Heterogeneity in the Effect of Early
Goal-Directed Therapy for Septic Shock:
A Secondary Analysis of Two Multicenter

International Trials

OBJECTIVES: The optimal approach for resuscitation in septic shock remains
unclear despite multiple randomized controlled trials (RCTs). Our objective was
to investigate whether previously uncharacterized variation across individuals in
their response to resuscitation strategies may contribute to conflicting average
treatment effects in prior RCTs.

DESIGN: We randomly split study sites from the Australian Resuscitation
of Sepsis Evaluation (ARISE) and Protocolized Care for Early Septic Shock
(ProCESS) trials into derivation and validation cohorts. We trained machine learn-
ing models to predict individual absolute risk differences (IARDs) in 90-day mor-
tality in derivation cohorts and tested for heterogeneity of treatment effect (HTE)
in validation cohorts and swapped these cohorts in sensitivity analyses. We fit
the best-performing model in a combined dataset to explore roles of patient char-
acteristics and individual components of early goal-directed therapy (EGDT) to
determine treatment responses.

SETTING: Eighty-one sites in Australia, New Zealand, Hong Kong, Finland,
Republic of Ireland, and the United States.

PATIENTS: Adult patients presenting to the emergency department with severe
sepsis or septic shock.

INTERVENTIONS: EGDT vs. usual care.

MEASUREMENTS AND MAIN RESULTS: A local-linear random forest model
performed best in predicting iARDs. In the validation cohort, HTE was confirmed,
evidenced by an interaction between iARD prediction and treatment (p < 0.001).
When patients were grouped based on predicted iARDs, treatment response
increased from the lowest to the highest quintiles (absolute risk difference [95%
Cl], —8% [-19% to 4%] and relative risk reduction, 1.34 [0.89-2.01] in quin-
tile 1 suggesting harm from EGDT, and 12% [1-23%)] and 0.64 [0.42-0.96] in
quintile 5 suggesting benefit). Sensitivity analyses showed similar findings. Pre-
intervention albumin contributed the most to HTE. Analyses of individual EGDT
components were inconclusive.

CONCLUSIONS: Treatment response to EGDT varied across patients in two
multicenter RCTs with large benefits for some patients while others were harmed.
Patient characteristics, including albumin, were most important in identifying HTE.

KEYWORDS: heterogeneity of treatment effect; machine learning; precision
medicine; resuscitation; sepsis

ver 50 randomized controlled trials (RCTs) have tested resuscitation
strategies in sepsis (1), but the optimal approach remains uncertain.
Early goal-directed therapy (EGDT), a multicomponent, 6-hour in-
tervention consisting of protocolized administration of fluids, vasopressors,
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Question: Do individual patients with septic shock
respond differently to hemodynamic resuscitation
strategies?

Findings: We analyzed two multicenter clinical
trials of protocolized early goal-directed therapy
(EGDT) for septic shock. Both trials had failed to
demonstrate a significant difference in mortality
with EGDT compared with usual care. Using com-
putational methods that model treatment response
at an individual patient level, we showed that the
effect of EGDT compared with usual care varied
considerably, ranging from harm (mean mortality
in the quintile for whom EGDT was predicted to be
least effective = 31% [EGDT] vs. 23% [usual care],
relative risk reduction [RRR], 1.34 [95% ClI, 0.89-
2.01]) to benefit (21% vs. 31%; RRR, 0.64 [95%
Cl, 0.42-0.96]). Pre-randomization patient char-
acteristics most predictive of treatment response
included albumin. Analyses exploring which com-
ponents of EGDT (and usual care) were most ex-
planatory of heterogeneous treatment responses
were inconclusive.

Meaning: EGDT appears to have quite heteroge-
nous treatment effects across individuals, possibly
explaining inconsistent results across previous
studies. Future studies should investigate individu-
alized treatment effects to identify heterogeneity in
already completed resuscitation trials. Additionally,
future trials should plan data collection and statis-
tical analyses in a manner to facilitate uncovering
treatment heterogeneity and should incorporate
these findings during execution of the trials.

\_ J

inotropes, and blood products, demonstrated an ab-
solute mortality risk reduction of 16% compared
with usual care in a landmark single-center trial (2).
However, three subsequent multicenter, international
RCTs (3-5) did not reproduce the previously observed
benefits. Currently, the EGDT protocol is not followed
routinely in clinical practice, but several components,
such as the volume and rate of fluid administration
and vasopressor use, remain the cornerstone of resus-
citation. Importantly, the optimal way each of these
components is delivered remains a source of ongoing
debate and inquiry (6-8).
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There has been increasing awareness that the av-
erage treatment effect (ATE) estimated in an RCT may
not reflect the varying individual treatment effect (ITE)
experienced by each patient (9-11). Although an in-
dividual patient data meta-analysis (IPDMA) of prior
EGDT trials using conventional statistical approaches,
which may have been underpowered, did not uncover
subgroups that benefitted (12), heterogeneity of treat-
ment effect (HTE) may exist and contribute to incon-
sistent results. An added complexity in resuscitation
is the wide variation in “dose” of the intervention
(e.g., amount of fluid or vasopressor) across patients
compared with the assessment of HTE in fixed-dose
interventions.

We sought to explore HTE within large RCTs of
EGDT and determine patient characteristics or fea-
tures about intervention delivery that may explain
HTE.

METHODS

Trial Characteristics

We performed a secondary analysis of two multicenter
RCTs of EGDT: Australian Resuscitation of Sepsis
Evaluation (ARISE) (4) and Protocolized Care for
Early Septic Shock (ProCESS) (3). We did not include
data from the Protocolised Management in Sepsis
(ProMISe) (5) trial because it lacked pre-intervention
variables found to be important in predicting treat-
ment responses in preliminary analyses (13).

Both trials randomized adults presenting to emer-
gency departments with septic shock, defined as sepsis
and refractory hypotension or elevated lactate, be-
tween 2008 and 2014 to EGDT or usual care at 81 sites
(51 in ARISE and 30 in ProCESS) in Australia, New
Zealand, Hong Kong, Finland, Republic of Ireland, and
the United States. ProCESS also randomized patients
to a third group receiving protocolized resuscitation,
which we excluded because there was no equivalent in
ARISE. Additional trial characteristics are in eTable 1
(http://links.lww.com/CCM/H601). Further details on
inclusion and exclusion criteria have been previously
published (3, 4).

Study Design

This study had three main goals. First, we tested the hy-
pothesis that response to EGDT is varied by developing
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and validating a model to predict individual treatment
responses. Second, we identified patient characteristics
that predicted individual treatment responses. Third,
EGDT is a multicomponent intervention, and we de-
termined if any HTE may be specifically due to differ-
ences in subcomponents of the EGDT protocol.

This study was approved by the University of
Pittsburgh Institutional Review Board (protocol
number STUDY19090326; “Supervised Clustering
in Sepsis”; approved November 1, 2019). Written in-
formed consent was obtained in both trials per pub-
lished procedures in accordance with the Declaration
of Helsinki.

Primary Outcome

We selected 90-day, all-cause mortality as the primary
outcome consistent with the ARISE trial (4) and an
IPDMA of the three contemporary EGDT trials (12).
We excluded subjects missing 90-day mortality out-
come data (n =6, 0.2%).

Selection of Predictor Variables for Modeling

We used 27 predictor variables (eTable 2, http://links.
lww.com/CCM/H601) to model individual treatment
responses from six clinical domains: demographics,
comorbidities, vital signs, acute severity of illness
assessments, clinical laboratory values, and sites of in-
fection. We chose these variables as they are routinely
collected during clinical care and were used to eluci-
date HTE in our prior work (14). Details regarding
missingness and sensitivity analyses with alternate
approaches are available in the Online Supplement
Methods and eTable 2 (http://linkslww.com/CCM/
H601).

Statistical Analyses

First, we constructed derivation and validation cohorts
by randomly splitting study sites from both trials into
two groups (41 for derivation, 40 for validation). We
used this approach over others (e.g., one trial for deri-
vation and one for validation, temporal or geographic
splitting) because usual care differed across sites in
ARISE and ProCESS despite harmonization efforts
(12) and splitting by site allowed for better identifica-
tion of HTE due to patient-level rather than site-level
differences. We trained a model to predict individual
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treatment responses in the derivation set (cohort A)
and performed formal testing of HTE using individual
treatment responses estimated by the model in the val-
idation set (cohort B), which decreased model preci-
sion as only half of the dataset is used for prediction
but reduced the risk of overfitting bias. We fit a single
model to the combined dataset to use the largest pos-
sible dataset to explore which patient characteristics
and subcomponents of EGDT identified HTE. All sta-
tistical analyses were performed using R, Version 4.3.0.
Model Development. In cohort A, we compared
three models (two effect-based and one risk-based) to
identify the best-performing model type. Effect-based
models included causal forests (15) and R-learners
based on a local-linear random forests (LLRFs) (16),
which are both computationally efficient but each have
different strengths (15). LLRFs provide a smooth way
to model covariates that do not use step functions as
in causal forests. We estimated individual absolute risk
differences (iARDs) for each patient in response to
EGDT representing the difference between the patient-
specific covariate-adjusted risk of mortality when re-
ceiving usual care vs. when receiving EGDT (15) (akin
to the difference in mortality risk between simulated
“digital twins” with identical baseline characteristics
but in different treatment groups). A positive iARD
corresponds to lower predicted mortality with EGDT
(suggesting benefit compared with usual care) and a
negative iARD corresponds to a higher predicted mor-
tality (suggesting harm). The risk-based model was a
random forest predicting 90-day mortality in the usual
care group (RF-risk). For all models, we set hyperpa-
rameters to their default values, and set the number of
trees to 5000. All continuous variables were input into
models without categorization into discrete groups.
We compared model types based on three measures
of discriminative performance: area under the target-
ing operator characteristics (AUTOCs), area under the
Qini curve (AUQINI), and the adjusted AUQINI (17,
18). We also compared the two iARD models using
cross-validated R-loss (for further details, Online Data
Supplement, http://links.lww.com/CCM/H601) (16).
Model Validation and Hypothesis Testing for
Heterogeneous Effects. Next, we used the best-
performing model, fit in cohort A, to predict iARDs,
calculate measures of discriminative performance, and
test for HTE in cohort B. We visualized the distribu-
tion of iARD predictions by generating histograms and
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explored predicted heterogeneity for patients by plot-
ting observed average mortality among patients with
similar iARDs separately for usual care and EGDT
groups. We visualized model calibration by plotting
predicted iARDs against observed mortality rate dif-
ferences estimated with local linear causal forests using
predicted iARDs as the only covariate. We tested for
HTE by performing a hypothesis test of the interaction
between treatment assignment and predicted iARD
in a linear regression model of transformed mortality
outcome, and a p value of less than 0.05 for the inter-
action was interpreted as evidence of HTE (19). In this
model, an interaction coefficient of 1 suggests iARD
predictions are well-calibrated, less than 1 signifies
that iARDs in the validation set are closer to 0 com-
pared with predictions, and greater than 1 signifies
that iARDs are more extreme compared with predic-
tions (19). We then calculated the mean among the
predicted iARDs in each quintile and calculated each
quintile’s observed absolute risk difference (ARD) and
95% CI as well as the observed relative risk reduction
(RRR) and 95% ClIs. We chose to split the cohorts into
quintiles to assess HTE to ensure enough patients in
EGDT and usual care arms per subdivision to demon-
strate a difference in mortality while allowing signals
of HTE at extremes to be discernable and not masked
by participants with iARDs close to zero.

We performed several sensitivity analyses to en-
sure robustness of results. First, we trained a model in
cohort B and tested for HTE in cohort A. Second, we
performed sensitivity analyses using one trial for deri-
vation (ARISE or ProCESS) and testing for HTE in the
other trial.

Assessment of Patient Characteristics Contributing
to HTE. We used three approaches to determine
which variables included in the model were predictive
of benefit or harm in the combined dataset. First, we
examined the distributions of baseline variables across
quintiles of predicted iARDs. Second, we computed
SHapley Additive exPlanation (SHAP) values from the
model fit to calculate both traditional variable impor-
tance scores for each variable and patient-specific var-
iable importance scores (20). The absolute value of a
patient-specific SHAP is a measure of a covariate’s in-
fluence on the predicted benefit from EGDT for that
individual, with higher values signifying greater in-
fluence. The sign of the SHAP describes whether the
patient’s covariate value is accountable for making the
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iARD higher (driving potential benefit from EGDT)
or lower (driving potential harm). Third, we used a
decision tree in a “fit-the-fit” analysis of the LLRF
predictions to identify variables and cutoft points for
benefit or harm. Additional details are in the Online
Data Supplement (http://links.lww.com/CCM/H601).
Due to systematic differences in assessment of comor-
bidities between ARISE and ProCESS, we included the
Charlson Comorbidity score as a predictor in our pri-
mary analyses and explored the role of three comor-
bidities that plausibly influence resuscitation in sepsis
(cirrhosis, heart failure, and chronic kidney disease
separately).

Assessment of Subcomponents of EGDT in
Contributing to HTE. Determining which components
of EGDT may contribute to heterogeneity is challenging
because the subcomponents (e.g., fluids and vasopressors)
are deployed in both arms, and the deployment of each
intervention may vary both due to usual care practices
and fidelity to the EGDT protocol. Both trials reported
high compliance with protocol fidelity (3, 4). Thus, we fo-
cused on whether potential HTE was influenced by vari-
ation in usual care patterns. Usual care practice could not
be described at the individual-provider level for a variety
of reasons but was assessed previously at the site-level in
both trials using a propensity model as part of an I-DMA
(12). Thus, we conducted a site-level exploratory analysis
using the same model in a subset of patients from the 67
sites that enrolled at least three patients into the usual care
group, which generated observed and expected values for
volume of fluid administration and vasopressor usage in
the usual care group (12).

We stratified sites into three groups to mimic restric-
tive or liberal fluid management strategies described
previously (6, 8, 21): 1) low fluids and high vasopressor
use, similar to restrictive fluid management strategies
(ten sites); 2) high fluids and low vasopressor use, sim-
ilar to liberal fluid strategies (11 sites); and 3) others
(46 sites; for additional details, Online Supplement
Methods, eFig. 1, and eTable 3, http://links.lww.com/
CCM/H601). We fit a LLRF to the combined cohort,
expanding the set of baseline covariates to include
indicators for membership to one of the three man-
agement groups. We hypothesized that, if differences
in fluid or vasopressor administration explain differ-
ences in treatment response, then the model predic-
tions would only identify HTE in a subset of these
three groups.
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For less frequently used subcomponents of EGDT,
we compared the difference in RBC transfusion and
dobutamine use between EGDT and usual care arms
stratified by quintiles of iARDs in the combined cohort.

RESULTS

We included 1588 patients from ARISE (796 random-
ized to usual care and 792 to EGDT; 99% of enrollment)
and 892 patients from ProCESS (455 randomized to
usual care and 437 to EGDT; 99% of enrollment). As
reported previously (12), patient characteristics were
similar between the trials (eTable 4, http://links.lww.
com/CCM/H601). After randomly splitting the 81 sites
into cohorts A and B, we confirmed that patients had
similar distributions of baseline characteristics overall
and by treatment group (Table 1; and eTable 5, http://
links.lww.com/CCM/H601).

Model Development in the Derivation Set

In comparing the three candidate models used to
rank patients in order of lowest to highest effect of
EGDT within cohort A, the LLRF R-Learner had
the highest measures of discriminative performance
(AUTOC, AUQINTI, and adjusted AUQINI), and low-
est cross-validated R-loss compared with causal forest
and risk-based models, indicating superior predictive
performance (eTable 6, http://links.lww.com/CCM/
H601). Similar patterns were seen in cohort B (eTable
6 and eFig. 2, http://links.lww.com/CCM/H601). Both
causal forests and LLRF models performed well in sen-
sitivity analyses using one trial for derivation and the
other to test for HTE (eTable 7, http://links.lww.com/
CCM/H601). Thus, we selected the LLRF model for
the remainder of our analyses.

Model Validation and Hypothesis Testing for
Heterogeneous Effects

In our validation analysis in cohort B, we observed
a significant interaction between iARD prediction
and treatment (coeflicient, 1.8; 95% CI, 0.76-2.8; p <
0.001), supportive of HTE. In cohort B patients, the
overall absolute risk difference comparing EGDT with
usual care was 2% (95% CI, -5% to 4%) and the RRR
was 1.00 (95% CI, 0.8-1.2). When using the model de-
rived from cohort A to rank order patients in cohort
B from lowest to highest likelihood of benefit, both

e8 www.ccmjournal.org

the predicted and observed treatment effects ranged
widely. The mean predicted iARD in quintile 1 was
-6% and the observed 90-day mortality was 31% in the
EGDT and 23% in the usual care groups, representing
an observed ARD of -8% (95% CI, -19% to 4%) and
RRR of 1.34 (95% CI, 0.89-2.01) suggesting increased
mortality with EGDT. In contrast, in quintile 5, the
mean predicted iARD was 7% with observed mortality
of 21% in the EGDT and 33% in the usual care group
thereby representing an observed ARD of 12% (95%
CI, 1-23%) and a RRR 0f 0.64 (95% CI, 0.42-0.96) sug-
gesting decreased mortality with EGDT (Fig. 1). Plots
of mortality rates by treatment group for patients with
similar iARD predictions showed that patients with
iARD near 0 had relatively low risk in each treatment
group, and patients with more extreme iARDs in both
directions had increasingly high baseline mortality risk
(Fig. 2). Similar results were observed in sensitivity
analyses reversing derivation and validation cohorts
(eFigs. 3 and 4, http://linksIww.com/CCM/H601),
with consistent findings of significant treatment by
predicted iARD interaction (coefhicient, 1.3; 95% CI,
0.4-2.1; p=0.001). Notably, the full spectrum of iARDs
was broad ranging from -13.7% to 13.9% when cohort
B was used as validation and from -28.5% to 16.5%
when cohort A was used for validation. Findings were
also consistent in sensitivity analyses using alternative
approaches for handling missing data values, although
not all analyses reached statistical significance (eFigs.
5-7, http://links.lww.com/CCM/H601). Treatment by
predicted iARD interaction remained significant in
sensitivity analyses using ProCESS for derivation and
ARISE for validation (p = 0.003) and vice versa (p =
0.003; eFig. 8, http://links.lww.com/CCM/H601). For
the model derived in cohort A, metrics of discrimina-
tive performance calculated in cohort B were excellent;
metrics calculated in cohort A were similarly strong for
the model derived in cohort B (eTable 8, http://links.
lww.com/CCM/H601).

Assessment of Patient Characteristics
Contributing to HTE

Circulating albumin levels were most predictive of
treatment response in SHAP (eFig. 9, http://links.
lww.com/CCM/H601), decision tree analyses (eFig.
10, http://links.lww.com/CCM/H601), and when
baseline characteristics across iARD quintiles were
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TABLE 1.
Baseline Patient Characteristics in Cohorts A and B

Trial membership

Australasian Resuscitation of Sepsis Evaluation
Protocolized Care for Early Septic Shock

Demographics
Age, yr
Male
Vital signs
Temperature (°C)
Respiratory rate, bpm
Heart rate, bpm
Mean arterial pressure, mm Hg
Systolic blood pressure, mm Hg

Severity of illness

Acute Physiology and Chronic Health Evaluation I

Total Sequential Organ Failure Assessment

Glasgow Coma Scale
Charlson Comorbidity Index
Clinical laboratories
Albumin, g/dL
Hemoglobin, g/dL
Pao,, mm Hg
Bilirubin, mg/dL
Blood urea nitrogen, mg/dL
Creatinine, mg/dL
Gilucose, mg/dL
Lactate, mmol/L
Platelets, 10°/L
Oxygen saturation, %
WBC, 10°/L
Infection site
Lung
Urinary tract
Abdominal
Organ support
Mechanical ventilation

Vasopressors

742 (64.6)
406 (35.4)

65 (52-76)
668 (58.2)

7 (36-38)
2 (18-28)
100 (90-120)
7 (69-79)
5 (83-110)

2 (2.7-3.7)

2 (11-14)

7 (64-140)

9 (0.6-1.6)

7 (18-43)

6 (1.1-2.4)
130 (100-170)
2 (2.3-5.8)
(140-280)
8 (95-100)
3 (7.56-19)

200

408 (36.2)
219 (19.4)
114 (10.1)

143 (12.5)
244 (21.3)

846 (63.5)
486 (36.5)

62 (50-73)
774 (58.1)

7 (37-38)
2 (18-28)
110(92—120)
7 (59-78)
5 (83-110)
15 (11-20)
6)
14-15)
0-2)

5
4
15
1

(
(2-
(
(

2 (2.7-3.7)

2 (11-14)

9 (67-130)
0.93 (0.6-1.5)

6 (18-41)

5 (1-2.4)
130 (100-180)

1(2.2-5.7)
200 (130-260)

7 (95-99)

3(7.3-19)

432 (33.2)
282 (21.7)
130 (10.0)

135 (10.1)
253 (19.0)

bpm = beats/min.

Cells show median (interquartile range) for continuous variables, and frequency (percent) for binary variables.

Critical Care Medicine

www.ccmjournal.org

Copyright © 2024 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.



Shah et al

Deaths Total N Deaths Total N Mean iARD % ARD Relative Risk
Quintile EGDT EGDT Usual Care Usual Care prediction (95% ClI) (95% Cl)
Q1 47 151 27 116 -5.9 = -7.8(-19.3,3.6) 1.34(0.89,2.01)
Q2 30 137 23 129 -1.7 = -4.1(-14.46.3) 1.23(0.75,2)
Q3 27 124 24 142 06 = 1 -49(-15.2,5.4) 1.29(0.79,2.11)
Q4 22 136 28 130 2.8 - 5.4 (-4.8,15.5) 0.75(0.45,1.24)
Q5 28 132 45 135 6.6 = 12.1 (0.8,23.4) 0.64 (0.42,0.96)
T T T T T T T T 1
20 -15 10 -5 0 5 10 15 20
% Absolute risk difference

Figure 1. Observed absolute risk difference (ARD) with 95% Cls from early goal-directed therapy (EGDT) compared with usual care

in quintiles of patients stratified by predicted individual ARDs (iIARDs). Quintiles represent patients in cohort B stratified by predicted
treatment response from the local-linear random forest R-learner model derived in cohort A. Negative ARD represents higher mortality
on EGDT compared with usual care (harm from EGDT) and positive ARD represents lower mortality on EGDT compared with usual care
(benefit from EGDT). Quintile 1 (Q1) represents the patients with the lowest predicted iARDs (predicted to benefit the least from EGDT)
and quintile 5 (Q5) represents the patients with the highest predicted iARDs (predicted to benefit the most from EGDT). Relative risk of
90-d mortality in EGDT group compared with usual care is also provided with 95% Cl. Q2 = quintile 2, Q3 = quintile 3, Q4 = quintile 4.

A B

12
u 80

[=2]
o

Percentage
(=]
Observed % mortality rate
n N
o o

O

N
o

== EGDT
- UC

-
o

Observed % mortality rate difference
= o

]
N
o

20 -10 0 10 20 -10
Predicted % individual absolute risk difference

Predicted % individual absolute risk difference

0 10 -20 -10 0 10
Predicted % individual absolute risk difference

Figure 2. Examination of predicted individual absolute risk differences ((ARDs) in cohort B. Predicted iARDs in cohort B determined
based on a local linear random forest R-learner model derived in cohort A. Histogram of iARD predictions is provided in (A). Plot of
predicted iARDs against smoothed observed mortality rates in each treatment group is provided in (B). Plot of iARD predictions against
observed mortality rate differences is provided in (C). Curves in (B) and (C) were generated using random forest-based smoothing
functions using cohort B patient predictions and 90-d mortality status. Negative iARD predictions represent a higher risk of mortality
on early goal-directed therapy (EGDT) compared with usual care (UC) (probable harm) and positive predictions represent a lower risk
of mortality on EGDT. The dashed line in (C) represents perfect calibration intercept and slope of the iARD predictions in cohort B; the
dotted line represents the calibration of randomly generated predictions.

compared (Table 2). For example, younger patients
with lower albumin levels were more likely to be
harmed by EGDT, whereas older patients with normal
albumin levels were more likely to benefit. SHAP
analysis suggested that relationships between covari-
ates and predicted treatment response were complex.
For instance, albumin level showed a steep increas-
ing linear relationship with treatment response for
albumin values less than 3 g/dL followed by constant
(flat) contributions for values greater than or equal to
3 g/dL, whereas age showed a linear relationship (eFig.

el0

www.ccmjournal.org

11, http://links.lww.com/CCM/H601). Temperature,
heart rate, and circulating glucose values were also im-
portant predictors of treatment response, with either
a U- or S-shaped relationship between these variables
and treatment response. The remaining variables also
contributed to treatment response, although indi-
vidual contributions varied.

Notably, two patients may have had similar iARD
predictions but due to different covariate patterns. For
instance, two patients in the combined cohort had re-
ceived iARD predictions less than -14%, suggesting
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TABLE 2.

Comparison of Baseline Characteristics Across Quintiles of Predicted Individual Absolute Risk
Difference for All Patients (Cohorts A and B), From a Model Derived in the Combined Sample

Demographics

Age, yr 55 (43-66) 54 (42-67) 63 (52-74) 68 (58-76) 72 (65-80)
Male 296 (59.7) 287 (57.9) 294 (59.8) 286 (57.7) 279 (56.2)
Vital signs

Temperature (°C) 37 (36-38) 38 (87-38) 38 (37-38) 37 (37-38) 37 (36-38)
Respiratory rate, bpm 23 (18-28) 23 (19-28) 22 (18-29) 22 (18-26) 22 (18-27)
Heart rate, bpm 120 (100-140) 120 (100-130) 100 (94-120) 100 (88-110) 94 (82-110)
Mean arterial pressure, nm Hg 65 (58-77) 68 (60-81) 68 (61-78) 68 (60-80) 65 (58-77)
Systolic blood pressure, mm Hg 92 (81-110) 96 (85-110) 97 (85-110) 95 (84-110) 93 (82-110)

Severity of illness

Acute Physiology and Chronic 17 (12-22) 14 (9.8-19) 13 (9-17) 14 (11-18) 19 (14-23)
Health Evaluation I
Total Sequential Organ Failure 5 (3-8) 4 (2-5) 3 (2-5) 3 (2-5) 5 (3-6)
Assessment
Glasgow Coma Score 15 (14-15) 15 (15-15) 15 (14-15) 15 (15-15) 15 (138-15)
Charlson 2 (0-4) 1 (0-2) 0 (0-2) 1 (0-2) 2 (0-3)
Clinical laboratories
Albumin, g/dL 2.2 (1.9-2.6) 3.3 (2.8-3.8) 3.4 (3-3.8) 3.4 (3-3.8) 3.3 (8-3.7)
Hemoglobin, g/dL 11 (9.1-13) 13 (11-15) 13 (12-14) 13 (11-14) 12 (10-14)
Pao,, mm Hg 88 (66—150) 84 (61-130) 86 (67-130) 90 (68-140) 89 (65-140)
Bilirubin, mg/dL 1.2 (0.6-2.3) 1(0.64-1.7) 0.99 (0.6-1.4) 0.87 (0.58-1.4) 0.75(0.5-1.2)
Blood urea nitrogen, mg/dL 27 (17-46) 23 (15-33) 23 (17-33) 26 (18-36) 40 (25-64)
Creatinine, mg/dL 1.5 (1.1-2.7) 1.4 (1-2.2) 1.3 (1-1.9) 1.4 (1-2) 2.1 (1.83-8.3)
Gilucose, mg/dL 110 (85-140) 120 (96-160) 130 (110-170) 140 (110-180) 150 (120-230)
Lactate, mmol/L 4.6 (2.6-6.7) 4.3 (2.6-5.9) 3.9 (2.2-5.4) 3.7 (2-5.1) 4.2 (2.2-5.2)
Platelets, 10°/L 170 (91-260) 190 (130-250) 190 (140-250) 210 (150-280) 230 (170-320)
Oxygen saturation, % 98 (95-100) 98 (95-99) 98 (95-100) 97 (95-100) 97 (94-100)
WBC, 10°/L 12 (5.9-18) 12 (6-18) 12 (7.8-18) 13 (8-19) 15 (10-21)
Infection site
Lung 164 (34.3) 160 (33) 179 (36.8) 178 (36.3) 159 (32.6)
Urinary tract 76 (15.9) 94 (19.4) 101 (20.8) 119 (24.2) 111 (22.8)
Abdominal 60 (12.6) 47 (9.7) 45 (9.3) 37 (7.5) 55 (11.3)
Organ support
Mechanical ventilation 84 (16.9) 33 (6.7) 38 (7.7) 492 (8.5) 81 (16.3)
Vasopressors 149 (30) 80 (16.1) 67 (13.5) 91 (18.3) 110 (22.2)

bpm = beats/min.

Cells show median (interquartile range) for continuous variables, and frequency (percent) for binary variables. Quintile 1 for each trial
includes the patients with the lowest predicted individual absolute risk differences (IARDs) representing the patients with the least
predicted benefit (or greatest harm) from early goal-directed therapy (EGDT) compared with usual care, and quintile 1 includes the
patients with the highest iARDs representing the patients with the highest predicted benefit from EGDT. iARDs are estimated from a
local linear random forest R-learner model trained in the combined cohort.
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harm with EGDT. SHAP analysis revealed that the
model generated the prediction of harm almost en-
tirely based on low albumin levels for one patient
(eFig. 124, http://links.lww.com/CCM/H601), but the
prediction of harm for another patient was based pri-
marily on contributions from low albumin, age, and
glucose (eFig. 12B, http://links.lww.com/CCM/H601).
Some differences in variable importance were noted
in sensitivity analyses using one trial for derivation
and the other for validation, but albumin remained
the most important variable, and the top ten variables
were mostly consistent across analyses (eFigs. 13 and
14, http://links.Iww.com/CCM/H601).

In exploratory analyses investigating differences in
individual comorbidities across iARD quintiles, we
determined that cirrhosis was most prevalent in the
quintile of patients predicted to be harmed by EGDT
and heart failure was most prevalent in the quintile
of patients predicted to benefit the most from EGDT
(eTable 9, http://links.lww.com/CCM/H601).

Assessment of Subcomponents of EGDT
Contributing to HTE

Exploratory analyses on whether the way interventions
were deployed influenced HTE were inconclusive. For
fluid and vasopressor use, as expected, the sites in the
restrictive fluid management group had higher dif-
ferences in fluid administration between EGDT and
usual care groups (eFig. 15, http://links.lww.com/
CCM/H601), while those in the liberal group sites had
higher differences in vasopressor use (eFig. 16, http://
links.lww.com/CCM/H601). However, the magni-
tude of HTE did not vary across these sites (eTable 10,
http://links.lww.com/CCM/H601). Similarly, for RBC
transfusion and dobutamine use, no differences were
observed between usual care and EGDT arms (eTable
11, http://links.lww.com/CCM/H601).

DISCUSSION

In a secondary analysis of two multicenter, international
trials testing resuscitation strategies, we found large
variation in ITEs of EGDT compared with usual care.
Although neither trial demonstrated a statistically signifi-
cant ATE, the range of iARDs within these trials included
benefit of a magnitude similar to that of the initial EGDT
trial but also included iARDs of an equal magnitude of
harm. Circulating albumin levels were most predictive

el12 www.ccmjournal.org

of treatment response with younger adults with lower al-
bumin values predicted to have the highest harm from
EGDT. Exploratory analyses suggest EGDT may harm
patients with cirrhosis and benefit patients with heart
failure, but, due to differences comorbidity assessment
between trials, these findings are hypothesis generating
and highlight a need to consider comorbidities in future
studies investigating iARDs to resuscitation.

When the ARISE (4), ProCESS (3), and PROMISe (5)
trials of EGDT did not replicate the benefits demonstrated
in the original Rivers trial (2), diverse opinions emerged
for these discrepant findings, including shifts in usual care
practices over time and lack of efficacy (12). Our findings
suggest that EGDT may indeed be efficacious but only for
a subset of patients, and the discrepant results from trials
may have reflected differences in enrollment of patients in
whom EGDT was beneficial and harmful.

Importantly, similar HTE likely exists in other trials of
sepsis resuscitation. Our results therefore have implica-
tions for the design of future resuscitation trials, which
should be much larger compared with contemporary trials
to allow randomization of patients to several intervention
arms across multiple groups to account for potential HTE
for each resuscitation component. Several studies inves-
tigating this concept identified subtypes using baseline
covariates and demonstrated differential treatment effects
in subtypes (14, 22, 23). Consistent with recent studies of
ITEs (10, 24, 25), our current approach is different and
has strengths. First, identifying ITEs may be advantageous
over subtyping when variables determining subtype mem-
bership differ from those determining treatment response
or when individual treatment responses vary within sub-
types. Second, the iARD values in our study provide an
estimate of benefit or harm at an individual level and may
allow personalizing treatments. Third, modern model ex-
planation tools such as SHAP allow investigators to under-
stand the contributions of predictor variables in treatment
response, which may be different for individual patients.

We acknowledge some caveats in the interpreta-
tion of findings. We examined a small set of baseline
covariates available in both ARISE and ProCESS to
predict treatment response, although a richer set of
covariates, such as detailed measures of organ support
and intervention delivery, may have provided greater
insights. Several physiologic variables that may guide
sepsis resuscitation such as vasopressor dose and cen-
tral venous oxygen saturation were not universally
available. As the variables that contribute to response
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to resuscitation remain unclear, future HTE studies
should strive to strike a balance between including as
predictors both variables that already have a plausible
causal relationship to treatment response and other
variables where a causal association is not as clear but
may be possible. We acknowledge some minor differ-
ences in variable importance rank order when models
were derived using only half of the available data; how-
ever, five variables consistently emerged as the most
important, and our approach of using the entire cohort
for variable importance would provide the most precise
estimates for a patient enrolled in a future prospective
trial. Missingness in our predictor variables may also
affect precision of ITE estimates but our results were
robust across multiple sensitivity analyses. Prospective
studies are needed to advance precision medicine
approaches and refine ITE-based approaches, but ret-
rospective analyses such as ours serve to provide in-
sight into variables and model designs, and help avoid
randomizing patients to treatment arms where they
may be harmed.

In conclusion, our results suggest that individual
responses to resuscitation varied in patients enrolled
in EGDT trials. Future studies should seek to under-
stand underlying mechanisms and future trial designs
should incorporate approaches that learn HTE and
tailor resuscitation strategies.

1 Division of Pulmonary, Allergy, and Critical Care Medicine,
University of Pittsburgh, Pittsburgh, PA.

2 \Veterans Affairs Pittsburgh Healthcare System, Pittsburgh,
PA.

3 Department of Critical Care Medicine,
Pittsburgh, Pittsburgh, PA.

4 Division of General Internal
Pittsburgh, Pittsburgh, PA.

5 Department of Biostatistics,
Pittsburgh, PA.

6 Department of Mathematics and Applied Mathematics,
University of Crete, Heraklion, Crete, Greece.

University of

Medicine, University of

University of Pittsburgh,

7 Australian and New Zealand Intensive Care Research
Centre, Monash University, Melbourne, VIC, Australia.

8 Intensive Care National Audit & Research Centre, London,
United Kingdom.

9 Department of Biomedical Informatics,
Pittsburgh, Pittsburgh, PA.

10 Department of Critical Care, University of Melbourne,
Melbourne, VIC, Australia.

11 Department of Intensive Care, Austin Hospital, Melbourne,
VIC, Australia.

University  of

Critical Care Medicine

12 Department of Intensive Care, Royal Melbourne Hospital,
Melbourne, VIC, Australia.

13 Data Analytics Research and Evaluation, Austin Hospital,
Melbourne, VIC, Australia.

14 Department of Emergency Medicine, University of Pittsburgh,
Pittsburgh, PA.

Supplemental digital content is available for this article. Direct
URL citations appear in the printed text and are provided in the
HTML and PDF versions of this article on the journal’s website
(http://journals.lww.com/ccmjournal).

Drs. Shah, Talisa, Chang, Seymour, Angus, and Yende were
involved in concept and design. Dr. Talisa, Dr. Chang, and Mr.
Kennedy were involved in statistical analysis. All authors were
involved in analysis and interpretation of data. Drs. Shah, Talisa,
Angus, and Yende were involved in drafting of article. All authors
were involved in critical revision of article. Drs. Shah, Talisa,
Angus, and Yende were involved in obtained funding. Drs. Angus
and Yende were involved in supervision. All authors give their
approval to the submission of this article.

Study investigators were supportedin this project by grants from the
National Institutes of Health through awards GM141081 (to Drs.
Angus, Yende, Tang, Chang, Shah, and Talisa), R35GM119519
(to Dr. Seymour and Mr. Kennedy), R21GM144851 (to Dr.
Seymour and Mr. Kennedy), K23GM132688 (to Dr. Mayr),
K23GM122069 (to Dr. Shah), R21HL168070 (to Dr. Shah),
RO1HL164835 (to Dr. Seymour, Dr. Cooper, Dr. Triantafyllou,
and Mr. Kennedy), and from the National Health and Medical
Research Council through award GNT2008447 (to Dr. Higgins).
The project described was additionally supported by the National
Institutes of Health through Grant Number UL1TR001857.
Finally, the University of Pittsburgh Center for Research
Computing supported this study through resources provided for
high throughput computing under award S100D028483 from
the National Institutes of Health.

Drs. Shah'’s, Talisa's, Chang’s, Tang's, Cooper’s, Angus’s, and
Yende’s institutions received funding from the National Institutes
of Health (NIH; GM141081). Dr. Shah'’s institution received fund-
ing from the NIH (K23GM122069, R21HL168070). Dr. Shah,
Dr. Talisa, Dr. Chang, Dr. Triantafyllou, Dr. Tang, Mr. Kennedy,
Dr. Cooper, Dr. Yealy, Dr. Seymour, Dr. Angus, and Dr. Yende
received support for article research from the NIH. Dr. Talisa dis-
closed the study was supported by the NIH (UL1TR0O01857;
S7100D028483). Dr. Triantafyllou, Mr. Kennedy, Dr. Cooper,
and Dr. Seymour’s institutions received funding from the NIH
(RO1HL164835). Dr. Mayr’s institution received funding from
the NIH (K23GM132688); he disclosed government work; and
he received personal fees from Baxter for serving on a racial dis-
parities advisory board outside the submitted work. Dr. Higgins’
institution received funding from the National Health and Medical
Research Council (NHMRC) (GNT2008447); she received
support for article research from the NHMRC. Mr. Mouncey’s
institution received funding from the National Institute for Health
and Care Research Health Technology Assessment program; he
received support for article research from the National Institute
for Health and Care Research. Mr. Kennedy'’s and Dr. Seymour’s
institutions received funding from the NIH (R21GM144851). Mr.
Kennedy's, Dr. Cooper’s, and Dr. Seymour's institution received
funding from the National Institute for General Medical Sciences
(R35GM119519). Dr. Yealy's institution received funding from

el3

www.ccmjournal.org

Copyright © 2024 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.


http://journals.lww.com/ccmjournal

Shah et al

the NIH. Dr. Seymour received funding from Beckman Coulter

and

Octapharma. Dr. Angus received funding from AM-Pharma

and Abionyx. The remaining authors have disclosed that they do
not have any potential conflicts of interest.

Drs.

Shah and Talisa contributed equally.

For information regarding this article, E-mail: yendes@upmc.edu

The contents of this article do not represent the views of the U.S.
Department of Veterans Affairs or the U.S. government.

REFERENCES

1.

10.

el4

Tseng CH, Chen TT, Wu MY, et al: Resuscitation fluid types in
sepsis, surgical, and trauma patients: A systematic review and
sequential network meta-analyses. Crit Care 2020; 24:693
Rivers E, Nguyen B, Havstad S, et al; Early Goal-Directed
Therapy Collaborative Group: Early goal-directed therapy in
the treatment of severe sepsis and septic shock. N Engl J Med
2001; 345:1368-1377

Pro Cl, Yealy DM, Kellum JA, et al: A randomized trial of
protocol-based care for early septic shock. N Engl J Med
2014, 370:1683-1693

Peake SL, Delaney A, Bailey M, et al; ARISE Investigators;
ANZICS Clinical Trials Group: Goal-directed resuscitation
for patients with early septic shock. N Engl J Med 2014,
371:1496-1506

Mouncey PR, Osborn TM, Power GS, et al; ProMISe Trial
Investigators: Trial of early, goal-directed resuscitation for
septic shock. N Engl J Med 2015; 372:1301-1311

Self WH, Semler MW, Bellomo R, et al; CLOVERS Protocol
Committee and NHLBI Prevention and Early Treatment of
Acute Lung Injury (PETAL) Network Investigators: Liberal
versus restrictive intravenous fluid therapy for early septic
shock: Rationale for a randomized trial. Ann Emerg Med 2018;
72:457-466

Meyhoff TS, Sivapalan P, Perner A: Restriction of intravenous
fluid in ICU patients with septic shock. Reply. N Engl J Med
2022; 387:857

Wiedemann HPF, Wheeler AP, Bernard GR, et al; National
Heart, Lung, and Blood Institute Acute Respiratory Distress
Syndrome (ARDS) Clinical Trials Network: Comparison of two
fluid-management strategies in acute lung injury. N Engl J Med
2006; 354:2564-2575

Zampieri FG, Damiani LP, Bagshaw SM, et al; BRICNet:
Conditional treatment effect analysis of two infusion rates
for fluid challenges in critically ill patients: A secondary anal-
ysis of balanced solution versus saline in intensive care study
(BaSICS) trial. Ann Am Thorac Soc 2023; 20:872-879

Seitz KR, Spicer AB, Casey JD, et al: Individualized treatment
effects of Bougie versus stylet for tracheal intubation in critical
illness. Am J Respir Crit Care Med 2023; 207:1602—-1611

www.ccmjournal.org

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

26.

Goligher EC, Lawler PR, Jensen TP, et al; REMAP-CAR,
ATTACC, and ACTIV-4a Investigators: Heterogeneous treat-
ment effects of therapeutic-dose heparin in patients hospital-
ized for COVID-19. JAMA 2023; 329:1066-1077

Rowan KM, Angus DC, Bailey M, et al; PRISM Investigators:
Early, goal-directed therapy for septic shock—a patient-level
meta-analysis. N Engl J Med 2017; 376:2223-2234

Shah FA, Talisa V, Angus DC, et al: A novel ensemble learning
approach to understand heterogeneity of treatment effect in
critical care trials. Am J Respir Crit Care Med 2020; 201:A1644

Seymour CW, Kennedy JN, Wang S, et al: Derivation, valida-
tion, and potential treatment implications of novel clinical phe-
notypes for sepsis. JAMA 2019; 321:2003-2017

Athey S, Tibshirani J, Wager S: Generalized random forests.
Ann Statist 2019; 47:1148-1178

Nie X, Wager S: Quasi-oracle estimation of heterogeneous
treatment effects. Biometrika 2021; 108:299-319

Belbahri M, Murua A, Gandouet O, et al: Qini-based uplift re-
gression. Ann Appl Stat 2021; 15:1247-1272

Yadlowsky S, Fleming S, Shah N, et al: Evaluating treatment
prioritization rules via rank-weighted average treatment
effects. arXiv Preprint posted online November 15, 2021. doi:
10.485650/arXiv.2111.07966

Chernozhukov V, Demirer M, Duflo E, et al: Generic Machine
Learning Inference on Heterogeneous Treatment Effects in
Randomized Experiments, With an Application to Immunization
in India. National Bureau of Economic Research Working
Paper Series 2018; No. 24678. Available at: https://www.
nber.org/papers/w24678. Accessed December 15, 2019

Lundberg SM, Erion G, Chen H, et al: From local explanations
to global understanding with explainable Al for trees. Nat Mach
Intell 2020; 2:66-67

Shapiro NI, Douglas IS, Brower RG, et al; National Heart, Lung,
and Blood Institute Prevention and Early Treatment of Acute
Lung Injury Clinical Trials Network: Early restrictive or liberal
fluid management for sepsis-induced hypotension. N Engl J
Med 2023; 388:499-510

Antcliffe DB, Burnham KL, Al-Beidh F et al: Transcriptomic
signatures in sepsis and a differential response to steroids.
From the VANISH randomized trial. Am J Respir Crit Care Med
2019; 199:980-986

Wong HR, Hart KW, Lindsell CJ, et al: External corroboration
that corticosteroids may be harmful to septic shock endotype
A patients. Crit Care Med 2021; 49:¢98-e101

Pirracchio R, Hubbard A, Sprung CL, et al; Rapid Recognition
of Corticosteroid Resistant or Sensitive Sepsis (RECORDS)
Collaborators: Assessment of machine learning to estimate
the individual treatment effect of corticosteroids in septic
shock. JAMA Netw Open 2020; 3:¢2029050

Buell KG, Spicer AB, Casey JD, et al: Individualized treatment
effects of oxygen targets in mechanically ventilated critically ill
adults. JAMA 2024; 331:1195-1204

January 2025 ¢ Volume 53 « Number 1

Copyright © 2024 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.


mailto:yendes@upmc.edu
https://www.nber.org/papers/w24678
https://www.nber.org/papers/w24678

