposition of {𝑉𝑐 }𝑐 ↘𝑎 and assignment 𝑤 : 𝑆 2 ⇑ 𝑆 2 consistent
with the leakage LQ (𝐿,𝑣) such that 𝑤 (𝑓) = (𝑦 (𝑀),𝑑).

If there are two isomorphic subtrees𝑉𝑅 [𝑜] and𝑉𝑓 [𝑧], then there
is a set of queries of the form (𝑋,𝑌), 𝑋 ↘ 𝑉𝑅 [𝑜] that is indistinguish-
able from a set of queries (𝑋⇔,𝑌 ⇔), 𝑋⇔ ↘ 𝑉𝑓 [𝑧]. In other words, if
there exists two isomorphic subtrees from non-isomorphic SDSP
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Figure 4: A comparison of the leakage of GKT versus PathGES. The attack in [24] against the (a) original graph results in full query recovery i.e.,
there exists a single isomorphism between each (b) SDSP tree and the (c) query trees computed from the GKT scheme’s leakage. Thus each
query can be uniquely recovered. In contrast, our scheme results in numerous fragments, with distinct queries potentially returning the same
fragment. For example, queries (6, 3) and (7, 3) result in the same response and hence cannot be distinguished.
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Figure 5: A partition of indistinguishable queries when encrypting
the graph in Figure 4(a) with our scheme. The leakage induced by
our scheme is depicted in Figure 4(d).
trees, the queries associated with these subtrees cannot be distin-
guished. In contrast, the queries would be trivially distinguish-
able given leakage from the GKT scheme since the query trees
would be non-isomorphic. Thus, many queries that would other-
wise be uniquely recoverable when using the GKT scheme, cannot
be uniquely identi#ed when using PathGES.

One important example is the asymmetric star which we recall
in Figure 4; whereas full query recovery can be achieved using
the leakage from GKT, our scheme’s leakage results in several
indistinguishable queries and strictly less leakage (see Figure 5).

The implication of Lemma 19 is that, in many cases, it is not
possible to construct complete query trees. This is especially true in
graphs in which the roots of the SDSP trees and their descendents
induce isomorphic subtrees. Recall, that the #rst step of the attack
in [24] is to construct the complete query trees from the query
leakage of the GKT scheme. Each query tree is isomorphic to some
spanning shortest path tree in 𝐿 and, importantly, computing such
isomorphisms between rooted trees can be done so e"ciently. In
contrast to GKT, our use of edge-disjoint fragments ensures that
PathGES does not leak the entire query tree except in extreme cases
(e.g., the complete graph on 2 nodes). Instead, it leaks a collection

of fragments, many of which are computationally indistinguishable
without auxiliary knowledge (Figure 5).

5.4 Reconstruction Space
We now make some more general observations about the recon-
struction space of our scheme.

L#$$’ 20. Let𝐿 = (𝑆 , 𝑇), and !x a set of SDSP trees for𝐿 and a
decomposition of each tree into canonical fragments. For each canoni-
cal fragmentof length 𝛥, there are at least 𝛥/2 equivalent queries.

C),)00’,4 21. Let 𝑟 be the set of all fragments. Then the recon-
struction space is of size at least

∏
𝑔 ↘𝑕 , |𝑔 |↔2 ( |𝑠 |/2)!

For concreteness, we compute the sizes of the reconstruction
spaces of the GKT scheme and PathGES for the following graph
families: (1) 𝑒𝑄 , the complete graph on 𝑃 vertices, (2) 𝛥𝑄 , the line
graph on 𝑃 vertices, (3) 𝑥𝑄 , the “asymmetric star” with one central
vertex and log(𝑃+1)↑1 incident paths of lengths 21, . . . , 2log(𝑄+1)↑1,
and (4) 𝐿𝑄 , the grid graph of size

↓
𝑃 ↗ ↓

𝑃. The results are sum-
marized in Table 1 and in Theorems ?? and ??. The reconstruction
space sizes for the GKT scheme are exact or upper bounds, and
the sizes for our scheme may be lowerbounds. For all four graph
families, the gap of the query reconstruction spaces is of size at least
super-polynomial in 𝑃. Thus, when all queries are issued, PathGES
leaks strictly less than GKT for these families.

We note that our cryptanalysis and results in Table 1 assume
that all queries have been issued at least once. However, notice
that Lemma 20 and Corollary 21 apply even when fewer than all
queries are issued. In particular, unlike the GKT scheme, distinct
SPSP queries may result in the same response, thus making query
recovery more challenging.

The above discussion demonstrates that QR is a challenging
problem for many graphs and we now explain why we believe
this problem to be hard even for general graphs. The query recon-
struction space can be characterized by identifying queries with
equivalent leakage. To do this, we introduce the notion of a closure
graph 𝛩 for leakage L(𝐿,𝑣), where 𝐿 is a graph and 𝑣 is a se-
quence containing each SPSP query. We note that the assumption of
observing all queries implies a strong adversary in a contrived and
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unrealistic scenario; however, if even a strong adversary cannot
succeed, it suggests that a real world adversary cannot succeed
since it cannot observe as many queries.

Let the vertex set of 𝛩 be the set of fragment identi#ers 𝑟 ob-
served in the leakage. The pair (𝑠 , 𝑠 ⇔) ↘ 𝑟 ↗ 𝑟 is an edge in𝛩 if and
only if the fragments 𝑠 and 𝑠 ⇔ appear together in a response. Each
vertex 𝑠 ↘ 𝑟 is labeled with the length of the fragment 𝑠 . Each edge
(𝑠 , 𝑠 ⇔) is labeled with the number of distinct queries that the two
fragments appear in together.

Observe that this graph encodes information about what frag-
ments appear together and whether two fragments 𝑠 , 𝑠 ⇔ both ap-
pear in some response with another fragment 𝑠 ⇔⇔ (even if they
don’t directly appear in a response together). Two queries are dis-
tinguishable if and only if their fragments appear in non-isomorphic
components of the closure graph (here, we consider isomorphisms
that not only preserve edges, but also vertex and edge weights). For
a concrete example, consider queries (2, 6) and (5, 3) in Figure 4,
and their respective fragments 𝑠1 and 𝑠2. Although both 𝑠1 and
𝑠2 are of length 2, the fragment 𝑠1 is also returned as part of the
response of query (1, 6). Thus, 𝑠1 and 𝑠2 belong to non-isomorphic
components of the closure graph and they are thus distinguishable.

To compute the query reconstruction space using this approach,
an adversary must (1) compute the closure graph from the plaintext
graph, (2) construct the closure graph from the leakage, and (3)
#nd all possible isomorphisms between the two closure graphs and
derive the partition of equivalent queries. The graph isomorphism
problem is not known to be solvable in polynomial time for general
graphs, and the problem of determining whether an isomorphism
that preserves edges weights and vertex labels exists between two
graphs is at least as hard as the standard graph isomorphism prob-
lem. Generalizing further to the case where only a subset of queries
is observed or certain queries are issued multiple times, the problem
becomes one of #nding subgraph isomorphisms.

We expect closure graphs to be dense non-trees, since fragments
that appear together in the response of an SPSP query are in one-
to-one correspondence with nodes in the closure graph that induce
a clique. The graph isomorphism problem is a long standing open
question and seeing how graph isomorphism algorithms perform
on closure graphs of real world data sets is interesting future work.

Dataset
Graph Characteristics

|𝑎 | |𝑖 | d #
Comp.

Dia-
meter

Max Frag
Length

InternetRouting 35 323 0.543 1 2 2
CA-GrQc 46 1030 0.995 1 2 2

email-Eu-core 1005 16,706 0.0331 20 7 4
facebook 4039 88,234 0.011 1 8 4

p2p-Gnutella08 6301 20,777 0.001 2 9 8
p2p-Gnutella04 10,876 39,994 0.0006 1 10 8

Swiss 19,976 24,009 0.00012 1 311 512
Cali 21,693 21,693 0.00009 2 491 512

Table 2: Details about the real-world datasets used in our experi-
ments. |𝑎 | denotes the number of vertices, |𝑖 | the number of edges,
and 𝑗 = 2 |𝑖 |/( |𝑎 |2 ↑ |𝑎 |) the density of the graph.

6 EMPIRICAL EVALUATION
We now evaluate our scheme’s performance on real world datasets
and compare its performance to the GKT scheme [27].
E7-#,*$#+&’0 %#&/-. We implemented our scheme using Python
3.8.10 and ran our experiments on a compute cluster with 2U Rack-
mount Chassis, 64 Core AMD EPYC 7742 2.25GHz Processor, and
512GB DDR4 3200MHz ECC Server Memory. For comparison, we
implemented the GKT scheme. Both implementations used the
same compute node for the client and the server, so our results do
not include network latency.

Due to memory constraints imposed by the compute cluster,
we wrote the plaintext and encrypted multimaps out to SQLite
databases. Writing the EMMs to disk incurs signi#cant time over-
head compared to storing everything in main memory, but we
believe this is a better re$ection of what would happen in practice
for realistic work loads.
G,’-"%.We used the NetworkX library version 3.1 [19] to represent
and manipulate graphs. We used our own implementation of the
HLD algorithm (Figure 8).
C,4-&)5,’-"*! -,*$*&*8#%. The cryptographic primitives were
implemented using the Cryptography library version 42.0.5 [59].
For symmetric encryption we used AES in CBC mode with 16B
block size and key length; for cryptographic hash functions we
used SHA-256; for search token generation we used HMAC with
SHA-256. We implemented the encrypted EMMs of PathGES using
the response-revealing scheme of [9] for EMM-RR and a straight-
forward response-hiding modi#cation of this scheme for EMM-RH.
Encryption was parallelized across 20 cores.

6.1 Datasets
We evaluated our scheme on the same social network datasets as
Ghosh et al. [27] and Falzon and Paterson [24], along with two
geographical datasets: the Swiss Federal Railway timetable [60] and
the California road network [44]. See Table 2 for more details.

• InternetRouting [43]: A dataset from the University of Oregon
Route Views Project. A dense subgraph (𝑃 = 35) was extracted
using the dense subset extraction algorithm by Charikar [13] as
implemented by Ambavi et al. [2].

• Ca-GrQc [43]:Anetwork of the General Relativity andQuantum
Cosmology arXiv collaborations from January 1993 to April 2003.
A subgraph (𝑃 = 46) was extracted using dense subset extraction.

• email-EU-core [43]: A network of internal emails sent between
members of a large European research institution. We parsed the
data as a non-directed graph, i.e. an edge (𝑀, 𝑁) exists if either 𝑀
sent 𝑁 an email or vice versa.

• facebook [43]: A social network derived from Facebook friends
lists; it includes all edges from the ego networks collected.

• p2p-Gnutella [43]: Two datatsets depicting the Gnutella peer-
to-peer network from August 4 and 8 2002.

• Swiss [60]: A timetable of the Swiss Railway from December 13,
2015 to December 10, 2016 parsed as a graph [49]. We extracted
the largest component from this graph.

• Cali [44]: A dataset of the California Road Network. It was used
in prior works on range schemes e.g. [23, 50].
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Dataset
GKT PathGES

M
Size

EM
Size

Encryption
Time

Total
Time

M1
Size

M1
% Pad

EM1
Size

M2
Size

M2
% Pad

EM2
Size

Encryption
Time

Total
Time

InternetRouting 102.4KB 180KB 93.9ms 344ms 147KB 87.3 213KB 86KB 30.4 369KB 264ms 442ms
CA-GrQc 172KB 303KB 100ms 423ms 246KB 85.3 365KB 147KB 30.2 631KB 312ms 537ms

email-Eu-core 79.6MB 138MB 10.1s 21.8s 188MB 64.8 244MB 84MB 29.8 299MB 40.2s 64.5s
facebook 1.39GB 2.31GB 2.94mins 5.07mins 3.64GB 60.7 4.47GB 1.53GB 30.2 4.87GB 11.8min 17.8min

p2p-Gnutella08 3.38GB 5.62GB 6.85mins 11.5mins 9.59GB 61.0 11.6GB 3.76GB 31.5 11.9GB 29.7mins 43.4mins
p2p-Gnutella04 10.1GB 16.8GB 20.5mins 34.7mins 30.4GB 58.3 37.4GB 11.7GB 31.6 35.6GB 1.70hr 2.42hr

Swiss 34.5GB 57.2GB 1.19hr 2.05hr 109GB 54.9 137GB 31.4GB 34.8 121GB 4.90hr 6.57hr
Cali 40.7GB 67.6GB 1.44 hr 2.80hr 129GB 53.6 161GB 32.4GB 32.7 143GB 5.56hr 8.65hr

Table 3: Setup results for both GKT and PathGES.

6.2 Performance
S#&/-. Setup comprises of the KeyGen and Encrypt algorithms. We
report setup benchmarks in Table 2 including sizes of the plain-
text and encrypted multimaps, and total setup time. Sizes of the
multimaps were obtained using the os.path.getsize function to
measure the size of the corresponding database #les.

Setup times were practical, ranging from as little as 442 ms
(𝑃 = 35) to 8.65 hours (𝑃 = 21, 693). Client-side storage required
only a 32B key: one 16B key for each of the two EMMs. Similar to the
GKT scheme, server-side storage is the most signi#cant cost. Total
size of the encrypted database ranged from 582KB (𝑃 = 35) to 304GB
(𝑃 = 21, 693). Due to how the edges were stored and encryption
overhead, the sizes of EM1 and EM2 were at most 1.48 times and
4.41 times larger than the plaintext multimaps, respectively. Storage
is proportional to the number of nodes and independent of graph
density. In contrast, the GKT scheme’s encryption overhead varies
inversely with graph density.
3#,4. Querying involves executing 3 algorithms: Token (computa-
tion of the search token), Search (look-up of the encrypted records),
and Reveal (decryption of the response). We depict query bench-
marks in Figure 6. For each dataset we sampled 100,000 uniformly
random queries, partitioned the queries based on path length (Fig-
ure 6) or number of fragments (full version [21]), and averaged the
benchmarks within each set of the partition.

All three query algorithms are very e"cient, measuring in at
most tens of milliseconds. Experimentally, the Search algorithm’s
run time increases linearly with respect to both path length and
number of fragments, since longer paths are likely to result in more
fragments. Similarly, the run time of Reveal increases linearly with
respect to both path length and number of fragments. However, we
see a closer correlation to length since response decryption is only
dependent on the number of edges returned. Response size varies
proportionally with the length of the path, with △100B increase for
each additional vertex in the queried path.

6.3 Comparison with GKT
In Table 3, we see that GKT requires less setup time overall and
that the encryption time of GKT constitutes a smaller percentage of
the overall setup time. In other words, building the multimap is the
more time-intensive part of setup forGKT as compared to PathGES.

PathGES leaks less information about the graph structure at setup,
but as a result, requires more storage overhead due to padding.

Figure 7 depicts query benchmarks for both schemes for p2p-
Gnutella04 and California. We issued 100,000 uniformly random
queries, partitioned the results with respect to path length, and av-
eraged the attribute for each length. Token is very e"cient for both
schemes and takes approximately 0.043ms. Overall, Search runtime
is faster for our scheme despite its higher theoretical complexity.
The discrepancy between worst-case complexity and real-world
performance can be attributed to the di!erence in number of calls
to cryptographic primitives that our implementations of the EMM
schemes must make. A call to Search.EMM-RR requires computing
for each value: one hash evaluation (to obtain the encrypted label)
and one symmetric decryption (to reveal the value).

In contrast, a call to Search.EMM-RH only requires evaluat-
ing one hash for each value (to obtain the encrypted label). The
GKT scheme looks up 𝑙 edges in a dictionary encrypted using the
response-revealing scheme. Our scheme instead looks up 𝑙 + 𝛬
edges using the response-hiding scheme, 𝛬 ↘ [1, 𝑙 + 1]. In practice,
𝛬 is closer to 1 for the social network graphs. These observations
were con#rmed using a line-pro#ler [37] to compute the length of
time the search operation spent on each line of code. Our scheme’s
search time could be further decreased through parallelization. In
contrast, the GKT scheme’s search is intrinsically sequential.

Reveal is marginally faster for the GKT scheme, since it only
involves symmetric decryption of the vertices in the shortest path.
In our scheme, the returned fragments may include additional nodes
and padding vertices that are not in the shortest path. Moreover, the
Reveal algorithm of our response-hiding EMM implementation also
entailed a key-derivation step, hence the small additive increase in
decryption time required by PathGES.

Total round-trip query time is e"cient and practical for both
schemes. However, as the length of the path increases, the total
query time of GKT overtakes that of PathGES. Response size in-
creases linearly with respect to the path length for both schemes
and both datasets. On average, the response size of PathGES al-
most matches that of GKT for the social network graphs, despite
the worst-case 2x constant factor overhead in bandwidth.
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Figure 6: Query benchmarks with respect to the length of the path queried. We use the following symbols for the social network datasets:
InternetRouting ( ), Ca-GrQc ( ), email-EU-core ( ), facebook ( ), p2p-Gnutella08 ( ), p2p-Gnutella04 ( ). And the
following symbols for the geographic datasets: Swiss ( ) and Cali ( ). For each dataset, we issued 100,000 random queries, partitioned
them based on path length, and took the average of the respective attribute within each set of the partition. Since the queries were randomly
sampled, we do not necessarily observe all possible path lengths.
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Figure 7: PathGES ( ) and GKT ( ) query benchmarks for the p2p-Gnutella04 (dashed) and California (solid) datasets. Results were
averaged over 100,000 uniformly random SPSP queries. For paths of length 10 or more, Search time takes approximately 3↗ more for GKT. For
longer paths, we also see that the total round-trip query time is faster for PathGES. On the other hand, Reveal is faster for GKT.

7 CONCLUSION
We present a new graph encryption scheme for single-pair shortest
path (SPSP) queries. Our scheme is built upon a novel data structure,
achieves optimal bandwidth complexity, and mitigates the attack
by Falzon and Paterson [24]. We generalize the notion of what it
means for one leakage function to leak less than another leakage
function [5] to families of query sequences, and show that our
scheme leaks less than the GKT scheme [27] for all query sequences
in which each SPSP query is issued at least once. We support our
scheme with a proof of security, a thorough cryptanalysis, and an
evaluation on real-world datasets.
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A HEAVY-LIGHT DECOMPOSITION

Heavy-light decomposition (HLD) was introduced by Sleator
and Tarjan in order to develop fast algorithms for a number of
tree problems, including computing nearest common ancestors and
various network $ow problems [63].

D#1*+*&*)+ 22. Given a rooted tree 𝑉 , the size of a node 𝑁 in 𝑉 ,
size𝑒 (𝑁), is the number of nodes in the subtree rooted at node 𝑁 (the
size includes the node 𝑁 itself).

D#1*+*&*)+ 23. Let 𝑉 be a rooted tree. An edge between a node
𝑁 in 𝑉 and its parent is de!ned as heavy if and only if size𝑒 (𝑁) >
1
2 size𝑒 (parent(𝑁)). All other edges in the tree are light.
Note that, by de#nition, any node in a tree has at most one child

linked to by a heavy edge.

D#1*+*&*)+ 24. The heavy edges decompose the tree nodes of a
tree𝑉 into vertex disjoint paths which are called heavy chains. These
paths are connected to each other via light edges.

T"#),#$ 25. ([63]) Let 𝑉 be a rooted tree with 𝑃 nodes. From any
node in 𝑉 , the number of light edges needed to reach the root of the
tree is at most log𝑃. Thus, the number of heavy chains along the path
from any node to the root is also 𝑂 (log𝑃).

C)$-0#7*&4. This algorithm marks each edge while exploring the
input tree 𝑉 using DFS. The run time is the same time and space as
running DFS on a tree i.e. 𝑂 (𝑃).

1: C)$-/&#HLD(𝑉 , 𝑁) ⇑ |𝑉 [𝑁] |,𝑉𝑘
2: if 𝑁 is a leaf then
3: // The subtree rooted at 𝑁 is of size 1.
4: return 1,𝑉
5: else
6: 𝑁_𝑛𝑕𝛯𝑘 = 1
7: 𝑙𝑘𝑈𝑊 = {}
8: // Compute size of subtree rooted at 𝑁 .
9: for child𝑑 of 𝑁 do
10: 𝑑_𝑛𝑕𝛯𝑘,𝑉 ≃ C)$-/&#HLD(𝑉 ,𝑑)
11: 𝑙𝑘𝑈𝑊 [𝑑] ≃ 𝑑_𝑛𝑕𝛯𝑘
12: 𝑁_𝑛𝑕𝛯𝑘 ≃ 𝑁_𝑛𝑕𝛯𝑘 +𝑑_𝑛𝑕𝛯𝑘
13: for (𝑑 ,𝑑_𝑛𝑕𝛯𝑘) in 𝑙𝑘𝑈𝑊 do
14: // Determine if (𝑑 , 𝑁) is heavy or light.
15: if 𝑑_𝑛𝑕𝛯𝑘 < 𝑁_𝑛𝑕𝛯𝑘/2 then
16: Label (𝑑 , 𝑁) in 𝑉 as “light”
17: else
18: Label (𝑑 , 𝑁) in 𝑉 as “heavy”
19: return 𝑁_𝑛𝑕𝛯𝑘,𝑉

Figure 8: Psuedocode for C!"#$%&HLD.
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