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FEATURE ARTICLE

Heterogeneity in the Effect of Early  
Goal-Directed Therapy for Septic Shock: 
A Secondary Analysis of Two Multicenter 
International Trials
OBJECTIVES: The optimal approach for resuscitation in septic shock remains 
unclear despite multiple randomized controlled trials (RCTs). Our objective was 
to investigate whether previously uncharacterized variation across individuals in 
their response to resuscitation strategies may contribute to conflicting average 
treatment effects in prior RCTs.

DESIGN: We randomly split study sites from the Australian Resuscitation 
of Sepsis Evaluation (ARISE) and Protocolized Care for Early Septic Shock 
(ProCESS) trials into derivation and validation cohorts. We trained machine learn-
ing models to predict individual absolute risk differences (iARDs) in 90-day mor-
tality in derivation cohorts and tested for heterogeneity of treatment effect (HTE) 
in validation cohorts and swapped these cohorts in sensitivity analyses. We fit 
the best-performing model in a combined dataset to explore roles of patient char-
acteristics and individual components of early goal-directed therapy (EGDT) to 
determine treatment responses.

SETTING: Eighty-one sites in Australia, New Zealand, Hong Kong, Finland, 
Republic of Ireland, and the United States.

PATIENTS: Adult patients presenting to the emergency department with severe 
sepsis or septic shock.

INTERVENTIONS: EGDT vs. usual care.

MEASUREMENTS AND MAIN RESULTS: A local-linear random forest model 
performed best in predicting iARDs. In the validation cohort, HTE was confirmed, 
evidenced by an interaction between iARD prediction and treatment (p < 0.001). 
When patients were grouped based on predicted iARDs, treatment response 
increased from the lowest to the highest quintiles (absolute risk difference [95% 
CI], –8% [–19% to 4%] and relative risk reduction, 1.34 [0.89–2.01] in quin-
tile 1 suggesting harm from EGDT, and 12% [1–23%] and 0.64 [0.42–0.96] in 
quintile 5 suggesting benefit). Sensitivity analyses showed similar findings. Pre-
intervention albumin contributed the most to HTE. Analyses of individual EGDT 
components were inconclusive.

CONCLUSIONS: Treatment response to EGDT varied across patients in two 
multicenter RCTs with large benefits for some patients while others were harmed. 
Patient characteristics, including albumin, were most important in identifying HTE.

KEYWORDS: heterogeneity of treatment effect; machine learning; precision 
medicine; resuscitation; sepsis

Over 50 randomized controlled trials (RCTs) have tested resuscitation 
strategies in sepsis (1), but the optimal approach remains uncertain. 
Early goal-directed therapy (EGDT), a multicomponent, 6-hour in-

tervention consisting of protocolized administration of fluids, vasopressors, 
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inotropes, and blood products, demonstrated an ab-
solute mortality risk reduction of 16% compared 
with usual care in a landmark single-center trial (2). 
However, three subsequent multicenter, international 
RCTs (3–5) did not reproduce the previously observed 
benefits. Currently, the EGDT protocol is not followed 
routinely in clinical practice, but several components, 
such as the volume and rate of fluid administration 
and vasopressor use, remain the cornerstone of resus-
citation. Importantly, the optimal way each of these 
components is delivered remains a source of ongoing 
debate and inquiry (6–8).

There has been increasing awareness that the av-
erage treatment effect (ATE) estimated in an RCT may 
not reflect the varying individual treatment effect (ITE) 
experienced by each patient (9–11). Although an in-
dividual patient data meta-analysis (IPDMA) of prior 
EGDT trials using conventional statistical approaches, 
which may have been underpowered, did not uncover 
subgroups that benefitted (12), heterogeneity of treat-
ment effect (HTE) may exist and contribute to incon-
sistent results. An added complexity in resuscitation 
is the wide variation in “dose” of the intervention 
(e.g., amount of fluid or vasopressor) across patients 
compared with the assessment of HTE in fixed-dose 
interventions.

We sought to explore HTE within large RCTs of 
EGDT and determine patient characteristics or fea-
tures about intervention delivery that may explain 
HTE.

METHODS

Trial Characteristics

We performed a secondary analysis of two multicenter 
RCTs of EGDT: Australian Resuscitation of Sepsis 
Evaluation (ARISE) (4) and Protocolized Care for 
Early Septic Shock (ProCESS) (3). We did not include 
data from the Protocolised Management in Sepsis 
(ProMISe) (5) trial because it lacked pre-intervention 
variables found to be important in predicting treat-
ment responses in preliminary analyses (13).

Both trials randomized adults presenting to emer-
gency departments with septic shock, defined as sepsis 
and refractory hypotension or elevated lactate, be-
tween 2008 and 2014 to EGDT or usual care at 81 sites 
(51 in ARISE and 30 in ProCESS) in Australia, New 
Zealand, Hong Kong, Finland, Republic of Ireland, and 
the United States. ProCESS also randomized patients 
to a third group receiving protocolized resuscitation, 
which we excluded because there was no equivalent in 
ARISE. Additional trial characteristics are in eTable 1 
(http://links.lww.com/CCM/H601). Further details on 
inclusion and exclusion criteria have been previously 
published (3, 4).

Study Design

This study had three main goals. First, we tested the hy-
pothesis that response to EGDT is varied by developing 

 
KEY POINTS

Question: Do individual patients with septic shock 
respond differently to hemodynamic resuscitation 
strategies?

Findings: We analyzed two multicenter clinical 
trials of protocolized early goal-directed therapy 
(EGDT) for septic shock. Both trials had failed to 
demonstrate a significant difference in mortality 
with EGDT compared with usual care. Using com-
putational methods that model treatment response 
at an individual patient level, we showed that the 
effect of EGDT compared with usual care varied 
considerably, ranging from harm (mean mortality 
in the quintile for whom EGDT was predicted to be 
least effective = 31% [EGDT] vs. 23% [usual care], 
relative risk reduction [RRR], 1.34 [95% CI, 0.89–
2.01]) to benefit (21% vs. 31%; RRR, 0.64 [95% 
CI, 0.42–0.96]). Pre-randomization patient char-
acteristics most predictive of treatment response 
included albumin. Analyses exploring which com-
ponents of EGDT (and usual care) were most ex-
planatory of heterogeneous treatment responses 
were inconclusive.

Meaning: EGDT appears to have quite heteroge-
nous treatment effects across individuals, possibly 
explaining inconsistent results across previous 
studies. Future studies should investigate individu-
alized treatment effects to identify heterogeneity in 
already completed resuscitation trials. Additionally, 
future trials should plan data collection and statis-
tical analyses in a manner to facilitate uncovering 
treatment heterogeneity and should incorporate 
these findings during execution of the trials.

http://links.lww.com/CCM/H601
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and validating a model to predict individual treatment 
responses. Second, we identified patient characteristics 
that predicted individual treatment responses. Third, 
EGDT is a multicomponent intervention, and we de-
termined if any HTE may be specifically due to differ-
ences in subcomponents of the EGDT protocol.

This study was approved by the University of 
Pittsburgh Institutional Review Board (protocol 
number STUDY19090326; “Supervised Clustering 
in Sepsis”; approved November 1, 2019). Written in-
formed consent was obtained in both trials per pub-
lished procedures in accordance with the Declaration 
of Helsinki.

Primary Outcome

We selected 90-day, all-cause mortality as the primary 
outcome consistent with the ARISE trial (4) and an 
IPDMA of the three contemporary EGDT trials (12). 
We excluded subjects missing 90-day mortality out-
come data (n = 6, 0.2%).

Selection of Predictor Variables for Modeling

We used 27 predictor variables (eTable 2, http://links.
lww.com/CCM/H601) to model individual treatment 
responses from six clinical domains: demographics, 
comorbidities, vital signs, acute severity of illness 
assessments, clinical laboratory values, and sites of in-
fection. We chose these variables as they are routinely 
collected during clinical care and were used to eluci-
date HTE in our prior work (14). Details regarding 
missingness and sensitivity analyses with alternate 
approaches are available in the Online Supplement 
Methods and eTable 2 (http://links.lww.com/CCM/
H601).

Statistical Analyses

First, we constructed derivation and validation cohorts 
by randomly splitting study sites from both trials into 
two groups (41 for derivation, 40 for validation). We 
used this approach over others (e.g., one trial for deri-
vation and one for validation, temporal or geographic 
splitting) because usual care differed across sites in 
ARISE and ProCESS despite harmonization efforts 
(12) and splitting by site allowed for better identifica-
tion of HTE due to patient-level rather than site-level 
differences. We trained a model to predict individual 

treatment responses in the derivation set (cohort A) 
and performed formal testing of HTE using individual 
treatment responses estimated by the model in the val-
idation set (cohort B), which decreased model preci-
sion as only half of the dataset is used for prediction 
but reduced the risk of overfitting bias. We fit a single 
model to the combined dataset to use the largest pos-
sible dataset to explore which patient characteristics 
and subcomponents of EGDT identified HTE. All sta-
tistical analyses were performed using R, Version 4.3.0.

Model Development. In cohort A, we compared 
three models (two effect-based and one risk-based) to 
identify the best-performing model type. Effect-based 
models included causal forests (15) and R-learners 
based on a local-linear random forests (LLRFs) (16), 
which are both computationally efficient but each have 
different strengths (15). LLRFs provide a smooth way 
to model covariates that do not use step functions as 
in causal forests. We estimated individual absolute risk 
differences (iARDs) for each patient in response to 
EGDT representing the difference between the patient-
specific covariate-adjusted risk of mortality when re-
ceiving usual care vs. when receiving EGDT (15) (akin 
to the difference in mortality risk between simulated 
“digital twins” with identical baseline characteristics 
but in different treatment groups). A positive iARD 
corresponds to lower predicted mortality with EGDT 
(suggesting benefit compared with usual care) and a 
negative iARD corresponds to a higher predicted mor-
tality (suggesting harm). The risk-based model was a 
random forest predicting 90-day mortality in the usual 
care group (RF-risk). For all models, we set hyperpa-
rameters to their default values, and set the number of 
trees to 5000. All continuous variables were input into 
models without categorization into discrete groups. 
We compared model types based on three measures 
of discriminative performance: area under the target-
ing operator characteristics (AUTOCs), area under the 
Qini curve (AUQINI), and the adjusted AUQINI (17, 
18). We also compared the two iARD models using 
cross-validated R-loss (for further details, Online Data 
Supplement, http://links.lww.com/CCM/H601) (16).

Model Validation and Hypothesis Testing for 
Heterogeneous Effects. Next, we used the best- 
performing model, fit in cohort A, to predict iARDs, 
calculate measures of discriminative performance, and 
test for HTE in cohort B. We visualized the distribu-
tion of iARD predictions by generating histograms and 
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explored predicted heterogeneity for patients by plot-
ting observed average mortality among patients with 
similar iARDs separately for usual care and EGDT 
groups. We visualized model calibration by plotting 
predicted iARDs against observed mortality rate dif-
ferences estimated with local linear causal forests using 
predicted iARDs as the only covariate. We tested for 
HTE by performing a hypothesis test of the interaction 
between treatment assignment and predicted iARD 
in a linear regression model of transformed mortality 
outcome, and a p value of less than 0.05 for the inter-
action was interpreted as evidence of HTE (19). In this 
model, an interaction coefficient of 1 suggests iARD 
predictions are well-calibrated, less than 1 signifies 
that iARDs in the validation set are closer to 0 com-
pared with predictions, and greater than 1 signifies 
that iARDs are more extreme compared with predic-
tions (19). We then calculated the mean among the 
predicted iARDs in each quintile and calculated each 
quintile’s observed absolute risk difference (ARD) and 
95% CI as well as the observed relative risk reduction 
(RRR) and 95% CIs. We chose to split the cohorts into 
quintiles to assess HTE to ensure enough patients in 
EGDT and usual care arms per subdivision to demon-
strate a difference in mortality while allowing signals 
of HTE at extremes to be discernable and not masked 
by participants with iARDs close to zero.

We performed several sensitivity analyses to en-
sure robustness of results. First, we trained a model in 
cohort B and tested for HTE in cohort A. Second, we 
performed sensitivity analyses using one trial for deri-
vation (ARISE or ProCESS) and testing for HTE in the 
other trial.

Assessment of Patient Characteristics Contributing 
to HTE. We used three approaches to determine 
which variables included in the model were predictive 
of benefit or harm in the combined dataset. First, we 
examined the distributions of baseline variables across 
quintiles of predicted iARDs. Second, we computed 
SHapley Additive exPlanation (SHAP) values from the 
model fit to calculate both traditional variable impor-
tance scores for each variable and patient-specific var-
iable importance scores (20). The absolute value of a 
patient-specific SHAP is a measure of a covariate’s in-
fluence on the predicted benefit from EGDT for that 
individual, with higher values signifying greater in-
fluence. The sign of the SHAP describes whether the 
patient’s covariate value is accountable for making the 

iARD higher (driving potential benefit from EGDT) 
or lower (driving potential harm). Third, we used a 
decision tree in a “fit-the-fit” analysis of the LLRF 
predictions to identify variables and cutoff points for 
benefit or harm. Additional details are in the Online 
Data Supplement (http://links.lww.com/CCM/H601). 
Due to systematic differences in assessment of comor-
bidities between ARISE and ProCESS, we included the 
Charlson Comorbidity score as a predictor in our pri-
mary analyses and explored the role of three comor-
bidities that plausibly influence resuscitation in sepsis 
(cirrhosis, heart failure, and chronic kidney disease 
separately).

Assessment of Subcomponents of EGDT in 
Contributing to HTE. Determining which components 
of EGDT may contribute to heterogeneity is challenging 
because the subcomponents (e.g., fluids and vasopressors) 
are deployed in both arms, and the deployment of each 
intervention may vary both due to usual care practices 
and fidelity to the EGDT protocol. Both trials reported 
high compliance with protocol fidelity (3, 4). Thus, we fo-
cused on whether potential HTE was influenced by vari-
ation in usual care patterns. Usual care practice could not 
be described at the individual-provider level for a variety 
of reasons but was assessed previously at the site-level in 
both trials using a propensity model as part of an IPDMA 
(12). Thus, we conducted a site-level exploratory analysis 
using the same model in a subset of patients from the 67 
sites that enrolled at least three patients into the usual care 
group, which generated observed and expected values for 
volume of fluid administration and vasopressor usage in 
the usual care group (12).

We stratified sites into three groups to mimic restric-
tive or liberal fluid management strategies described 
previously (6, 8, 21): 1) low fluids and high vasopressor 
use, similar to restrictive fluid management strategies 
(ten sites); 2) high fluids and low vasopressor use, sim-
ilar to liberal fluid strategies (11 sites); and 3) others 
(46 sites; for additional details, Online Supplement 
Methods, eFig. 1, and eTable 3, http://links.lww.com/
CCM/H601). We fit a LLRF to the combined cohort, 
expanding the set of baseline covariates to include 
indicators for membership to one of the three man-
agement groups. We hypothesized that, if differences 
in fluid or vasopressor administration explain differ-
ences in treatment response, then the model predic-
tions would only identify HTE in a subset of these 
three groups.

http://links.lww.com/CCM/H601
http://links.lww.com/CCM/H601
http://links.lww.com/CCM/H601


Copyright © 2024 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

Shah et al

e8          www.ccmjournal.org	 January 2025 • Volume 53 • Number 1

For less frequently used subcomponents of EGDT, 
we compared the difference in RBC transfusion and 
dobutamine use between EGDT and usual care arms 
stratified by quintiles of iARDs in the combined cohort.

RESULTS

We included 1588 patients from ARISE (796 random-
ized to usual care and 792 to EGDT; 99% of enrollment) 
and 892 patients from ProCESS (455 randomized to 
usual care and 437 to EGDT; 99% of enrollment). As 
reported previously (12), patient characteristics were 
similar between the trials (eTable 4, http://links.lww.
com/CCM/H601). After randomly splitting the 81 sites 
into cohorts A and B, we confirmed that patients had 
similar distributions of baseline characteristics overall 
and by treatment group (Table 1; and eTable 5, http://
links.lww.com/CCM/H601).

Model Development in the Derivation Set

In comparing the three candidate models used to 
rank patients in order of lowest to highest effect of 
EGDT within cohort A, the LLRF R-Learner had 
the highest measures of discriminative performance 
(AUTOC, AUQINI, and adjusted AUQINI), and low-
est cross-validated R-loss compared with causal forest 
and risk-based models, indicating superior predictive 
performance (eTable 6, http://links.lww.com/CCM/
H601). Similar patterns were seen in cohort B (eTable 
6 and eFig. 2, http://links.lww.com/CCM/H601). Both 
causal forests and LLRF models performed well in sen-
sitivity analyses using one trial for derivation and the 
other to test for HTE (eTable 7, http://links.lww.com/
CCM/H601). Thus, we selected the LLRF model for 
the remainder of our analyses.

Model Validation and Hypothesis Testing for 
Heterogeneous Effects

In our validation analysis in cohort B, we observed 
a significant interaction between iARD prediction 
and treatment (coefficient, 1.8; 95% CI, 0.76–2.8; p < 
0.001), supportive of HTE. In cohort B patients, the 
overall absolute risk difference comparing EGDT with 
usual care was 2% (95% CI, –5% to 4%) and the RRR 
was 1.00 (95% CI, 0.8–1.2). When using the model de-
rived from cohort A to rank order patients in cohort 
B from lowest to highest likelihood of benefit, both 

the predicted and observed treatment effects ranged 
widely. The mean predicted iARD in quintile 1 was 
–6% and the observed 90-day mortality was 31% in the 
EGDT and 23% in the usual care groups, representing 
an observed ARD of –8% (95% CI, –19% to 4%) and 
RRR of 1.34 (95% CI, 0.89–2.01) suggesting increased 
mortality with EGDT. In contrast, in quintile 5, the 
mean predicted iARD was 7% with observed mortality 
of 21% in the EGDT and 33% in the usual care group 
thereby representing an observed ARD of 12% (95% 
CI, 1–23%) and a RRR of 0.64 (95% CI, 0.42–0.96) sug-
gesting decreased mortality with EGDT (Fig. 1). Plots 
of mortality rates by treatment group for patients with 
similar iARD predictions showed that patients with 
iARD near 0 had relatively low risk in each treatment 
group, and patients with more extreme iARDs in both 
directions had increasingly high baseline mortality risk 
(Fig. 2). Similar results were observed in sensitivity 
analyses reversing derivation and validation cohorts 
(eFigs. 3 and 4, http://links.lww.com/CCM/H601), 
with consistent findings of significant treatment by 
predicted iARD interaction (coefficient, 1.3; 95% CI, 
0.4–2.1; p = 0.001). Notably, the full spectrum of iARDs 
was broad ranging from –13.7% to 13.9% when cohort 
B was used as validation and from –28.5% to 16.5% 
when cohort A was used for validation. Findings were 
also consistent in sensitivity analyses using alternative 
approaches for handling missing data values, although 
not all analyses reached statistical significance (eFigs. 
5–7, http://links.lww.com/CCM/H601). Treatment by 
predicted iARD interaction remained significant in 
sensitivity analyses using ProCESS for derivation and 
ARISE for validation (p = 0.003) and vice versa (p = 
0.003; eFig. 8, http://links.lww.com/CCM/H601). For 
the model derived in cohort A, metrics of discrimina-
tive performance calculated in cohort B were excellent; 
metrics calculated in cohort A were similarly strong for 
the model derived in cohort B (eTable 8, http://links.
lww.com/CCM/H601).

Assessment of Patient Characteristics 
Contributing to HTE

Circulating albumin levels were most predictive of 
treatment response in SHAP (eFig. 9, http://links.
lww.com/CCM/H601), decision tree analyses (eFig. 
10, http://links.lww.com/CCM/H601), and when 
baseline characteristics across iARD quintiles were 
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TABLE 1.
Baseline Patient Characteristics in Cohorts A and B

Variable Cohort A (n = 1148) Cohort B (n = 1332)

Trial membership

 � Australasian Resuscitation of Sepsis Evaluation 742 (64.6) 846 (63.5)

 � Protocolized Care for Early Septic Shock 406 (35.4) 486 (36.5)

Demographics

 � Age, yr 65 (52–76) 62 (50–73)

 � Male 668 (58.2) 774 (58.1)

Vital signs

 � Temperature (°C) 37 (36–38) 37 (37–38)

 � Respiratory rate, bpm 22 (18–28) 22 (18–28)

 � Heart rate, bpm 100 (90–120) 110 (92–120)

 � Mean arterial pressure, mm Hg 67 (59–79) 67 (59–78)

 � Systolic blood pressure, mm Hg 95 (83–110) 95 (83–110)

Severity of illness

 � Acute Physiology and Chronic Health Evaluation II 15 (11–20) 15 (11–20)

 � Total Sequential Organ Failure Assessment 4 (2–6) 4 (2–6)

 � Glasgow Coma Scale 15 (14–15) 15 (14–15)

 � Charlson Comorbidity Index 1 (0–3) 1 (0–2)

Clinical laboratories

 � Albumin, g/dL 3.2 (2.7–3.7) 3.2 (2.7–3.7)

 � Hemoglobin, g/dL 12 (11–14) 12 (11–14)

 � Pao2, mm Hg 87 (64–140) 89 (67–130)

 � Bilirubin, mg/dL 0.9 (0.6–1.6) 0.93 (0.6–1.5)

 � Blood urea nitrogen, mg/dL 27 (18–43) 26 (18–41)

 � Creatinine, mg/dL 1.6 (1.1–2.4) 1.5 (1–2.4)

 � Glucose, mg/dL 130 (100–170) 130 (100–180)

 � Lactate, mmol/L 4.2 (2.3–5.8) 4.1 (2.2–5.7)

 � Platelets, 109/L 200 (140–280) 200 (130–260)

 � Oxygen saturation, % 98 (95–100) 97 (95–99)

 � WBC, 109/L 13 (7.5–19) 13 (7.3–19)

Infection site

 � Lung 408 (36.2) 432 (33.2)

 � Urinary tract 219 (19.4) 282 (21.7)

 � Abdominal 114 (10.1) 130 (10.0)

Organ support

 � Mechanical ventilation 143 (12.5) 135 (10.1)

 � Vasopressors 244 (21.3) 253 (19.0)

bpm = beats/min.
Cells show median (interquartile range) for continuous variables, and frequency (percent) for binary variables.
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compared (Table 2). For example, younger patients 
with lower albumin levels were more likely to be 
harmed by EGDT, whereas older patients with normal 
albumin levels were more likely to benefit. SHAP 
analysis suggested that relationships between covari-
ates and predicted treatment response were complex. 
For instance, albumin level showed a steep increas-
ing linear relationship with treatment response for 
albumin values less than 3 g/dL followed by constant 
(flat) contributions for values greater than or equal to 
3 g/dL, whereas age showed a linear relationship (eFig. 

11, http://links.lww.com/CCM/H601). Temperature, 
heart rate, and circulating glucose values were also im-
portant predictors of treatment response, with either 
a U- or S-shaped relationship between these variables 
and treatment response. The remaining variables also 
contributed to treatment response, although indi-
vidual contributions varied.

Notably, two patients may have had similar iARD 
predictions but due to different covariate patterns. For 
instance, two patients in the combined cohort had re-
ceived iARD predictions less than –14%, suggesting 

Figure 2. Examination of predicted individual absolute risk differences (iARDs) in cohort B. Predicted iARDs in cohort B determined 
based on a local linear random forest R-learner model derived in cohort A. Histogram of iARD predictions is provided in (A). Plot of 
predicted iARDs against smoothed observed mortality rates in each treatment group is provided in (B). Plot of iARD predictions against 
observed mortality rate differences is provided in (C). Curves in (B) and (C) were generated using random forest-based smoothing 
functions using cohort B patient predictions and 90-d mortality status. Negative iARD predictions represent a higher risk of mortality 
on early goal-directed therapy (EGDT) compared with usual care (UC) (probable harm) and positive predictions represent a lower risk 
of mortality on EGDT. The dashed line in (C) represents perfect calibration intercept and slope of the iARD predictions in cohort B; the 
dotted line represents the calibration of randomly generated predictions.

Figure 1. Observed absolute risk difference (ARD) with 95% CIs from early goal-directed therapy (EGDT) compared with usual care 
in quintiles of patients stratified by predicted individual ARDs (iARDs). Quintiles represent patients in cohort B stratified by predicted 
treatment response from the local-linear random forest R-learner model derived in cohort A. Negative ARD represents higher mortality 
on EGDT compared with usual care (harm from EGDT) and positive ARD represents lower mortality on EGDT compared with usual care 
(benefit from EGDT). Quintile 1 (Q1) represents the patients with the lowest predicted iARDs (predicted to benefit the least from EGDT) 
and quintile 5 (Q5) represents the patients with the highest predicted iARDs (predicted to benefit the most from EGDT). Relative risk of 
90-d mortality in EGDT group compared with usual care is also provided with 95% CI. Q2 = quintile 2, Q3 = quintile 3, Q4 = quintile 4.

http://links.lww.com/CCM/H601


Copyright © 2024 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

Feature Article

Critical Care Medicine	 www.ccmjournal.org          e11

TABLE 2.
Comparison of Baseline Characteristics Across Quintiles of Predicted Individual Absolute Risk 
Difference for All Patients (Cohorts A and B), From a Model Derived in the Combined Sample

Variable
Quintile 1  
(n = 496)

Quintile 2  
(n = 496)

Quintile 3  
(n = 496)

Quintile 4  
(n = 496)

Quintile 5  
(n = 496)

Demographics

 � Age, yr 55 (43–66) 54 (42–67) 63 (52–74) 68 (58–76) 72 (65–80)

 � Male 296 (59.7) 287 (57.9) 294 (59.3) 286 (57.7) 279 (56.2)

Vital signs

 � Temperature (°C) 37 (36–38) 38 (37–38) 38 (37–38) 37 (37–38) 37 (36–38)

 � Respiratory rate, bpm 23 (18–28) 23 (19–28) 22 (18–29) 22 (18–26) 22 (18–27)

 � Heart rate, bpm 120 (100–140) 120 (100–130) 100 (94–120) 100 (88–110) 94 (82–110)

 � Mean arterial pressure, mm Hg 65 (58–77) 68 (60–81) 68 (61–78) 68 (60–80) 65 (58–77)

 � Systolic blood pressure, mm Hg 92 (81–110) 96 (85–110) 97 (85–110) 95 (84–110) 93 (82–110)

Severity of illness

 � Acute Physiology and Chronic 
Health Evaluation II

17 (12–22) 14 (9.8–19) 13 (9–17) 14 (11–18) 19 (14–23)

 � Total Sequential Organ Failure 
Assessment

5 (3–8) 4 (2–5) 3 (2–5) 3 (2–5) 5 (3–6)

 � Glasgow Coma Score 15 (14–15) 15 (15–15) 15 (14–15) 15 (15–15) 15 (13–15)

 � Charlson 2 (0–4) 1 (0–2) 0 (0–2) 1 (0–2) 2 (0–3)

Clinical laboratories

 � Albumin, g/dL 2.2 (1.9–2.6) 3.3 (2.8–3.8) 3.4 (3–3.8) 3.4 (3–3.8) 3.3 (3–3.7)

 � Hemoglobin, g/dL 11 (9.1–13) 13 (11–15) 13 (12–14) 13 (11–14) 12 (10–14)

 � Pao2, mm Hg 88 (66–150) 84 (61–130) 86 (67–130) 90 (68–140) 89 (65–140)

 � Bilirubin, mg/dL 1.2 (0.6–2.3) 1 (0.64–1.7) 0.99 (0.6–1.4) 0.87 (0.58–1.4) 0.75 (0.5–1.2)

 � Blood urea nitrogen, mg/dL 27 (17–46) 23 (15–33) 23 (17–33) 26 (18–36) 40 (25–64)

 � Creatinine, mg/dL 1.5 (1.1–2.7) 1.4 (1–2.2) 1.3 (1–1.9) 1.4 (1–2) 2.1 (1.3–3.3)

 � Glucose, mg/dL 110 (85–140) 120 (96–160) 130 (110–170) 140 (110–180) 150 (120–230)

 � Lactate, mmol/L 4.6 (2.6–6.7) 4.3 (2.6–5.9) 3.9 (2.2–5.4) 3.7 (2–5.1) 4.2 (2.2–5.2)

 � Platelets, 109/L 170 (91–260) 190 (130–250) 190 (140–250) 210 (150–280) 230 (170–320)

 � Oxygen saturation, % 98 (95–100) 98 (95–99) 98 (95–100) 97 (95–100) 97 (94–100)

 � WBC, 109/L 12 (5.9–18) 12 (6–18) 12 (7.8–18) 13 (8–19) 15 (10–21)

Infection site

 � Lung 164 (34.3) 160 (33) 179 (36.8) 178 (36.3) 159 (32.6)

 � Urinary tract 76 (15.9) 94 (19.4) 101 (20.8) 119 (24.2) 111 (22.8)

 � Abdominal 60 (12.6) 47 (9.7) 45 (9.3) 37 (7.5) 55 (11.3)

Organ support

 � Mechanical ventilation 84 (16.9) 33 (6.7) 38 (7.7) 42 (8.5) 81 (16.3)

 � Vasopressors 149 (30) 80 (16.1) 67 (13.5) 91 (18.3) 110 (22.2)

bpm = beats/min.
Cells show median (interquartile range) for continuous variables, and frequency (percent) for binary variables. Quintile 1 for each trial 
includes the patients with the lowest predicted individual absolute risk differences (iARDs) representing the patients with the least 
predicted benefit (or greatest harm) from early goal-directed therapy (EGDT) compared with usual care, and quintile 1 includes the 
patients with the highest iARDs representing the patients with the highest predicted benefit from EGDT. iARDs are estimated from a 
local linear random forest R-learner model trained in the combined cohort.
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harm with EGDT. SHAP analysis revealed that the 
model generated the prediction of harm almost en-
tirely based on low albumin levels for one patient 
(eFig. 12A, http://links.lww.com/CCM/H601), but the 
prediction of harm for another patient was based pri-
marily on contributions from low albumin, age, and 
glucose (eFig. 12B, http://links.lww.com/CCM/H601). 
Some differences in variable importance were noted 
in sensitivity analyses using one trial for derivation 
and the other for validation, but albumin remained 
the most important variable, and the top ten variables 
were mostly consistent across analyses (eFigs. 13 and 
14, http://links.lww.com/CCM/H601).

In exploratory analyses investigating differences in 
individual comorbidities across iARD quintiles, we 
determined that cirrhosis was most prevalent in the 
quintile of patients predicted to be harmed by EGDT 
and heart failure was most prevalent in the quintile 
of patients predicted to benefit the most from EGDT 
(eTable 9, http://links.lww.com/CCM/H601).

Assessment of Subcomponents of EGDT 
Contributing to HTE

Exploratory analyses on whether the way interventions 
were deployed influenced HTE were inconclusive. For 
fluid and vasopressor use, as expected, the sites in the 
restrictive fluid management group had higher dif-
ferences in fluid administration between EGDT and 
usual care groups (eFig. 15, http://links.lww.com/
CCM/H601), while those in the liberal group sites had 
higher differences in vasopressor use (eFig. 16, http://
links.lww.com/CCM/H601). However, the magni-
tude of HTE did not vary across these sites (eTable 10, 
http://links.lww.com/CCM/H601). Similarly, for RBC 
transfusion and dobutamine use, no differences were 
observed between usual care and EGDT arms (eTable 
11, http://links.lww.com/CCM/H601).

DISCUSSION

In a secondary analysis of two multicenter, international 
trials testing resuscitation strategies, we found large 
variation in ITEs of EGDT compared with usual care. 
Although neither trial demonstrated a statistically signifi-
cant ATE, the range of iARDs within these trials included 
benefit of a magnitude similar to that of the initial EGDT 
trial but also included iARDs of an equal magnitude of 
harm. Circulating albumin levels were most predictive 

of treatment response with younger adults with lower al-
bumin values predicted to have the highest harm from 
EGDT. Exploratory analyses suggest EGDT may harm 
patients with cirrhosis and benefit patients with heart 
failure, but, due to differences comorbidity assessment 
between trials, these findings are hypothesis generating 
and highlight a need to consider comorbidities in future 
studies investigating iARDs to resuscitation.

When the ARISE (4), ProCESS (3), and PROMISe (5) 
trials of EGDT did not replicate the benefits demonstrated 
in the original Rivers trial (2), diverse opinions emerged 
for these discrepant findings, including shifts in usual care 
practices over time and lack of efficacy (12). Our findings 
suggest that EGDT may indeed be efficacious but only for 
a subset of patients, and the discrepant results from trials 
may have reflected differences in enrollment of patients in 
whom EGDT was beneficial and harmful.

Importantly, similar HTE likely exists in other trials of 
sepsis resuscitation. Our results therefore have implica-
tions for the design of future resuscitation trials, which 
should be much larger compared with contemporary trials 
to allow randomization of patients to several intervention 
arms across multiple groups to account for potential HTE 
for each resuscitation component. Several studies inves-
tigating this concept identified subtypes using baseline 
covariates and demonstrated differential treatment effects 
in subtypes (14, 22, 23). Consistent with recent studies of 
ITEs (10, 24, 25), our current approach is different and 
has strengths. First, identifying ITEs may be advantageous 
over subtyping when variables determining subtype mem-
bership differ from those determining treatment response 
or when individual treatment responses vary within sub-
types. Second, the iARD values in our study provide an 
estimate of benefit or harm at an individual level and may 
allow personalizing treatments. Third, modern model ex-
planation tools such as SHAP allow investigators to under-
stand the contributions of predictor variables in treatment 
response, which may be different for individual patients.

We acknowledge some caveats in the interpreta-
tion of findings. We examined a small set of baseline 
covariates available in both ARISE and ProCESS to 
predict treatment response, although a richer set of 
covariates, such as detailed measures of organ support 
and intervention delivery, may have provided greater 
insights. Several physiologic variables that may guide 
sepsis resuscitation such as vasopressor dose and cen-
tral venous oxygen saturation were not universally 
available. As the variables that contribute to response 
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to resuscitation remain unclear, future HTE studies 
should strive to strike a balance between including as 
predictors both variables that already have a plausible 
causal relationship to treatment response and other 
variables where a causal association is not as clear but 
may be possible. We acknowledge some minor differ-
ences in variable importance rank order when models 
were derived using only half of the available data; how-
ever, five variables consistently emerged as the most 
important, and our approach of using the entire cohort 
for variable importance would provide the most precise 
estimates for a patient enrolled in a future prospective 
trial. Missingness in our predictor variables may also 
affect precision of ITE estimates but our results were 
robust across multiple sensitivity analyses. Prospective 
studies are needed to advance precision medicine 
approaches and refine ITE-based approaches, but ret-
rospective analyses such as ours serve to provide in-
sight into variables and model designs, and help avoid 
randomizing patients to treatment arms where they 
may be harmed.

In conclusion, our results suggest that individual 
responses to resuscitation varied in patients enrolled 
in EGDT trials. Future studies should seek to under-
stand underlying mechanisms and future trial designs 
should incorporate approaches that learn HTE and 
tailor resuscitation strategies.
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