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Abstract. The recent advances in diffusion models (DMs) have rev-
olutionized the generation of realistic and complex images. However,
these models also introduce potential safety hazards, such as produc-
ing harmful content and infringing data copyrights. Despite the devel-
opment of safety-driven unlearning techniques to counteract these chal-
lenges, doubts about their efficacy persist. To tackle this issue, we intro-
duce an evaluation framework that leverages adversarial prompts to
discern the trustworthiness of these safety-driven DMs after they have
undergone the process of unlearning harmful concepts. Specifically, we
investigated the adversarial robustness of DMs, assessed by adversar-
ial prompts, when eliminating unwanted concepts, styles, and objects.
We develop an effective and efficient adversarial prompt generation app-
roach for DMs, termed UnlearnDiffAtk. This method capitalizes on
the intrinsic classification abilities of DMs to simplify the creation of
adversarial prompts, thereby eliminating the need for auxiliary classifi-
cation or diffusion models. Through extensive benchmarking, we eval-
uate the robustness of widely-used safety-driven unlearned DMs (i.e.,
DMs after unlearning undesirable concepts, styles, or objects) across a
variety of tasks. Our results demonstrate the effectiveness and efficiency
merits of UnlearnDiffAtk over the state-of-the-art adversarial prompt
generation method and reveal the lack of robustness of current safety-
driven unlearning techniques when applied to DMs. Codes are available
at https://github.com/OPTML-Group/Diffusion-MU-Attack.
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1 Introduction

The realm of text-to-image generation has seen significant progress in recent
years, primarily driven by the development and adoption of diffusion models
(DMs) trained on extensive and diverse datasets [1–8]. Yet, this swift advance-
ment carries a risk: DMs are prone to creating NSFW (Not Safe For Work)
imagery when prompted with inappropriate texts, as evidenced by studies [9,10].
To alleviate this concern, recent DM technologies [10,11] have incorporated pre-
or post-generation NSFW safety checkers to minimize the harmful effects of
inappropriate prompts in DMs. However, depending on external safety mea-
sures and filters falls short of offering a genuine solution to DMs’ safety issues,
as these approaches are model-independent and rely solely on post-hoc inter-
ventions. Indeed, existing research [12–15] has demonstrated their inadequacy in
effectively preventing DMs from generating unsafe content.

In response to the safety concerns of DMs, a range of studies [12,15–17] have
sought to improve the DM training or finetuning procedure to eliminate the
negative impact of inappropriate prompts on image generation and create a safer
DM. These approaches also align with the broader concept of machine unlearning
(MU) [18–25] in the machine learning field. MU aims to erase the influence of
specific data points or classes to enhance the privacy and security of an ML
model without requiring the model to be retrained from scratch after removing
the unlearning data. Given this association, we refer to the safety-driven DMs
[12,15–17] designed to prevent harmful image generation as unlearned DMs.
These models seek to erase the impact of unwanted concepts, styles, or objects
in image generation, regardless of being conditioned on inappropriate prompts.
Despite the recent progress made with unlearned DMs, there remains a lack of a
systematic and reliable benchmark for evaluating the robustness of these models
in preventing inappropriate image generation. This leads us to the primary
research question that this work aims to address:

(Q) How can we assess the robustness of unlearned DMs and establish their
trustworthiness?

Drawing inspiration from the worst-case robustness evaluation of image clas-
sifiers [26,27], we address (Q) by designing adversarial attacks against unlearned
DMs in the text prompt domain, often referred to as adversarial prompts (or
jailbreaking attacks) [28,29]. Our goal is to investigate whether the subtle but
optimized perturbations to text prompts can bypass the unlearning mechanisms
and compel unlearned DMs to generate inappropriate images despite their sup-
posed unlearning.

While the concept of adversarial prompting has been explored in the context
of DMs [14,28–31], little attention has been given to evaluating the robustness
of MU (machine unlearning) within DMs. In the literature, adversarial prompt
generation was mainly made in two ways. One category employs the mean-
squared-error loss in the latent text/image embedding space [28–30] to penalize
the distance between an adversarially generated image (under the adversarial
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Fig. 1. Comparison of attack methodologies on DMs: (a) Generation utilizing an aux-
iliary DM, (b) generation utilizing an auxiliary image classifier, and (c) our proposal
‘UnlearnDiffAtk’ that is free of auxiliary models by harnessing the inherent diffu-
sion classification capability, along with (d) examples of adversarial prompts (‘per-
turbations’ in red) and generated images, demonstrating UnlearnDiffAtk successfully
bypassing the Erased Stable Diffusion (ESD) [12] in concept, style, and object unlearn-
ing.

prompt) and a normally generated image. Other approaches introduce an exter-
nal image classifier to produce post-generation classification logits, simplifying
the process of conducting attacks [28]. Figure 1-(a) and (b) demonstrate the
above ideas as applied to the context of unlearned DMs.

The most relevant work to ours is the concurrent study [31], which came
to our attention during the preparation of this paper. However, the motivation
behind [31] is not from machine unlearning. Moreover, there exists another sig-
nificant methodological difference. Our proposed adversarial prompt generation
method, termed UnlearnDiffAtk, leverages the concept of the diffusion classi-
fier (utilizing the unlearned DM as a classifier). As a result, UnlearnDiffAtk
eliminates the reliance on auxiliary diffusion or classification models, offering
computational efficiency without compromising effectiveness. Our research shows
that adversarial prompts can be efficiently designed using the diffusion classifier
and effectively used to evaluate the robustness of unlearned DMs. We refer read-
ers to Fig. 1 for a visual representation of the conceptual distinctions between
our approach and existing works, as well as a demonstration of the attack per-
formance of UnlearnDiffAtk against the Erased Stable Diffusion (ESD) model
[12], which is one of the strongest unlearned DMs evaluated in our study.

Contributions. We summarize our contributions below.

❶ We develop a novel adversarial prompt attack called UnlearnDiffAtk, which
leverages the inherent classification capabilities of DMs, simplifying the genera-
tion of adversarial prompts by eliminating its dependency on auxiliary models.
❷ Towards a benchmarking effort, we extensively investigate the robustness of

current unlearned DMs in effectively eliminating unwanted concepts, styles, and
objects, employing adversarial prompts as a crucial tool for assessment.
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❸ From an adversarial perspective, we showcase the advantages in effectiveness
and efficiency of employing UnlearnDiffAtk compared to the concurrent tool
P4D [31] in assessing the robustness of unlearned DMs.

2 Related Work

Safety-Driven Unlearned DMs. Recent DMs have made efforts to incorpo-
rate NSFW (Not Safe For Work) filters to mitigate the risk of generating harmful
or explicit images [9]. However, these filters can be readily disabled, leading to
security vulnerabilities [10,32,33]. For instance, the SD (stable diffusion) 2.0
model, which underwent training on data preprocessed with NSFW filters [34],
is not completely immune to generating content with harmful implications. Thus,
there exist approaches to design unlearned DMs, leveraging the concept of MU.
Examples include post-image filtering [9], inference guidance modification [10],
retraining using curated datasets [7], and refined finetuning [12,15,17,24,35–
38]. The first two strategies can be seen as post-hoc interventions and do not
fully mitigate the models’ inherent tendencies to generate controversial content.
Retraining models on curated datasets, while effective, requires substantial com-
putational resources and time investment. Finetuning existing DMs presents a
more practical approach, but its unlearning effectiveness needs comprehensive
evaluation. Thus, there is a pressing need to validate these strategies’ trustwor-
thiness, which will be the primary focus of this paper.

Adversarial Prompts Against Generative Models. Adversarial examples,
which are inputs meticulously engineered, have been created to fool image
classification models [26,27,39–46]. The idea of adversarial robustness evalu-
ation has been explored in various domains, including text-based attacks in
natural language processing (NLP) [47]. These NLP attacks typically involve
character/word-level modifications, such as deletion, addition, or replacement,
while maintaining semantic meaning [48–54]. In the specific context of adversar-
ial prompts targeted at DMs, text prompts are manipulated to produce adver-
sarial results. For example, concept inversion (CI) [55] utilizes textual inversion
[56] by optimizing universal continuous word embeddings to evade DMs. Attacks
discussed in [14] aim to bypass NSFW safety protocols, effectively circumvent-
ing content moderation algorithms. Similarly, other attacks [28,29,31] have also
been developed to coerce DMs into generating images that deviate from their
intended or designed output. Yet, a fundamental challenge with these methods is
their reliance on auxiliary models or classifiers to facilitate attack optimization,
often resulting in additional data-model knowledge and computation overhead.

3 Background and Problem Statement

DM Setup. Our work focuses on the latent DMs (LDMs) for image generation
[7,57]. LDMs incorporate conditional text prompts, such as image captions, into
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the image embeddings to guide the synthesis of diverse and high-quality images.
To better understand our study, we briefly review the diffusion process and the
LDM training. The diffusion process begins with a noise sample drawn from a
Gaussian distribution N (0, 1). Over a series of T time steps, this noise sample
undergoes a gradual denoising process until it transforms into a clean image x. In
practice, DM predicts noise at each time step t using a noise estimator εθ (·|c),
parameterized by θ given a conditional prompt input c (also referred to as a
‘concept’). For LDMs, the diffusion process operates on the latent representation
of xt, denoted as zt. To train θ, the denoising error is then minimized via

minimize
θ

E(x,c)∼D,t,ε∼N (0,1)[‖ε − εθ (zt|c)‖22] (1)

where D is the training set, and εθ (zt|c) is the LDM-associated noise estimator.

Safety-Driven Unlearned DMs. Recent studies have demonstrated that well-
trained DMs can generate images containing harmful content, such as ‘nudity’,
when subjected to inappropriate text prompts [10]. This has raised concerns
regarding the safety of DMs. To this end, current solutions endeavor to compel
DMs to effectively erase the influence of inappropriate text prompts in the dif-
fusion process, e.g., referred to as concept erasing in [12] and learning to forget
in [15]. These methods are designed to thwart the generation of harmful image
content, even in the presence of inappropriate prompts. The pursuit of safety
improvements for DMs aligns with the concept of MU [18–22], as discussed
in Sect. 2. The MU’s objective of achieving ‘the right to be forgotten’ makes
the current safety enhancement solutions for DMs akin to MU designs tailored
for the specific context of DMs. In light of this, we refer to DMs developed
with the purpose of eliminating the influence of harmful prompts as unlearned
DMs. Figure A1 displays some motivating results on the image generation of
unlearned DMs vs. the vanilla DM given an inappropriate prompt. Depending
on the unlearning scenarios, we classify unlearned DMs into three categories: (1)
concept unlearning, focused on erasing the influences of a harmful prompt, (2)
style unlearning, dedicated to disregarding a particular painting style, and (3)
object unlearning, aimed at discarding knowledge of a specific object class.

Problem Statement: Adversarial Prompts Against Unlearned DMs.
Since current unlearned DMs often depend on heuristic-based and approximative
unlearning methods, their trustworthiness remains in question. We address this
problem by crafting adversarial attacks within the text prompt domain, i.e.,
adversarial prompts. We investigate if subtle perturbations to text prompts can
circumvent the unlearning mechanisms and compel unlearned DMs to once again
generate harmful images.

In our attack setup, the victim model is represented by an unlearned DM,
which is purported to effectively eliminate a specific concept, image style, or
object class. Moreover, the crafted adversarial prompts (APs) are inserted before
the original prompts, adhering to the format ‘[APs] + [Original Prompts]’. The
length of APs is restricted to only 3∼5 token-level perturbations. Furthermore,
the adversary operates within the white-box attack setting [58,59], having access
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to both the parameters of the victim model. We define the studied problem
below: Given an unlearned DM θ∗ that inhibits the image generation associated
with a prompt c, we aim to craft a perturbed prompt c′ (with subtle perturbations)
that can circumvent the safety assurances provided by θ∗, thereby enabling image
generation related to c.

4 Adversarial Prompt Generation via Diffusion Classifier
for ‘Free’

This section introduces our proposed method for generating adversarial prompts,
referred to as the unlearned diffusion attack (UnlearnDiffAtk). Unlike pre-
vious methods for generating adversarial prompts, we leverage the class discrim-
inative ability of the ‘diffusion classifier’ inherent in a well-trained DM, without
introducing additional costs.

Turning Generation into Classification: Exploiting DMs’ Embedded
‘Free’ Classifier. Recent studies on adversarial attacks against DMs [14,29]
have indicated that crafting an adversarial prompt to generate a target image
within DMs presents a significantly great challenge. As illustrated in Fig.1, cur-
rent attack generation methods typically require either an auxiliary DM (with-
out unlearning) in addition to the victim model [28,29,31] or an external image
classifier that produces post-generation classification supervision [28]. However,
both approaches come with limitations. The former increases the computational
burden due to the involvement of two separate diffusion processes: one associated
with the unlearned DM and another for the auxiliary DM. The latter relies on
the existence of a well-trained image classifier for generated images and assumes
that the adversary has access to this classifier. In this work, we will demonstrate
that there is no need to introduce an additional DM or classifier because the
victim DM inherently serves dual roles – image generation and classification.

The ‘free’ classifier extracted from a DM is referred to as the diffusion clas-
sifier [60,61]. The underlying principle is that classification with a DM can be
achieved by applying Bayes’ rule to the generation likelihood pθ (x|c) and the
prior probability distribution p(c) over prompts {ci} (viewed as image ‘labels’).
Recall that x and θ denote an image and DM parameters, respectively. Accord-
ing to Bayes’ rule, the probability of predicting x as the ‘label’ c becomes

pθ (ci|x) =
p(ci)pθ (x|ci)∑
j p(cj)pθ (x|cj)

, (2)

where p(c) can be a uniform distribution, representing a random guess regard-
ing x, while pθ (x|ci) is associated with the quality of image generation cor-
responding to prompt ci. With the uniform prior, i.e., p(ci) = p(cj), (2)
can be simplified to only involve the conditional probabilities {pθ (x|ci)}. In
DM, the log-likelihood of pθ (x|ci) relates to the denoising error in (1), i.e.,
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pθ (x|ci) ∝ exp
{−Et,ε[‖ε − εθ (xt|ci)‖22]

}
, where exp · is the exponential func-

tion, and t is a sampled time step [61]. As a result, the diffusion classifier is
given by

pθ (ci|x) ∝ exp
{−Et,ε[‖ε − εθ (xt|ci)‖22]

}

∑
j exp {−Et,ε[‖ε − εθ (xt|cj)‖22]}

. (3)

Thus, the DM (θ) can serve as a classifier by evaluating its denoising error for a
specific prompt (ci) relative to all the potential errors across different prompts.

Diffusion Classifier-Guided Attack Generation. In the following, we derive
the proposed adversarial prompt generation method by leveraging the concept
of diffusion classifier. Figure 2 provides a schematic overview of our proposal,
which will be elaborated on below.

Through the lens of diffusion classifier (3), the task of creating an adversarial
prompt (c′) to evade a victim unlearned DM (θ∗) can be cast as:

maximize
c′

pθ∗(c′|xtgt), (4)

where xtgt denotes a target image containing unwanted content which θ∗ intends

Fig. 2. Pipeline of our proposed adversarial prompt
learning method, UnlearnDiffAtk, for unlearned dif-
fusion model (DM) evaluations.

to avoid such a genera-
tion, and the target image
is encoded into the latent
space, followed by the addi-
tion of random noises adher-
ing to the same settings as
those outlined in the dif-
fusion classifier [61]. Unlike
conventional approaches that
utilize auxiliary models for
guidance, in our approach,
the target image itself acts
as a guiding mechanism, supplying the adversarial prompt generator with the
semantic information of the erased content. This feature will be elaborated on
later. Yet, there are two challenges when incorporating the classification rule (3)
into (4). First, the objective function in (3) requires extensive diffusion-based
computations for all prompts and is difficult to optimize in fractional form. Sec-
ond, it remains unclear what prompts, aside from c′, should be considered for
classification over the ‘label set’ {ci}.

To tackle the above problems, we leverage a key observation in diffusion
classifier [61]: Classification only requires the relative differences between the
noise errors, rather than their absolute magnitudes. This transforms (3) to

1
∑

j exp {Et,ε[‖ε − εθ (xt|ci)‖22] − Et,ε[‖ε − εθ (xt|cj)‖22]}
. (5)
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Based on (5), if we view the adversarial prompt c′ as the targeted prediction
label, i.e., ci = c′ in (3), we can then solve the attack generation problem (4) as

minimize
c′

∑

j

exp
{
Et,ε[‖ε − εθ∗(xtgt,t|c′)‖22] − Et,ε[‖ε − εθ∗(xtgt,t|cj)‖22]

}
, (6)

where xtgt,t is the noisy image at diffusion time step t corresponding to the
original noiseless image xtgt.

To facilitate optimization, we simplify (6) by leveraging the convexity of
exp(·). Utilizing Jensen’s inequality for convex functions, the individual objective
function (for a specific j) in (6) is upper bounded by:

1
2

exp
{
2Et,ε[‖ε − εθ∗(xtgt,t|c′)‖22]

}
+

1
2

exp
{−2Et,ε[‖ε − εθ∗(xtgt,t|cj)‖22]

}

︸ ︷︷ ︸
independent of attack variable

c′,

(7)

where the second term is not a function of the optimization variable c′, irre-
spective of our choice of another prompt cj (i.e., the class unrelated to c). By
incorporating (7) into (6) and excluding the terms that are unrelated to c′, we
arrive at the following simplified optimization problem for attack generation:

minimize
c′

Et,ε[‖ε − εθ∗(xtgt,t|c′)‖22], (UnlearnDiffAtk)

where we excluded exp as it is a convex and monotonically increasing function.

Remark 1 . In contrast to existing adversarial prompt generation methods for
DMs [28–31], UnlearnDiffAtk does not depend on an auxiliary DM or an external
image classifier. To underscore this advantage, let’s examine an attack formula-
tion employed in the concurrent work [31]:

minimize
c′

Et,ε[‖εθ (zt|c) − εθ∗(zt|c′)‖22], (8)
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Fig. 3. Image generation of unlearned DM
(obtained using ESD [12]) against our proposed
adversarial prompt attack using Internet-sourced
target images xtgt. Here xG and δP denote
images generated by unlearned DMs and adver-
sarial prompts to be appended before the original
prompt (Pi), respectively.

where θ represents the orig-
inal DM without unlearning,
zt is the latent embedding
for image generation, and c
is an ‘inappropriate’ prompt
intended to generate a ‘harmful’
image. By comparing (8) with
(UnlearnDiffAtk), it is clear that
the former necessitates an extra
diffusion process (represented
by θ) to generate an unwanted
image when provided with the
prompt c. This introduces a
large computational overhead
due to the extra diffusion pro-
cess. In contrast, we can choose
xtgt offline from a variety of
image sources (see experiments
in Sect. 5).

It is also worth noting that
the target image xtgt does
not necessarily need to exactly
match a specific original prompt
c, although it should be relevant
to the concept targeted for era-
sure. In Fig. 3, we perform our
method using xtgt sourced from the Internet rather than the DM generation
under the original prompt c. We observe that UnlearnDiffAtk is still capable
of achieving competitive ASR, with the associated attack results visualized in
Fig. 3.

Remark 2 . The derivation of UnlearnDiffAtk is contingent upon the upper
bounding of the individual relative difference concerning cj in (7). Nonetheless,
this relaxation retains its tightness if we frame the task of predicting c′ as a
binary classification problem. In this scenario, we can interpret cj in (5) as
the ‘non-c′’ class (e.g., non-Van Gogh painting style vs. c′ containing Van Gogh
style, which is the concept to be erased). See Appendix A for more discussions.

Remark 3 . As the adversarial perturbations to be optimized are situated in the
discrete text space, we employ projected gradient descent (PGD) to solve the
optimization problem (UnlearnDiffAtk). Yet, it is worth noting that different
from vanilla PGD for continuous optimization [62,63], the projection operation
is defined within the discrete space. It serves to map the token embedding to
discrete texts, following a similar approach utilized in [50] for generating natural
language processing (NLP) attacks.
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5 Experiments

This section assesses the efficacy of UnlearnDiffAtk against other state-of-the-art
(SOTA) unlearned DMs for concept, style, and object unlearning. Our extensive
experiments show that UnlearnDiffAtk serves as a robust and efficient bench-
mark for evaluating the trustworthiness of these unlearned DMs.

5.1 Experiment Setups

Table 1. Summary of unlearned DMs and
their corresponding unlearning tasks.

Unlearning Tasks: Concepts Styles Objects

Unlearned DMs: ESD � � �
FMN � � �
AC �
UCE �
SLD �

Unlearned DMs to be Evalu-
ated. The field of unlearning for
DMs is evolving rapidly. We select
existing unlearned DMs as victim
models for evaluation if their source
code is publicly accessible and their
unlearning results are reproducible.
This includes ① ESD (erased stable
diffusion) [12], ② FMN (Forget-
Me-Not) [15], ③ AC (ablating con-
cepts) [16], and ④ UCE (unified concept editing) [17]. We remark that UCE
was also employed for concept unlearning. However, we could not replicate their
results in that case and thus focus on style unlearning in our experiments. We
also evaluate the effectiveness of UnlearnDiffAtk against the inference-based ⑤
SLD (safe latent diffusion) [10], which is considered a weaker unlearning method
compared to ESD, as shown in [12]. From the SLD family, we select SLD-Max,
configured with an aggressive hyper-parameter setting (Hyp-Max) for inappro-
priate concept unlearning. It is worth noting that not all unlearned DMs are
developed to address concept, style, and object unlearning tasks simultaneously.
Therefore, we assess their robustness solely within the specific unlearning sce-
narios that they were originally designed for. By default, the victim unlearned
DMs in our study are built upon Stable Diffusion (SD) v1.4. For a summary
of the unlearned DMs and their corresponding unlearning tasks, please refer to
Table 1.

Text Prompt Setup. In text-to-image generation, various inputs such as text
prompts, random seed values, and guidance scales can be altered to generate
diverse images [7]. Hence, we assess the robustness of unlearned DMs using
their original prompt, random seed, and guidance scale configurations for each
unlearning instance. This ensures that these victim unlearned models, with-
out (subtle) prompt perturbations, can effectively prevent the generation of
unwanted original prompt-driven images. To assess victim models’ robustness
in concept unlearning, we utilize the original text prompts sourced from the
inappropriate image prompt (I2P) dataset [10]. This dataset targets image gen-
eration with harmful content, including nudity, violence, and illegal content. For
style unlearning, we focus on artistic style and employ artistic painting prompts
following the setup in [12]. In the context of object unlearning, we employ GPT-4
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[64] to generate 50 text prompts for each object class in Imagenette [65]. Follow-
ing a sanity check, these text prompts are confirmed to enable the vanilla SD
(stable diffusion) to generate images with Imagenette objects.

Attack Setup. To address the optimization problem associated with our pro-
posed UnlearnDiffAtk, we set the prepended prompt perturbations by N tokens,
where N = 5 is for concept unlearning, while N = 3 is for style and object
unlearning. These choices are based on the observation that prompts for concept
unlearning tend to be considerably longer. To optimize the adversarial pertur-
bations, we sample 50 diffusion time steps and perform PGD running for 40
iterations with a learning rate of 0.01 at each step. Prior to projection onto the
discrete text space, we utilize the AdamW optimizer [66].

Evaluation Metrics. Before conducting the robustness evaluation, we have
confirmed that the victim unlearned DMs are unable to generate images cor-
responding to an inappropriate prompt c, while their vanilla versions can suc-
cessfully generate images related to c. Subsequently, to gauge the effectiveness
of the proposed adversarial prompt (UnlearnDiffAtk) in steering an unlearned
DM to generate undesired images (related to the original prompt c), we utilize
post-generation image classifiers to determine whether the unlearning protec-
tions have been bypassed. For concept unlearning, we employ NudeNet [67] to
detect nudity in the images and the Q16 classifier [68] to detect other harm-
ful subjects. For style unlearning, we finetune an ImageNet-pretrained ViT-base
model [69] on WikiArt dataset [70] to obtain a 129-class style classifier. For
object unlearning, we employ the ImageNet-pretrained ResNet-50 for generated
image classification. When facing inappropriate test prompts, we will dissect the
attack success rate (ASR) into two categories: (1) the pre-attack success rate
(pre-ASR), and (2) the post-attack success rate (post-ASR). The effective-
ness of our proposed attack will be quantified by post-ASR as it measures the
number of successfully bypassed unlearning safeguards using adversarial pertur-
bations. However, a higher pre-ASR also signifies the inherent robustness of an

Table 2. Performance of various attack methods against unlearned DMs in concept
unlearning, measured by attack success rate (ASR) and computation time in minutes
(mins). ‘No Attack’ uses original prompts from I2P. ‘P4D’ [31] and UnlearnDiffAtk

(ours) are optimization-based attack methods. ‘Attack Time’ represents the average
computation time for generating one attack per prompt. The best attack performance
(highest ASR or lowest computation time) is highlighted in bold.

I2P: Nudity Violence Illegal Activity Atk.
Time
per
Prompt
(mins)

Total Prompts #: 142 756 727

Unlearned DMs: ESD FMN SLD ESD FMN SLD ESD FMN SLD

Attacks:
(ASR %)

No Attack 20.42% 88.03% 33.10% 27.12% 43.39% 22.93% 30.99% 32.83% 27.78% -

P4D 69.71% 97.89% 77.46% 80.56% 85.85% 62.43% 85.83% 88.03% 81.98% 34.70

UnlearnDiffAtk 76.05% 97.89% 82.39% 80.82% 84.13% 62.57% 85.01% 86.66% 82.81% 26.29
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Fig. 4. Generated images using ESD under different attacks for concept unlearning.

unlearned DM on its own. Since ASR = pre-ASR + post-ASR, we will report
ASR together with pre-ASR for ease of presentation. We also remark that ASR
reduces to pre-ASR when no adversarial attack is applied to text prompts.

5.2 Experiment Results

In the following, we demonstrate from three unlearning categories (Concept,
Style, Object) that UnlearnDiffAtk remains effective without the guidance of
auxiliary models, and it improves time efficiency.

Robustness Evaluation of Unlearned DMs in Concept Unlearning. In
Table 2, we present the performance of various attack methods against unlearned
DMs designed to mitigate the influence of inappropriate concepts from the I2P
dataset. We examine three unlearned DMs: ESD, FMN, and SLD, as shown in
Table 1. Our evaluation assesses their robustness across three categories of harm-
ful concepts: nudity, violence, and illegal activity, comprising 142, 756, and
727 inappropriate prompts, respectively. We compare the attack performance
of using the proposed UnlearnDiffAtk with that of two attack baselines: ‘No
attack’, which uses the original inappropriate prompt from I2P; and ‘P4D’, which
corresponds to the attack proposed in [31] to solve the optimization problem (8).
It is worth noting that P4D is a concurrent development while we were prepar-
ing our draft. Additionally, we compare different attack methods with respect
to ‘attack time’ (Atk. time), given by the average computation time needed to
generate one attack per prompt on a single NVIDIA RTX A6000 GPU. As we
can see, the optimization-based attacks (both UnlearnDiffAtk and P4D) can
effectively circumvent various types of unlearned DMs, achieving higher ASR
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than ‘No Attack’. Moreover, in most cases, UnlearnDiffAtk outperforms P4D
although the ASR gap is not quite significant in concept learning. However, our
improvement is achieved using lower computational cost than P4D, reducing
runtime cost per attack instance generation by approximately 23.5%. By view-
ing from ASR, ESD demonstrates better robustness than other unlearned DMs,
including FMN and SLD, when facing inappropriate prompts. Figure 4 displays
a collection of generated images under the obtained adversarial prompts against
ESD. For instance, when comparing the perturbed prompt P4 generated with
UnlearnDiffAtk to the one produced with P4D, we observe that the former
results in more aggressive generation. A similar pattern is observed with prompts
P5 and P6, which generate images featuring the illegal substance (‘drug’) and
the action of ‘police arrest’. More examples can be found in Fig. A2.

Table 3. Attack performance of various methods against unlearned DMs in Van Gogh’s
painting style unlearning, measured by ASR averaged over perturbing 50 Van Gogh-
related prompts, and average attack time for generating one attack per prompt. The
best attack performance (highest ASR or lowest attack time) is highlighted in bold.

Artistic Style: Van Gogh Atk. Time per Prompt (mins)

Unlearned DMs: ESD FMN AC UCE

Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

Attacks: (ASR %) No Attack 2.00% 16.00% 10.00% 32.00% 12.00% 52.00% 62.00% 78.00% -

P4D 30.00% 78.00% 54.00% 90.00% 68.00% 94.00% 98.00% 100.00% 50.79

UnlearnDiffAtk 32.00% 76.00% 56.00% 90.00% 77.00% 92.00% 94.00% 100.00% 38.87

Fig. 5. Generated images using ESD under different
attacks for style unlearning.

Robustness Evaluation
of Unlearned DMs in
Style Unlearning. In
Table 3, we present the
attack performance agai-
nst unlearned DMs, spe-
cifically targeting the rem-
oval of the ‘Van Gogh’s
painting style’ influence
in image generation. This
style of unlearning has
also been studied by other
unlearning methods, as
shown in Table 1. Unlike
concept unlearning, our
evaluation of ASR con-
siders two types: ‘Top-1
ASR’ and ‘Top-3 ASR’.
These metrics depend on
whether the generated
image ranks as the top-1 prediction or within the top-3 predictions regarding
Van Gogh’s painting style when assessed by the post-generation image classifier.
This is motivated by our observation that relying solely on the top-1 prediction
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might be overly restrictive when assessing the relevance to Van Gogh’s painting
style; See Fig. 5. Moreover, consistent with [12], we employ 50 prompts for image
generation with the Van Gogh style and utilize them to assess the robustness of
unlearned DMs. Similar to Table 2, we compare our proposed UnlearnDiffAtk
with ‘no attack’ and P4D on four unlearned DMs: ESD, FMN, AC, and UCE. As
we can see, UnlearnDiffAtk continues to prove its effectiveness and efficiency
as an attack method to bypass the unlearned DMs, enabling the generation of
images with the Van Gogh’s painting style. Among the unlearned DMs, ESD
exhibits the highest unlearning robustness when considering Top-1 ASR. Nev-
ertheless, Top-3 ASR still maintains a performance level exceeding 80% when
employing UnlearnDiffAtk, and is sufficient to indicate the generation of images
with the Van Gogh’s painting style, as illustrated in Fig. 5. We observe that in
the absence of an attack against ESD, the generated images (e.g., under P4) lack
Van Gogh’s painting style. However, UnlearnDiffAtk-enabled prompt perturba-
tions can effortlessly bypass ESD, resulting in the generation of Van Gogh-style
images. More generated images can be found in Fig. A3.

Table 4. Attack performance of various methods against unlearned DMs in object
unlearning, measured by ASR averaged over perturbing 50 prompts for each object
class, and the average computation time for generating one attack per prompt. The
best attack performance (highest ASR or lowest attack time) is highlighted in bold.

Object Classes: Church Parachute Tench Garbage Truck Atk. Time per Prompt (mins)

Unlearned DMs: ESD FMN ESD FMN ESD FMN ESD FMN

Attacks: (ASR %) No Attack 14% 52% 4% 46% 2% 42% 2% 40% -

P4D 56% 98% 48% 100% 28% 96% 20% 98% 43.65

UnlearnDiffAtk 60% 96% 54% 100% 36% 100% 24% 98% 31.32

Fig. 6. Generated images using ESD under different
attacks for object unlearning.

Robustness Evaluation
of Unlearned DMs
in Object Unlearning.
In Table 4, we present
the results showcasing
the performance of dif-
ferent attacks concerning
object unlearning. We
regard ESD and FMN as
the victim models, which
erase one of the chosen
four object classes from
Imagenette [65]. These
specific classes were selec-
ted due to their ease
of differentiation, allow-
ing us to assess the effec-
tiveness of the attacks.
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Given an image class, we apply each attack method to 50 prompts generated
using ChatGPT that pertain to this class. Similar to concept and style unlearn-
ing, we compare the ASR and the attack generation time of UnlearnDiffAtk
with ‘No Attack’ and P4D. As we can see, UnlearnDiffAtk consistently achieves
a higher ASR than P4D across various unlearning objects and victim models
while requiring less computational resources. Furthermore, ESD demonstrates
better robustness against prompt perturbations than FMN in the context of
object unlearning. Figure 6 displays generation examples under the obtained
adversarial prompts against ESD. We note that the objects (such as ‘Parachute’
in P2 and ‘Garbage Truck’ in P4) can be re-generated under UnlearnDiffAtk-
perturbed prompts, as compared to P4D and No Attack. More results can be
found in Fig. A4.

Table 5. ASR of UnlearnDiffAtk when attack-
ing ESD (based on SD v1.4) using target images
generated from either SD v1.4 or SD v2.1.

UnlearnDiffAtkvs. ESD: Nudity Van Gogh Church

Top-1 Top-3

DM of Target SD v1.4 76.05% 32.00% 76.00% 60.00%

Image Generation SD v2.1 73.94% 34.00% 82.00% 60.00%

Attack Using Different Tar-
get Image Sources. As dis-
cussed in Remark 1 of Sect. 4, our
proposed UnlearnDiffAtk bene-
fits from its sole reliance on a tar-
get image xtgt, without requiring
an auxiliary vanilla DM during
attack generation. In our prior
experiments, we explored this setting with xtgt generated using SD v1.4, the
same SD version used by unlearned DMs. Table 5 shows the ASR achieved when
utilizing UnlearnDiffAtk against the ESD model (built upon SD v1.4), given
that the target image xtgt is generated using different versions of SD, v1.4 and
v2.1, respectively. We observe that UnlearnDiffAtk maintains a consistent ASR
performance, even when there’s a discrepancy between the target image source
(acquired by SD v2.1) and the victim model, ESD built upon SD v1.4.

Other Ablation Studies. In Appendix B, we demonstrate more ablation stud-
ies. This includes (1) the resilience of attack performance against the adversarial
prompt location and length (Table A1 and Table A2), (2) the attack transferabil-
ity across different SD models (Table A3), and (3) attack effectiveness compared
to ‘random’ attacks (Table A4).

6 Conclusions

The evolution of DMs (diffusion models) in generating intricate images under-
scores both their potential and their inherent risks. While these models present
significant advancements in the realm of digital imagery, the capacity for gen-
erating unsafe content cannot be understated. Our research sheds light on the
vulnerabilities of current safety-driven unlearned DMs when confronted with
adversarial prompts, even when these prompts involve subtle text perturba-
tions. Notably, we develop the UnlearnDiffAtk method, which not only sim-
plifies the generation of adversarial prompts against DMs (without the need of
auxiliary models) but also offers an innovative perspective on utilizing DMs’
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classification capabilities. We also conduct a comprehensive set of experiments
to benchmark the robustness of state-of-the-art unlearned DMs across multi-
ple unlearning tasks. Our research emphasizes the need for more resilient and
trustworthy systems in conditional diffusion-based image generation systems.
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