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This paper considers the problem of testing and estimation of change
point where signals after the change point can be highly irregular, which de-
parts from the existing literature that assumes signals after the change point to
be piecewise constant or vary smoothly. A two-step approach is proposed to
effectively estimate the location of the change point. The first step consists of
a preliminary estimation of the change point that allows us to obtain unknown
parameters for the second step. In the second step, we use a new procedure
to determine the position of the change point. We show that, under suitable
conditions, the desirable Op(1) rate of convergence of the estimated change
point can be obtained. We apply our method to analyze the Baidu search in-
dex of COVID-19 related symptoms and find December 8, 2019, to be the
starting date of the COVID-19 pandemic.

1. Introduction. Change-point detection and localization are classic and reviving topics
in many dynamically evolving systems, where a sequence of measurements are recorded and
we are interested in determining whether and at what time or location some aspect of the
data, such as mean, variance or distribution changes (Page (1955, 1957)). This problem is
of interest in many fields, such as economics, climatology, engineering, genomics, to name
just a few. The last few decades witnessed enormous development on this topic from differ-
ent perspectives including testing the existence of change points and the estimation of their
locations. We refer to Csorgd and Horvéth (1997), Aue and Horvath (2013), Jandhyala et al.
(2013), Niu, Hao and Zhang (2016) for reviews and recent developments on this topic.

An important problem in the detection of structural breaks is the detection of mean
changes. The simplest case where there is at most one change point has been studied ex-
tensively. The first step is to test whether there is any change point. If we reject the null
hypothesis that there is no change point, the next step is to make inference on the location of
the change point (Hawkins (1977)). The latter problem is nontrivial even for the normal and
homoskedastic model or the one-parameter exponential family (Sen and Srivastava (1975),
Hinkley (1970), Worsley (1986), Siegmund (1988)). Recently, the problem of detecting mul-
tiple change points has drawn a lot attention (Frick, Munk and Sieling (2014), Fryzlewicz
(2014, 2018), Baranowski, Chen and Fryzlewicz (2019)). In particular, functions in the pop-
ular R package changepoint achieve linear computational cost when the number of change
points increases with the number of observations (Killick, Fearnhead and Eckley (2012), Kil-
lick and Eckley (2014)). Here, it is assumed that, under the alternative, the mean function
is piecewise constant. However, in certain applications, it is more plausible to assume that
functions between a finite number of change points vary smoothly and/or the error process is
dependent. Relevant statistical methods and theory can be found in Miiller (1992), Horvath
and Kokoszka (2002), Mallik et al. (2011), Mallik, Banerjee and Sen (2013), Vogt and Dette
(2015), Dette, Eckle and Vetter (2020), Biicher, Dette and Heinrichs (2021).
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FIG. 1. Daily Baidu search index values for keywords of COVID-related symptoms. Dates are from October 1,
2019, to January 31, 2020. Keywords “cough” and “fever” are shown in left and right panel, respectively.

Unlike existing literature in the previous paragraph, we motivate our research from the fact
that signals can be highly irregular after the change point in certain applications. Such irreg-
ular signals depart sharply from the constant mean or smoothly varying functions under the
alternative—they can vary abruptly. A typical data example with irregular signals is depicted
in Figure 1. In this data set, the total number of searches for COVID-19 related symptoms
such as “fever” through Baidu (the most used search engine in China) is recorded in Hubei
Province from October 1, 2019, to January 31, 2020. An extremely important problem in
epidemiology is to identify the starting date of the pandemic. However, the latter problem
is very difficult due to lack of access to the data, and researchers have different results on
this; see, for example, Worobey (2021), Huang et al. (2020), Huang et al. (2020) and Centre
for Disease Control and Prevention (2022) among others. In this paper, we shall address this
important and fundamental problem by using the indirect Baidu search data. In particular, we
are interested in inferring the start of the COVID-19 pandemic through changes of the Baidu
search index by imposing the change-point paradigm (3) and (4). Based on the nature of the
problem, it seems plausible to assume a constant mean before the change point. After the
change point, it does not make sense to assume constant mean or smooth trend as the data
exhibit a high level of variation and irregularity. As far as we know, no results in the current
change-point literature can allow such a framework.

In this paper, we consider the testing and estimation of at most one change point where
the null assumes a constant mean and signals under the alternative can be quite general. Our
method is offline in the sense that we assume data are fully observed, which is different from
online change-point detection where information accrue over time and we only have data
available that has arrived before the current time. Different from Cao and Wu (2015), where
the interest lies in the multiple testing with clustered signals, we propose new test statistics
and a two-step method for detection of irregular signals after the change point. We use a
CUSUM-type of statistic to test the global null hypothesis that there is no change point. If
this global null is rejected, we develop a two-step method to locate the change point. In the
first step, we use the minimum of the batched means as a rough estimation of the change-
point location. Intuitively speaking, as data before the change point have a constant mean,
this minimum falls between the time origin and the true change point. The batched mean
effectively smooths out the data and increases the signal-to-noise noise ratio. Equipped with
the preliminary estimation from the first step, we are able to estimate the constant mean
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before the change point and the minimum distance between signals and the constant mean.
This allows us to construct a new test statistic to get a refined estimation of the change point
in the second step. We get, under suitable conditions, an Op(1) rate of convergence of the
estimated change point to the true change point, which fundamentally improves the results
in Cao and Wu (2022), where multiple sequences are needed to estimate the variance due to
heteroscedasticity.

The rest of the paper is organized as follows. In Section 2, we introduce our main method-
ology for the global test and the two-step method to locate the change point. Theoretical re-
sults are developed in Section 3, where we show Gaussian approximation to the test statistic
and the desirable Op(1) rate of convergence of the estimated change point to the true change
point. In Section 4, we investigate the finite sample performance of the new method through
simulations. In Section 5, we apply the new change-point estimation method to two data sets:
the Baidu search index for COVID-19 related symptoms “fever” and “cough” in 2019-2020.
All proofs and technical details are relegated to the Appendix in the Supplementary Material
(Kley et al. (2024)).

2. Methodology.

2.1. Model for the data and the problems considered. Suppose we are given noisy data
of the form

(1) X[:Ml‘—"_zl‘? tzl"-~an7

where w; are means or signals and (Z;);cz is a stationary process with mean 0, auto-
covariance function y (k) = Cov(Z;t, Z;) and finite long-run variance

) 0<ok:= Y yk) <oo.

k=—00

Consider the following null hypothesis:

(3) Ho:py=-- =y,
where the signal is constant (i.e., all means w; are equal, but not necessarily zero) and the
alternative hypothesis

(4) Hl:HT6{27---5n}’d>0::u“1="':M‘[—17 Mf’---a/’LnZl’Ll-'_d»

where the signal is constant for the first T — 1 observations and the means from the rth
observation onward may then vary arbitrarily as long as they are larger by at least d. We
focus on the one-sided case, because such upward shifts to a higher, but nonconstant level
are frequently encountered in practice; cf. Figure 1. Yet, to our knowledge, no method that is
tailored to this important situation is available to date. Note that this setting includes the case
where p; =--- = u, > 1 +d, which is to be detected by many traditional methods. The
case of multiple changes (as long as v j > w1 +d, j > 7) is also covered. Then t corresponds
to the time of the earliest change. But paradigm (4) goes far beyond these specific cases. In
fact, apart from the one-sidedness of the change in means, we do not require any structure
and the signal after the change may be arbitrarily wild.
Given the observations X1, ..., X,, we aim to develop:

e a hypothesis test to decide whether Hy holds or H; holds (see Section 2.2), and
e a procedure that, under Hy, will estimate 7 (see Section 2.3).

Note that Dette and Wu (2019), Heinrichs and Dette (2021), Vogt and Dette (2015),
Biicher, Dette and Heinrichs (2021) considered the problem of detecting changes in a se-
quence of means. Smoothness assumptions are needed for their methods to work. Different
from these works, as mentioned before, our methodology does not require such smoothness
assumptions.
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2.2. Testing procedure. Now, we propose a test to distinguish between Hyg and Hp, de-
fined in (3) and (4), respectively, when we have X1, ..., X, that follow (1) available. We use
the following quantity:

~ - 13
(5) T = _min ;(X — X,)/(Vnés), where X, := - ;x
and 8 is a consistent estlmator for the long-run variance o , defined in (2). In Section 2.3.2,
we propose an estimator for 0 that is consistent both under Hp and Hj. In Section 3.2, we
will show that, under Hy, the distribution of T is close, asymptotically, to the distribution of a
minimum obtained from a standard Brownian bridge, the quantiles of which can be obtained
via simulation or approximated asymptotically.

. AP .
We will further show that, under H;, we have T — —o0, as n — o0. Therefore, we will
use {T < c} as the rejection area, where ¢ can be chosen as the «-quantile of a minimum of a
standard Brownian bridge; cf. Section 3.2.

2.3. A two-step locating algorithm.

2.3.1. Blocking and estimation of the long-run variance. To reduce the noise from the
data and to focus our attention on the signal, we will here and in the following sections split
the data set into m := |n/ k] blocks of size k where k — oo and k/n — 0. Then we calculate
the blocks’ sample means as follows:

1 &
6 Ri:=-— Xi, j=12,...,m.
( ) j k 4 Z i ] m
i=(j—1k+1

Our theoretical results and remarks provide guidance on the choice of k; cf. Section 3.3.
From the R, we then obtain

(7) L:= = argmin R;, 0= k]:,

i=1,....m

where L indicates an index of a block likely to have all observations in it prior to the change
point and 0 points to the last observation in the Lth block. The observations X 1,.--, X, are
approximately stationary and can be used to obtain an estimate for the long-run variance
by computing any consistent estimator for the long-run variance from them. We provide an
estimate in Section 2.3.2 and an asymptotic theory in Section 3.3. More generally, than (7),
we can let . := max{i : R; < R,gf)}, for fixed J, where R,Sf) denotes the Jth smallest value
among the block averages Ry, ..., R,. With this generalized definition, we have more data
to estimate the long-run variance.

2.3.2. Estimate for long-run variance. Having blocked the data as delineated in Sec-
tion 2.3.1, we derive the index £, which satisfies £ < t with high probability. To estimate the
long-run variance, we suggest

) i
62 =
0 — k+1 .=

d 1

1
(8) Z(Rq/k — f10)?,  where Ry/x := % Z
—k+

i
Z,,

where the definition of the overlapping block averages R/ extends the one for the non-
overlapping blocks in (6), and fig is a preliminary estimate for 1. We use overlapping blocks
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in this section, as this has been shown to reduce the asymptotic mean squared error; cf. Lahiri
(1999). The estimate for the long-run variance is motivated by the fact that

E[(Vk(Rs/x — IERs/k))z] -0, s=1,...,t1—1

together with t > ¢ — oo, with high probability (cf. Lemma A.1), and 19 being a consistent
estimator for w1 (cf. Lemma A.3. Lemmas A.1 and A.3) such as all other references of the
form A.x are in the Supplementary Material. Estimates of a similar nature were previously
considered, for example, by Mies and Steland (2023), Zhou (2013) and Peligrad and Shao
(1995). The important novelty of the estimate proposed in (8) lies in the data-dependent
segment selection via the index £. This ensures consistency under Hy and Hj, but makes
the rigorous analysis more challenging. At a technical level, proving consistency requires a
maximal inequality for quadratic forms.

2.3.3. Locating algorithm: Step 1. The aim of step 1 is to obtain an improved estimate for

1 and an estimate toward d, which we describe as follows. We block the data as described in
Section 2.3.1 and obtain the blockwise averages R;, the index [ that indicates a block with
data from before the change, the index ¢ that points to the last observation of the L’s block
and the preliminary estimate /1o, defined in (8), for ;. We then compute “test statistics” D j
and “test decisions” [ j as
A R A 1 ifD;>z1—1/m,
©) bj:= \/I;(Rj ~H0)/0c and 1= 0 othe;w_isel. .
The long-run variance estimate &go can be specified by the user. Our estimator 62, defined in
(8), is a canonical choice, but any consistent estimate can be used. The quantity z,, @ € (0, 1),
denotes the ath quantile of the standard normal distribution, and m := |n/k], as before. We
then compute

m
ﬁ — argmin Z(Ij — 1[t+l,m](j))2

t=1,...m—1 j.:]

= argmln |:ZI + Z (1—1):|

**** j=1 j=t+1

(10)

Finally, we obtain the preliminary estimates for p1 and toward d by

1 ki 1 itk<1
(11) Q= — X d:= min Z (X; — ).
ki ” i k(n+1)+1 Kk~
on—k+1

Some comments on the motivation for these estimates are in order. Denote by n := | t/k]
the index of the last block for which the signal is still constant; thatis, nk + 1 <7t < (n +
1)k, where 7 is the index of the change; cf. the alternative hypothesis (4) considered. Then
we have ER; = puy for j =1,...,n and ER; > u; for j =n + 1,...,m. The intuition
behind the estimate /i is as follows. Since Ry, ..., R, fluctuate about their common g1,
but Ry 1, ..., Ry fluctuate about means that are strictly larger than 11, we have that L /n is
stochastically bounded away from O and 1, namely, for every ¢ > 0, there exists é > 0 such
that P(i/n €[§,1 —46]) > 1 —¢;cf. Lemma A.1. Thus, we expect to average kL = kn of the
prechange observations to obtain fi. In particular, if 7 diverges at the same rate as n, then
fLo can be expected to be a 4/n-consistent estimate for 1.

The rationale behind /i is that by replacing L in i by # we will obtain an improved
estimate for 11| as we expect the estimate 7 to be closer to i than L. Note that once n is
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j j

FIG. 2. Test decisions I j for the cough (left) and fever data (right) analysis described in Section S. Fitted step
Junction j > 15,1 () is indicated by the solid black line.

available we use 7 instead of L. The intuition behind n is as follows. The test decisions i -
indicate whether a block is from before the change where we have ER; = uy, or after the

change, where ER; > 1. Thus, the sequence I1, ..., I, of test decisions is an empirical
version of the sequence Iy, ..., I, with I; :=0, j 5 nand I; :=1, j > n, which is known
to be a step function. The estimate 7 is obtained by fitting a step function to the sequence
I1, ..., I, of test decisions that jumps from O to 1 at the block that includes the change. Fitting
the step function can be seen as a different type of smoothing that we employ to reduce noise
in the sequence of test decisions. A graphical illustration of the type of smoothing employed
in the estimation of n for the empirical example of Section 5 is shown in Figure 2. The
threshold z,, employed in (9), is chosen with the quantile level « = 1 — 1/m tending to one
to avoid too many false rejections among the blocks prior to the change.

2.3.4. Locating algorithm: Step 2. In this section, we define the novel estimate for the
time T where the change occurs; cf. (4). Consider

j—1
12 = X — pd),
(12) i argnZnnZ(f fi1 — pd)

..... =1

where p € (0, 1) is a tuning parameter. In Section 3.3, we provide rigorous theory for 7,
which sheds light on the choice of the tuning parameter. As a rule of thumb, we use p = 1/2.
It should be noted that, in a similar vein, Chen, Wang and Samworth (2022) also uses 1/2 as
a factor for an online change-point procedure based on likelihood ratio test statistics.

In Section 5, we study the fundamentally important and much debated problem of inferring
the beginning of the COVID-19 pandemic. To this end, we employ our estimate 7 to search
indices obtained from Baidu. We will see that our method reveals a plausible date, where
traditional methods fail completely.

3. Theory.

3.1. Assumptions on the noise process. To derive meaningful results regarding the sta-
tistical properties of our proposed methods, some assumptions regarding the noise process
(Zt)sez that appears in model (1) are in order.

We employ the framework of functional dependence measure introduced in Wu (2005).
In this framework, we view the causal stationary process (Z;);c7 as outputs from a physical
system as follows:

(13) Zl:G("'vel—lagl)v

where (&;);c7, 1. 1. d., is the input information of this system and G is an R-valued measurable
function that can be thought of as a filter or, intuitively, “mechanism” of this system. Many
widely used, linear and nonlinear time series, including ARCH, threshold autoregressive,
random coefficient autoregressive and bilinear autoregressive processes follow the framework
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of (13); see, for example, Tong (1990), Priestley (1988), Wu (2011) among others. Then with
this system, we measure the dependence from how much the outputs of this system will
change if we replace the input information at time r = 0 with an i.i.d. copy &;,. Assume
E|Z; |9 < 00, 8 > 1. For a single observation at time i, we define the functional dependence
measure as follows:

(14) 5i,9=(E|Z,' —Zi,{0}|9)1/9, where Z,',{()}=G(...,8_1,86,81,...,8,').

To measure the temporal dependence for the whole time series, we define the cumulative
dependence measure of (Z;);>, on &o:

(15) Ono =) 89, n=0.

i>n

3.2. Testing procedure. We now state results on the test described in Section 2.2. The
first result provides the asymptotic distribution under the null hypothesis, and the second one
asserts asymptotic consistency under Hj, where we will allow d = d,, and T = 1, to depend
on n without making this explicit in the notation.

THEOREM 3.1. Assume that the short-range dependence condition holds:
(16) @o,2=28i,2 < 00.

i>0

(1) Under Hy, we have, as n — oo, that

(17) sup|P(T <x) — e 2| > 0.

x<0
(ii) Under Hy, assume (t/n)(1 — t/n)d/n — oco. Then we have, as n — oo, that
T— —oco in probability.
The proof is deferred to Section A.1. Theorem 3.1(i) suggests that, given level o € (0, 1),
we can use the a-quantile of the limit, —(—0.5loga)!/?, as the cutoff value to test Hy. Let B

denote a standard Brownian motion and B (#) = B(u#) — uB(1) be the Brownian bridge. For
all x <0, we have

. _ —2x2,
(18) P(ué{bﬁ]Bl(”fx)—e ;

cf. equation (9.41) in Billingsley (1999). When n is relatively small, a refined approximation
of IP’(f <x)is P(T° < x), where the discretized version T° =minjc(; 2,... »y B1(j/n) and its
distribution can be obtained by extensive simulation. The test based on the latter can have a
more accurate performance. Theorem 3.1(ii) implies that for any g € R, P(T < q)— 1.

3.3. Locating algorithm. To establish a convergence theory for the estimated change
points, we will require the following assumption on temporal dependence.

CONDITION 3.1.  (Z;);ez satisfies that the 6th moment Hy := (E|Z;|?)!/? < oo, where
6 > 2. Assume that any one of the following holds:

e 0>4and ®, 9 =0n"" (logn)~4), as n — oo, for A > 2(1/0 + 1+ y4)/3, where
vo = (0% — 4+ (0 —2),/02 4200 +4)/(80);
e 2<f<4and ®,y=0m""(logn)~*),as n — oo, with A > 3/2.
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Condition 3.1 holds, for example, under the geometric moment contraction 8, ¢ = O(p")
for some p € (0, 1), which is satisfied for many nonlinear time-series models; see, for ex-
ample, Shao and Wu (2007) or Wu (2011). In general, it can be weaker since it allows poly-
nomially decaying functional dependence measures. By Corollary 2.1 in Berkes, Liu and
Wu (2014), Condition 3.1 implies the following optimal Komlés—Major—-Tusnddy result: on
a possibly richer probability space (2., Ac, P.), there exists (Z7);cz 2 (Z)iez, and a stan-
dard Brownian motion B, (-) such that

n
(19) ZZf:aOOIB%c(n)—i-oa,s,(nl/O).
i=1

The next result asserts that 62, defined in (8), is a consistent estimator for ago. In the
statement of the proof, we write a,, < b, or b, > a, to mean that a, = o(b,), asn — 0o. The
quantities d = d, and t = 1, are the ones from (4), which we allow to depend on n without
making this explicit in the notation, and k is the user-chosen block size; cf. Section 2.3.1.
Further, m := |n/k] and n := | t/k], as before.

THEOREM 3.2.  Assume that Condition 3.1 holds, d > n=/% and n*/° loglh) <k K .
Then

6% = ago +00/k) + (’)]p(nz/mi“(4’9)_1), asn — oo.
The proof is deferred to Section A.2.

REMARK 1. (i) When # > 4, the bound in Theorem 3.2 becomes O(1/k) + Op(n~1/3).
Intuitively, the O(1/k) and O]p(n_l/ 2) can be seen as the rate for the bias and a centered
version of the estimate 62, respectively. The rate of the bias follows from >-°° ___|uy (u)| <
00, which is satisfied under Condition 3.1; cf. Lemma A.2.

(i1) The choice of the block size k, in Theorem 3.2, is limited by the rates of n3/? log(n)
from below and by 7 from above. The lower bound assures a sufficient noise reduction and
is smaller if tails of the noise are lighter. The upper bound implies n — co. Generally, in
practice, the moment of the noise @ is unknown. The nonadaptive block length k = [1n!/3]
is a simple, yet effective choice that satisfies the condition of Theorems 3.2 and 3.3 if
6 > 6. Biihlmann and Kiinsch (1999) found that the n'/3-choice performs quite well in most
cases.

(iii) The gap d is allowed to vanish asymptotically for our result, as long as the rate of
decay is slower than n~!/?. The conditions on d and k have to be satisfied for the same 6.
This means that if d decays slowly and Condition 3.1 is satisfied for a large 6, then k can be
chosen smaller and the result still holds.

Our main result of this section is regarding a bound for the error of estimating 7 by 7. We
provide this bound in terms of the minimum gap to the signal averaged over sliding blocks.
More precisely, defining

1 i+k—1
20 dy = min — P — ,
(20) * kD1, k 2_: (M} "1)
on—k+1 J=t

then we have the following.

THEOREM 3.3. Assume Condition 3.1, d > n—1/9, n2/? loglh) K k<L 1,n—1t > 2k,
and that there exists a constant K > p with d > Kd,, where p is the tuning parameter from
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the definition of T. Let the estimator 6020, used in (9), be consistent for the long-run variance
ol that is, 62, = 02 + op(1). Then

o
# =1+ Op(d /0,

asn — oo.
The proof is deferred to Section A.3.

COROLLARY 3.1. Under the conditions of Theorem 3.3, we have:

(1) If d is bounded away from zero (i.e., if there exists a constant M with 0 < M < d),
then T, =1 + Op(1), as n — o0.
(i1) If d is unbounded (i.e., d — 00, as n — o0), then P(T, =1) — 1, as n — 0.

REMARK 2. (i) Under the general alternative (4), we do not impose any regularity
conditions, apart from the one sidedness of the change. Hence, it is possible that the gap
d <mins—r,,(us — 1) is determined by an individual (noisy) observation, which is not
enough to consistently estimate d itself. We show (Lemma A.5) that our proposed d consis-
tently estimates d,. By definition, d, > d; that is, d, provides an upper bound for the gap d.
The regularity condition d > Kd,, for a constant K > p, requires that d,, which is tractable,
also facilitates a lower bound with respect to d. The regularity condition d > Kd,, for a
constant K > p, is sufficient to estimate 7 by 7.

(ii) The following example illustrates a situation where d > K d is satisfied, for a constant
K > p:say pj —puy =m((j —t)/(n — 7)) for a function m : [0, 1] — (0, 00) of bounded
total variation ||m|Ty < oo andlet K :=1/(1+ ||m|tv/(kinfy¢[o,11m(x))). Note that K > p

if k > pllm|tv/((1 — p)infyepo,17m(x)) and

1
d. < inf —
. _xelﬁ)’l]m(x) + kllmllTv

=K' inf
xe[o,l]m(x)

<K U min m<J_t)
ter,..., n n—t

— K 'd

As an example, take a continuously differentiable function f and add a finite number of jump
discontinuities at distinct xp, ..., xp: thatis, m(x) := f(x) + Zf’zl 8;i I{x < x;}. Then m is of
bounded variation: ||m|Tv = fol | f/()|dt + Zf’zl [6;].

(iii) If the true d were known, we could use the following estimate for t:

j—1
(21) 7= argj_min > (Xe — i1 — pd).

=2,..., n
t=1

Following the lines of our proof for Theorem 3.3, it can be shown that T = 7+ Op(d —0/(0=1)y
for all p € (0, 1), without an assumption regarding d,. Note that T is only available if d is
known.

(iv) The conditions regarding 7 allow for “early” and “late” changes. In particular, we do
not require that 7 < n. The requirement k& < T ensures that there is an increasing number of
blocks before the change. The requirement n — v > 2k is slightly weaker and ensures that
there is at least one complete block after the change. The requirement n — T > 2k is needed
to estimate dy (see Lemma A.5).



2922 KLEY, LIU, CAO AND WU

TABLE 1
Simulated expectation IEZ; and long-run variance (rgo

of (Zl{), defined in (22), for the case when &; ~ N (0, 1)

0 EZ] o2

0.2 0.343 1.332
0.3 0577 2.104
0.4 0.988 5.782

4. Monte Carlo studies.

4.1. Models considered. We assess the finite sample performance of both the testing
procedure (Section 2.2) and the two-stage locating algorithm (Section 2.3). Our experiments
employ data crafted via the signal plus noise model delineated in (1).

For the noise component, we utilize a threshold AR model (Tong (1990)) as follows:

(22) Zi=0(1Z_|| +|Zi_,|) + &,

where 6 is the parameter governing temporal dependence, and the i.i.d. innovations ¢&; follow
the normal distribution (0, 0.5%). Within this model, a higher absolute value of 8 indicates
stronger temporal dependence. The process remains stationary provided |6| < 0.5. The noise
process (Z;) is obtained by centering Z; as Z; := Zlf — IE(Z; ). Three digits behind the comma
approximations to the values we used are in Table 1. For 6 < 0, we use that the expectation
of the process for & and —6 have the same long-run variance and the expectation differs only
in sign. Further, for &; ~ N (0, £2), & > 0, we obtain expectation and long-run variances by
multiplying the ones from Table 1 with & and &2, respectively. For example, for § = —0.2
and &; ~ N(0,0.5%), we use EZ/ = —0.343 - 0.5 and 02, = 1.332-0.52.

Regarding the signal p;, we examine two scenarios: (i) under the null hypothesis Hp, as
defined in (3), the signal remains constant at ;1 = 0. (ii) Under the alternative hypothesis Hj,
as defined in (4), the signal generation model is as follows:

mn1:=0 fort=1,...,7—1,
2t =37 41’ ,
i +s| ————— fort=r,...,7,
-1
23 = 2(t — 7/
) H M1+s(2+exp<%>> fort=7v+1,...,7",
-1
2n—1"—t
M1+s(2+exp(2)-n7> fort=1"+1,...,n,
2n —2t”

In this model, the parameter s defines the magnitude of deviation from the baseline mean
state (w1 = 0) for ¢ < t to the varied mean state for + > 7. This model is designed to reflect
trends similar to those observed in the search engine index data depicted in Figure 1.

Figure 3 showcases an example of the signal (u;). It highlights the increase in signal
strength after the initial change point at T = 320, where it rises by at least s = 0.5 above the
stable level of ;11 = 0. Beyond the first change-point 7, a second significant change occurs at
7" = 640, where the signal further elevates, reaching at least 85 = 4 above the initial £ =0
level. This pattern echoes our observations in real-world data.

4.2. Synthetic data under the null hypothesis. In this section, we illustrate that the test-
ing procedure described in Section 2.2 has the correct size, asymptotically. We employ data
structured as detailed in Section 4.1, operating under a constant signal (i.e., Hp).
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0 200 400 600 800
t

F1G. 3. [llustration of (i) with n = 800, T = 320, v/ =500, " =640 and s =0.5.

We modulate the sample size, selecting n from 50, 100, 300, 500, 2000, and adjust the
dependence parameter 6 from —0.4, —0.2, 0 (independence), 0.2, 0.4. The significance level
remains fixed at @ = 0.05. We use the true long-run variance o2, instead of 62, in (5); cf.
Table 1. The empirical sizes, derived from 100,000 replications, are summarized in Table 2.

Analyzing Table 2, it is evident that the rejection ratios—serving as proxies for type-I
error—gravitate closer to the target significance level of o = 0.05 as the sample size n ex-
pands and temporal dependence weakens (absolute value of 6 shrinks). This observation
aligns seamlessly with our theoretical framework presented in Section 3.2. On juxtaposing
the two methodologies, the finite-sample Gaussian approximation-based testing procedure
emerges superior in smaller data sets (n = 50, 100, 300, 500), compared to its asymptotic
counterpart. However, the latter’s performance converges with the finite-sample approach as
the sample size surges to n = 2000. This implies that, for shorter data sets, the finite-sample
Gaussian approximation can be advantageous. Conversely, for longer data sets, the more
computationally economical asymptotic approach becomes viable.

Applying the test with the estimated long-run variance leads to higher error rates, in par-
ticular for small sample sizes, when it its difficult to estimate the long-run variance. Results
are provided in Appendix B (in the Supplementary Material).

TABLE 2
Rejection ratios for the change-point testing procedure under the null hypothesis; cf. (3)

0

Approximation Method n —0.4 —-0.2 0 0.2 0.4
Asymptotic 50 1.41% 2.70% 3.28% 3.18% 1.63%
100 2.26% 3.40% 3.74% 3.69% 2.41%
300 3.23% 3.92% 4.21% 4.08% 3.39%
500 3.50% 4.17% 4.38% 4.30% 3.56%
2000 4.18% 4.54% 4.54% 4.65% 4.23%
Finite sample 50 2.10% 4.08% 5.00% 4.79% 2.44%
100 2.96% 4.54% 5.00% 4.90% 3.14%
300 3.80% 4.71% 4.97% 4.86% 3.92%
500 3.98% 4.69% 5.01% 4.92% 4.04%

2000 4.41% 4.85% 4.82% 4.95% 4.47%
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4.3. Synthetic data under alternative hypotheses. This section provides an in-depth anal-
ysis of our testing procedure’s power and evaluates the efficacy of the algorithm used for lo-
cating the first change point, employing synthetic data. We adopt the data structure described
in Section 4.1, with the signal defined as per (23) (i.e., Hy).

Our experimental setup is as follows: we vary the sample size, choosing n from the values
50, 100, 300, 500, 2000. We select the dependence parameter 6 from the values —0.4, —0.2,
0 (representing independence), 0.2 and 0.4. The gap parameter s ranges from 0 to 0.045,
increasing in steps of 0.0006. It is important to note that the standard deviation of the in-
novation in the dependent process is fixed at 0.5, and we keep n; = 0. We standardize the
ratios t/n =04, t//n = 0.6, t”//n = 0.8, maintaining ©; = 0. For our testing methods, we
consistently set the significance level at « = 0.05. Once the parameters for an experiment
are established, we generate the trend (u;) using the aforementioned methodology. Subse-
quently, the additive noise process is simulated repeatedly, and this data is input into our
testing and locating algorithms. For testing, we use the quantile obtained from the asymptotic
approximation and the true long-run variance o2, instead of 62, in (5); cf. Table 1. For our
locating algorithm, we first apply the test and continue only if it rejects. We use the long-run
variance estimator defined in Section 2.3.2; that is, 8020 :=62; cf. (8) and (9). The results are
derived from 100,000 independent simulations.

It is crucial to observe that testing for a change point remains challenging, even in sce-
narios with the largest gap parameter s = 0.045. This difficulty arises because, as indicated
in Table 1, the gap s = 0.045 is considerably smaller than the noise levels, complicating the
detection of the change-point’s presence significantly.

Initial observations indicate variations in the rejection ratio, an estimate of the true power,
in relation to the gap parameter s. These variations are evident across different combinations
of the dependence parameter 6 and sample size n, as depicted in Figure 4. In each experiment,
the rejection ratio progresses from the nominal level (¢ = 0.05) to nearly 1 as s increases
from 0 to 0.045. This trend suggests that as the task of detecting change points becomes less
challenging, the power of our test approaches unity.

The graphic shows an increase in the rejection ratio with sample sizes expanding from 50
to 2000. This trend is in alignment with the theoretical insights presented in Theorem 3.1(ii).
Additionally, it is noteworthy that despite a diminished test power under conditions of strong
temporal dependence (with |8| = 0.4), the power can still approach unity given a sufficient
sample size. This observation implies the efficacy of our testing procedure even under the
influence of temporal dependent noise in the data. Results for the case when the long-run
variance is estimated are delegated to Appendix B (in the Supplementary Material).

Next, we showcase the absolute errors normalized by sample size E|T — 7|/n of our two-
step locating algorithm across experiments with diverse parameters in Figure 5.

Without temporal dependence, error rates are smaller. As the disparity between the signal
and nonsignal segments grows from 0.4 to 0.8, the error rate decreases. As the sample size n
expands from 50 to 2000, the MAE/n progressively diminishes. These findings resonate with
Theorem 3.3, discussed in Section 3.3. For scenarios characterized by heightened dependence
and minimal gap, error rates can be larger. Yet, in more favorable conditions, the error remains
relatively stable or increases only marginally. This fact underscores the robustness of our
methodology.

We expanded our analysis to compare the performance of our locating algorithm with four
established change-point estimation techniques: a CUSUM-type method, a likelihood-based
method (AMOC), the earliest change point from the standard binary segmentation (1SBS)
method and a modified 1SBS method where the marginal variance in the threshold is replaced

by the estimated long-run variance. More precisely, we obtain argmin;— 3. n+1 Zij :_11 (X; —
X,,) and refer to it as CUSUM. This is related to our test statistic f", defined in (5). Second, we
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FIG. 4. Rejection ratios for the testing procedure under the alternative hypothesis: w; = up for
i=1L2,....,t=lLiu;>puy1+sfori=tv,v+1,t+2,...,n. The noise process is shaped by the dependence pa-
rameter 6. We adjust the gap parameter s over the set {0, 0.0006, 0.0012, ..., 0.045}, n over {50, 300, 500, 2000}
and 0 over {—0.4,—0.2,0, 0.2, 0.4}. Each data point represents 100,000 replications.
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FI1G. 5. Expected absolute errors normalized by sample size (MAE/n) across four change-point detection meth-
ods. The red, olive, green, blue and purple bars show E|T — t|/n of our proposed method T, CUSUM, likelihood-
based method (AMOC), the earliest change point from the standard binary segmentation (1SBS) method and the
earliest change point from the 1SBS method with marginal variance in the threshold replaced by long-run vari-
ance, respectively. The parameters varied in this study include the gap parameter s, the sample size n and the
parameter 0 of the threshold autoregression noise process. Each bar in the graph represents the average result
from 100,000 replications.
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apply the functions cpt . mean, withmethod = "AMOC" (at most one change), and cpts
from the R package changepoint (Killick and Eckley (2014), Killick, Haynes and Eckley
(2022)) and refer to the obtained value as AMOC.

Third, we apply the functions sbs and changepoints from the R package wbs (Bara-
nowski and Fryzlewicz (2019)) and refer to the minimum of the obtained values as 1SBS (first
time of change obtained with standard binary segmentation). Fourth, we replace the marginal
variance used in the definition of the threshold of the standard binary segmentation method
by the long-run variance, which we estimate by 62, from Section 2.3.2, with k = [n!/3] and
J=3.

We add +1 to AMOC, 1SBS and 1SBS based on long-run variance, to account for the fact
that in our notation the change occurs from t — 1 to T while there it occurs from 7 to 7 4 1.
Note that, while the first two methods estimate a single change point, the binary segmentation
methods estimate multiple change points of which we select the earliest.

The outcome of this comparative study is detailed in Figure 5. The results reveal that the
errors associated with the four alternative methods are somewhat unstable, and depending
on the scenario, can perform poorly. The 1SBS method with the standard threshold performs
roughly equally well under independence when the gap size is s = 0.8. When the gap size
takes the smaller value s = 0.4, where the locating problem is harder, the proposed method
has slightly better performance. The 1SBS method with the threshold adjusted for long-run
variance also performs well when there is serial dependence, but only for larger sample sizes.
We also note that keeping the gap parameter (s) and the dependence parameter () con-
stant while increasing the sample size (n) from 50 to 2000 results in the mean absolute error
(MAE/n) normalized by n for our proposed method approaching zero. This observation con-
firms our theory and previous numerical analysis that our method’s error remains relatively
constant with larger sample sizes. In contrast, for the other four methods, we observe less
stable behavior of the MAE/n, which either remains relatively unchanged as n increases
(CUSUM and AMOC), indicating that their errors grow with the sample size, or behave rea-
sonably under independence but struggle in the presence of serial dependence (1SBS), or do
not perform well for small sample sizes (1SBS with LRV).

Furthermore, when 6 and n are fixed and s is varied, our method demonstrates a steady
decline in error as s increases. Such a consistent pattern of reducing error is also not observed
in all of the other methods.

Overall, these results highlight the shortcomings of traditional methods in handling non-
standard or complex data configurations, emphasizing the versatility of our proposed method.
The bar plots in Figure 5 provide visual evidence of the consistently satisfactory performance
of our method across various parameter settings, while the alternative methods exhibit unsta-
ble and sometimes poor performance, particularly in the presence of serial dependence.

5. Baidu search index for COVID-19 related symptoms. Numerous studies have en-
deavored to pinpoint the initial emergence of the SARS-CoV-2 virus among humans. The
initial cases were likely linked to the Huanan Seafood Wholesale Market in late December
2019. However, this cluster is not believed to signify the pandemic’s inception. To deduce the
possible duration SARS-CoV-2 circulated in China before detection, we analyzed Baidu’s
search index (China’s leading search engine) for COVID-19 symptom-related keywords be-
tween October 1, 2019, and January 31, 2020, in the Hubei Province, China. We focused on
the terms “fever” and “cough,” aggregating searches from both desktop and mobile platforms.
As depicted in Figure 6, the counts exhibit regular fluctuations until the series’ end. Given
the rapid transmission capability of COVID-19, the constant mean assumption post-change
point in conventional methods is inapplicable. Applying the test proposed in Section 2.2 for
the null hypothesis Hy of constant mean, defined in (3), against the alternative hypothesis H
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FI1G. 6. BAIDU search index for “fever” and “cough” from October 1, 2019, to January 31, 2020. The red solid
vertical line indicates the change point detected by our proposed method T; the dashed lines in orange, brown,
purple and green represent the change points detected by CUSUM, likelihood-based (AMOC), earliest change
detected by standard binary segmentation (1SBS) and binary segmentation with long-run variance modification
(1SBS with LRV), respectively.

of a one-sided upwards change, defined in (4), yields test statistics T <—9and T < —22,
for Baidu search indices “cough” and “fever,” respectively. The p-values implied by Theo-
rem 3.1(i) are essentially zero such that we reject the null hypothesis in both cases.

We continue the analysis by employing the two-stage locating method (Section 2.3). For
the keyword “cough” (comprising n = 123 data points), the initial stage estimates the equi-
librium data state’s mean, w1, and the state gap parameter, d, guiding the subsequent stage.
We defined k = [n!/37 = 5 for the batched mean length and computed

1 &
Rj:% Z Xj, jzl,...,m,
i=(—Dk+1

as defined in (6). We obtain L= max{i : R; < R,(ns)} —11and ¢ :=k[ = 55, asAdeﬁned in
(7). We find a Prechange sample mean of 19 = 352.84 obtained from the initial ¢ data. The
test statistics D; = VEk(R j — [0)/000 USINg O A 48.68, which is the square root of the
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estimated long-term variance from the initial 0 observations; cf. (8). Then we obtain the test
decisions /;, defined in (9), as

- 1 ifijZ1—1/m,

I; = -
0 otherwise,

where 711/, is the 1 — 1/m quantile of the standard normal distribution. We obtain
m 2
f:=argmin »_{I; — L1 ()} =15,
t X
j=1

as defined in (10). A graphical representation of the test decisions and smoothing can be seen
in Figure 2. The first-stage estimates thus are

1 kn R i+k—1
] = — X;~35543, d:.= min - Xi—j1)~19.24.
M1 kh ; i i=k(ﬁ+ll)ﬁ1, X ]2_; ( J 1)
- con—k+ -

Setting p = 0.5, our refined change-point estimate in the second phase is

j—1
fi=arg min ;(Xt 1 — pd) = 69,
as defined in (12), which translates to December 8, 2019.

For comparative purposes, we also compute the CUSUM, AMOC and 1SBS estimates con-
sidered in Section 4.3. The CUSUM approach identified December 15, 2019, as the change
point. The AMOC approach, pinpointed January 21, 2020, as the change point. In contrast,
the binary segmentation method and its modified version, where the marginal variance in the
threshold is replaced by the long-run variance, focusing on the first change point, suggests
December 14, 2019, as the initial outbreak date, which precedes the dates indicated by the
other two methods but is still later than our findings.

Interestingly and surprisingly, but reasonably, our analysis of the Baidu “fever” search
index corroborates our findings by also indicating December 8, 2019, as the change point,
consistent with the “cough” data set results. Conversely, the CUSUM, AMOC and 1SBS
methods suggest change points on December 22, 2019, January 20, 2020, and December 3,
2019, respectively. A graphical representation of the results can be seen in Figure 6.

Reports such as Worobey (2021) mention an early COVID-19 case, a 41-year-old male,
showing symptoms on December 16, 2019, suggesting community transmission. Another
case, a female seafood vendor, exhibited symptoms on December 10, 2019, and was aware
of potential COVID-19 cases near Huanan Market from December 11, 2019. Other studies
and organizations like the CDC mention early December 2019 as significant. Given these
findings, our change-point detection appears plausible.

It is noteworthy that the Chinese government officially announced the outbreak on January
20, 2020, a discernible tipping point. This is not our primary focus, as our aim is to identify
the initial outbreak, which undoubtedly predates January 1, 2020. Classical methods seem ill-
equipped to discern this early change point, potentially overshadowed by subsequent tipping
points. This is understandable, as such methods rely heavily on the sample mean, which can
be skewed by later data points, leading to inaccurate estimations.
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SUPPLEMENTARY MATERIAL

Appendix (DOI: 10.1214/24-A0S2451SUPPA; .pdf). Contains the proofs and additional
simulation results.

Replication package (DOI: 10.1214/24-A0S2451SUPPB; .zip). R code implementing
the proposed method and scripts to replicate the simulation and empirical results in the pa-
per are available on https://github.com/tobiaskley/cp_analysis_w_irreg_signals_replication_
package.
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