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ARTICLE INFO ABSTRACT

Keywords: Objective: Low-value care (i.e., costly health care treatments that provide little or no benefit) is an ongoing
Evidence-based medicine problem in United States hospitals. Traditional strategies for reducing low-value care are only moderately suc-
Resuscitation

cessful. Informed by behavioral science principles, we sought to use machine learning to inform a targeted
prompting system that suggests preferred alternative treatments at the point of care but before clinicians have
made a decision.

Methods: We used intravenous administration of albumin for fluid resuscitation in intensive care unit (ICU)
patients as an exemplar of low-value care practice, identified using the electronic health record of a multi-
hospital health system. We divided all ICU episodes into 4-h periods and defined a set of relevant clinical fea-
tures at the period level. We then developed two machine learning models: a single-stage model that directly
predicts if a patient will receive albumin in the next period; and a two-stage model that first predicts if any
resuscitation fluid will be administered and then predicts albumin only among the patients with a high proba-
bility of fluid use.

Results: We examined 87,489 ICU episodes divided into approximately 1.5 million 4-h periods. The area under
the receiver operating characteristic curve was 0.86 for both prediction models. The positive predictive value
was 0.21 (95% confidence interval: 0.20, 0.23) for the single-stage model and 0.22 (0.20, 0.23) for the two-stage
model. Applying either model in a targeted prompting system could prevent 10% of albumin administrations,
with an attending physician receiving one prompt every 4.2 days of ICU service.

Conclusion: Prediction of low-value care is feasible and could enable a point-of-care, targeted prompting system
that offers suggestions ahead of the moment of need before clinicians have already decided. A two-stage
approach does not improve performance but does interject new levers for the calibration of such a system.

Clinical decision support
Low-value care
Machine learning

1. Introduction

De-implementing low-value care practices (i.e., costly medical
practices that provide little or no benefit to patients) is a significant
public health problem in the United States [1], costing up to $100 billion
annually [2-4]. Low-value care harms patients by exposing them to
unnecessary risks, consuming scarce resources, and overcomplicating
care [5]. These issues are particularly prominent in hospitalized pa-
tients, where clinical decisions are made with extreme time pressure and
high patient acuity creates a culture of doing more for patients [6].
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To address the low-value care problem [7-9], implementation sci-
entists have developed novel implementation science theories sur-
rounding de-adoption [10] and have deployed dozens of different
de-adoption strategies [11-13], such as interruptive alerts within the
electronic health record (EHR) [14]. Unfortunately, the impact of
interruptive alerts on reducing low-value care is modest [14-17].

A potential alternative to traditional interruptive alerts is a targeted
prompting system that notifies clinicians earlier in the decision process,
ideally immediately before a clinician realizes that a particular clinical
decision needs to be made. Such a system would prospectively prime a
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high-valued decision rather than retrospectively correct a low-valued
one [18]. A critical barrier preventing the deployment of a targeted
prompting system is identifying when a notification ought to be gener-
ated. We aim to address this barrier by developing a prediction model
that identifies situations with a high likelihood that a clinician will order
a low-value practice.

2. Methods
2.1. Low-value care of focus

As a demonstrative example of low-value care, we focus this study on
administering IV albumin for fluid resuscitation in the intensive care
unit (ICU). The relative merits of IV albumin versus alternative fluid
choices have been extensively reviewed elsewhere [19-22]. Briefly, IV
fluid resuscitation is a mainstay of critical care and is indicated when-
ever patients are experiencing end-organ hypoperfusion due to intra-
vascular depletion. Most typically, this occurs in the setting of sepsis or
other types of relative hypovolemia. By providing fluid resuscitation, the
aim is to maintain organ perfusion (i.e., blood flow) and substrate (e.g.,
oxygen) delivery while other more definitive treatments (e.g., antibi-
otics) are taking effect [23].

Once the decision is made to administer IV fluid, clinicians have
several options for the type of fluid. One major category of fluid is
electrolytes dissolved in sterile water. This category is called crystalloid,
and common types include normal saline or Ringer’s lactate. A second
major category is large proteins or starches sustained in sterile water.
This category is called colloid; the most common type is human albumin.
In theory, IV albumin should be a superior resuscitation fluid to crys-
talloid since its large molecular structure should stay in the intravascular
space, preventing complications from extravascular spillover such as
pulmonary edema. However, in practice, IV albumin causes just as many
complications as other fluids. In head-to-head randomized trials, albu-
min is consistently associated with similar or worse outcomes than
crystalloid [24,25]. At the same time, albumin is exponentially more
costly than crystalloid solutions, making it a classic example of
low-value care in hospitalized patients [26,27].

2.2. Conceptual model

Hospital leaders have numerous strategies for guiding clinicians to-
ward higher-value treatment decisions (Fig. 1) [11]. Most of these
strategies intervene too late to impact the decisions made for an indi-
vidual patient. By design, feedback about past decisions can only
improve decisions for future patients. Clinical decision support-based
strategies, such as infobuttons (that show a hover box of relevant infor-
mation [28]) and interruptive alerts (that trigger a pop-up window
prompting a specific action), are usually on EHR order entry screens,
which are often not viewed by clinicians until after they decide what to
order.

A potential alternative strategy for higher-value decisions is to
prompt’ clinicians for a particular evidence-based practice immediately
before the moment of need, i.e., before they decide on a particular
treatment course. As with other clinical decision support systems,
prompts must be targeted so clinicians are not overwhelmed by irrele-
vant information [29]. Therefore, accurate models for predicting treat-
ment decisions are needed.

! Here and throughout the paper, prompt is intended to encompass any
means of electronically informing a clinician (consciously or subconsciously),
for example, pop-up alerts, text-based reminders, or guiding choices through
EHR defaults.
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2.3. Study design and setting

We performed a comparative machine learning study using retro-
spective EHR data from critical care patients discharged from UPMC
hospitals between January 1st, 2018 and September 30th, 2020. UPMC
is a multi-hospital integrated health system in the mid-Atlantic region of
the United States. The data covers 38 ICUs in 18 hospitals and includes
87,489 hospitalizations requiring intensive care. Research use of this
limited dataset was approved by the University of Pittsburgh Human
Research Protection Office (IRB #19040420).

2.4. Data processing

ICU admissions were identified from location codes in the data.
Hospitalizations not requiring ICU admission were excluded from the
sample. Subsequently, each eligible hospitalization was windowed into
fixed, 4-h periods: 07:00-10:59, 11:00-14:59, 15:00-18:59,
19:00-22:59, 23:00-02:59, and 03:00-06:59. A 4-h period length was
chosen because we hypothesized it was long enough to include sufficient
data for prediction while also short enough to provide meaningful time
for clinical decision making. Missing values were not imputed or carried
over from prior periods.

Within each period, we defined approximately 400 independent
variables derived from EHR data from the current period or prior periods
(e.g., highest blood pressure, urine output), as well as time-invariant
variables that did not change across periods (e.g., patient age, patient
gender). Clinicians with experience in the direct care of patients with
critical illness guided the selection of broad domains and specific vari-
ables within those domains. Domains included patient characteristics,
vital signs, laboratory test results, medication administration, and pro-
cedures [30]. A list of the variables is provided in Appendix A.

For each 4-h period, we also assigned two dependent variables: (a) a
binary variable specifying whether IV albumin was administered in the
subsequent period, and (b) a binary variable specifying whether any
resuscitation fluid was administered in the subsequent period, which we
defined as > 250 ml fluids given during the period. These dependent
variables are defined based on data from the immediately following
period because our goal was to predict the actions (i.e., orders) that will
occur in the immediate future.

Periods within a hospitalization that occurred after the first admin-
istration of IV albumin were excluded because it is not valuable to
predict the administration of IV albumin after it has already begun. After
data processing, all periods were randomly split 50/50 into training and
testing sets, each treated independently.

2.5. Modeling approach

Our overarching goal was to develop a model that predicts albumin
administration before a clinician decides to place the order. The stan-
dard approach for building a supervised machine learning model is to
make the prediction in a single step. That is, the input is the vectorized
set of independent variables, and the output is an estimate of the
dependent variable. However, because albumin administration is a
relatively rare event, a single-step prediction model might have an un-
acceptably high false positive rate [31,32]. Additionally, we assume that
clinicians will be more annoyed by irrelevant prompts (i.e., an albumin
prompt when none of their patients require fluid resuscitation) than they
will be by relevant prompts (i.e., an albumin prompt when at least one of
their patients requires or will soon require fluid resuscitation), even if
they were not going to order the low-value practice (i.e., an albumin
containing fluid). Under this framing, it is helpful in not just predicting
when a low-value practice will be ordered but also when there is a sit-
uation where alternatives to the low-value practice will be ordered (i.e.,
any fluid for resuscitation).

To capture the two-step nuance of predicting both (i) when a patient
will receive any resuscitation fluid and (ii) when a patient will receive a
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Fig. 1. Strategies for reducing the use of albumin-containing fluids for resuscitation. Education is too early and may be forgotten. Infobuttons and interruptive alerts
are too late because it is difficult to change a clinician’s mind after they have already decided what fluid to order. Targeted prompts might work because they will
provide information right before the clinician recognizes that they need to order fluids.

specific resuscitation fluid, we propose a two-stage machine learning
model. For this study, the first stage of the two-stage model predicts
which patients will receive any resuscitation fluid (as defined by
receiving >250 ml of intravenous fluids) or an albumin-containing fluid
within the subsequent 4-h period. Then, among this population of pa-
tients predicted to receive any resuscitation fluids, predict which of
those orders will be for an albumin-containing fluid.

To test the proposed approach, we trained a single-stage and a two-
stage model on the same data and compared their performance when
predicting the administration of an albumin-containing fluid. An over-
view of this experimental setup is shown in Fig. 2.

We used five-fold cross-validation on the training set for model

fitting, hyperparameter tuning, and selection. Each model used extreme
gradient boosting learning, which was implemented by the caret pack-
age (version 6.0-93) in R (version 4.2.0). We chose extreme gradient
boosting for prediction because it has been shown to have state-of-the-
art performance on high-dimensional ICU data sets [33].

2.6. Model evaluation

We assessed the final performance of each model on the testing set.
We report the receiver operating characteristic (ROC) curve, the area
under the curve (AUC), and the confusion matrix for each model and
stage.

@
R

Goal: Predict if
an albumin-
containing fluid
will be ordered

X 87,000 X 1.5 million periods
Single-stage —
model

Only stage
P(albumin ordered)

Send targeted prompt

Two-stage
model

1st stage
P(any resuscitation
fluid ordered)

Do nothing.

2 stage
P(albumin ordered)

Send targeted prompt

Fig. 2. Experimental setup comparing the performance of single-stage and two-stage models with the goal of anticipating orders of an albumin-containing fluid. The
2nd stage of the two-stage model is applied to a patient population that is enriched for those patients who will receive an order for any resuscitation fluid.
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To make the single-stage and two-stage model results more directly
comparable, we repeated the experiment while setting the prediction
threshold for the only stage of the single-stage model and the second
stage of the two-stage model to be the values that resulted in a 10%
sensitivity on the training set. (Because the first stage of the two-stage
model is an intermediate prediction task, we chose its prediction
threshold as the value that maximized F1 score on the training set). By
choosing equivalent model sensitivities, the positive predictive values of
the two models are directly comparable. Positive predictive value is the
metric of greatest interest because the targeted prompting system
“pushes” information to clinicians. When clinicians receive information
they did not request, it is critical that the information is a true positive as
often as possible. Otherwise, the clinicians might quickly become
annoyed. This approach contrasts with other situations (i.e., laboratory
testing) where information is “pulled” (i.e., requested) by the clinician.
In the latter case, clinicians have already committed to seeing the in-
formation when they place the order. Thus, annoyance becomes less of a
risk, and sensitivity or specificity are the most important metrics. We
reported testing set performance as positive predictive value (TP/(TP +
FP)), sensitivity (TP/(TP + FN)), specificity (TN/(TN + FP)), negative
predictive value (TN/(FN + TN)), and F1 score (TP/(TP+0.5(FP +
FN))), where TP, FP, FN, and TN correspond to the four confusion matrix
outcomes: true positive, false positive, false negative, and true negative.
Bootstrap resampling is performed 1000 times on the testing set to es-
timate 95% confidence intervals.

Additionally, we calculated the number of alerts an ICU physician
would be expected to receive each day. To calculate alerts per day, we
first calculated the alert rate (number of alerts per 4-h period) using the
following equation: (TP + FP)/(TP + FP + FN + TN). To calculate alerts
per ICU-day, we next multiplied alerts per period times periods per
patient-day (6 for a 4-h period) and times patient-days per ICU-day (12
for a 12-patient unit). Finally, we calculated the inverse of alerts per
ICU-day to determine how many days are between each alert.

Lastly, we conducted feature importance experiments for each model
and stage using Shapley additive explanations to determine if the
different modeling approaches led to differences in the top ten selected
features [34]. These top ten features are shown in a Venn diagram with
one circle for each model.

3. Results

The final processed data set included 87,489 inpatient hospitaliza-
tions and 1,440,710 periods. Patient characteristics are shown in
Table 1, and period characteristics in the training and testing sets are
shown in Table 2. The dependent variables, administration of albumin in
the subsequent period and administration of any resuscitation fluid in
the subsequent period, were True in 9844 (0.68%) and 251,836
(17.48%) of the periods, respectively.

ROC, AUC, and confusion matrixes for all model stages on the testing
set are shown in Fig. 3. The positive predictive values of the two models
when the prediction threshold was selected for a 10% sensitivity are
shown in Table 3. From these numbers, we calculated the alert rate to be
0.003314 alerts/period, equating to 1 alert for every 4.2 ICU-days.

Fig. 4 depicts classification accuracy across different prediction
thresholds. The two-stage model has a threshold for both model stages,
allowing greater calibration flexibility depending on local needs and the
low-value care of interest. Fig. 5 shows how the feature importance
varied between the different model stages (see Appendix B for the
original Shapley importance figures). As expected, the features used by
the only stage of the single-stage model and the second stage of the two-
stage model are most similar because these models perform the same
task: predicting the administration of an albumin-containing fluid.

4. Discussion

We used two modeling approaches to predict when a patient would
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Table 1
Patient characteristics.
No. (%)
Demographic information
Total No 87,492"
Age, median (IQR), y 65 (54-76)
Sex
Female 40,678 (46.5%)
Male 46,814 (53.5%)
Race
Black 9737 (11.1%)
White 72,414 (82.8%)

Other/multiracial /unspecified 5341 (6.1%)

Died during hospitalization

No 77,263 (88.3%)
Yes 10,229 (11.7%)
Comorbidities”
Total No. 87,490

147 (0.2%)
7131 (8.2%)
19,870 (22.7%)
3577 (4.1%)
1070 (1.2%)
25,061 (28.6%)
29,973 (34.3%)
12,208 (14.0%)
19,911 (22.8%)
9677 (11.1%)
21,457 (24.5%)

Acquired immune deficiency syndrome
Alcohol abuse

Deficiency anemia

Rheumatoid arthritis/collagen

Blood loss anemia

Congestive heart failure

Chronic pulmonary disease
Coagulopathy

Depression

Diabetes without chronic complications
Diabetes with chronic complications

Drug abuse 3987 (4.6%)
Hypertension 63,041 (72.1%)
uncomplicated 31,706 (36.2%)
complicated 31,335 (35.8%)
Hypothyroidism 15,462 (17.7%)
Liver disease 8522 (9.7%)
Lymphoma 1217 (1.4%)

Fluid and electrolyte disorders
Metastatic cancer
Other neurological disorders

42,908 (49.0%)
4829 (5.5%)
18,384 (21.0%)

Obesity 20,139 (23.0%)
Paralysis 7962 (9.1%)
Peripheral vascular disorders 11,359 (13.0%)
Psychoses 6243 (7.1%)

Pulmonary circulation disorders
Renal failure

3922 (4.5%)
19,391 (22.2%)
5593 (6.4%)
2278 (2.6%)
14,515 (16.6%)
16,498 (18.9%)
5 (3-6) [0-17]

Solid tumor without metastasis
Peptic ulcer disease excluding bleeding
Valvular disease
Weight loss
Elixhauser Comorbidity Index, median (IQR) [range]
Windowing of temporal EHR data into 4-hr periods
Periods per patient in analysis, median (IQR)
Total No. of periods
SOFA, median (IQR) [range]
Receiving Invasive Mechanical Ventilation
No 925,623 (64.2%)
Yes 515,087 (35.8%)

11 (6-20)
1,440,710
3 (1-5) [0-24]

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided
by height in meters squared); IQR, interquartile range; SOFA, sequential organ
failure assessment.

? Individual patients are counted more than once if they had more than one
hospitalization requiring intensive care.

b Comorbidity definitions are based on Elixhauser Comorbidity Index
v2020.1.

Table 2
Four-hour period characteristics.

Training set Testing set

Number of periods 720,355 720,355
Resuscitation fluid orders (excluding albumin), N 124,633 123,792
Albumin-containing fluid orders, N 4866 4978
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Fig. 3. Results of the single and two-stage models. The 2nd stage of the two-stage model is only applied to periods that were predicted to receive fluid by the 1st stage
of the two-stage model. Therefore, the ROC curve of the 2nd model does not include the periods that were predicted not to receive an order for a resuscitation fluid.
For a fair comparison with the single-stage model, the confusion matrix has the periods predicted not to receive fluid added back in.

Table 3
Performance with 95% confidence interval at 10% sensitivity.

Single-Stage Two-Stage”

Positive predictive value 0.214 (0.197, 0.231) 0.217 (0.201, 0.233)

Sensitivity 0.106 (0.098, 0.115) 0.104 (0.096, 0.113)
Specificity 0.997 (0.997, 0.997) 0.997 (0.997, 0.998)
Negative predictive value 0.994 (0.994, 0.994) 0.994 (0.994, 0.994)
F1 score 0.142 (0.131, 0.153) 0.141 (0.130, 0.151)

@ 1st stage cutoff was chosen to maximize F1 score.

receive albumin for fluid resuscitation. This clinical prediction task is
difficult because administration of albumin is rare (<7 out of every 1000
periods in our dataset), and, as we infer from our results, the patient’s
clinical state is a weak predictor of the use of IV albumin. Supporting this
conclusion, we found predicting the administration of resuscitation fluid
(first stage of the two-stage model) to be higher performing than pre-
dicting the administration of IV albumin (only stage of the single-stage
model and second stage of the two-stage model). We hypothesized
that our novel two-stage model would lead to greater positive predictive
value because the first stage of the model enriches a subpopulation with
a high likelihood of receiving resuscitation fluid. However, this
approach led to overall results that were not significantly better than the
single-stage model. Despite these results, a two-stage model may still be
appropriate for some use cases as it provides additional calibration and
model interpretation levers.

A key innovation of this work is using machine learning to intervene
in the use of evidence-based practice rather than predicting a clinical
outcome or making a diagnosis [35]. Most prediction-focused machine
learning applications in hospital medicine are used to predict clinical
outcomes such as mortality [36-38] or whether the patient has a specific

clinical condition like sepsis [39-41]. A fundamental limitation of these
approaches is that delivering this information back to clinicians is un-
likely to change practice. In the case of mortality prediction, there is
little that the clinician can do to affect mortality based on the prediction,
i.e., no specific levers for practice change are provided by telling a
clinician a patient is at high risk of death. In the case of sepsis prediction,
clinicians are often already aware of the diagnosis, and so telling the
clinician that the patient has sepsis is unlikely to change the patient’s
care trajectory, as has been borne out in clinical studies [42,43].

In contrast, our study is one of the first to use machine learning to
predict the use of evidence-based care practices. This is an important
distinction because such models can enable targeted prompting systems
that preemptively guide clinicians towards adopting evidence-based
practices rather than interrupting a clinician’s workflow and attempt-
ing to change a decision after it has been made. As a result, the system
can also optimize its prompts according to the needs of all a clinician’s
patients rather than focusing on one patient at a time. For example, if a
clinician is going to make a fluid resuscitation decision for two or more
patients on the same day, a single targeted prompt of the preferred
resuscitation fluids would likely benefit all the patients rather than
burdening the clinician with a prompt for each of the qualified patients.
Optimizing across all a clinician’s patients becomes even more benefi-
cial as the system’s scope grows to include dozens of different evidence-
based practices.

Another distinction of predicting treatment decisions rather than
patient outcomes is that intervening in the former is more likely to train
a clinician towards habitually adopting evidence-based practices. This is
the chronologic advantage of influencing clinician actions: prompts
presented today can reduce the prevalence of a low-value care in the
future because treatment decisions are repeatable. Therefore, if a system
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Fig. 4. Visualization of performance at different prediction thresholds. The single-stage model has a single point of threshold calibration, whereas the two-stage

model has two points of threshold calibration.

can influence clinicians, even if only a few clinicians per year, into
habitually making higher value decisions, benefits compound. It also
means that a relatively low model sensitivity may be acceptable because
it is essential that the clinicians continue to receive prompts over time. If
a clinical decision support system is more annoying than helpful, clini-
cians will ignore or mute it, reducing the system’s sensitivity to zero.

4.1. Limitations
This work has a few limitations to consider.

1. The experiments used retrospective EHR data from a single health
system; however, these data did include nearly one hundred thou-
sand ICU admissions from 18 hospitals and 38 ICUs. The units
included rage from highly specialized ICUs in quaternary care hos-
pitals to ICUs in community hospitals without 24-hr intensivist

staffing. The patients included reflect that of the ICU population of
the geographic region given that we only excluded patients if their
ICU stay was less than 24 h.

. During data processing, we used 4-h periods without data carryover

or imputation to represent a patient’s clinical state. Different period
sizes, predictor variables, or implementation strategies could change
our results.

. Our low-value care of focus (albumin for fluid resuscitation) is an

example with clearly recommended alternatives. We have yet to
consider how a targeted prompting system may function differently
for other evidence-based practices without clearly recommended
alternatives such as ventilator management decisions [44].

4.2. Future work

Moving forward, we have three immediate next steps. (i) Determine
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Fig. 5. A Venn diagram of the top ten most important features (as found using Shapley additive explanations) for all model stages.

the performance of the model with the inclusion of clinician charac-
teristics. We believe that knowledge of an individual clinician’s past
treatment patterns, especially those regarding albumin administration,
will be helpful when predicting future orders of albumin and may enable
“customized” prompts tailored to each specific clinician. (ii) Determine
the prospective performance of the model. Before a model could be
deployed in a clinical trial, various adoptions must be made for it to run
on live clinical data. We will perform these adaptations and evaluate
model performance on active patient cases. (iii) Optimize the user
experience of using a targeted prompting system [45]. We will work
with clinicians to realize the desired changes in clinical practice.

5. Conclusions

Prediction of treatment decisions is an important next step in
increasing the adoption of evidence-based practices. Even moderately
performing models might support a targeted prompting system that is
better accepted by clinicians than the interruptive alerting systems

currently used and result in compounding improvements in evidence
adoption. Future work will evaluate if these models benefit from
including clinician characteristics or identities as features, if the results
are reproducible on real-time prospective data, and if the targeted
prompting system is ready for a clinical trial.
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