
Tools at the Frontiers of Quantitative Verification⋆

QComp 2023 Competition Report

Roman Andriushchenko1 , Alexander Bork2 , Carlos E. Budde3 ,
Milan Češka1 , Kush Grover4 , Ernst Moritz Hahn5 ,

Arnd Hartmanns5 � , Bryant Israelsen6 , Nils Jansen7 ,
Joshua Jeppson6 , Sebastian Junges7 , Maximilian A. Köhl8 ,

Bettina Könighofer9 , Jan Křetínský4,10 , Tobias Meggendorfer4,11,12 ,
David Parker13 , Stefan Pranger9 , Tim Quatmann2 , Enno Ruijters ,

Landon Taylor6 , Matthias Volk14 , Maximilian Weininger4,11 , and
Zhen Zhang6

1 Brno University of Technology, Brno, Czech Republic
2 RWTH Aachen University, Aachen, Germany

3 University of Trento, Trento, Italy
4 Technical University of Munich, Munich, Germany
5 University of Twente, Enschede, The Netherlands

6 Utah State University, Logan, Utah, USA
7 Radboud University, Nijmegen, The Netherlands

8 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
9 Graz University of Technology, Graz, Austria
10 Masaryk University, Brno, Czech Republic

11 Institute of Science and Technology Austria, Klosterneuburg, Austria
12 Lancaster University Leipzig, Leipzig, Germany

13 University of Oxford, Oxford, UK
14 Eindhoven University of Technology, Einhoven, The Netherlands

� a.hartmanns@utwente.nl

Abstract. The analysis of formal models that include quantitative as-
pects such as timing or probabilistic choices is performed by quantitative
verification tools. Broad and mature tool support is available for com-
puting basic properties such as expected rewards on basic models such
as Markov chains. Previous editions of QComp, the comparison of tools
for the analysis of quantitative formal models, focused on this setting.
Many application scenarios, however, require more advanced property
types such as LTL and parameter synthesis queries as well as advanced
models like stochastic games and partially observable MDPs. For these,
tool support is in its infancy today. This paper presents the outcomes of
QComp 2023: a survey of the state of the art in quantitative verification

⋆ The authors are ordered alphabetically. This work was supported by DFG RTG
2236/2 (UnRAVeL) and DFG project TRR 248 (CPEC, ID 389792660), by the EU
under MSCA grant agreements 101008233 (MISSION), 101034413 (IST-BRIDGE), and
101067199 (ProSVED), by ERC Starting Grant 101077178 (DEUCE), ERC Consol-
idator Grant 864075 (CAESAR), and ERC Advanced Grant 834115 (FUN2MODEL),
by GAČR grant GA23-06963S (VESCAA), by National Science Foundation grant
1856733, by NextGenerationEU project D53D23008400006 (SMARTITUDE), and by
NWO VENI grant 639.021.754.

2 R. Andriushchenko et al.

tool support for advanced property types and models. With tools ranging
from first research prototypes to well-supported integrations into estab-
lished toolsets, this report highlights today’s active areas and tomorrow’s
challenges in tool-focused research for quantitative verification.

1 Introduction

The inclusion of quantitative aspects such as probabilistic choices, timing, and
random delays in system modelling is crucial to ensure the correctness, perfor-
mance, and dependability of the ever-increasing amount of complex safety- and
economically-critical systems that support our societies. Well-known examples
include the use of randomised algorithms in Internet protocols to achieve both
simplicity and scalability [156] or the fault tree modelling approach for safety
assessment in the nuclear industry [94].

Formally, these aspects can be captured in established mathematical for-
malisms like discrete- and continuous-time Markov chains (DTMCs and CTMCs)
for probabilistic choices and stochastic timing, or more recent notions such as
timed automata (TA) [4] for real-time behaviour. Combining DTMCs with non-
deterministic (i.e. unquantified and controllable or adversarial) choices results in
the nowadays-popular formalism of Markov decision processes (MDPs) [29,194].
These form the mathematical foundation of quantitative modelling ; for practi-
cal purposes, models are specified in a higher-level modelling language—such
as Modest [30, 105] or the Prism language [163]—that is equipped with a se-
mantics in terms of one of the formalisms. When combined with a query for a
numerical property of a model, e.g. for the probability of reaching a set of un-
desirable states or for the expected reward until a terminal state is reached, we
have a basic quantitative verification problem.

Basic Quantitative Verification Comparisons

The basic problems—i.e. computing a (i) reachability probability, (ii) expected
accumulated reward, or (iii) steady-state probability on a DTMC, CTMC, or
MDP model15—can be solved by various software tools developed over the past
two decades. Most tools use one of two approaches: either probabilistic model
checking (PMC) [20, 116], which applies a numeric algorithm onto a complete
in-memory representation of a model’s state space, or statistical model checking
(SMC) [3, 169, 221], which randomly samples (or: simulates) and statistically
analyses a set of model behaviours; or a hybrid approach combining aspects of
PMC and SMC such as partial exploration [148], probabilistic planning [142,176],
(deep) reinforcement learning [36,98], or Monte Carlo tree search [11].

15 Probabilistic timed automata (PTA) [166] can be turned into equivalent MDP [165,
167] (or be solved as stochastic games [162]), so treat them like MDP here.

Tools at the Frontiers of Quantitative Verification 3

The QComp competition. The 2019 Comparison of Tools for the Analysis of
Quantitative Formal Models (QComp 2019) [103] compared the performance,
versatility, and usability of nine such tools on a benchmark set of 100 basic quan-
titative verification problems16. It was the first tool competition in quantitative
verification, part of the TOOLympics at TACAS 2019 [25]. The next edition of
QComp in 2020 [46] used the same benchmark set, but focused more specifi-
cally on the different types of correctness guarantees provided by the different
tools, highlighting the interplay between performance and precision in quanti-
tative verification. The results of QComp 2020 were presented at the ISoLA
2020/2021 conference. Although the main outcomes of these two editions of
QComp were performance results, they were meant as friendly competitions: We
did not establish a ranking of tools or point out a “winner”; rather, we high-
lighted the capabilities, strengths, and specific niches of all participating tools.
In particular, the results clearly showed that some tools were generalists solving
many types of problems, while others were specialised to specific tasks where
they performed much better than any other participant. The entire performance
evaluation and report-writing process was performed in close collaboration with
the participants, most of which were the main developers of the respective tools.

Benchmark sets and formats. Aside from providing information about the capa-
bilities and performance of the participating tools, these two editions of QComp
also benefited the collaboration and alignment inside the quantitative verifica-
tion research community: In a parallel effort to QComp 2019, we established the
Quantitative Verification Benchmark Set (QVBS) [119], from which the compe-
tition selected its 100 benchmark instances. Although the QVBS’ models were
collected from various sources and came in various modelling languages, the
QVBS as a matter of principle includes a translation of each model and its prop-
erties into the Jani interchange format [44]; as a result, any tool that supported
Jani could participate in QComp 2019 and 2020. Jani thus benefited QComp
and the participating tool authors by simplifying frontend development, while
QComp furthered the establishment of Jani as a community standard.

QComp 2023: Looking into the Future

While improving solution methods for basic problems remains an active research
topic (cf. e.g. [28, 102, 111, 116, 117, 128]), most of today’s work in quantitative
verification focuses on what we refer to as advanced problems: Computing more
complex properties on the basic models, computing basic properties on more
complex models, or combinations thereof. Most papers include an experimental
evaluation, which, however, often uses an ad-hoc research prototype implemen-
tation, most of which are not further developed into a stable and maintained

16 In the tool competition context, our verification problems are called benchmark in-

stances. Since most benchmark models are parametrised but basic problems ask for a
single result value, a benchmark instance is a triple of a model, a concrete parameter
valuation, and a property to evaluate. We cover parametric analysis in Sect. 7.

4 R. Andriushchenko et al.

tool. Nevertheless, as QComp 2020 was presented at ISoLA 2020/2021, it be-
came clear that more and more solution methods for advanced problems were
being turned into tools of their own or integrated into existing stable tools such
as Prism [163] or Storm [125]. Therefore, the next edition of QComp that we
present in this report, QComp 2023, shifts its focus towards these frontiers in
quantitative verification.

Aims. The aims of QComp 2023 are (i) to describe advanced problems in quan-
titative verification for which analysis algorithms have more recently been de-
veloped and first tool support is appearing, (ii) to document the state of the
art of this tool support, in terms of what is available today and what pieces are
still missing, and (iii) to perform the first comparative tests of these tools where
appropriate. The outcome of QComp 2023 is this competition report, which can
serve as a guide to state-of-the-art tools for the domain expert faced with an
advanced quantitative verification problem, as a historical reference for tool de-
velopers, and as a call to action pointing researchers to where better algorithms
are still needed and tool developers to where “market opportunities” exist that
can be filled with new tools.

Setup and process. QComp 2023 is a more friendly competition than ever: It
started with an open call for participation to the quantitative verification com-
munity in summer 2022. The interested participants then followed an iterative
process of determining categories (i.e. advanced problem scenarios) of interest,
which included identifying and contacting additional participants. Out of the
group of all participants, we then established category coordinators who would
lead the process needed to achieve the aims of the competition in their category.
As the QComp categories covered all kinds of research and tooling maturity lev-
els, part of the task of the category coordinators was to establish the scope and
refine the concrete aims of their category. In categories where several sufficiently
stable tools already exist, coordinators could choose to include a performance
evaluation, while more cutting-edge categories would focus on a description of
the category, available approaches, and prior experimental results if available.
The category coordinators delivered the outcomes of their category to the overall
QComp 2023 coordinator before summer 2023; over that summer, we integrated
all contributions into this report.

In this distributed and flexible approach where the competition is divided
into sub-groups that establish the actual aims of their own, QComp 2023 was
modelled after the ARCH-COMP friendly competition on verifying continuous
and hybrid systems (see cps-vo.org/group/ARCH/FriendlyCompetition), which
has been running on this model successfully for seven editions as of today since
2017 [90], with its latest edition concluded just before QComp 2023 this summer.

2 Categories and Participants

As a friendly competition, QComp 2023 was open to all interested parties for
suggesting, coordinating, and participating in categories related to quantitative

Tools at the Frontiers of Quantitative Verification 5

verification. All participants of QComp 2023 are co-authors of this competition
report. The competition as a whole was coordinated by A. Hartmanns. Before
presenting the results of the individual categories in the remainder of this report,
we give an overview of QComp 2023’s ten categories with credits to the respective
organisers and participants, and present the participating tools.

2.1 Categories

Infinite-state and population models (∞-state, Sect. 3): coordinated by Z.
Zhang; participants: M. Češka, E. M. Hahn, J. Jeppson.

Long-run average rewards (LRA, Sect. 4): coordinated by K. Grover, J. Kře-
tínský, and M. Weininger; participants: A. Hartmanns, T. Meggendorfer, and
T. Quatmann.

Linear temporal logic (LTL, Sect. 5): coordinated by J. Křetínský and M.
Weininger.

Multi-objective analysis (multi-obj., Sect. 6): coordinated by T. Quatmann;
participants: K. Grover, D. Parker, and M. Weininger.

Parametric Markov models (parametric, Sect. 7): coordinated by S. Junges.

Partially-observable MDPs (POMDPs, Sect. 8): coordinated by A. Bork;
participants: R. Andriushchenko and D. Parker.

Rare events (rare events, Sect. 9): coordinated by C. E. Budde; participants:
B. Israelsen, E. Ruijters, L. Taylor, M. Volk, and Z. Zhang.

Robust decision-making under uncertainty (uncertainty, Sect. 10): coor-
dinated by N. Jansen; participants: D. Parker.

State space exploration (exploration, Sect. 11): coordinated by M. A. Köhl;
participants: A. Hartmanns and T. Quatmann.

Stochastic games (st. games, Sect. 12): coordinated by D. Parker; partici-
pants: B. Könighofer, T. Meggendorfer, S. Pranger, and M. Weininger.

2.2 Participating Tools

Various tools ranging from research prototypes to mature toolsets are available
today to tackle the problems covered by the different categories. In Table 1, we
list which tools participated in which of the categories of QComp 2023. The
meaning of “participate”, however, can have a very different meaning in differ-
ent categories; for example, the parametric category only names the four tools
that support the analysis of parametric Markov models, while the multi-obj.
category benchmarks its five participating tools and reports on their relative
performance. Categories that include an experimental evaluation such as run-
time benchmarking are indicated by a “Y” in the row labelled “experiments”;
then row “benchmarks” states the number of benchmark instances considered in
the experimental evaluation17. Participation of a tool in any category was volun-
17 More benchmarks may be available for the problems covered by a category, and

category parametric has no performance evaluation but introduces a benchmark set.

6 R. Andriushchenko et al.

Table 1. Tools participating in QComp 2023’s different categories

∞
-s

ta
te

L
R

A

LT
L

m
ul

ti
-o

b
j.

pa
ra

m
et

ri
c

P
O

M
D

P
s

ra
re

ev
en

ts

un
ce

rt
ai

nt
y

ex
pl

or
at

io
n

st
.
ga

m
es

experiments N Y N Y N Y Y N Y Y
benchmarks – 20 – 66 – 3 10 – 229 16

Dftres ✓

Epmc ✓ ✓ ✓ ✓

Fig ✓

Infamy ✓

mcsta ✓
✓

modes ✓

Momba ✓

MultiGain ✓ ✓ ✓

Param ✓

Paynt ✓

Pet ✓ ✓

Prism ✓ ✓ ✓ ✓ ✓

Prism-games ✓ ✓ ✓

Ragtimer ✓

SeQuaiA ✓

Stamina ✓

Storm ✓ ✓ ✓ ✓ ✓ ✓

StormDftRes ✓

Tempest ✓ ✓

tary and not automatic; in particular, if a tool does not participate in a certain
category, this does not imply absence of support for the advanced properties or
model types that the category focusses on in the tool. To allow the individual
category sections to focus on the specifics of their topic, we briefly introduce all
19 tools:

Dftres [48], available at github.com/utwente-fmt/DFTRES, is a statistical
model checker designed for repairable dynamic fault trees (DFTs [200]) spec-
ified in Galileo and more general CTMCs specified in Jani. It is written in
Java and is portable to, at least, Linux, Windows, and macOS.

Epmc [91], available at github.com/iscas-tis/ePMC, is an extensible proba-
bilistic model checking framework mostly written in Java. It is a successor of
IscasMC [109].

Fig [43], available at git.cs.famaf.unc.edu.ar/dsg/fig, is a statistical model check-
er for transient and steady state reachability properties in CTMCs and in-
put/output stochastic automata (IOSA) [71]. Fig is written in C++ and runs
on Linux.

Tools at the Frontiers of Quantitative Verification 7

Infamy [106], available at depend.cs.uni-saarland.de/tools/infamy, is a tool
with the purpose of model checking formulae in continuous stochastic logic
(CSL) [14, 21] on infinite-state CTMC specified in a variant of the Prism

language by exploring the model up to a certain depth repeatedly. Infamy

can also handle certain reward properties.

mcsta, available at modestchecker.net, is the explicit state model checker of the
Modest Toolset [113], a collection of tools for the modelling and analysis
of stochastic timed and hybrid systems. Its core functionality is the disk-
based explicit-state model checking of MDPs [114], MAs [51], PTAs [112], and
stochastic timed automata [104]. The Modest Toolset is mainly written
in C# and runs on 64-bit Linux, macOS, and Windows systems. It supports
the Modest [30,105] and Jani [44] input languages.

modes [41], available at modestchecker.net, is the Modest Toolset’s statis-
tical model checker. It supports the same input languages and platforms as
mcsta. It contains simulation engines specialised to different formalisms from
DTMCs to stochastic hybrid automata with general probability distributions
(SHA) [89], including support for non-linear continuous dynamics [186].

Momba [145], available at momba.dev, is a Python library centred around Jani

with the goal of providing easy access to quantitative modelling capabilities.

MultiGain [37] is an extension of Prism for multiple long-run average re-
wards. MultiGain 2.0 [23], available at zenodo.org/records/10610642, builds
on MultiGain, adding support for verification and strategy synthesis for LTL.

Param [107], available at depend.cs.uni-saarland.de/tools/param, was the first
tool implementing verification algorithms for parametric Markov models.

Paynt [9], available at github.com/randriu/synthesis, is a tool originally devel-
oped for the inductive synthesis of probabilistic programs. It aims at directly
synthesising finite-state controllers for partially-observable MDPs.

Pet [179] available at gitlab.lrz.de/i7/partial-exploration, is a model checker fo-
cusing on value iteration approaches augmented by partial exploration, based
on [36] for reachability with subsequent extensions to mean payoff [12] and
cores [148]. It is backed by tailored data structures and algorithms for this
purpose, and implemented in Java.

Prism [163], available at prismmodelchecker.org, is a widely-used probabilistic
model checker supporting a large range of models and temporal logics. It is a
user-friendly tool that comes with a cross-platform graphical user interface.
Prism is mostly written in Java, with some algorithms implemented in C.

Prism-games [158], available at prismmodelchecker.org/games, is an exten-
sion of Prism focused on the verification of stochastic games.

Ragtimer [129, 211], available at github.com/fluentverification/ragtimer, is
designed for chemical reaction networks (CRNs) modeled as CTMCs, com-
bining guided stochastic simulation and commutability properties to compute
lower-bound rare event probabilities from a partial state space.

8 R. Andriushchenko et al.

SeQuaiA [54], available at sequaia.model.in.tum.de, offers two powerful en-
gines for the quantitative analysis of population models given as chemical
reaction networks via abstraction and simulation. Both build on an interval
population abstraction of the underlying CTMC. SeQuaiA comes with a
GUI, allowing for convenient modelling and tweaking the models as well as
displaying the abstractions and analyses results for better explainability.

Stamina [134,183,184,199], available at staminachecker.org, is an infinite-state
PMC tool that iteratively explores a partial state space for a bounded or
unbounded CTMC model. The CTMC transient analysis on the partial state
space is delegated to Prism’s and Storm’s PMC engines. Stamina/Prism

implements the Stamina 2.0 algorithm and interfaces with Prism’s Java
API and uses Prism for model parsing and checking. Stamina/Storm is a
reimplementation and extension of the Stamina 2.0 algorithm using Storm.

Storm [125], available at stormchecker.org, is a general purpose, high-perfor-
mance feature-rich probabilistic model checker built around a modular core
with an emphasis on time and memory efficiency. Written in C++, Storm’s
modular design enables the utilization of different model checking engines
catering to the characteristics of different models. Notably, Storm excels
in efficient symbolic model checking through its dd engine leveraging binary
decision diagrams (BDDs).

StormDftRes, available at gitlab.utwente.nl/fmt/fault-trees/storm-dft-res,
implements multi-threaded Monte Carlo simulation for (non-repairable) DFTs
given in either the Galileo or a custom format. StormDftRes builds on the
Storm-dft library [217] of Storm, which implements efficient state space
generation for DFTs by exploiting e.g. irrelevant failures and symmetries.

Tempest [192] available at tempest-synthesis.org, is based on the Storm

model checker, extending its feature set to turn-based stochastic games with
a focus on synthesizing most-permissive strategies.

3 Infinite-State and Population Models

In many biochemical reaction and synthetic biology applications, very complex
systems are studied and thus software tools become very advantageous and even
indispensable for their understanding. For instance, the signalling pathways,
chemical reaction networks, and genetic regulatory networks under study con-
sist of many concurrent reactions running at very different speeds and proba-
bilities, with species of both low and high copy numbers. This results in stiff
systems suffering from stochasticity/multi-modality and state-space explosion,
respectively [95,212], calling for dedicated analysis tools.

In order to analyse such systems, so-called population models are considered.
A state of a population model is a tuple of integers, with the i-th component rep-
resenting the copy number of the i-th species. Hence the state space is typically
(countably) infinite. Transitions between states represent executing one reaction
of the system. Given that the timing aspect is crucial and that the probability

Tools at the Frontiers of Quantitative Verification 9

for a reaction to occur is (approximately) exponentially distributed as a function
of real time, the model can be defined as a CTMC. This explicit model can be
derived directly from a symbolic representations of the system as, say, a chemi-
cal reaction network (CRN): The rates of the CTMC can be computed from the
rates of the CRN reactions and the copy numbers in each state using the mass
action kinetics.18 This transformation immediately enables the applicability of
probabilistic model checkers for CTMC to biological systems. However, in or-
der to make the analysis practical, the population structure has to be exploited
in dedicated ways. In particular, one has to deal with the huge and in general
infinite state spaces.

To handle such state spaces, various reduction techniques have been pro-
posed that either truncate states of the underlying CTMC with insignificant
probability [182] or leverage structural properties of the CTMC to aggregate/
lump selected sets of states [1, 16]. The interval abstraction of the species pop-
ulation is a widely used approach to mitigate the state-space explosion prob-
lem [223]. Alternatively, several hybrid models have been considered, such as
treating only small-population species stochastically while using a deterministic
semantics for large-population species [126], applying a moment-based descrip-
tion for medium/high-population species [121], or using the LNA approximation
with an adaptive partitioning of the species according to leap conditions [53].

The investigated properties range from transient (“What is the (distribu-
tion over) states at time t?”) to steady-state analysis (concerning the limiting
distribution or LRA reward). The typical output of a tool for such a query is
either a certain probability bound or an exact probability (or probability bound)
of the predicate being true. Given the numeric character of the results and meth-
ods, approximate solutions are considered. Further, in contrast to verification,
given that the systems are mostly neither safety-critical, nor completely mod-
elled, it is typically acceptable to produce results without precise error bounds:
often by simulation-based techniques [93] or aggressively practical, e.g. semi-
quantitative [55], model-based approaches.

3.1 Tool Support and Benchmarks

The main technical characteristics of the available tools participating in this
category of QComp 2023 are listed in Table 2.

Infamy model-checks infinite-state CTMC specified in a variant of the Prism

language. It is capable of handling the time-bounded subclass of the logic CSL
and certain reward properties. It explores the model up to a certain depth
repeatedly while descending into the nested CSL formula. Infamy provides
different means for finding a stopping criterion for the state-space exploration.
This is because there is a trade-off between when to stop and the memory
needed to store the finite truncation of the state space.

18 Consequently, more symbolic models such as stochastic Petri nets are hard to use
since the rate of a transition for a particular reaction differs from state to state.

10 R. Andriushchenko et al.

Table 2. Feature comparison of tools for population models

Tool Platforms Approach Models Syntax Semantics

Infamy Linux
model checking

+ state truncation
CTMC Prism CTMC

SeQuaiA
multi-

platform
population abstraction
+ numerical, simulation

population
models

GUI,
dedicated

CTMC

Stamina
Linux,
macOS

model checking
+ state truncation

CTMC Prism CTMC

SeQuaiA offers two engines, both building on a “population” abstraction of
the underlying CTMC, abstracting concrete copy numbers to given intervals.
The first one [54] computes an abstraction of the CTMC using acceleration,
abstracting not only states and single transitions, but taking into account
sequences of transitions. The resulting model is (i) small enough to explain
the overall dynamics, and (ii) despite the induced imprecision, allows for a
semi-quantitative analysis, computing not the exact probabilities of different
behaviours, but their orders of magnitude, which is often sufficient in the
biological applications. The engine thus features unprecedented scalability,
analysing standard complex benchmarks within a fraction of a second, while
it is precise enough to conclude on the qualitative behaviour of the system in-
cluding rare behaviours and on rough estimates of the quantities (population
sizes, times). The second engine provides a more precise quantitative analysis
by uniquely combining the population abstraction with advanced simulation
techniques [124]. It is based on a memoization technique that combines pre-
viously generated segments of runs defined over abstract states to generate
new simulations more efficiently while preserving the original system dynam-
ics and its diversity. It adapts online to identify the most important abstract
states and thus utilizes the available memory efficiently. In combination with
a novel fully automatic and adaptive hybrid simulation scheme, this speeds up
the generation of trajectories and correctly predicts the transient behaviour
of complex stochastic systems.

Stamina iteratively explores a partial state space where a majority of the
probability mass resides. It expands the state space on the fly based on the
estimated state reachability probability, and truncates a search path when the
estimate drops below a user-specified threshold. Stamina then performs time-
bounded transient PMC analysis by interfacing with Prism or Storm. In this
way, it computes a lower and upper bound, Pmin and Pmax , respectively, such
that the actual probability of the CSL property under verification lies within
[Pmin , Pmax]. The tightness of the probability window, w = Pmax − Pmin , is
specified by the user, albeit with higher run-time for a smaller w. Stamina

can efficiently produce an accurate probability bound for CTMCs with an
extremely large or infinite state space. It is not restricted to specific types of
input models as long as they can be modelled as CTMCs using the Prism

Tools at the Frontiers of Quantitative Verification 11

modelling language. Examples include genetic regulatory networks [86, 173],
biochemical reaction systems [76,157], dynamic fault trees (DFTs) [217], and
queuing network models [127, 131]. Stamina has been designed to support
multiple exploration methods, and can be tailored to the model or property
under verification. It has also been designed to be user-friendly and modu-
lar. Additionally, a graphical user-interface (written in Qt5) is under active
development and will enhance user-experience and ease of use of Stamina.

Benchmarks include the CTMC models in the QVBS, the PRISM Benchmark
Suite [164], and the Infamy case studies19. In addition, the Stochastic Model
Case Studies repository [49]20 hosts a large collection of case studies focusing
on biochemical systems with infinite state spaces. Stamina has been evaluated
on selected CTMC benchmarks from these benchmark suites, e.g. [134, 199].
SeQuaiA has been evaluated on models describing challenging CRNs from the
literature [54].

3.2 Outlook

Aside from the scalability limitation the tools are trying to mitigate, there are
specific challenges in the analysis of biochemical and synthetic biological systems.

First, it is a very strong assumption that the correct model is available. Con-
sequently, the analysis methods should be able to effectively handle various forms
of model uncertainty, including unknown reaction rate parameters, unknown
reactants or products, as well as unknown species bounds. The uncertainty can
be modelled by various formalisms such as parametric or interval CTMC (see
Sect. 10), for which the existing tools offer only very limited support.

Second, concurrency is fundamental to these systems, as their constituent
chemical reactions are often simultaneously enabled. All enabled concurrent re-
actions may occur in a state but with very different probabilities, and their noisy
operating environment can introduce extremely infrequent but potentially detri-
mental faults (see Sect. 9). Additionally, their regulatory nature and constituent
reversible reactions can cause cyclic behaviours and often require long reaction
execution sequences to reach a desirable state.

Finally, the verification tools should offer to the users (i.e. biologists) not only
the verification result, but also an artifact in the form of a critical sub-system or
a critical set of paths allowing the users to interpret and explain the results.
While some rudimentary effort has been made, e.g. [55], this field is wide open.

4 Long-Run Average Rewards

Many frequently-studied classes of properties of probabilistic systems are based
on rewards. A reward function assigns to every state (or action or state-action
pair) a number modelling a cost (or a payoff) related to the single move. These

19 https://depend.cs.uni-saarland.de/tools/infamy/casestudies/
20 https://github.com/fluentverification/CaseStudies_StochasticModelChecking

12 R. Andriushchenko et al.

Table 3. Feature comparison of tools for average-reward properties

Tool Objective Model Guarantees

mcsta ELRA CTMC, MA ε

MultiGain ELRA, SS MDP E-FP
Pet ELRA DTMC, CTMC, MDP ε

Prism-games ELRA TSG none
Storm ELRA, SS DTMC, CTMC, MDP, MA ε, E-RA
Tempest ELRA TSG none

rewards are accumulated over infinite paths in various manners. Popular ways
are discounted, total, and average rewards [194]. While the discounted reward
is heavily used in diverse applications ranging from economics to robotics, and
is very easy to optimize, it essentially reflects a limited time horizon only. The
total reward can reflect longer horizons better (e.g. unbounded reachability), yet
not really the infinite-run behaviour. The average reward (also known as long-
run average reward, limit-average reward, steady-state reward, or mean payoff)
captures much more adequately the performance over an unknown or variable
horizon (see e.g. [203]). Consequently, it is used to model e.g. performance prop-
erties, such as the average delay between requests and responses, the average rate
of a particular event, etc. Considering the infinite horizon makes both classic and
learning algorithms less efficient. The whole problem is thus more difficult, and
also less studied in the context of AI or robotics. In contrast, it is significantly
studied in formal verification where performance and dependability are critical
and hard guarantees are desirable. Related to the average reward and reducible
to it are constraints on the steady state of a system, which become more studied
also in the context of AI; see e.g. [146,214]. The algorithms for long-run average
(LRA) reward properties again span the whole spectrum of linear and dynamic
programming, including value and strategy iteration, with the usual advantages
and disadvantages. A specific case is the traditional steady-state analysis on
(fully stochastic) Markov chains. There, solving a system of linear equations is
sufficient, but for efficiency reasons often replaced by value iteration, too.

4.1 Algorithms and Tool Support

Table 3 gives an overview of tools supporting average-reward properties, dif-
ferentiating the exact kind of supported objective (SS: steady-state or ELRA:
expected long-run average reward), the supported models (where MA are Markov
automata [79] and TSG are turn-based stochastic games, see Sect. 12), and the
guarantees provided on the precision of the result (either none, ε-precise, E-FP:
exact up to floating-point precision, or ERA: exact using rational arithmetic).
We complement this high-level overview with short tool descriptions:

Tools at the Frontiers of Quantitative Verification 13

mcsta supports [51] model-checking LRA reward properties in MA (and thus
also in CTMC as a special case) using either a reduction to linear program-
ming [101] or an ε-precise method based on value iteration [52].

MultiGain implements a linear programming-based approach [35] for multi-
objective steady-state and LRA reward objectives in MDP (see also Sect. 6).

Pet focuses on partial-exploration techniques, for which it includes an extension
to mean-payoff objectives [12].

Prism-games supports a wide range of zero-sum properties; for LRA rewards
(and its multi-objective variant of ratio objectives), the stochastic games are
required to be controllable multichains, i.e. the sets of states that can occur
in any maximal end component must be almost surely reachable.

Storm can answer a wide range of queries for many different models, offer-
ing both value iteration-based approaches providing ε-precise results as well
as linear programming-based algorithms using exact rational arithmetic. We
highlight that Storm is the only tool able to handle negative rewards di-
rectly, while others require the rewards to be rescaled first (see Appendix A
in the full version of [152] for the standard transformation).

Tempest implements mean-payoff analysis for TSGs on top of Storm, using
value iteration with explicit state space representations.

4.2 Performance Comparison

Our performance comparison is only on MDPs, as this is the model that most
tools support. Thus, we ran Storm (using the default value iteration which pro-
vides ε-guarantees), MultiGain (using linear programming), and Pet (using
value iteration and partial exploration). We collected benchmarks from several
sources [2, 23, 119]; Appendix G.1 of the full version of [2] contains descriptions
of many of them. The experiments were conducted on a freshly installed Ubuntu
virtual machine on top of an Intel i7-1165G7 CPU and 8 GB RAM. Each run had
access to all eight cores available in the virtual machine and the tools were exe-
cuted sequentially using a bash script, starting with Storm (on all benchmarks)
and ending with Pet. Table 4 shows for every benchmark some characteristics
of the model and then the time in seconds taken by each tool (where MG 2.0 is
MultiGain 2.0) to compute the value; the best time is highlighted in bold. For
all but one benchmark, Storm outperforms both MultiGain and Pet. The
single exception is mer (4), where Pet is slightly faster, leveraging the fact that
only a very small part of the model has to be explored.

Data availability. All model files used for the comparison, as well as the re-
sulting log files, are available at DOI 10.5281/zenodo.8219191 [100].

4.3 Outlook

We pinpoint several streams of research currently pursued. First, the algorithms
have been extended to multiple average rewards [35, 61] and we refer to

14 R. Andriushchenko et al.

Table 4. Performance comparison results of tools for average-reward properties

Model (Parameters) # states Value Storm MG 2.0 Pet

busyRing 1,912 1.0 0.04 1.66 2.42
coin (N=2, K=5) 656 1.0 0.01 0.57 3.36
consensus (N=4, K=10) 104,576 1.0 4.83 189.95 4,505.29
csma (N=2, K=4) 4,958 1.0 0.04 1.52 4.49
cs_nfail 184 0.33 0.02 0.48 2.85
eajs (energy_capacity=500) 93,228 3.64 0.36 11.02 168.80
eajs (energy_capacity=1000) 193,728 3.64 0.71 36.61 345.28
firewire (deadline=20, delay=2) 2,862 0.0 0.04 1.15 6.22
ij (10) 1,023 1.0 0.02 0.83 3.61
investor 6,688 0.95 0.07 4.19 5.15
mer (3) 15,622 1.5 0.81 12.77 16.17
mer (4) 119,305 1.5 41.82 2,385.99 41.52

pacman (MAXSTEPS=10) 6,852 0.78 0.16 3.41 4.71
pacman (MAXSTEPS=15) 96,894 0.99 2.95 14.31 9.77
pnueli-zuck 2,701 1.0 0.04 1.31 3.91
rabin (3) 15,622 0.86 0.23 11.08 8.25
sensors (K=5) 267 0.45 0.01 0.60 1.97
virus (3) 809 0.0 0.02 1.15 2.67
wlan (COL=6, MAX_BACKOFF=3) 284,446 0.0 1.26 9.04 24.82
zeroconf 1,088 0.0 0.02 0.70 1.79

Sect. 6 for a discussion of the achievements and challenges. Second, some ap-
proaches handle unknown models that can only be simulated [2,153], or avoid
their construction for efficiency reasons [148]. Finally, while value iteration is the
prevailing solution approach, guarantees on its precision (stopping criteria)
have only been given recently [12,152].

5 Linear Temporal Logic

The traditional analysis of MDPs, in particular in the context of operations
research and performance optimization, is based on rewards. In domains such
as AI, robotics, or economics, it is often the discounted reward; in other con-
texts, where the steady state or the long-run behaviour is more relevant, it is
the average reward (see Sect. 4). However, in the context of verification, be
it of hardware, software or cyber-physical systems, not only reachability but
also more complex temporal properties are required [191]. While the analysis of
branching-time properties typically boils down to reachability analysis, the anal-
ysis of linear-time properties is more complex. The most prominent formalism
for capturing linear-time properties is the linear temporal logic (LTL) [191].

The standard way to analyse LTL properties is the automata-theoretic ap-
proach [213]: The formula is translated to an automaton and, subsequently, the

Tools at the Frontiers of Quantitative Verification 15

product of the system and this automaton is analysed. While LTL properties
occurring in verification of hardware or non-stochastic software tend to be very
complex (see e.g. the LTL Store collection [149]), this is less pronounced for
stochastic systems. One of the main reasons was the infeasibility of obtaining
small automata apt for probabilistic model checking. Indeed, instead of nonde-
terministic Büchi automata (NBA), for which good translators had long been
available, some degree of determinism is needed for MDP. Until recently, Rabin
automata produced by determinisation were the default but hardly scalable so-
lution. For instance, about 10 years ago, one fairness contract was translated by
the then state-of-the-art methods within Prism to an automaton with 4 states,
while a conjunction of two yielded over ten thousand states, and a conjunction
of three would not finish computing in a week [147].

In the decade since [147], alternative approaches started flourishing. They
avoid the determinisation by direct translations [81] or by employing weaker
forms of determinism, such as limit-determinism [108, 205]. The resulting tools
such as Rabinizer [151] or spot [77], or libraries such as Owl [150], now
reach the same level of scalability as for nondeterministic automata, allowing
for verification of more complex properties. Model checkers such as Prism today
(i) contain a pre-computed, built-in set of automata for the handful most used
properties, and (ii) can link external translators to provide the state-of-the-art-
sized automata via the Hanoi Omega-Automata (HOA) standard format [15].
Consequently, comparing the efficiency of model checkers themselves is not very
relevant in this category; instead, we describe the main line of model checking
algorithms, and discuss the limitations and additional features of the tools.

5.1 Algorithms and Tool Support

The standard algorithm (i) constructs the product of the system and the au-
tomaton (with a given acceptance condition), (ii) identifies the maximum ac-
cepting end components, and (iii) computes the reachability probability of their
union. Step (ii) depends on the particular acceptance condition. The default
since the inception of Prism was the Rabin condition due to the better effi-
ciency compared to Muller or parity. Since the appearance of the new transla-
tions, the algorithm has been extended to generalized Rabin [56] within Prism

and limit-determinism in the Prism-based MoChiBA [206] as well as in a lazy
variant [108]. Further improvements on the sizes and types of the automata (e.g.
good-for-MDP, Emerson-Lei) followed [82,110,135,174,181].

Several current tools can be applied to LTL and related specifications:

epmc supports the verification of MDPs against LTL and PCTL*. It translates
formulae to an NBA using spot and then applies the lazy approach [108] to
compute its satisfaction probability.

MultiGain 2.0 is an extension of Prism capable of verification and strategy
synthesis for LTL properties combined with long-run average rewards and
steady-state constraints.

16 R. Andriushchenko et al.

Prism itself supports LTL and PCTL* model checking for MDPs. LTL model
checking is done via deterministic ω-automata, typically (generalised) Rabin
automata, simplified to Büchi or finite automata if appropriate. The transla-
tion uses a custom version of ltl2dstar, combined with a built-in automata
library; alternatively, it can connect to external translators via the HOA for-
mat. For the subclass of (co)safe LTL, Prism also supports cumulative ex-
pected reward until satisfaction properties.

Storm answers LTL, lexicographic multi-objective LTL [60], as well as PCTL*
queries for MDPs. It uses deterministic ω-automata with general Boolean
acceptance formulas obtained from spot.

5.2 Outlook

After a decade of research on alternative translations and automata types, the
performance both in terms of runtime and of the near-minimality of the size of
the automata have reached practical applicability. A few question remain open,
such as whether the semantic notion of good-for-MDP automata allows us to
produce yet smaller automata efficiently, compared to the syntactically defined
acceptance conditions. However, the main focus should now move to modelling
and applications. For LTL formulae, a decent amount of benchmarks is avail-
able. Many sets repeatedly used across different papers have been compiled in
LTL Store [149]. However due to the earlier scalability problems in probabilistic
LTL model checking, the number of probabilistic models coming together with
more complex LTL specifications remains quite limited so far [119,164].

6 Multi-Objective Analysis

System performance is commonly assessed with respect to multiple quantities
such as the probability of a crash, the expected average energy consumption, or
the expected time until task completion. System designers have to consider the
interplay between these quantities: minimising the task completion time might
require actions that increase the likelihood of a crash. Multi-objective analy-
sis [62,83] reveals trade-offs between the considered quantities by showing which

p⃗

q⃗

achievable
points

0 0.02 0.04 0.06 0.08 0.1
4

6

8

10

12

probability of a crash

ex
p.

ta
sk

co
m

pl
et

io
n

ti
m

e

compromises are achievable. The system
is given as a nondeterministic model M
while the quantities are specified as a vec-
tor ⟨φ1, . . . , φℓ⟩ of ℓ ≥ 2 objectives. The
objectives commonly refer to rewards at-
tached to states or transitions of M. An
ℓ-dimensional point p⃗ = ⟨p1, . . . , pℓ⟩ ∈
R

ℓ is achievable if there exists a sin-
gle policy for M—i.e. a resolution of its
nondeterminism—under which for all i ∈
{1, . . . , ℓ} the value of objective φi is at

Tools at the Frontiers of Quantitative Verification 17

Table 5. Feature comparison of tools for multi-objective verification

Epmc Prism MultiGain Storm Prism-games

models MDP MDP MDP MDP, MA SG
objectives
– reach. prob. yes yes no yes qualitative
– total reward yes yes no yes yes
– LRA reward no no yes yes yes
– rew. bounded no steps no yes no
– LTL prob. yes yes yes lexicographic no
queries
– achievability yes yes yes yes yes
– numerical yes yes yes yes no
– Pareto no ℓ = 2 ℓ ≤ 3 yes ℓ = 2

least (or at most) pi. Multi-objective analysis answers queries concerning the
(set of) achievable points.

As an example, the green area in the figure above on the right shows the
set of achievable points for ℓ = 2 objectives as labelled on the axes. Point p⃗ =
⟨0.03, 9⟩ is achievable but dominated by other achievable points; q⃗ = ⟨0.02, 8⟩,
for example, yields “better” values for both objectives. The blue line fragments
indicate the set of undominated solutions—the Pareto front.

6.1 Algorithms and Tool Support

Table 5 compares quantitative verification tools in terms of their support for
multi-objective analysis. We consider the supported kinds of models (where SG
are stochastic games), objectives, and analysis queries. For the latter, we follow
[88] and distinguish (i) achievability queries, asking whether a given point p⃗ is
achievable, (ii) numerical queries asking for the optimal value for one objective
while the others have to achieve a given (ℓ−1)-dimensional point, and (iii) Pareto
queries, asking for (an approximation of) the Pareto front.

We elaborate on the features of the individual tools:

Epmc supports multi-objective achievability and numerical queries for MDPs
over total reachability reward objectives as well as objectives specified in LTL.
The latter was applied to solve probabilistic preference-based planning prob-
lems [170]. Epmc implements the algorithm of [88] based on value iteration.

MultiGain is an extension of Prism that implements the linear program-
ming-based approach of [35] for multiple steady-state and LRA reward ob-
jectives on MDPs to answer achievability, numerical, and Pareto queries—the
latter for up to ℓ = 3 objectives. A recent extension MultiGain 2.0 [23]
also incorporates the methods of [61, 146] to add support for mixtures of
steady-state, LRA reward, and LTL specifications.

18 R. Andriushchenko et al.

10 20 30 40
≤1

10

102

103

Epmc

Prism

Storm

(a) Reachability and total reward obj.

5 10 15
≤1

10

102

103

MultiGain

Storm

(b) Steady-state and LRA reward obj.

Fig. 1. Performance comparison results of tools for multi-objective verification

Prism answers achievability, numerical, and Pareto queries for MDPs over com-
binations of total reward, step-bounded reward, and LTL specification objec-
tives. It implements methods based on value iteration [88] and on linear pro-
gramming [87]. While the latter only works for achievability and numerical
queries, the former can also be used to approximate Pareto fronts over up to
ℓ = 2 objectives. Prism’s graphical interface allows the user to conveniently
examine the results.

Prism-games implements value iteration over convex sets [27] to analyze mul-
tiple total and LRA (ratio) reward objectives as well as almost-sure reacha-
bility constraints. Prism-games supports Pareto queries for ℓ = 2 objectives
and achievability queries for arbitrary Boolean combinations of objectives. An
extension exists towards lexicographic queries for reachability objectives [59].

Storm handles achievability, numerical, and Pareto queries for MDPs and
MA [196]. Storm implements the algorithm of [88] for total reachability
reward objectives as well as extensions towards reward-bounded reachabil-
ity objectives [115] and LRA reward objectives [197]. Furthermore, Storm

supports multi-dimensional quantile queries [115], lexicographic LTL specifi-
cations [59], and multi-objective analysis under non-randomised policies with
limited memory [74].

6.2 Performance Comparision

We empirically compare the performance of the tools for solving achievability
queries on MDPs with (i) reachability and total reward objectives as well as
(ii) steady-state and LRA reward objectives. We consider various benchmark
models and objectives from the literature, e.g. [37, 88, 115, 119, 164]. To obtain
challenging achievability queries, the queried points p⃗ = ⟨p1, . . . , pℓ⟩ have been
obtained by roughly setting the threshold pi for the ith objective to 90% of its
optimal (single-objective) value. All experiments ran on an Intel Xeon Platinum
8160 CPU with 8 cores and 32GB of RAM available. We measured the wall-clock
runtimes of the tools and aborted executions after 1800 seconds.

Tools at the Frontiers of Quantitative Verification 19

Reachability and total reward objectives. Our benchmark set contains 46 concrete
queries over reachability probability and total reward objectives from 8 different
model families. These queries are supported by Epmc, Prism, and Storm, which
all use the approach of [88] based on value iteration as their default method. On
12 queries, the tools reported inconsistent achievability results. We still include
these problematic cases in our evaluation since identifying the correct solution
is not trivial. The tool runtimes in seconds are summarised in Fig. 1 a. In this
quantile plot, a point ⟨x, y⟩ on a line for a tool means that x out of the 46 queries
each took at most y seconds to complete with this tool. We see that Storm is
faster than both Prism and Epmc. The competition among the latter two is
tighter, with Prism taking the lead.

Steady-state and LRA reward objectives. We consider 20 queries over steady-
state and LRA reward objectives from 6 model families. We solve these queries
using MultiGain and Storm. All reported results were consistent for this set
of experiments. Fig. 1 b summarizes the runtime comparison (again as a quantile
plot with runtimes in seconds). The implementation in Storm using the methods
of [197] outperforms the linear-programming based approach of MultiGain.

Data availability. The benchmark models, scripts to reproduce the experi-
ments, and our tool outputs are available at DOI 10.5281/zenodo.8063883 [195].

7 Parametric Markov Models

Classically, probabilistic model checking assumes that the probabilities on the
transitions are fixed and precisely known. This assumption is often unrealis-
tic: In various examples, such probabilities are approximations based on expert
knowledge. In other applications, these probabilities reflect design decisions that
can be freely made. Parametric Markov models replace constant probabilities
by (polynomial) expressions over a fixed set of parameters X. A parametric
Markov model and a valuation of its parameters induces a standard, parameter-
free Markov model. The analysis of parametric Markov models was introduced
almost 20 years ago [73, 168] while the tool Param brought first tool support
more than 10 years ago [107]. By now, the model checkers Storm, Prism and
Epmc have support for parametric models.

Over the last decade, there have been various algorithmic advances that an-
swer a variety of different queries about a parametric model [132]. The accompa-
nying algorithms have been implemented in various tools and prototypes and all
make different assumptions. Furthermore, not every benchmark is well-suited to
motivate a particular query. This situation harms further adoption. In the spirit
of QComp, we provide a unified and cleaned-up reference implementation on top
of the probabilistic model checker Storm, and an annotated benchmark set for
various parametric verification queries on parametric DTMCS (pDTMCs) and
parametric MDPs (pMDPs).

20 R. Andriushchenko et al.

7.1 Queries and Algorithms

We formulate the key verification tasks for parametric Markov chains. For con-
ciseness, we assume that we are interested in computing the expected reward
until reaching a target state, which generalizes computing reachability probabil-
ities. For pMDPs, we assume that we consider the maximal expected reward.
The key queries we identify are as follows:

Feasibility: Find parameter values such that the induced expected reward
is above a threshold. The state-of-the-art methods rely on guess-and-verify
and guess using sampling [64], gradient descent [122], and convex optimisa-
tion [67]; the former methods are fastest with few parameters and the latter
are fastest with a larger number of parameters. For pMDPs, the quantifica-
tion order is first over the parameters and then over the schedulers, i.e. the
scheduler may depend on the parameter value chosen. This contrasts with
robust schedulers that do not allow this [10,219].

Verification: Show that no parameter values exist such that the induced ex-
pected reward is above a threshold. This problem is the dual to feasibility
queries, but the universal quantification makes it harder to solve. The state-of-
the-art approach employs an abstraction-refinement loop [138] using interval
Markov chains and combines this with a graph-based analysis to determine
monotonicity of the parameters [208].

Solution function computation: Compute a function that maps parameters
to the induced expected reward in the corresponding Markov model. While
various dedicated methods exist [85,107,138], linear equation solving over the
field of rational functions performs great overall [138]. Theoretically, a one-
step fraction-free method prevents intermediate blowups [22]. For pMDPs,
the shapes of these functions are typically prohibitive.

A formal treatment is provided in [136]. Various other queries have been dis-
cussed in the literature. They aim to partition the parameter space [138], repair
a model with the best parameter values [26], quickly sample parametric Markov
models [92], or check whether the derivative is (globally) positive [207]. Others
assume a distribution over parameter values [18,34].

Practicalities. Typically, approaches limit the type of parameter valuations that
are considered; graph-preserving valuations require that the underlying graph
does not change. While this does not change the complexity of e.g. feasibil-
ity [219], it means that the solution function for pDTMCs is a (continuous) ra-
tional function and simplifies preprocessing. Likewise, most approaches assume
that all pDTMCs are simple(x) [136], which (roughly) means that the transition
probabilities are given by affine functions that syntactically sum to one. While it
is theoretically relevant to allow real-valued parameter valuations, tools typically
restrict themselves to rational (or floating-point) number representations.

Tools at the Frontiers of Quantitative Verification 21

7.2 Benchmark Collection

We provide a benchmark collection with 12 benchmark families at

github.com/sjunges/parametric-Markov-models

(with the models also archived at DOI 10.5281/zenodo.10646479 [137]). This
benchmark collection includes reference invocations for Storm. The collection
includes parametric versions of classical benchmarks [107, 119, 164] as well as
benchmarks based on the usage of parametric verification in the analysis of hier-
archical MDPs [140] and from the sensitivity analysis of Bayesian networks [202].

7.3 Outlook

We believe that the engineering behind many algorithms is still naive and that
there is great potential for algorithmic improvements. In particular, the ver-
ification algorithms lack severely behind in their scalability, and despite being
built on top of probabilistic model checking engines, most algorithms have only
been implemented for expected rewards and reachability probabilities. More fun-
damentally, the synthesis of robust policies in pMDPs is an open challenge.
A next iteration of QComp could also include parametric CTMCs [38], paramet-
ric PTAs [118], or structural parameters [9].

8 Partially-Observable MDPs

A major shortcoming of the classic MDP framework is the assumption that
decisions can be made based on complete state information. In many domains
where reasoning about uncertainty is necessary, this assumption is not realistic.
For example, information about the current state of an autonomous vehicle is
inherently incomplete as it perceives its environment through imperfect sensors.

Partially observable MDPs (POMDPs) extend MDPs with the notion of par-
tial observability. Nondeterminism is resolved not based on the complete state,
but on the observable information available to the decision procedure. As such,
policies for POMDPs are required to be observation-based, i.e. decisions are
based on the observations and their history. We consider reachability objec-
tives in POMDPs, i.e. we are interested in the minimal or maximal reachability
probability of certain states in the system or, alternatively, in the minimal and
maximal expected total reward until reaching a set of states. In contrast to fully
observable MDPs, where optimal policies for such objectives that are memoryless
always exist, in POMDPs memory is crucial even for sub-optimal policies.

While POMDPs are widely used for planning in domains like artificial in-
telligence [201], many verification and synthesis problems have proven to be
undecidable. For example, even determining if the reachability probability of a
set of states in a POMDP exceeds a threshold is undecidable [172]. Tool support
for POMDPs exists in the AI community [78,155], however, these tools focus on
discounted objectives, often over a finite horizon [204]. In recent years, efforts

22 R. Andriushchenko et al.

took place to extend the tool support for the verification setting of infinite-
horizon objectives without discounting, also called indefinite-horizon objectives.
Due to the undecidability of key problems in this setting, the applied methods
focus on approximating values and synthesising good (sub-optimal) policies with
respect to the objectives.

8.1 Algorithms and Tool Support

We showcase three tools from the formal methods community that deal with
verification and policy synthesis for POMDPs.

Prism includes support for POMDPs as well as a partially observable variant
of PTA. It solves probabilistic reachability or expected cumulative reward
queries using the model checking algorithm of [188], which implements a
grid-based approach [171, 222] for computing an over-approximation of the
objective value on an abstraction of the infinite, fully observable belief MDP
of the POMDP using only a finite number of beliefs. The resulting policy is
then solved to yield an under-approximation which, together, provides lower
and upper bounds on the objective value for the POMDP. If the bounds are
not tight enough, the approximation can be refined by increasing the grid res-
olution. The implementation builds upon Prism’s Java-based explicit-state
engine. The tool then allows the resulting policy to be visualised or simulated
in its graphical user interface.

Storm has support for POMDPs that is actively in development. In contrast
to Prism, over- and under-approximations can be computed independently of
each other. For over-approximations, Storm implements an improved version
of the grid-based approach from [171]: it allows for variable grid resolutions
for different observations and on-the-fly generation of the belief grid [32]. For
under-approximations, Storm uses belief unfolding with cut-offs: the belief
MDP is unfolded starting in the initial belief. After a fixed number of be-
liefs has been unfolded, the objective value for all beliefs that have not yet
been fully expanded are approximated. This approximation is based on val-
ues computed on the POMDP itself using some observation-based policy [33].
These values can be computed heuristically by Storm or provided externally.
The abstract MDPs are then checked using Storm’s MDP model checking
core. In addition to the quantitative properties considered here, Storm also
supports the verification of qualitative properties on POMDPs [139].

Paynt was originally developed for the inductive synthesis of probabilistic pro-
grams. In contrast to the model checkers described above, it aims at directly
synthesising finite-state controllers (FSCs) for POMDPs. An FSC is a Mealy
machine that compactly represents a finite-memory policy. To find the best
FSC within a given design space of controllers, an MDP abstraction is used,
which encodes every possible decision and memory update a policy can make.
The resulting process is an over-approximation in the sense that it can simu-
late every FSC in the design space and switch between FSCs mid-execution.
Model checking the MDP yields the best policy within the design space and,

Tools at the Frontiers of Quantitative Verification 23

1 2 3 4 5 6 7 8 9 1011

4.5

5

5.5

6

6.5

grid resolution

m
in

.
ex

p.
re

w
.

(o
ve

r-
&

un
de

r-
ap

pr
ox

.)

1 2 3 4 5 6 7 8 9 1011

10
1

10
2

10
3

10
4

grid resolution

ti
m

e
(s

)

Fig. 2. Prism’s over- and under-approximations for grid and computation times

if the policy is not observation-based, a refinement takes place. Additionally,
the design space can be pruned by generating counter-examples [8]. For com-
putations on the MDP abstraction and assessing the quality of a synthesised
FSC, Paynt internally uses Storm. As Paynt synthesises a policy, it can
only provide under-approximations of the objective values.

8.2 Performance Comparison

We empirically evaluate the tools described above. As the different approaches
and features of the tools make a direct comparison between them misleading, we
consider the tools separately on different benchmarks. All three tools accept as
input descriptions of POMDPs in the Prism format. Furthermore, Storm and
Paynt allow inputs in the explicit DRN format.

From the repository of POMDP benchmarks from the literature [8,33,188] at

github.com/moves-rwth/pomdp-collection,

we select one benchmark for each tool to showcase some of its capabilities. All
experiments ran on an Intel Xeon Platinum 8160 CPU using 2 threads, 32 GB of
RAM, and a time limit of 1 h (measured in wall time). All tools are called using
default configurations and options except for the input parameter we evaluate.
The short evaluation presented here is not representative of the full capabilities
of the tools. Tweaking the configurations used for running the tools typically
leads to improvements in the results obtained.

Prism. We consider the grid benchmark, instantiated with length 4 and slipping
probability 0.3, for our evaluation of Prism. The objective here is to minimise an
expected reward. We evaluate Prism with respect to changes in the resolution of
the belief grid considered for the over-approximation. Our results are depicted in
Fig. 2. The grid-based over-approximation—in the case of minimisation a lower
bound—is depicted with solid dots while the under-approximation is depicted
with circles. The experiments clearly show the impact of increasing the grid
resolution. Generally, the higher the resolution, the better the computed bounds,
for the over-approximation as well as the under-approximation which is only

24 R. Andriushchenko et al.

1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1

grid resolution

m
ax

.
pr

ob
.

(o
ve

r-
ap

pr
ox

.)

1 2 3 4 5

10
−1

10
0

10
1

10
2

grid resolution

ti
m

e
(s

)

Fig. 3. Storm’s over-approximations for refuel and computation times

1 · 10
6

3 · 10
6

5 · 10
6

0.1

0.2

0.3

0.4

exploration size

m
ax

.
pr

ob
.

(u
nd

er
-a

pp
ro

x.
)

1 · 10
6

3 · 10
6

5 · 10
6

10
−1

10
0

10
1

10
2

exploration size

ti
m

e
(s

)

Fig. 4. Storm’s under-approximations for refuel and computation times

indirectly effected by the grid resolution. However, this improvement comes at
the cost of greatly increased runtimes. The outlier at resolution 3 also shows that
a good choice of resolution may lead to a tighter approximation of the actual
belief space even for rather small resolutions. For resolutions greater than 11,
the tool either times out or runs out of memory.

Storm. We evaluate Storm on the refuel benchmark instantiated with length
10, computing the maximal probability. We study the over-approximation with
respect to changes in the grid resolution and the under-approximation with re-
spect to the size of the unfolding of the belief MDP. Figs. 3 and 4 depict the
respective results. Like for the over-approximation in Prism, we observe that
an increase in resolution for the grid-based approach leads to tighter bounds on
the optimal objective value, with an impact on the runtime. For higher reso-
lutions than 5, Storm ran out of memory on the benchmark. For the under-
approximation, we consider unfoldings with increasingly larger state spaces. For
larger unfoldings than depicted, we did not achieve better values. We see that
with increasing unfolding depth, a tighter bound is achieved. This effect is partic-
ularly pronounced in the range of smaller unfolding sizes. With a linear increase
in the unfolding size, runtimes appear to scale proportionally.

Paynt. For evaluating Paynt, we select the grid-avoid benchmark, instantiated
with length 4 and slipping probability 0.1, where the objective is to maximise

Tools at the Frontiers of Quantitative Verification 25

1 2 3 4 5

0.25

0.5

0.75

1

FSC size

m
ax

.
pr

ob
.

(u
nd

er
-a

pp
ro

x.
)

1 2 3 4 5

10
1

10
2

10
3

FSC size

ti
m

e
(s

)

Fig. 5. Max. prob. achieved and time to compute the FSC for grid-avoid with Paynt

the probability to reach a target. While a key feature of Paynt is its ability
to dynamically increase the size of the considered FSC during computation,
we focus on its functionality to compute FSCs of a given size. Thus, we vary
the corresponding input parameter. Our results in Fig. 5 show that Paynt is
able to obtain FSCs using some memory very quickly while FSC quality greatly
improves when memory is considered. With increasing FSC size, however, the
effect is far less pronounced while runtimes increase drastically. For all FSC sizes
greater than 5, the tool timed out in our experiment.

Data availability. The benchmark models used in and the tool outputs gener-
ated by our experiments are available at DOI 10.5281/zenodo.8215337 [31].

9 Rare Events

In stochastic systems, rare events (re) stand for measurable events with a pos-
itive but very low probability of occurrence. A typical example is the failure
probability of highly-reliable systems that can be from 10−3 to 10−20 or lower.

Formal methods tools can encounter re in quantitative computations of
PRCTL- or CSL-like queries on any model with probabilities. Queries on gen-
eral stochastic models—i.e. models in continuous-time with residence times or
transition firings governed by arbitrary probability distributions—are often es-
timated via Monte Carlo simulation. This is known as statistical model checking
and is hindered by re: since the states of interest are seldom visited, either
the number of simulation runs required and thus the runtime grows to imprac-
tical values, or the statistical estimations become imprecise or even incorrect.
The field of rare event simulation (res) has developed to tackle this problem,
and can be divided in two main approaches: importance sampling (is [123]) and
importance splitting (isplit [141]).

In contrast, exhaustive state-space exploration approaches such as (proba-
bilistic) model checking are not hindered by the rarity of an event, which makes
them very attractive to solve re property queries. However, model checking
struggles with the state-space explosion problem, which can be portrayed as the

26 R. Andriushchenko et al.

Table 6. Feature comparison of tools for rare event estimation

Tool Approach to RE Models

Name OS Type Subtypes Types Syntax
Semantic
formalism

Dftres Linux, macOS,
Windows

res: is Path-ZVA,
forcing

DFT,
RFT

Jani,
Galileo

CTMC,
MA (subset)

Fig Linux res: isplit restart-pj ,
fixed effort

IOSA,
DFT,
RFT

IOSA, Jani,
Galileo,
Kepler

CTMC,
IOSA

modes Linux, macOS,
Windows

res: isplit restart-pj ,
fixed effort

any Modest,
Jani

DTMC,
CTMC, SHA

Ragtimer Linux probabilistic
model checking

partial
exploration

CRN Ragtimer CTMC

St.DftRes Linux, macOS res: isplit restart DFT Galileo CTMC

counterpart of the runtime explosion problem faced by simulation analyses. Ad-
ditionally, no scalable exhaustive methods are available for models with general
distributions. Thus, the challenge here—in the Markovian case—is how to re-
duce the model size without compromising the correctness or accuracy of the
final estimate.

We compare tools that implement res and model checking to estimate quan-
titative re queries in formal stochastic models. Besides defining the scope and
capabilities of each tool, we showcase their computation of re queries in six
models with Markovian and arbitrary probability distributions.

9.1 Algorithms and Tool Support

Table 6 summarises the characteristics of tools in formal methods that can es-
timate rare events. Naturally, the list is not exhaustive: see e.g. earlier works
[24, 133, 178]. In QComp 2023, we compare the following tools for rare event
scenarios, of which all except Ragtimer are statistical model checkers:

Dftres is designed to estimate transient and steady-state properties of re-
pairable DFTs specified in Galileo, and can also be applied to more general
CTMCs and some MAs (that reduce to CTMCs) specified in Jani. It au-
tomatically applies is res, through the Path-ZVA algorithm [198] and, for
transient properties, using forcing [185]. These techniques are particularly ap-
plicable for models in which the target event can be reached in a relatively
small number of low-probability steps. The algorithms can be applied with
no user adjustments, however manual tweaking can improve performance on
specific models.

Fig estimates transient and steady state reachability properties in CTMCs and
IOSA. It can parse the IOSA and Jani syntax for general models, and Galileo
and Kepler for repairable DFTs. Fig automates the use of isplit res by
deriving the importance function from the model and property query [42].
This simplifies the user input to choosing a thresholds-selection algorithm
(sequential Monte Carlo or expected success [40]), a simulation run type

Tools at the Frontiers of Quantitative Verification 27

(restart, restart-pj , or fixed effort), and termination criteria (e.g. by
runtime length). There are no theoretical proofs—e.g. of asymptotic efficiency—
on the convergence time of the algorithms used by the tool on general models.

modes implements isplit to tackle res with manually-specified or automati-
cally-derived importance functions much like Fig, including support for the
same run types and thresholds-selection algorithms [40,45].

Ragtimer uses guided stochastic simulation and commutability properties to
build a partial state space and acquire a lower-bound for a rare-event probabil-
ity in chemical reaction networks (CRNs) modeled as CTMCs. It uses reaction
information to create a dependency graph, which can demonstrate unreach-
ability. If a property is reachable, it constructs a probability-agnostic model
for compositional testing in the IVy tool [177] and uses stochastic simulation
to generate a large number of counterexample traces. It then expands these
traces and discovers parallel traces by firing commutable reactions and cycles
from every state along a trace. The resulting partial state space is passed
explicitly to a probabilistic model checker to obtain a lower-bound on the
probability of interest. In preliminary testing, Ragtimer finds or approaches
the true probability of rare-event properties in several CRN models.

StormDftRes analyses time-bounded reachability properties on (non-repair-
able) DFTs in either the Galileo or a custom json format represented as
CTMCs. It aims to perform importance splitting for re following the ideas
of Fig and using the importance functions for DFTs presented in [43].

9.2 Performance Comparison

We demonstrate the capabilities of the tools to compute various PRCTL- and
CSL-like property queries on a series of CTMC and SA models. The models
used for experimentation are summarised in Table 7: there are six Markovian
(CTMCs) and one non-Markovian (SA) models, the latter with hyperexponential
and Erlang distributions. All models are provided in the syntax of the tool that
specialises in it, and which introduced it to this comparison. They have also
been translated to Jani, for the model exchange across tools that enabled this
comparison. The SA model is an exception: it is provided in the IOSA and
Modest syntaxes alone (for the Fig and modes tools), since it has committed
actions that are currently unsupported in Jani.

One or more rare-event properties are given per model: We used the tools
to estimate them, showing the results in Table 8. Per model and property we
had the tools run for 1, 5, 10, and 30 minutes (indicated in column�) in the
TACAS VM [84]. Each tool could use a default run (minimal configuration) or
custom commands for that model-property combination. Table 8 reports only
one of those values: when the difference between them is below 15% we report
the default run; else, we report the one closer to the exact property value [47].
In the table, an empty cell indicates no support for that property/model. Val-
ues produced by a custom command are marked with a superscript star ⋆. The
values reported are either 95% confidence intervals (p± δ), sound lower bounds

28 R. Andriushchenko et al.

Table 7. Models used in the comparison of tools for rare event estimation

Name Type Family Description Properties

forked-
cycle-
tandem-
queue

ct
mc

queueing
system

three queues: arrivals to Q1; proba-
bilistic output to Q1, Q2, Q3; study
overflows in Q2.

(previously unpublished)

φ1: P=?[q2 > 0 U q2 ⩾ 6]
φ2: P=?[q2 > 0 U⩽555 q2 ⩾ 6]
φ3: P=?[F⩽555 (q2 ⩾ 6)]
φ̃4: S=?[q2 ⩾ 6]

7nodes-
network

SA queueing
system

non-Jackson 7 queues: arrivals to all
queues; near-full probabilistic intercon-
nection; study overflow in Q7. [215]

φ̃5: S=?[n7 ⩾ 30]

2react ct
mc

chemical
reaction
network

single species production-degradation:
simple 2-reaction system with one
shortest trace. [69]

φ6: P=?[F⩽100 (s2 ⩾ 80)]

6react ct
mc

chemical
reaction
network

enzymatic futile cycle: 6-reaction sys-
tem with large state space, cyclic be-
havior, and one shortest trace. [157]

φ7: P=?[F⩽100 (s5 = 25)]

8react ct
mc

chemical
reaction
network

modified yeast polarization: concurrent
8-reaction system with cyclic behavior
and many shortest traces. [76]

φ8: P=?[F⩽20 (G_bg ⩾ 50)]

hecs ct
mc

dynamic
fault tree

hypothetical example computer system:
standard DFT benchmark. [216]

φ9 : P=?[F⩽1 TLE]
“unreliability @ 1 ”

mas ct
mc

dynamic
fault tree

mission avionics system: highly redun-
dant safety-critical system with hard-
and software components. [189]

φ10: P=?[F⩽1 TLE]

“unreliability @ 1 ”

(⩾ p), failures (∅), or omitted computations (- -). The latter applies to e.g. model
checkers like Ragtimer that use one runtime since longer runs are seldom bene-
ficial. In general, smaller confidence intervals and results closer to the true value
(indicated in the second column under heading “Prop.” as either a statistical ap-
proximation ≈ p or truncated exact value p, obtained from reference material or
computed with higher resources, viz. more memory, runtime, and cpu power)
are better.

We note that the default (“sound”) run of Dftres can run longer or shorter
than the hard time limit, and its renewal-theory implementation cannot compute
φ̃4 on that Jani model; also, Fig and modes used crude Monte Carlo (not res)
to analyse the DFTs because no useful importance function could be derived
when the dominant failures have short traces; and Ragtimer used one runtime
per property, since longer runs are seldom beneficial for model checkers.

Data availability. We provide an artifact allowing a full experimental repro-
duction at DOI 10.6084/m9.figshare.23818395 [47].

9.3 Outlook

We see the need for further research to unify rare event approaches in the formal
tools community, e.g. to allow automatic identification of the algorithm
to use. A concrete example is the high performance of Dftres (using is) to
analyse the DFTs in contrast to its comparatively low performance for properties

Tools at the Frontiers of Quantitative Verification 29

Table 8. Performance comparison results of tools for rare event estimation

Prop. � Dftres Fig modes Ragtimer StormDftRes

1 9.2e-10 ± 3e-13 9.0e-10 ± 9e-11⋆ 9.4e-10 ± 6e-11⋆

5 9.2e-10 ± 6e-14 9.5e-10 ± 4e-11⋆ 9.2e-10 ± 4e-11⋆

10 9.2e-10 ± 4e-14 9.0e-10 ± 3e-11⋆ 9.2e-10 ± 2e-11⋆
φ1

9
.2

3
e
-
1
0

30 9.2e-10 ± 2e-14 9.3e-10 ± 2e-11⋆ 9.1e-10 ± 8e-11⋆

1 9.2e-10 ± 5e-13 9.4e-10 ± 1e-10⋆ 9.3e-10 ± 3e-10⋆

5 9.2e-10 ± 8e-14 9.2e-10 ± 5e-11⋆ 9.1e-10 ± 3e-11⋆

10 9.2e-10 ± 6e-14 9.3e-10 ± 3e-11⋆ 9.2e-10 ± 2e-11⋆
φ2

9
.2

3
e
-
1
0

30 9.2e-10 ± 3e-14 9.2e-10 ± 2e-11⋆ 9.3e-10 ± 1e-11⋆

1 9.4e-09 ± 3e-09⋆ 8.7e-08 ± 7e-08⋆ 8.1e-08 ± 2e-08⋆

5 8.6e-09 ± 1e-09 7.6e-08 ± 3e-08⋆ 9.2e-08 ± 6e-09⋆

10 1.1e-08 ± 4e-09 8.3e-08 ± 3e-08⋆ 9.0e-08 ± 4e-09⋆
φ3

9
.0

0
e
-
0
8

30 1.3e-08 ± 5e-09 9.1e-08 ± 2e-08⋆ 9.1e-08 ± 3e-09⋆

1 ∅ 6.2e-11 ± 2e-11⋆

5 ∅ 6.0e-11 ± 6e-12⋆

10 ∅ 5.8e-11 ± 4e-12⋆
φ̃4

5
.6

4
e
-
1
1

30 ∅ 5.5e-11 ± 2e-12⋆

1 7.0e-15 ± 5e-15⋆ 7.1e-15 ± 2e-15⋆

5 8.3e-15 ± 4e-15 7.7e-15 ± 1e-15⋆

10 7.2e-15 ± 2e-15 7.7e-15 ± 6e-16⋆
φ̃5

≈
7
.5
7
e
-
1
5

30 8.8e-15 ± 3e-15 8.3e-15 ± 4e-16⋆

1 2.9e-07 ± 1e-08⋆ ⩾ 3.0e-07

5 3.0e-07 ± 7e-09⋆ - -

10 3.0e-07 ± 5e-09⋆ - -φ6

3
.0
6
e
-
0
7

30 3.0e-07 ± 3e-09⋆ - -

1 1.7e-07 ± 4e-08⋆ ⩾ 2.8e-18⋆

5 1.8e-07 ± 2e-08⋆ - -

10 1.7e-07 ± 1e-08⋆ - -φ7

1
.7
0
e
-
0
7

30 1.8e-07 ± 8e-09⋆ - -

1 1.5e-06 ± 3e-07⋆ ∅

5 1.5e-06 ± 1e-07⋆ ⩾ 2.3e-28

10 1.6e-06 ± 9e-08⋆ - -φ8

≈
1
.2
0
e
-
0
6

30 1.7e-06 ± 5e-08⋆ - -

1 2.2e-04 ± 6e-06 2.3e-04 ± 3e-05 2.1e-04 ± 3e-05 2.2e-04 ± 2e-05

5 2.2e-04 ± 5e-07 2.2e-04 ± 1e-05 2.2e-04 ± 1e-05 2.2e-04 ± 7e-06

10 2.2e-04 ± 2e-07 2.2e-04 ± 1e-05 2.2e-04 ± 1e-05 2.2e-04 ± 5e-06
φ9

2
.2
0
e
-
0
4

30 2.2e-04 ± 1e-07 2.2e-04 ± 5e-06 2.2e-04 ± 5e-06 2.2e-04 ± 3e-06

1 1.1e-05 ± 8e-06 8.1e-06 ± 1e-05 6.7e-06 ± 3e-06 1.4e-05 ± 5e-06

5 1.0e-05 ± 2e-06⋆ 7.3e-06 ± 5e-06 1.2e-05 ± 2e-06 1.0e-05 ± 2e-06

10 9.7e-06 ± 2e-06 1.0e-05 ± 5e-06 1.1e-05 ± 1e-06 9.8e-05 ± 1e-06
φ10

1
.0
0
e
-
0
5

30 1.0e-05 ± 1e-06 8.9e-06 ± 2e-06 9.7e-06 ± 7e-07 1.1e-05 ± 8e-07

30 R. Andriushchenko et al.

in queueing systems. This in contrast to Fig and modes, which (using isplit)
performed well for the latter, but found crude Monte Carlo to be their best
approach for the DFTs.

10 Robust Decision-Making Under Uncertainty

In recent years, there has been a strong push to combine the areas of formal
verification—in particular model checking—and artificial intelligence (AI). A
specific area that is native to both of those areas is decision-making under un-
certainty [143]. The level and type of uncertainty affect the capabilities of AI
systems to make intelligent decisions. The core problem is to provide a guaran-
tee that an AI system, operating under uncertainty, adheres to some formally
specified constraint, e.g. given as a temporal logic specification (see Sect. 5).
State-of-the-art approaches use models, in particular MDPs, to capture sequen-
tial decision-making problems for agents operating in uncertain environments.
Moreover, sensor limitations may lead to partial observability of the system’s
current state, giving rise to POMDPs (see Sect. 8). MDPs augmented with a
model of adversarial behaviour are stochastic games (SGs, see Sect. 12) and
their partially observable counterpart is a partially-observable SG (POSG).

The likelihood of uncertain events, such as a message loss in communication
channels or specific responses by human operators, may only be an estimate
from data. The models mentioned above capture uncertainty in the form of
precise probabilities—either in their transition dynamics or in their observation
models. However, such point estimates of probabilities from data carry the risk
of statistical errors. Moreover, the optimal policies for agents are usually highly
sensitive to small perturbations in transition probabilities, leading to suboptimal
outcomes such as a deterioration in performance [96,175].

Uncertainty models, sometimes also referred to as robust models, remove
this assumption by incorporating uncertainty sets of probabilities. In the lit-
erature, uncertain MDPs use, for example, probability intervals or likelihood
functions [187,218]. Similar extensions exist for uncertain POMDPs, where un-
certainty may also affect the observation model [39,50,68,130,209]. To the best
of our knowledge, there are no results on uncertain POSGs. Fig. 6 shows a family
of uncertainty models, capturing different types of uncertainty and their relation
to each other. The three different types of arrows indicate the addition of (1) ad-
versarial behaviour, (2) uncertainty on probability distributions, and (3) partial
observability from one model to another. In the figure, adversarial behaviour
increases from left to right. The left and right columns are partially observable
models. Finally, the bottom row shows models that (in addition to probabilistic
and adversarial behaviour) account for uncertainty in probability distributions.
For an overview, we refer the interested reader to e.g. [17].

10.1 Algorithms and Tool Support

Prism [163], a widely-used probabilistic model checker, provides support for
two common classes of uncertainty models: interval discrete-time Markov chains

Tools at the Frontiers of Quantitative Verification 31

MDP SGPOMDP

uMDPuPOMDP

POSG

uSG uPOSG

adversarial behavior

uncertainty on

probability distributions

partial observability

Fig. 6. A family of closely related uncertainty models

(IDTMCs) and interval Markov decision processes (IMDPs). These are specified
to the tool with a simple extension of the Prism modelling language where
the probabilities attached to variable updates within a guarded command are
optionally provided as intervals, for example

[move] loc = 1 → [0.85, 0.95]: (loc′= 2) + [0.05, 0.15]: (loc′= 1);21

and, as usual, can be given as expressions in terms of variables and parameters:

[send] s=1 → [pfail − ε, pfail + ε]: (s ′=1) + [(1−pfail)− ε, (1−pfail) + ε]: (s ′=2);

This makes it straightforward to adapt existing DTMC or MDP benchmarks [164]
to their interval variants, as done for example in [193].

Prism provides robust verification, quantifying over all possible transition
probabilities contained within the models’ uncertainty sets. Property specifica-
tion extends the existing Prism property language. For IDTMCs and IMDPs,
the tool supports the temporal logic PCTL, extended with (expected) reward
operators and (co-safe) LTL formulae. For example, formulas Pmaxmin=?[F goal]
and Pmaxmax=?[F goal] ask for the worst- and best-case scenarios, respectively,
for maximising the probability of reaching a goal -labelled state.

Like many probabilistic model checking implementations, the uncertain mod-
els are solved via dynamic programming, in this case, robust value iteration [187,
220], implemented in Prism’s Java-based explicit-state model checking engine.
Optimal policies for IMDPs can be generated and exported or simulated. Access
to IDTMC and IMDP model checking is also provided programmatically at an
API level, and has been applied to various problems, including anytime model
learning [210] and abstraction of dynamical systems [19].

10.2 Outlook

Tool support for uncertainty models can be extended in various directions, for
example to provide model checking for some of the model classes identified in
Fig. 6 featuring partial observability (uncertain POMDPs) or adversarial be-
haviour (uncertain SGs), as well as improving efficiency and scalability for the

21 In this example, move labels the transitions induced by the command, loc = 1 is the
guard that determines when the command is enabled, and each of the two branches
to the right of → has an interval of probabilities and a set of assignments.

32 R. Andriushchenko et al.

simpler model classes. It will also be beneficial to extend the range of uncer-
tainty types beyond intervals, which also necessitates more significant modelling
language extensions.

11 State Space Exploration

State space exploration engines form the foundation of numerous quantitative
analysis tools, playing a pivotal role in their functionality. Explicit-state model
checkers, such as Storm with its sparse engine and mcsta, rely on exploration
engines to exhaustively construct the complete state space of a model before
applying probabilistic model checking algorithms. Additionally, statistical model
checkers such as modes leverage exploration engines to generate large amounts
of traces for statistical analysis. Exploration engines have recently also been used
for training and verifying reinforcement learning agents [97,99].

In an effort to better understand the performance characteristics of the ex-
ploration engines utilised in different tools, we systematically benchmark and
compare them. For this purpose, we consider the time and space needed for
building an explicit representation of the complete state space of a model. Addi-
tionally, we compare the engines based on qualitative criteria such as the types
of models they can handle and the interfaces they provide.

11.1 Tool Support

The tools participating in this category are the Modest Toolset, Momba,
and Storm. Both Momba and Storm participate with multiple engines, adding
further diversity to the evaluation. Since all three tools support Jani, we employ
it as a foundation for comparing and contrasting their capabilities.

The Modest Toolset includes a state space exploration engine written in
C# that is used by several of its tools, including mcsta and modes. It sup-
ports all types of models specified by Jani, including all Jani extensions. In
that regard, it stands out as the most versatile among the engines we consider.
For PTA, the engine supports the digital clock semantics [165], explicit valu-
ations, clock regions [120], as well as clock zones [70]. In addition, it supports
a symbolic treatment of continuous variables for hybrid models. In contrast
to both Storm and Momba, which both provide public interfaces to their
engines, the Modest Toolset’s engine is intended for internal use only and
does not provide a public interface. The Modest Toolset includes a sepa-
rate mopy transpilation tool to convert models to Python code implementing
a first-state-next-state interface which can be used to explore the model’s
state space. In our experiments below, we access the Modest Toolset’s
state space exploration engine via mcsta.

Momba includes as a key feature a state space exploration engine designed
to make exploration readily accessible via a comprehensive Python API. To
achieve good performance, the engine is written in Rust. While Momba

Tools at the Frontiers of Quantitative Verification 33

itself supports all of Jani, its state space exploration engine is more lim-
ited: It supports all discrete-time model types and flavours of timed au-
tomata specified by Jani except stochastic timed automata. The supported
Jani extensions are arrays, derived-operators, named-expressions, and
trigonometric-functions. In particular, the functions extension is not
supported yet. For timed automata, it supports explicit valuations as well as
clock zones. The Python API also provides functionality that goes beyond
mere exploration: for instance, arbitrary Jani expressions can be evaluated
in a given state and, for timed automata, clock zones can be manipulated. In
addition to its traditional state space exploration engine, Momba also partic-
ipates with an experimental new engine supporting a parallelized exploration
mode harnessing the potential of multi-core systems. This experimental en-
gine does not currently support timed automata and is not yet exposed via
the Python API.

Storm participates with its sparse and dd-to-sparse engines. While Storm’s
sparse engine, like the engines of the Modest Toolset and Momba, adopts
a conventional explicit-state approach, the dd-to-sparse engine is based on
first constructing a symbolic representation using BDDs of the state space and
subsequently translating this to a traditional explicit representation. Storm

supports all discrete- and continuous-time model types specified by Jani, ex-
cept timed and hybrid automata. The supported Jani extensions are arrays,
derived-operators, functions, and state-exit-rewards. Storm provides
both a C++ and a Python interface, the latter as part of Stormpy, to its state
space exploration engine. While the C++ API is fully featured, the Python
API only supports the exploration of the entire state space of Jani models
(but not the simulation of individual traces) while it has no such limitation for
Prism models. In contrast to Modest Toolset and Momba, Storm offers sup-
port for arbitrary-precision arithmetic using rational numbers implemented in
the GMP library. This enables precise calculations and analysis, particularly
when dealing with models that require high precision.

11.2 Performance Comparison

In our experimental evaluation, we utilise the QVBS as the foundation for bench-
marking the tools. To ensure a meaningful comparison, we focus exclusively on
discrete-time models, as these are supported by all the participating tools. Out
of our initial 229 QVBS benchmarks, 25 resulted in timeouts after 30 minutes
or were unsupported by all tools. Hence, the following analysis focuses on the
remaining 204 benchmarks. For each benchmark, we measure the time required
by each state space exploration engine to construct the entire state space. Ad-
ditionally, we track the number of states counted by the engines and assess the
memory consumption associated with each state where applicable. All bench-
marks ran on a computer equipped with a 16-core AMD EPYC-Milan processor
running at 3.4 GHz and 128GB of RAM.

Table 9 shows the number of benchmarks per tool and our experiments’ qual-
itative outcomes: we display the number of benchmarks that were successfully

34 R. Andriushchenko et al.

Table 9. Number of benchmarks per outcome and state space exploration engine

Engine solved unsupported timeout error

Modest Toolset 194 9 1 0
Momba (v1) 159 45 0 0
Momba (v2,seq) 159 45 0 0
Momba (v2,par) 154 45 5 0
Storm (dd-to-sparse) 195 3 2 4
Storm (sparse) 202 0 2 0

T
X

105 106 107 108

0.1

1

10

100

1000

Momba (v1) Momba (v2,seq) Momba (v2,par)

Storm (sparse) Storm (dd-to-sparse) Modest Toolset

Fig. 7. Runtimes in seconds in relation to the total number of states

solved, unsupported, lead to a timeout, or caused an error. The 9 benchmarks
not supported by the Modest Toolset’s engine use a complex specification
for the initial states. The 45 benchmarks not supported by Momba use the
functions Jani extension and are a superset of the 9 benchmarks not sup-
ported by the Modest Toolset. The 3 benchmarks not supported by Storm’s
dd-to-sparse engine use assignment indices while for 4 benchmarks the same
engine returned an error due to the BDD implementation running out of mem-
ory. The timeouts are all for different benchmarks. While the number of states
reported by Storm and Momba is the same for all benchmarks and engines,
the Modest Toolset sometimes reports fewer states which presumably is due
to some state space-reducing optimizations.

Runtimes. Fig. 7 depicts the running time for each benchmark (on the vertical
axis) in relation to the total number of states of the respective benchmark (on
the horizontal axis). The marks at the top indicate timeouts (T), and unsup-
ported benchmarks as well as benchmarks returning an error (X). The quantile
plot in Fig. 8 presents the cumulative number of benchmarks solved within a

Tools at the Frontiers of Quantitative Verification 35

0 10 20 30 40 50 60 70

10−1

100

101

102

103

Momba (v1) Momba (v2,seq) Momba (v2,par)

Storm (sparse) Storm (dd-to-sparse) Modest Toolset

Fig. 8. Runtimes (s) vs. the number of benchmarks each solved in that time

certain time. For presentation purposes, we chose to clamp the running times
at 0.1 s and restrict the plots to benchmarks with more than 105 states. For
smaller benchmarks, the differences in runtimes are practically insignificant. Ad-
ditionally, Fig. 8 is restricted to benchmarks supported by all engines to prevent
skewing the plot (as otherwise an unsupported benchmark and a timeout would
have the same effect).

From these results, it is evident that the approach taken by the dd-to-sparse
engine of Storm only pays off for larger models; even then, it is rarely faster
than the conventional explicit engine of the Modest Toolset. Among those
engines exclusively using a single core, the Modest Toolset engine is almost
always the fastest, although it has a larger startup overhead. This does not come
as a surprise because, for efficiency, it is based on compiling Jani models to C#
bytecode that is JIT-compiled. Storm’s dd-to-sparse engine, like Momba’s
experimental parallel engine (v2,par), uses multiple cores since the underlying
BDD implementation in Sylvan [75] is parallelised. Momba’s parallel engine is
always faster than any other engine for benchmarks of a significant size. The
average speed-up when compared to its sequential version is a factor of 9.1. In
general, though, the runtimes of all engines are often quite similar.

Note that, as Storm and mcsta are model checkers, they do a bit more
work than Momba by creating a sparse matrix representation of the transitions
and computing atomic propositions. We expect the performance impact of this
to be minor—however we did not measure it.

Memory consumption. Another interesting dimension when it comes to state
space construction is the required memory. Efficiency is crucial here given the
often huge state spaces due to the state space explosion problem. For the tradi-
tional explicit state engines, the size of the state space is linear in the number of
states. Fig. 9 shows the size of the state spaces in relation to the number of states,
computed based on the number of states and the size of each state. Note that the
sequential and parallel variant of Momba’s experimental engine use the same

36 R. Andriushchenko et al.

101 102 103 104 105 106 107 108 109

kB

MB

GB

Momba (v1) Momba (v2) Storm (sparse) Modest Toolset

Fig. 9. Size of the state space in relation to the number of states

representation. In contrast to the Modest Toolset, Storm’s sparse engine
and Momba’s experimental engine use a more space efficient bit-packing repre-
sentation of states, thereby reducing the amount of required memory. Momba’s
original engine uses the worst representation and always requires at least 16
bytes per variable independent of its actual domain.

Summary. Our results show that all engines are roughly comparable with re-
spect to the time it takes to construct the entire state space of a model. Storm’s
dd-to-sparse engine may only be advantageous in terms of runtime for some
large models while incurring a high overhead for small models. Among single-core
engines, the Modest Toolset’s engine is almost always the fastest, especially
for large models, while being the most versatile at the same time. The experimen-
tal parallel engine of Momba demonstrates that parallel state space exploration
can be highly beneficial for larger models. The original Momba engine requires
significantly more memory than all others. The Modest Toolset’s engine,
however, does not provide a public API. Thus, if integration into another tool is
a concern, Storm and, in particular, Momba with its original engine have an
advantage as they both provide a Python API in addition to APIs in C++ and
Rust, respectively.

Limitations. One of the motivations of this category is the lack assessment for
simulation of individual traces. Note that the performance characteristics dis-
played here may not carry over to simulation of individual traces as there is
a difference between always computing all successor states, as required for ex-
haustive exploration, and selectively computing only individual successor states
which is, for instance, explicitly supported by Momba. Additionally, an exhaus-
tive exploration requires maintaining a (hash) set of all visited states.

Data availability. An artifact allowing to reproduce the performance compar-
ison is archived and available at DOI 10.5281/zenodo.10626177 [144].

Tools at the Frontiers of Quantitative Verification 37

12 Stochastic Games

Game theory provides an effective way to model strategic interactions between
multiple agents (or players) collaborating or competing to achieve objectives.
Games have long been of interest within formal verification, providing a natu-
ral way to model, for example, honest and malicious participants in a security
protocol or a controller operating in an adversarial environment.

In the context of quantitative verification, stochastic games (SGs) are a nat-
ural model to reason about strategic interactions in the context of uncertainty,

(a) TSG

(b) CSG

noise, or randomisation. Verification problems for
SGs have been studied for over 20 years [57]; the
first model checking tools for SGs appeared over
10 years ago [63], and there has been growing
interest in the topic recently.

In essence, SGs (visualised on the right) gen-
eralise MDPs by permitting multiple players to
have distinct strategies about how to resolve non-
deterministic choices in the model. The simplest
model, a turn-based SG (TSG), simply partitions
the state space of an MDP, with the choices in
each state being under the control of exactly one
player. A concurrent SG (CSG) provides a more
realistic model of concurrent decision-making: in
each state, players resolve their choices indepen-
dently.

Verification of SGs also takes a variety of flavours. The simplest option is
a zero-sum setting, where one player (or a coalition of players) aims to max-
imise some objective, such as the probability of reaching a set of target states
or satisfying a temporal logic formula, and the other player (or players) have
the opposite objective, i.e. to minimise it. For SGs, the logic rPATL [63] is
widely used, which generalises the well-known game logic ATL [5] to a variety of
quantitative objectives. Beyond zero-sum properties, temporal logics and model
checking algorithms have been extended [159] to support equilibria, which are
joint strategies where each player optimises their own distinct objective in such
a way that it is not beneficial for any player to unilaterally change strategy.

12.1 Algorithms and Tool Support

Despite verification problems for SGs typically having a higher complexity than
their MDP counterparts, core properties of TSGs can be effectively analysed
with similar methods such as value iteration [66] or interval iteration and its
variants [13, 80]. Methods to solve CSGs tend to be more expensive: again they
are usually based on value iteration, but require the solution of a linear program-
ming or equilibrium synthesis problem [159] for every state at each iteration.

Verification tools for SGs under active development are Prism-games and its
extensions, Tempest, Pet, and Epmc. We provide a brief empirical comparison

38 R. Andriushchenko et al.

of the first four below. These tools share a common input format for SGs, namely
the Prism-games modelling language. This extends the widely used Prism

modelling language: In the case of TSGs, it is a rather simple extension of the
case for MDPs, defining a set of players and the states they own; CSGs use a
different model of parallel composition and additional language features.

Epmc also supports the analysis of stochastic parity games and verification of
epistemic properties on probabilistic multi-agent systems in addition to its
standard probabilistic model checking functionality.

Pet has recently been extended to support reachability objectives for TSGs.
It uses Prism-games to parse and explore games, and employs the interval
iteration approach of [80] to solve them. Implementing partial exploration
based on [80, Sect. 5] in combination with the approach of [152] for more
complex objectives such as total reward or mean payoff is planned.

Prism-games mainly focuses on TSGs and CSGs, but it also supports turn-
based probabilistic timed games. The tool supports a wide range of zero-
sum properties (probabilistic reachability, expected rewards, co-safe linear
temporal logic and multi-objective specifications) as well as (social welfare)
Nash equilibria. Recent extensions add support for correlated equilibria and
social fairness [160]. The implementation is primarily based on variants of
value iteration, implemented in Java with explicit state data structures, but
also includes symbolic (MTBDD-based) model checking of TSGs [161].

Tempest extends Storm to TSGs with a focus on synthesizing most-permissive
strategies. The tool supports zero-sum properties, namely probabilistic reach-
ability and mean-payoff properties. The model checking procedures are based
on variants of value iteration using explicit representations of the state space.

[154] and [13] present an extension of Prism-games which adds various meth-
ods for solving TSGs: interval iteration (II) [80] and optimistic value iteration
(OVI) [13], as well as topological variants of each; the “widest path” (WP)
variant of II [190]; and solution methods based on strategy iteration and
quadratic programming. The latter are omitted from our comparison since
they are fundamentally different from the variants of value iteration employed
by the other tools [154, Sect. 5.5.3]; we refer to [154, Sect. 5] for a practical
comparison of these solution methods.

Also relevant are Gist [58] and GAVS+ [65], which implement TSG verification,
but are no longer developed or maintained, and Uppaal Stratego [72], which
supports stochastic priced timed games via multiple other Uppaal branches.

12.2 Performance Comparison

We give a brief performance comparison of the various tools and techniques, fo-
cusing on the problem class supported by all tools: zero-sum probabilistic reacha-
bility for TSGs. Table 10 shows total runtimes (game construction and solution)
on an indicative set of benchmarks from the PRISM Benchmark Suite [164]
and [154]. Experiments ran on an AMD Ryzen 5 3600 system, pinned to a single

Tools at the Frontiers of Quantitative Verification 39

Table 10. Performance comparison results of tools for stochastic games

Benchmark Value iteration (s) ε-exact (s)

Model + property

[parameters]
Param.
values # states

Prism
-games

(expl.)

Prism
-games

(symb.)

Temp
-est Pet

P-g+

(II)

P-g+

(OVI)

P-g+

(WP)

avoid +find

[X MAX, Y MAX]

10, 10 106,524 16.9 15.4 1.4 5.0 17.2 22.4 16.7

15, 15 480,464 125.9 62.6 4.7 15.7 126.9 137.2 126

20, 20 1,436,404 T/O 240.8 12.9 57.5 T/O T/O T/O

hallway human

+ save

[X MAX, Y MAX]

5, 5 25,000 2.5 1.8 0.9 2.9 2.4 2.4 2.4

10, 10 400,000 10.5 2.0 12.9 9.5 11.3 11.2 11.3

15, 15 2,025,000 50.1 4.0 101.3 39.6 57.0 55.4 56.6

investors + greater

[N, vmax]

2, 20 568,790 21.8 7.4 4.9 16.7 33.2 42.3 54.6

2, 40 2,041,690 98.8 26.0 19.8 69.0 144.8 183.2 314.6

3, 20 4,058,751 167.7 19.2 39.7 152.6 241.4 321.3 484.8

3, 40 14,569,251 M/O 62.8 171.2 T/O T/O T/O T/O

safe nav + reach

[N, feat]

8,D 2,592,845 544.2 16.2 518.5 519.4 498.4 508.7 485.7

8,A 17,052,941 T/O 110.8 T/O T/O T/O T/O T/O

BigMec +BigMec

[N]

10,000 20,003 46.9 9.3 2.5 17.6 T/O 49.5 73.5

25,000 50,003 290.4 45.8 12.7 82.9 T/O 294.2 472.4

ManyMec +ManyMec

[N]

10,000 30,002 160.7 263.3 16.7 104.3 T/O T/O 460.4

25,000 75,002 T/O T/O 98.6 T/O T/O T/O T/O

core and restricted to 8 GB of RAM, running inside Docker, using OpenJDK
JRE-17 for all Java tools, and with a timeout (T/O) of 10 minutes. For each
invocation, a fresh docker container is created.

For a fair comparison, we group them into two distinct categories based on
the degree of accuracy provided: “value iteration” (i.e. no strict guarantees on
the correctness of the result) and “ε-exact” (the result is guaranteed to be within
± ε = 10−6 of the true value), marking the fastest tool in each category in bold.

Value iteration. Comparing explicit-state implementations, Tempest is faster
than Prism-games on almost all instances (primarily, it appears, due to the
former being implemented in C++, but the latter also uses slower but more ex-
tensive precomputations). Prism-games, in symbolic mode, outperforms Tem-

pest on most larger models and scales to the biggest TSGs of all tools. Symbolic
model building times (not shown) are also usually faster.

ε-exact. Pet outperforms the approaches in the Prism-games extension of
[13,154] (denoted P-g+ in the table) on practically all models. This is interesting
since the algorithmic approach in the former is the same as interval iteration (II)
in the latter. Since these tools are implemented in the same language (Java) and
use the same model construction (Prism’s model generator), the (significant)
differences are solely a result of engineering. Times for the methods in the Prism-

games extension are typically in the same order of magnitude, however there
are models where one approach significantly outperforms all others.

40 R. Andriushchenko et al.

Data availability. All tools, models and scripts needed to replicate our results
can be found at DOI 10.5281/zenodo.7831387 [180].

12.3 Outlook

Interest has grown in the formal verification of SGs in recent years and it has
already been applied to a range of domains, from computer security to adaptive
software architectures (as evidenced by the collection of Prism-games case stud-
ies at prismmodelchecker.org/games/casestudies.php). In addition to improving
the efficiency and scalability of existing tools, one key challenge is to develop
methods for partially observable variants of SG models. Another is to de-
velop support for richer specification languages, for example incorporating
strategies, equilibria or epistemic properties.

13 Conclusion

We have described the state of the art in tools and algorithms at the frontiers of
quantitative verification in ten different categories, covering 19 different tools. In
several categories, we reported on the first systematic performance comparison
among the included tools. On many of the frontiers we described, tool support for
advanced properties and models is now being consolidated, but a plethora of open
questions and unimplemented ideas remain for future work. We hope that this
report can serve as an inspiration for further work on quantitative verification
tooling, and that several of QComp 2023’s categories can evolve into regular,
serious performance evaluations among competing tools in the near future. At the
same time, it is clear that our coverage of the quantitative verification frontiers is
not complete. As one example, we mention the area of parametric models based
on timed automata (in which parameters are traditionally more structural in
nature than the ones in the parametric Markov models of Sect. 7) where tools are
maturing [6] and benchmark sets with support for Jani are being collected [7],
laying the foundations for future performance evaluations.

For the next edition of QComp, which at the latest will take place in time for
the next edition of the TOOLympics, we intend to keep the multiple-category
setup. We plan to both add new categories, e.g. on parametric timed automata as
mentioned above or on entirely new problems that surface in the coming years,
and also perform more extensive performance evaluations in those categories
where tools will have matured sufficiently and a good benchmark set will have
become available. As such, we expect a mix of “friendly” categories that stimulate
tool development and standardisation as well as more “competitive” evaluations
where performance really counts. Practically, we may need to split off the reports
of the larger categories—those where many tools are evaluated on comprehen-
sive benchmark sets to obtain representative performance comparisons—from
the main competition report into publications of their own. In parallel to the
transformation of QComp that started with this edition, the comparison of estab-
lished tools on basic problems as in QComp 2019 and 2020 is likely to transition

Tools at the Frontiers of Quantitative Verification 41

Table 11. Data availability for QComp 2023

Section Category DOI Ref.

4 Long-Run Average Rewards 10.5281/zenodo.8219191 [100]
6 Multi-Objective Analysis 10.5281/zenodo.8063883 [195]
7 Parametric Markov Models 10.5281/zenodo.10646479 [137]
8 Partially-Observable MDPs 10.5281/zenodo.8215337 [31]
9 Rare Events 10.6084/m9.figshare.23818395 [47]
11 State Space Exploration 10.5281/zenodo.10626177 [144]
12 Stochastic Games 10.5281/zenodo.7831387 [180]

into a continuous evaluation—rather than periodic competitions—hosted on the
qcomp.org website. We look forward to a continuing journey into the undiscov-
ered country beyond today’s frontiers of quantitative verification in the next
editions of the QComp friendly competition!

Data availability. In each category that performed a performance comparison,
we provide an artifact that archives the models, tools, scripts, and other data
that is necessary to reproduce the respective experiments. The benchmark set
of parametric Markov models introduced in Sect. 7 is also publicly archived. We
link to the DOIs of the respective datasets at the end of each of sections 4, 6, 7,
8, 9, 11, and 12, and list all of them in Table 11.

References

1. Abate, A., Andriushchenko, R., Ceska, M., Kwiatkowska, M.: Adaptive formal
approximations of Markov chains. Perform. Evaluation 148, 102207 (2021). https:
//doi.org/10.1016/j.peva.2021.102207

2. Agarwal, C., Guha, S., Kretínský, J., Muruganandham, P.: PAC statistical model
checking of mean payoff in discrete- and continuous-time MDP. In: Shoham, S.,
Vizel, Y. (eds.) 34th International Conference on Computer Aided Verification
(CAV). Lecture Notes in Computer Science, vol. 13372, pp. 3–25. Springer (2022).
https://doi.org/10.1007/978-3-031-13188-2_1

3. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans.
Model. Comput. Simul. 28(1), 6:1–6:39 (2018). https://doi.org/10.1145/3158668

4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

5. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002). https://doi.org/10.1145/585265.585270

6. André, É.: IMITATOR 3: Synthesis of timing parameters beyond decidability. In:
Silva, A., Leino, K.R.M. (eds.) 33rd International Conference on Computer Aided
Verification (CAV). Lecture Notes in Computer Science, vol. 12759, pp. 552–565.
Springer (2021). https://doi.org/10.1007/978-3-030-81685-8_26

42 R. Andriushchenko et al.

7. André, É., Marinho, D., van de Pol, J.: A benchmarks library for extended para-
metric timed automata. In: Loulergue, F., Wotawa, F. (eds.) 15th International
Conference on Tests and Proofs (TAP). Lecture Notes in Computer Science, vol.
12740, pp. 39–50. Springer (2021). https://doi.org/10.1007/978-3-030-79379-1_3

8. Andriushchenko, R., Ceska, M., Junges, S., Katoen, J.P.: Inductive synthesis of
finite-state controllers for POMDPs. In: Cussens, J., Zhang, K. (eds.) 38th Con-
ference on Uncertainty in Artificial Intelligence (UAI). Proceedings of Machine
Learning Research, vol. 180, pp. 85–95. PMLR (2022)

9. Andriushchenko, R., Ceska, M., Junges, S., Katoen, J.P., Stupinský, S.: PAYNT:
A tool for inductive synthesis of probabilistic programs. In: Silva, A., Leino,
K.R.M. (eds.) 33rd International Conference on Computer Aided Verification
(CAV). Lecture Notes in Computer Science, vol. 12759, pp. 856–869. Springer
(2021). https://doi.org/10.1007/978-3-030-81685-8_40

10. Arming, S., Bartocci, E., Chatterjee, K., Katoen, J.P., Sokolova, A.: Parameter-
independent strategies for pMDPs via POMDPs. In: McIver, A., Horváth, A.
(eds.) 15th International Conference on the Quantitative Evaluation of Systems
(QEST). Lecture Notes in Computer Science, vol. 11024, pp. 53–70. Springer
(2018). https://doi.org/10.1007/978-3-319-99154-2_4

11. Ashok, P., Brázdil, T., Kretínský, J., Slámecka, O.: Monte Carlo tree search
for verifying reachability in Markov decision processes. In: Margaria, T., Stef-
fen, B. (eds.) 8th International Symposium on Leveraging Applications of For-
mal Methods, Verification and Validation (ISoLA). Lecture Notes in Com-
puter Science, vol. 11245, pp. 322–335. Springer (2018). https://doi.org/10.1007/
978-3-030-03421-4_21

12. Ashok, P., Chatterjee, K., Daca, P., Kretínský, J., Meggendorfer, T.: Value itera-
tion for long-run average reward in Markov decision processes. In: Majumdar, R.,
Kuncak, V. (eds.) 29th International Conference on Computer Aided Verification
(CAV). Lecture Notes in Computer Science, vol. 10426, pp. 201–221. Springer
(2017). https://doi.org/10.1007/978-3-319-63387-9_10

13. Azeem, M., Evangelidis, A., Kretínský, J., Slivinskiy, A., Weininger, M.: Op-
timistic and topological value iteration for simple stochastic games. In: Boua-
jjani, A., Holík, L., Wu, Z. (eds.) 20th International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA). Lecture Notes in Com-
puter Science, vol. 13505, pp. 285–302. Springer (2022). https://doi.org/10.1007/
978-3-031-19992-9_18

14. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Model-checking continous-time
Markov chains. ACM Trans. Comput. Log. 1(1), 162–170 (2000). https://doi.org/
10.1145/343369.343402

15. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Kretínský, J., Müller, D.,
Parker, D., Strejcek, J.: The Hanoi omega-automata format. In: Kroening, D.,
Pasareanu, C.S. (eds.) 27th International Conference on Computer Aided Verifica-
tion (CAV). Lecture Notes in Computer Science, vol. 9206, pp. 479–486. Springer
(2015). https://doi.org/10.1007/978-3-319-21690-4_31

16. Backenköhler, M., Bortolussi, L., Großmann, G., Wolf, V.: Abstraction-guided
truncations for stationary distributions of Markov population models. In: Abate,
A., Marin, A. (eds.) 18th International Conference on the Quantitative Evaluation
of Systems (QEST). Lecture Notes in Computer Science, vol. 12846, pp. 351–371.
Springer (2021). https://doi.org/10.1007/978-3-030-85172-9_19

Tools at the Frontiers of Quantitative Verification 43

17. Badings, T., Simão, T.D., Suilen, M., Jansen, N.: Decision-making under un-
certainty: beyond probabilities. Int. J. Softw. Tools Technol. Transf. (2023).
https://doi.org/10.1007/s10009-023-00704-3

18. Badings, T.S., Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.P.,
Topcu, U.: Scenario-based verification of uncertain parametric MDPs. Int. J.
Softw. Tools Technol. Transf. 24(5), 803–819 (2022). https://doi.org/10.1007/
s10009-022-00673-z

19. Badings, T.S., Romao, L., Abate, A., Parker, D., Poonawala, H.A., Stoelinga, M.,
Jansen, N.: Robust control for dynamical systems with non-Gaussian noise via
formal abstractions. J. Artif. Intell. Res. 76, 341–391 (2023). https://doi.org/10.
1613/jair.1.14253

20. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking proba-
bilistic systems. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.)
Handbook of Model Checking, pp. 963–999. Springer (2018). https://doi.org/10.
1007/978-3-319-10575-8_28

21. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6),
524–541 (2003). https://doi.org/10.1109/TSE.2003.1205180

22. Baier, C., Hensel, C., Hutschenreiter, L., Junges, S., Katoen, J.P., Klein, J.: Para-
metric Markov chains: PCTL complexity and fraction-free Gaussian elimination.
Inf. Comput. 272, 104504 (2020). https://doi.org/10.1016/j.ic.2019.104504

23. Bals, S., Evangelidis, A., Grover, K., Kretínský, J., Waibel, J.: MULTIGAIN 2.0:
MDP controller synthesis for multiple mean-payoff, LTL and steady-state con-
straints. CoRR abs/2305.16752 (2023). https://doi.org/10.48550/arXiv.2305.
16752

24. Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for
statistical model checking. In: Flanagan, C., König, B. (eds.) 18th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Lecture Notes in Computer Science, vol. 7214, pp. 331–346. Springer
(2012). https://doi.org/10.1007/978-3-642-28756-5_23

25. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns,
A., Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M.,
Sutcliffe, G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of com-
petitions in formal methods. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B.
(eds.) 25 Years of TACAS: TOOLympics. Lecture Notes in Computer Science, vol.
11429, pp. 3–24. Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_1

26. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) 17th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). Lecture Notes in Computer Science, vol. 6605, pp. 326–340.
Springer (2011). https://doi.org/10.1007/978-3-642-19835-9_30

27. Basset, N., Kwiatkowska, M.Z., Topcu, U., Wiltsche, C.: Strategy synthesis for
stochastic games with multiple long-run objectives. In: Baier, C., Tinelli, C. (eds.)
21st International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 9035, pp.
256–271. Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_22

28. Batz, K., Junges, S., Kaminski, B.L., Katoen, J.P., Matheja, C., Schröer, P.:
PrIC3: Property directed reachability for MDPs. In: Lahiri, S.K., Wang, C. (eds.)
32nd International Conference on Computer Aided Verification (CAV). Lecture
Notes in Computer Science, vol. 12225, pp. 512–538. Springer (2020). https://doi.
org/10.1007/978-3-030-53291-8_27

44 R. Andriushchenko et al.

29. Bellman, R.: A Markovian decision process. J. Math. Mech. 6(5), 679–684 (1957)
30. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: A

compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Software Eng. 32(10), 812–830 (2006). https://doi.org/10.1109/TSE.2006.104

31. Bork, A.: Replication package QComp 2023 – POMDP analysis (2023). https:
//doi.org/10.5281/zenodo.8215337

32. Bork, A., Junges, S., Katoen, J.P., Quatmann, T.: Verification of indefinite-
horizon POMDPs. In: Hung, D.V., Sokolsky, O. (eds.) 18th International Sym-
posium on Automated Technology for Verification and Analysis (ATVA). Lec-
ture Notes in Computer Science, vol. 12302, pp. 288–304. Springer (2020).
https://doi.org/10.1007/978-3-030-59152-6_16

33. Bork, A., Katoen, J.P., Quatmann, T.: Under-approximating expected total re-
wards in POMDPs. In: Fisman, D., Rosu, G. (eds.) 28th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Lecture Notes in Computer Science, vol. 13244, pp. 22–40. Springer
(2022). https://doi.org/10.1007/978-3-030-99527-0_2

34. Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear tem-
poral properties of stochastic models. In: Beyer, D., Huisman, M. (eds.) 24th In-
ternational Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 10806, pp.
396–413. Springer (2018). https://doi.org/10.1007/978-3-319-89963-3_23

35. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two views on mul-
tiple mean-payoff objectives in Markov decision processes. Log. Methods Comput.
Sci. 10(1) (2014). https://doi.org/10.2168/LMCS-10(1:13)2014

36. Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretínský, J., Kwiatkowska,
M.Z., Parker, D., Ujma, M.: Verification of Markov decision processes using
learning algorithms. In: Cassez, F., Raskin, J.F. (eds.) 12th International Sym-
posium on Automated Technology for Verification and Analysis (ATVA). Lec-
ture Notes in Computer Science, vol. 8837, pp. 98–114. Springer (2014). https:
//doi.org/10.1007/978-3-319-11936-6_8

37. Brázdil, T., Chatterjee, K., Forejt, V., Kucera, A.: MultiGain: A controller synthe-
sis tool for MDPs with multiple mean-payoff objectives. In: Baier, C., Tinelli, C.
(eds.) 21st International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 9035,
pp. 181–187. Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_12

38. Brim, L., Ceska, M., Drazan, S., Safránek, D.: Exploring parameter space of
stochastic biochemical systems using quantitative model checking. In: Sharygina,
N., Veith, H. (eds.) 25th International Conference on Computer Aided Verification
(CAV). Lecture Notes in Computer Science, vol. 8044, pp. 107–123. Springer
(2013). https://doi.org/10.1007/978-3-642-39799-8_7

39. Bry, A., Roy, N.: Rapidly-exploring random belief trees for motion planning under
uncertainty. In: 2011 IEEE International Conference on Robotics and Automation
(ICRA). pp. 723–730. IEEE (2011). https://doi.org/10.1109/ICRA.2011.5980508

40. Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Automated compositional impor-
tance splitting. Sci. Comput. Program. 174, 90–108 (2019). https://doi.org/10.
1016/j.scico.2019.01.006

41. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statisti-
cal model checker for nondeterminism and rare events. Int. J. Softw. Tools Tech-
nol. Transf. 22(6), 759–780 (2020). https://doi.org/10.1007/s10009-020-00563-2

Tools at the Frontiers of Quantitative Verification 45

42. Budde, C.E., D’Argenio, P.R., Monti, R.E.: Compositional construction of im-
portance functions in fully automated importance splitting. In: Puliafito, A.,
Trivedi, K.S., Tuffin, B., Scarpa, M., Machida, F., Alonso, J. (eds.) 10th EAI
International Conference on Performance Evaluation Methodologies and Tools
(VALUETOOLS). ACM (2016). https://doi.org/10.4108/eai.25-10-2016.2266501

43. Budde, C.E., D’Argenio, P.R., Monti, R.E., Stoelinga, M.: Analysis of non-
Markovian repairable fault trees through rare event simulation. Int. J.
Softw. Tools Technol. Transf. 24(5), 821–841 (2022). https://doi.org/10.1007/
s10009-022-00675-x

44. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: Quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
23rd International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 10206,
pp. 151–168 (2017). https://doi.org/10.1007/978-3-662-54580-5_9

45. Budde, C.E., Hartmanns, A.: Replicating RESTART with prolonged retrials: An
experimental report. In: Groote, J.F., Larsen, K.G. (eds.) 27th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Lecture Notes in Computer Science, vol. 12652, pp. 373–380. Springer
(2021). https://doi.org/10.1007/978-3-030-72013-1_21

46. Budde, C.E., Hartmanns, A., Klauck, M., Kretínský, J., Parker, D., Quatmann,
T., Turrini, A., Zhang, Z.: On correctness, precision, and performance in quan-
titative verification (QComp 2020 competition report). In: Margaria, T., Steffen,
B. (eds.) 9th International Symposium on Leveraging Applications of Formal
Methods (ISoLA). Lecture Notes in Computer Science, vol. 12479, pp. 216–241.
Springer (2020). https://doi.org/10.1007/978-3-030-83723-5_15

47. Budde, C.E., Hartmanns, A., Ruijters, E., Volk, M., Taylor, L., Israelsen, B.,
Zhang, Z.: QComp 2023: formal tools for rare events (experimental reproduction
package). Figshare (2023). https://doi.org/10.6084/m9.figshare.23818395

48. Budde, C.E., Ruijters, E., Stoelinga, M.: The Dynamic Fault Tree Rare Event
Simulator. In: Gribaudo, M., Jansen, D.N., Remke, A. (eds.) 17th International
Conference on the Quantitative Evaluation of Systems (QEST). Lecture Notes in
Computer Science, vol. 12289, pp. 233–238. Springer (2020). https://doi.org/10.
1007/978-3-030-59854-9_17

49. Buecherl, L., Thomas, P.J., Ahmadi, M., Jeppson, J., Gerber, A., Reiss, E., Win-
tead, C., Zheng, H., Zhang, Z., Myers, C.J.: A collection of biological models
for the development of infinite-state stochastic model checking tools. In: 15th
International Workshop on Bio-Design Automation (IWBDA). pp. 44–47 (2023)

50. Burns, B., Brock, O.: Sampling-based motion planning with sensing uncertainty.
In: 2007 IEEE International Conference on Robotics and Automation (ICRA).
pp. 3313–3318. IEEE (2007). https://doi.org/10.1109/ROBOT.2007.363984

51. Butkova, Y., Hartmanns, A., Hermanns, H.: A Modest approach to Markov au-
tomata. ACM Trans. Model. Comput. Simul. 31(3), 14:1–14:34 (2021). https:
//doi.org/10.1145/3449355

52. Butkova, Y., Wimmer, R., Hermanns, H.: Long-run rewards for Markov automata.
In: Legay, A., Margaria, T. (eds.) 23rd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes
in Computer Science, vol. 10206, pp. 188–203 (2017). https://doi.org/10.1007/
978-3-662-54580-5_11

53. Cardelli, L., Kwiatkowska, M., Laurenti, L.: A stochastic hybrid approximation
for chemical kinetics based on the linear noise approximation. In: Bartocci, E., Liò,

46 R. Andriushchenko et al.

P., Paoletti, N. (eds.) 14th International Conference on Computational Methods
in Systems Biology (CMSB). Lecture Notes in Computer Science, vol. 9859, pp.
147–167. Springer (2016). https://doi.org/10.1007/978-3-319-45177-0_10

54. Ceska, M., Chau, C., Kretínský, J.: SeQuaiA: A scalable tool for semi-quantitative
analysis of chemical reaction networks. In: Lahiri, S.K., Wang, C. (eds.) 32nd
International Conference on Computer Aided Verification (CAV). Lecture Notes
in Computer Science, vol. 12224, pp. 653–666. Springer (2020). https://doi.org/
10.1007/978-3-030-53288-8_32

55. Ceska, M., Kretínský, J.: Semi-quantitative abstraction and analysis of chemi-
cal reaction networks. In: Dillig, I., Tasiran, S. (eds.) 31st International Con-
ference on Computer Aided Verification (CAV). Lecture Notes in Computer
Science, vol. 11561, pp. 475–496. Springer (2019). https://doi.org/10.1007/
978-3-030-25540-4_28

56. Chatterjee, K., Gaiser, A., Kretínský, J.: Automata with generalized Rabin pairs
for probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith,
H. (eds.) 25th International Conference on Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 8044, pp. 559–575. Springer (2013). https:
//doi.org/10.1007/978-3-642-39799-8_37

57. Chatterjee, K., Henzinger, T.A.: A survey of stochastic ω-regular games. J. Com-
put. Syst. Sci. 78(2), 394–413 (2012). https://doi.org/10.1016/j.jcss.2011.05.002

58. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Radhakrishna, A.: Gist: A solver
for probabilistic games. In: Touili, T., Cook, B., Jackson, P.B. (eds.) 22nd Inter-
national Conference on Computer Aided Verification (CAV). Lecture Notes in
Computer Science, vol. 6174, pp. 665–669. Springer (2010). https://doi.org/10.
1007/978-3-642-14295-6_57

59. Chatterjee, K., Katoen, J.P., Mohr, S., Weininger, M., Winkler, T.: Stochastic
games with lexicographic objectives. Formal Methods Syst. Des. (2023). https:
//doi.org/10.1007/s10703-023-00411-4

60. Chatterjee, K., Katoen, J.P., Weininger, M., Winkler, T.: Stochastic games with
lexicographic reachability-safety objectives. In: Lahiri, S.K., Wang, C. (eds.) 32nd
International Conference on Computer Aided Verification (CAV). Lecture Notes
in Computer Science, vol. 12225, pp. 398–420. Springer (2020). https://doi.org/
10.1007/978-3-030-53291-8_21

61. Chatterjee, K., Kretínská, Z., Kretínský, J.: Unifying two views on multiple mean-
payoff objectives in Markov decision processes. Log. Methods Comput. Sci. 13(2)
(2017). https://doi.org/10.23638/LMCS-13(2:15)2017

62. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with
multiple objectives. In: Durand, B., Thomas, W. (eds.) 23rd Annual Symposium
on Theoretical Aspects of Computer Science (STACS). Lecture Notes in Com-
puter Science, vol. 3884, pp. 325–336. Springer (2006). https://doi.org/10.1007/
11672142_26

63. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic
verification of competitive stochastic systems. In: Flanagan, C., König, B. (eds.)
18th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 7214, pp.
315–330. Springer (2012). https://doi.org/10.1007/978-3-642-28756-5_22

64. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M.Z., Qu, H., Zhang, L.: Model
repair for Markov decision processes. In: Seventh International Symposium on
Theoretical Aspects of Software Engineering (TASE). pp. 85–92. IEEE Computer
Society (2013). https://doi.org/10.1109/TASE.2013.20

Tools at the Frontiers of Quantitative Verification 47

65. Cheng, C.H., Knoll, A.C., Luttenberger, M., Buckl, C.: GAVS+: An open plat-
form for the research of algorithmic game solving. In: Abdulla, P.A., Leino,
K.R.M. (eds.) 17th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). Lecture Notes in Com-
puter Science, vol. 6605, pp. 258–261. Springer (2011). https://doi.org/10.1007/
978-3-642-19835-9_22

66. Condon, A.: On algorithms for simple stochastic games. In: Cai, J.Y. (ed.) Ad-
vances In Computational Complexity Theory, Proceedings of a DIMACS Work-
shop. DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, vol. 13, pp. 51–71. DIMACS/AMS (1990). https://doi.org/10.1090/dimacs/
013/04

67. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.P., Topcu, U.: Convex opti-
mization for parameter synthesis in MDPs. IEEE Trans. Autom. Control. 67(12),
6333–6348 (2022). https://doi.org/10.1109/TAC.2021.3133265

68. Cubuktepe, M., Jansen, N., Junges, S., Marandi, A., Suilen, M., Topcu, U.:
Robust finite-state controllers for uncertain POMDPs. In: 35th AAAI Confer-
ence on Artificial Intelligence (AAAI). pp. 11792–11800. AAAI Press (2021).
https://doi.org/10.1609/aaai.v35i13.17401

69. Daigle, Bernie J., J., Roh, M.K., Gillespie, D.T., Petzold, L.R.: Automated esti-
mation of rare event probabilities in biochemical systems. J. Chem. Phys. 134(4)
(2011). https://doi.org/10.1063/1.3522769

70. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approxima-
tion of optimal schedulers for probabilistic timed automata. In: Ábrahám, E.,
Huisman, M. (eds.) 12th International Conference on Integrated Formal Meth-
ods (iFM). Lecture Notes in Computer Science, vol. 9681, pp. 99–114. Springer
(2016). https://doi.org/10.1007/978-3-319-33693-0_7

71. D’Argenio, P.R., Monti, R.E.: Input/output stochastic automata with urgency:
Confluence and weak determinism. In: Fischer, B., Uustalu, T. (eds.) 15th In-
ternational Colloquium on Theoretical Aspects of Computing (ICTAC). Lec-
ture Notes in Computer Science, vol. 11187, pp. 132–152. Springer (2018).
https://doi.org/10.1007/978-3-030-02508-3_8

72. David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) 21st International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture
Notes in Computer Science, vol. 9035, pp. 206–211. Springer (2015). https://doi.
org/10.1007/978-3-662-46681-0_16

73. Daws, C.: Symbolic and parametric model checking of discrete-time Markov
chains. In: Liu, Z., Araki, K. (eds.) First International Colloquium on Theoretical
Aspects of Computing (ICTAC). Lecture Notes in Computer Science, vol. 3407,
pp. 280–294. Springer (2004). https://doi.org/10.1007/978-3-540-31862-0_21

74. Delgrange, F., Katoen, J.P., Quatmann, T., Randour, M.: Simple strategies in
multi-objective MDPs. In: Biere, A., Parker, D. (eds.) 26th International Con-
ference Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Lecture Notes in Computer Science, vol. 12078, pp. 346–364. Springer
(2020). https://doi.org/10.1007/978-3-030-45190-5_19

75. van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for decision diagrams.
Int. J. Softw. Tools Technol. Transf. 19(6), 675–696 (2017). https://doi.org/10.
1007/s10009-016-0433-2

76. Donovan, R.M., Sedgewick, A.J., Faeder, J.R., Zuckerman, D.M.: Efficient
stochastic simulation of chemical kinetics networks using a weighted ensemble of
trajectories. J. Chem. Phys. 139(11) (2013). https://doi.org/10.1063/1.4821167

48 R. Andriushchenko et al.

77. Duret-Lutz, A., Renault, E., Colange, M., Renkin, F., Aisse, A.G., Schlehuber-
Caissier, P., Medioni, T., Martin, A., Dubois, J., Gillard, C., Lauko, H.: From
Spot 2.0 to Spot 2.10: What’s new? In: Shoham, S., Vizel, Y. (eds.) 34th Inter-
national Conference on Computer Aided Verification (CAV). Lecture Notes in
Computer Science, vol. 13372, pp. 174–187. Springer (2022). https://doi.org/10.
1007/978-3-031-13188-2_9

78. Egorov, M., Sunberg, Z.N., Balaban, E., Wheeler, T.A., Gupta, J.K., Kochender-
fer, M.J.: POMDPs.jl: A framework for sequential decision making under uncer-
tainty. J. Mach. Learn. Res. 18, 26:1–26:5 (2017)

79. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: 25th Annual IEEE Symposium on Logic in Computer Science (LICS). pp.
342–351. IEEE Computer Society (2010). https://doi.org/10.1109/LICS.2010.41

80. Eisentraut, J., Kelmendi, E., Kretínský, J., Weininger, M.: Value iteration for
simple stochastic games: Stopping criterion and learning algorithm. Inf. Comput.
285(Part), 104886 (2022). https://doi.org/10.1016/j.ic.2022.104886

81. Esparza, J., Kretínský, J.: From LTL to deterministic automata: A safraless
compositional approach. In: Biere, A., Bloem, R. (eds.) 26th International
Conference on Computer Aided Verification (CAV). Lecture Notes in Com-
puter Science, vol. 8559, pp. 192–208. Springer (2014). https://doi.org/10.1007/
978-3-319-08867-9_13

82. Esparza, J., Kretínský, J., Sickert, S.: A unified translation of linear temporal
logic to ω-automata. J. ACM 67(6), 33:1–33:61 (2020). https://doi.org/10.1145/
3417995

83. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. Log. Methods Comput. Sci. 4(4)
(2008). https://doi.org/10.2168/LMCS-4(4:8)2008

84. Fedyukovich, G., Mover, S.: TACAS 23 artifact evaluation VM – Ubuntu 22.04
LTS (2022). https://doi.org/10.5281/zenodo.7113223

85. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantita-
tive verification and sensitivity analysis at run time. IEEE Trans. Software Eng.
42(1), 75–99 (2016). https://doi.org/10.1109/TSE.2015.2421318

86. Fontanarrosa, P., Doosthosseini, H., Borujeni, A.E., Dorfan, Y., Voigt, C.A., My-
ers, C.: Genetic circuit dynamics: Hazard and glitch analysis. ACS Synth. Biol.
9(9), 2324–2338 (2020). https://doi.org/10.1021/acssynbio.0c00055

87. Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Quantita-
tive multi-objective verification for probabilistic systems. In: Abdulla, P.A.,
Leino, K.R.M. (eds.) 17th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). Lecture Notes in Com-
puter Science, vol. 6605, pp. 112–127. Springer (2011). https://doi.org/10.1007/
978-3-642-19835-9_11

88. Forejt, V., Kwiatkowska, M.Z., Parker, D.: Pareto curves for probabilistic model
checking. In: Chakraborty, S., Mukund, M. (eds.) 10th International Symposium
on Automated Technology for Verification and Analysis (ATVA). Lecture Notes
in Computer Science, vol. 7561, pp. 317–332. Springer (2012). https://doi.org/10.
1007/978-3-642-33386-6_25

89. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: Caccamo, M., Frazzoli,
E., Grosu, R. (eds.) 14th ACM International Conference on Hybrid Systems:
Computation and Control (HSCC). pp. 43–52. ACM (2011). https://doi.org/10.
1145/1967701.1967710

Tools at the Frontiers of Quantitative Verification 49

90. Frehse, G., Althoff, M. (eds.): 4th International Workshop on Applied Verification
of Continuous and Hybrid Systems (ARCH), EPiC Series in Computing, vol. 48.
EasyChair (2017), https://easychair.org/publications/volume/ARCH17

91. Fu, C., Hahn, E.M., Li, Y., Schewe, S., Sun, M., Turrini, A., Zhang, L.: EPMC
gets knowledge in multi-agent systems. In: Finkbeiner, B., Wies, T. (eds.) 23rd
International Conference on Verification, Model Checking, and Abstract Inter-
pretation (VMCAI). Lecture Notes in Computer Science, vol. 13182, pp. 93–107.
Springer (2022). https://doi.org/10.1007/978-3-030-94583-1_5

92. Gainer, P., Hahn, E.M., Schewe, S.: Accelerated model checking of parametric
Markov chains. In: Lahiri, S.K., Wang, C. (eds.) 16th International Symposium
on Automated Technology for Verification and Analysis (ATVA). Lecture Notes
in Computer Science, vol. 11138, pp. 300–316. Springer (2018). https://doi.org/
10.1007/978-3-030-01090-4_18

93. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977). https://doi.org/10.1021/j100540a008

94. Goldberg, F., Vesely, W.: Fault Tree Handbook. NUREG-0492, Systems and Reli-
ability Research, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory
Commission (1981)

95. Goutsias, J.: Quasiequilibrium approximation of fast reaction kinetics in stochas-
tic biochemical systems. J. Chem. Phys. 122(18) (2005). https://doi.org/10.1063/
1.1889434

96. Goyal, V., Grand-Clément, J.: Robust Markov decision processes: Beyond rectan-
gularity. Math. Oper. Res. 48(1), 203–226 (2023). https://doi.org/10.1287/moor.
2022.1259

97. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Köhl, M.A., Wolf, V.: Mo-
Gym: Using formal models for training and verifying decision-making agents. In:
Shoham, S., Vizel, Y. (eds.) 34th International Conference on Computer Aided
Verification (CAV). Lecture Notes in Computer Science, vol. 13372, pp. 430–443.
Springer (2022). https://doi.org/10.1007/978-3-031-13188-2_21

98. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep sta-
tistical model checking. In: Gotsman, A., Sokolova, A. (eds.) 40th IFIP WG 6.1
International Conference on Formal Techniques for Distributed Objects, Compo-
nents, and Systems (FORTE). Lecture Notes in Computer Science, vol. 12136,
pp. 96–114. Springer (2020). https://doi.org/10.1007/978-3-030-50086-3_6

99. Gross, D., Jansen, N., Junges, S., Pérez, G.A.: COOL-MC: A comprehensive
tool for reinforcement learning and model checking. In: Dong, W., Talpin, J.P.
(eds.) 8th International Symposium on Dependable Software Engineering: Theo-
ries, Tools, and Applications (SETTA). Lecture Notes in Computer Science, vol.
13649, pp. 41–49. Springer (2022). https://doi.org/10.1007/978-3-031-21213-0_3

100. Grover, K.: QComp LRA results (2023). https://doi.org/10.5281/zenodo.8219191
101. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and

analysis of Markov reward automata. In: Cassez, F., Raskin, J.F. (eds.) 12th
International Symposium on Automated Technology for Verification and Analysis
(ATVA). Lecture Notes in Computer Science, vol. 8837, pp. 168–184. Springer
(2014). https://doi.org/10.1007/978-3-319-11936-6_13

102. Hahn, E.M., Hartmanns, A.: Symblicit exploration and elimination for probabilis-
tic model checking. In: Hung, C.C., Hong, J., Bechini, A., Song, E. (eds.) 36th
ACM/SIGAPP Symposium on Applied Computing (SAC). pp. 1798–1806. ACM
(2021). https://doi.org/10.1145/3412841.3442052

50 R. Andriushchenko et al.

103. Hahn, E.M., Hartmanns, A., Hensel, C., Klauck, M., Klein, J., Kretínský, J.,
Parker, D., Quatmann, T., Ruijters, E., Steinmetz, M.: The 2019 comparison of
tools for the analysis of quantitative formal models (QComp 2019 competition
report). In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) 25 Years of
TACAS: TOOLympics. Lecture Notes in Computer Science, vol. 11429, pp. 69–92.
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_5

104. Hahn, E.M., Hartmanns, A., Hermanns, H.: Reachability and reward checking for
stochastic timed automata. Electron. Commun. Eur. Assoc. Softw. Sci. Technol.
70 (2014). https://doi.org/10.14279/tuj.eceasst.70.968

105. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

106. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: INFAMY: An infinite-state
Markov model checker. In: Bouajjani, A., Maler, O. (eds.) 21st International
Conference on Computer Aided Verification (CAV). Lecture Notes in Com-
puter Science, vol. 5643, pp. 641–647. Springer (2009). https://doi.org/10.1007/
978-3-642-02658-4_49

107. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Int. J. Softw. Tools Technol. Transf. 13(1), 3–19 (2011). https:
//doi.org/10.1007/s10009-010-0146-x

108. Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic model
checking without determinisation. In: Aceto, L., de Frutos-Escrig, D. (eds.) 26th
International Conference on Concurrency Theory (CONCUR). LIPIcs, vol. 42,
pp. 354–367. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015). https:
//doi.org/10.4230/LIPIcs.CONCUR.2015.354

109. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: A web-based
probabilistic model checker. In: Jones, C.B., Pihlajasaari, P., Sun, J. (eds.) 19th
International Symposium on Formal Methods (FM). Lecture Notes in Com-
puter Science, vol. 8442, pp. 312–317. Springer (2014). https://doi.org/10.1007/
978-3-319-06410-9_22

110. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.:
Good-for-MDPs automata for probabilistic analysis and reinforcement learn-
ing. In: Biere, A., Parker, D. (eds.) 26th International Conference Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Lecture
Notes in Computer Science, vol. 12078, pp. 306–323. Springer (2020). https:
//doi.org/10.1007/978-3-030-45190-5_17

111. Hartmanns, A.: Correct probabilistic model checking with floating-point arith-
metic. In: Fisman, D., Rosu, G. (eds.) 28th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). Lec-
ture Notes in Computer Science, vol. 13244, pp. 41–59. Springer (2022). https:
//doi.org/10.1007/978-3-030-99527-0_3

112. Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed
automata. In: 6th International Conference on the Quantitative Evaluation of
Systems (QEST). pp. 187–196. IEEE Computer Society (2009). https://doi.org/
10.1109/QEST.2009.41

113. Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
20th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 8413, pp.
593–598. Springer (2014). https://doi.org/10.1007/978-3-642-54862-8_51

Tools at the Frontiers of Quantitative Verification 51

114. Hartmanns, A., Hermanns, H.: Explicit model checking of very large MDP using
partitioning and secondary storage. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
13th International Symposium on Automated Technology for Verification and
Analysis (ATVA). Lecture Notes in Computer Science, vol. 9364, pp. 131–147.
Springer (2015). https://doi.org/10.1007/978-3-319-24953-7_10

115. Hartmanns, A., Junges, S., Katoen, J.P., Quatmann, T.: Multi-cost bounded
tradeoff analysis in MDP. J. Autom. Reason. 64(7), 1483–1522 (2020). https:
//doi.org/10.1007/s10817-020-09574-9

116. Hartmanns, A., Junges, S., Quatmann, T., Weininger, M.: A practitioner’s
guide to MDP model checking algorithms. In: Sankaranarayanan, S., Shary-
gina, N. (eds.) 29th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). Lecture Notes in Com-
puter Science, vol. 13993, pp. 469–488. Springer (2023). https://doi.org/10.1007/
978-3-031-30823-9_24

117. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Lahiri, S.K., Wang,
C. (eds.) 32nd International Conference on Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 12225, pp. 488–511. Springer (2020).
https://doi.org/10.1007/978-3-030-53291-8_26

118. Hartmanns, A., Katoen, J.P., Kohlen, B., Spel, J.: Tweaking the odds in proba-
bilistic timed automata. In: Abate, A., Marin, A. (eds.) 18th International Con-
ference on the Quantitative Evaluation of Systems (QEST). Lecture Notes in
Computer Science, vol. 12846, pp. 39–58. Springer (2021). https://doi.org/10.
1007/978-3-030-85172-9_3

119. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) 25th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). Lecture Notes in Computer Science, vol. 11427, pp. 344–350.
Springer (2019). https://doi.org/10.1007/978-3-030-17462-0_20

120. Hartmanns, A., Sedwards, S., D’Argenio, P.R.: Efficient simulation-based ver-
ification of probabilistic timed automata. In: 2017 Winter Simulation Confer-
ence (WSC). pp. 1419–1430. IEEE (2017). https://doi.org/10.1109/WSC.2017.
8247885

121. Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.J.: Method of conditional
moments (MCM) for the chemical master equation. J. Math. Biol. 69(3), 687–
735 (2013). https://doi.org/10.1007/s00285-013-0711-5

122. Heck, L., Spel, J., Junges, S., Moerman, J., Katoen, J.P.: Gradient-descent for
randomized controllers under partial observability. In: Finkbeiner, B., Wies, T.
(eds.) 23rd International Conference on Verification, Model Checking, and Ab-
stract Interpretation (VMCAI). Lecture Notes in Computer Science, vol. 13182,
pp. 127–150. Springer (2022). https://doi.org/10.1007/978-3-030-94583-1_7

123. Heidelberger, P.: Fast simulation of rare events in queueing and reliability mod-
els. In: Donatiello, L., Nelson, R.D. (eds.) Performance Evaluation of Computer
and Communication Systems – Joint Tutorial Papers of Performance ’93 and Sig-
metrics ’93. Lecture Notes in Computer Science, vol. 729, pp. 165–202. Springer
(1993). https://doi.org/10.1007/BFb0013853

124. Helfrich, M., Ceska, M., Kretínský, J., Marticek, S.: Abstraction-based segmental
simulation of chemical reaction networks. In: Petre, I., Paun, A. (eds.) 20th Inter-
national Conference on Computational Methods in Systems Biology (CMSB).
Lecture Notes in Computer Science, vol. 13447, pp. 41–60. Springer (2022).
https://doi.org/10.1007/978-3-031-15034-0_3

52 R. Andriushchenko et al.

125. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022).
https://doi.org/10.1007/s10009-021-00633-z

126. Henzinger, T.A., Mikeev, L., Mateescu, M., Wolf, V.: Hybrid numerical solution of
the chemical master equation. In: Quaglia, P. (ed.) 8th International Conference
on Computational Methods in Systems Biology (CMSB). pp. 55–65. ACM (2010).
https://doi.org/10.1145/1839764.1839772

127. Hermanns, H., Meyer-Kayser, J., Siegle, M.: Multi terminal binary decision di-
agrams to represent and analyse continuous time Markov chains. In: Plateau,
B., Stewart, W., Silva, M. (eds.) 3rd International Workshop on Numerical Solu-
tion of Markov Chains (NSMC). pp. 188–207. Prensas Universitarias de Zaragoza
(1999)

128. Holtzen, S., Junges, S., Vazquez-Chanlatte, M., Millstein, T.D., Seshia, S.A., den
Broeck, G.V.: Model checking finite-horizon Markov chains with probabilistic in-
ference. In: Silva, A., Leino, K.R.M. (eds.) 33rd International Conference on Com-
puter Aided Verification (CAV). Lecture Notes in Computer Science, vol. 12760,
pp. 577–601. Springer (2021). https://doi.org/10.1007/978-3-030-81688-9_27

129. Israelsen, B., Taylor, L., Zhang, Z.: Efficient trace generation for rare-event anal-
ysis in chemical reaction networks. In: Caltais, G., Schilling, C. (eds.) 29th In-
ternational Symposium on Model Checking Software (SPIN). Lecture Notes in
Computer Science, vol. 13872, pp. 83–102. Springer (2023). https://doi.org/10.
1007/978-3-031-32157-3_5

130. Itoh, H., Nakamura, K.: Partially observable Markov decision processes with im-
precise parameters. Artif. Intell. 171(8-9), 453–490 (2007). https://doi.org/10.
1016/j.artint.2007.03.004

131. Jackson, J.R.: Networks of waiting lines. Operations Research 5, 518–521 (1957)
132. Jansen, N., Junges, S., Katoen, J.P.: Parameter synthesis in Markov models: A

gentle survey. In: Raskin, J.F., Chatterjee, K., Doyen, L., Majumdar, R. (eds.)
Principles of Systems Design – Essays Dedicated to Thomas A. Henzinger on the
Occasion of His 60th Birthday. Lecture Notes in Computer Science, vol. 13660,
pp. 407–437. Springer (2022). https://doi.org/10.1007/978-3-031-22337-2_20

133. Jégourel, C., Legay, A., Sedwards, S.: Command-based importance sampling for
statistical model checking. Theor. Comput. Sci. 649, 1–24 (2016). https://doi.
org/10.1016/j.tcs.2016.08.009

134. Jeppson, J., Volk, M., Israelsen, B., Roberts, R., Williams, A., Buecherl, L., My-
ers, C.J., Zheng, H., Winstead, C., Zhang, Z.: STAMINA in C++: Moderniz-
ing an infinite-state probabilistic model checker. In: Jansen, N., Tribastone, M.
(eds.) 20th International Conference on the Quantitative Evaluation of Systems
(QEST). Lecture Notes in Computer Science, vol. 14287, pp. 101–109. Springer
(2023). https://doi.org/10.1007/978-3-031-43835-6_7

135. John, T., Jantsch, S., Baier, C., Klüppelholz, S.: From Emerson-Lei automata to
deterministic, limit-deterministic or good-for-MDP automata. Innov. Syst. Softw.
Eng. 18(3), 385–403 (2022). https://doi.org/10.1007/s11334-022-00445-7

136. Junges, S.: Parameter synthesis in Markov models. Ph.D. thesis, RWTH Aachen
University (2020), https://publications.rwth-aachen.de/record/783179

137. Junges, S.: sjunges/parametric-Markov-models: 0.2 (2023). https://doi.org/10.
5281/zenodo.10646479

138. Junges, S., Ábrahám, E., Hensel, C., Jansen, N., Katoen, J.P., Quatmann,
T., Volk, M.: Parameter synthesis for Markov models. CoRR abs/1903.07993
(2019). https://doi.org/10.48550/arXiv.1903.07993

Tools at the Frontiers of Quantitative Verification 53

139. Junges, S., Jansen, N., Seshia, S.A.: Enforcing almost-sure reachability in
POMDPs. In: Silva, A., Leino, K.R.M. (eds.) 33rd International Confer-
ence on Computer Aided Verification (CAV). Lecture Notes in Computer
Science, vol. 12760, pp. 602–625. Springer (2021). https://doi.org/10.1007/
978-3-030-81688-9_28

140. Junges, S., Spaan, M.T.J.: Abstraction-refinement for hierarchical probabilistic
models. In: Shoham, S., Vizel, Y. (eds.) 34th International Conference on Com-
puter Aided Verification (CAV). Lecture Notes in Computer Science, vol. 13371,
pp. 102–123. Springer (2022). https://doi.org/10.1007/978-3-031-13185-1_6

141. Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling.
National Bureau of Standards Applied Mathematics Series 12, 27–30 (1951)

142. Klauck, M., Steinmetz, M., Hoffmann, J., Hermanns, H.: Bridging the gap between
probabilistic model checking and probabilistic planning: Survey, compilations, and
empirical comparison. J. Artif. Intell. Res. 68, 247–310 (2020). https://doi.org/
10.1613/jair.1.11595

143. Kochenderfer, M.J.: Decision Making Under Uncertainty: Theory and Applica-
tion. MIT Press (2015)

144. Köhl, M.A.: QComp 2023: State space exploration artifact (2024). https://doi.
org/10.5281/zenodo.10626177

145. Köhl, M.A., Klauck, M., Hermanns, H.: Momba: JANI meets Python. In: Groote,
J.F., Larsen, K.G. (eds.) 27th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). Lecture Notes in Com-
puter Science, vol. 12652, pp. 389–398. Springer (2021). https://doi.org/10.1007/
978-3-030-72013-1_23

146. Kretínský, J.: LTL-constrained steady-state policy synthesis. In: Zhou, Z.H. (ed.)
30th International Joint Conference on Artificial Intelligence (IJCAI). pp. 4104–
4111. ijcai.org (2021). https://doi.org/10.24963/ijcai.2021/565

147. Kretínský, J., Esparza, J.: Deterministic automata for the (f, g)-fragment of LTL.
In: Madhusudan, P., Seshia, S.A. (eds.) 24th International Conference on Com-
puter Aided Verification (CAV). Lecture Notes in Computer Science, vol. 7358,
pp. 7–22. Springer (2012). https://doi.org/10.1007/978-3-642-31424-7_7

148. Kretínský, J., Meggendorfer, T.: Of cores: A partial-exploration framework for
Markov decision processes. Log. Methods Comput. Sci. 16(4) (2020). https://
doi.org/10.23638/LMCS-16(4:3)2020

149. Kretínský, J., Meggendorfer, T., Sickert, S.: LTL Store: Repository of LTL for-
mulae from literature and case studies. CoRR abs/1807.03296 (2018). https:
//doi.org/10.48550/arXiv.1807.03296

150. Kretínský, J., Meggendorfer, T., Sickert, S.: Owl: A library for ω-words, automata,
and LTL. In: Lahiri, S.K., Wang, C. (eds.) 16th International Symposium on
Automated Technology for Verification and Analysis (ATVA). Lecture Notes in
Computer Science, vol. 11138, pp. 543–550. Springer (2018). https://doi.org/10.
1007/978-3-030-01090-4_34

151. Kretínský, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: From LTL to
your favourite deterministic automaton. In: Chockler, H., Weissenbacher, G. (eds.)
30th International Conference on Computer Aided Verification (CAV). Lecture
Notes in Computer Science, vol. 10981, pp. 567–577. Springer (2018). https://doi.
org/10.1007/978-3-319-96145-3_30

152. Kretínský, J., Meggendorfer, T., Weininger, M.: Stopping criteria for value
iteration on stochastic games with quantitative objectives. In: 38th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). pp. 1–14 (2023).
https://doi.org/10.1109/LICS56636.2023.10175771

54 R. Andriushchenko et al.

153. Kretínský, J., Michel, F., Michel, L., Pérez, G.A.: Finite-memory near-optimal
learning for Markov decision processes with long-run average reward. In: Adams,
R.P., Gogate, V. (eds.) 36th Conference on Uncertainty in Artificial Intelligence
(UAI). Proceedings of Machine Learning Research, vol. 124, pp. 1149–1158. AUAI
Press (2020)

154. Kretínský, J., Ramneantu, E., Slivinskiy, A., Weininger, M.: Comparison of al-
gorithms for simple stochastic games. Inf. Comput. 289(Part), 104885 (2022).
https://doi.org/10.1016/j.ic.2022.104885

155. Kurniawati, H., Hsu, D., Lee, W.S.: SARSOP: Efficient point-based POMDP
planning by approximating optimally reachable belief spaces. In: Brock, O., Trin-
kle, J., Ramos, F. (eds.) Robotics: Science and Systems IV. The MIT Press (2008).
https://doi.org/10.15607/RSS.2008.IV.009

156. Kurose, J.F., Ross, K.W.: Computer networking – a top-down approach featuring
the Internet. Addison-Wesley-Longman (2001)

157. Kuwahara, H., Mura, I.: An efficient and exact stochastic simulation method
to analyze rare events in biochemical systems. J. Chem. Phys. 129(16) (2008).
https://doi.org/10.1063/1.2987701

158. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0:
Stochastic game verification with concurrency, equilibria and time. In: Lahiri,
S.K., Wang, C. (eds.) 32nd International Conference on Computer Aided Ver-
ification (CAV). Lecture Notes in Computer Science, vol. 12225, pp. 475–487.
Springer (2020). https://doi.org/10.1007/978-3-030-53291-8_25

159. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Automatic verification
of concurrent stochastic systems. Formal Methods Syst. Des. 58(1-2), 188–250
(2021). https://doi.org/10.1007/s10703-020-00356-y

160. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Correlated equilibria and
fairness in concurrent stochastic games. In: Fisman, D., Rosu, G. (eds.) 28th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). Lecture Notes in Computer Science, vol. 13244, pp. 60–78.
Springer (2022). https://doi.org/10.1007/978-3-030-99527-0_4

161. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: Symbolic verification and
strategy synthesis for turn-based stochastic games. In: Raskin, J.F., Chatter-
jee, K., Doyen, L., Majumdar, R. (eds.) Principles of Systems Design – Es-
says Dedicated to Thomas A. Henzinger on the Occasion of His 60th Birthday.
Lecture Notes in Computer Science, vol. 13660, pp. 388–406. Springer (2022).
https://doi.org/10.1007/978-3-031-22337-2_19

162. Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic games for verification of
probabilistic timed automata. In: Ouaknine, J., Vaandrager, F.W. (eds.) 7th Inter-
national Conference on Formal Modeling and Analysis of Timed Systems (FOR-
MATS). Lecture Notes in Computer Science, vol. 5813, pp. 212–227. Springer
(2009). https://doi.org/10.1007/978-3-642-04368-0_17

163. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) 23rd Inter-
national Conference on Computer Aided Verification (CAV). Lecture Notes in
Computer Science, vol. 6806, pp. 585–591. Springer (2011). https://doi.org/10.
1007/978-3-642-22110-1_47

164. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In: 9th
International Conference on the Quantitative Evaluation of Systems (QEST). pp.
203–204. IEEE Computer Society (2012). https://doi.org/10.1109/QEST.2012.14

Tools at the Frontiers of Quantitative Verification 55

165. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods Syst. Des.
29(1), 33–78 (2006). https://doi.org/10.1007/s10703-006-0005-2

166. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002). https://doi.org/10.1016/S0304-3975(01)00046-9

167. Kwiatkowska, M.Z., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007). https:
//doi.org/10.1016/j.ic.2007.01.004

168. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic tran-
sition systems for system design and analysis. Formal Aspects Comput. 19(1),
93–109 (2007). https://doi.org/10.1007/s00165-006-0015-2

169. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Sta-
tistical model checking. In: Steffen, B., Woeginger, G.J. (eds.) Computing and
Software Science – State of the Art and Perspectives, Lecture Notes in Com-
puter Science, vol. 10000, pp. 478–504. Springer (2019). https://doi.org/10.1007/
978-3-319-91908-9_23

170. Li, M., Turrini, A., Hahn, E.M., She, Z., Zhang, L.: Probabilistic preference plan-
ning problem for Markov decision processes. IEEE Trans. Software Eng. 48(5),
1545–1559 (2022). https://doi.org/10.1109/TSE.2020.3024215

171. Lovejoy, W.S.: Computationally feasible bounds for partially observed Markov
decision processes. Oper. Res. 39(1), 162–175 (1991). https://doi.org/10.1287/
opre.39.1.162

172. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic plan-
ning and related stochastic optimization problems. Artif. Intell. 147(1-2), 5–34
(2003). https://doi.org/10.1016/S0004-3702(02)00378-8

173. Madsen, C., Zhang, Z., Roehner, N., Winstead, C., Myers, C.J.: Stochastic model
checking of genetic circuits. ACM J. Emerg. Technol. Comput. Syst. 11(3), 23:1–
23:21 (2014). https://doi.org/10.1145/2644817

174. Major, J., Blahoudek, F., Strejcek, J., Sasaráková, M., Zboncáková, T.: ltl3tela:
LTL to small deterministic or nondeterministic Emerson-Lei automata. In: Chen,
Y.F., Cheng, C.H., Esparza, J. (eds.) 17th International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA). Lecture Notes in Com-
puter Science, vol. 11781, pp. 357–365. Springer (2019). https://doi.org/10.1007/
978-3-030-31784-3_21

175. Mannor, S., Simester, D., Sun, P., Tsitsiklis, J.N.: Bias and variance approxi-
mation in value function estimates. Manag. Sci. 53(2), 308–322 (2007). https:
//doi.org/10.1287/mnsc.1060.0614

176. Mausam, Kolobov, A.: Planning with Markov Decision Processes: An
AI Perspective. Synthesis Lectures on Artificial Intelligence and Machine
Learning, Morgan & Claypool Publishers (2012). https://doi.org/10.2200/
S00426ED1V01Y201206AIM017

177. McMillan, K.L., Zuck, L.D.: Compositional testing of Internet protocols. In: 2019
IEEE Secure Development Conference (SecDev). pp. 161–174. IEEE (2019). https:
//doi.org/10.1109/SecDev.2019.00031

178. Mediouni, B.L., Nouri, A., Bozga, M., Dellabani, M., Legay, A., Bensalem, S.: S

BIP 2.0: Statistical model checking stochastic real-time systems. In: Lahiri, S.K.,
Wang, C. (eds.) 16th International Symposium on Automated Technology for
Verification and Analysis (ATVA). Lecture Notes in Computer Science, vol. 11138,
pp. 536–542. Springer (2018). https://doi.org/10.1007/978-3-030-01090-4_33

56 R. Andriushchenko et al.

179. Meggendorfer, T.: PET – a partial exploration tool for probabilistic verifica-
tion. In: Bouajjani, A., Holík, L., Wu, Z. (eds.) 20th International Sympo-
sium on Automated Technology for Verification and Analysis (ATVA). Lec-
ture Notes in Computer Science, vol. 13505, pp. 320–326. Springer (2022).
https://doi.org/10.1007/978-3-031-19992-9_20

180. Meggendorfer, T.: QComp 2023: Stochastic games – evaluation (2023). https:
//doi.org/10.5281/zenodo.7831387

181. Müller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In: Bouyer,
P., Orlandini, A., Pietro, P.S. (eds.) 8th International Symposium on Games,
Automata, Logics and Formal Verification (GandALF). EPTCS, vol. 256, pp.
180–194 (2017). https://doi.org/10.4204/EPTCS.256.13

182. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution
of the chemical master equation. J. Chem. Phys. 124(4) (2006). https://doi.org/
10.1063/1.2145882

183. Neupane, T., Myers, C.J., Madsen, C., Zheng, H., Zhang, Z.: STAMINA: Stochas-
tic approximate model-checker for infinite-state analysis. In: Dillig, I., Tasiran,
S. (eds.) 31st International Conference on Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 11561, pp. 540–549. Springer (2019).
https://doi.org/10.1007/978-3-030-25540-4_31

184. Neupane, T., Zhang, Z., Madsen, C., Zheng, H., Myers, C.J.: Approximation
techniques for stochastic analysis of biological systems. In: Liò, P., Zuliani,
P. (eds.) Automated Reasoning for Systems Biology and Medicine, Computa-
tional Biology, vol. 30, pp. 327–348. Springer (2019). https://doi.org/10.1007/
978-3-030-17297-8_12

185. Nicola, V.F., Shahabuddin, P., Nakayama, M.K.: Techniques for fast simulation of
models of highly dependable systems. IEEE Trans. Reliab. 50(3), 246–264 (2001).
https://doi.org/10.1109/24.974122

186. Niehage, M., Hartmanns, A., Remke, A.: Learning optimal decisions for stochas-
tic hybrid systems. In: Arun-Kumar, S., Méry, D., Saha, I., Zhang, L. (eds.) 19th
ACM-IEEE International Conference on Formal Methods and Models for Sys-
tem Design (MEMOCODE). pp. 44–55. ACM (2021). https://doi.org/10.1145/
3487212.3487339

187. Nilim, A., Ghaoui, L.E.: Robust control of Markov decision processes with uncer-
tain transition matrices. Oper. Res. 53(5), 780–798 (2005). https://doi.org/10.
1287/opre.1050.0216

188. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable
probabilistic systems. Real Time Syst. 53(3), 354–402 (2017). https://doi.org/10.
1007/s11241-017-9269-4

189. Pai, G.J., Dugan, J.B.: Automatic synthesis of dynamic fault trees from UML
system models. In: 13th International Symposium on Software Reliability Engi-
neering (ISSRE). pp. 243–256. IEEE Computer Society (2002). https://doi.org/
10.1109/ISSRE.2002.1173261

190. Phalakarn, K., Takisaka, T., Haas, T., Hasuo, I.: Widest paths and global prop-
agation in bounded value iteration for stochastic games. In: Lahiri, S.K., Wang,
C. (eds.) 32nd International Conference on Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 12225, pp. 349–371. Springer (2020).
https://doi.org/10.1007/978-3-030-53291-8_19

191. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (FOCS). pp. 46–57. IEEE Computer Society (1977).
https://doi.org/10.1109/SFCS.1977.32

Tools at the Frontiers of Quantitative Verification 57

192. Pranger, S., Könighofer, B., Posch, L., Bloem, R.: TEMPEST – synthesis tool for
reactive systems and shields in probabilistic environments. In: Hou, Z., Ganesh, V.
(eds.) 19th International Symposium on Automated Technology for Verification
and Analysis (ATVA). Lecture Notes in Computer Science, vol. 12971, pp. 222–
228. Springer (2021). https://doi.org/10.1007/978-3-030-88885-5_15

193. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina,
N., Veith, H. (eds.) 25th International Conference on Computer Aided Verification
(CAV). Lecture Notes in Computer Science, vol. 8044, pp. 527–542. Springer
(2013). https://doi.org/10.1007/978-3-642-39799-8_35

194. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley (1994). https://doi.
org/10.1002/9780470316887

195. Quatmann, T.: Replication package: QComp 2023 – multi-objective analysis
(2023). https://doi.org/10.5281/zenodo.8063883

196. Quatmann, T., Junges, S., Katoen, J.P.: Markov automata with multiple objec-
tives. Formal Methods Syst. Des. 60(1), 33–86 (2022). https://doi.org/10.1007/
s10703-021-00364-6

197. Quatmann, T., Katoen, J.P.: Multi-objective optimization of long-run average and
total rewards. In: Groote, J.F., Larsen, K.G. (eds.) 27th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Lecture Notes in Computer Science, vol. 12651, pp. 230–249. Springer (2021).
https://doi.org/10.1007/978-3-030-72016-2_13

198. Reijsbergen, D., de Boer, P.T., Scheinhardt, W.R.W., Juneja, S.: Path-ZVA: Gen-
eral, efficient, and automated importance sampling for highly reliable Marko-
vian systems. ACM Trans. Model. Comput. Simul. 28(3), 22:1–22:25 (2018).
https://doi.org/10.1145/3161569

199. Roberts, R., Neupane, T., Buecherl, L., Myers, C.J., Zhang, Z.: STAMINA 2.0:
Improving scalability of infinite-state stochastic model checking. In: Finkbeiner,
B., Wies, T. (eds.) 23rd International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI). Lecture Notes in Computer
Science, vol. 13182, pp. 319–331. Springer (2022). https://doi.org/10.1007/
978-3-030-94583-1_16

200. Ruijters, E., Reijsbergen, D., de Boer, P.T., Stoelinga, M.: Rare event simulation
for dynamic fault trees. Reliab. Eng. Syst. Saf. 186, 220–231 (2019). https://doi.
org/10.1016/j.ress.2019.02.004

201. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach (4th Edition).
Pearson (2020)

202. Salmani, B., Katoen, J.P.: Fine-tuning the odds in Bayesian networks. In: Vej-
narová, J., Wilson, N. (eds.) 16th European Conference on Symbolic and Quan-
titative Approaches to Reasoning with Uncertainty (ECSQARU). Lecture Notes
in Computer Science, vol. 12897, pp. 268–283. Springer (2021). https://doi.org/
10.1007/978-3-030-86772-0_20

203. Schwartz, A.: A reinforcement learning method for maximizing undiscounted re-
wards. In: Utgoff, P.E. (ed.) 10th International Conference on Machine Learn-
ing (ICML). pp. 298–305. Morgan Kaufmann (1993). https://doi.org/10.1016/
b978-1-55860-307-3.50045-9

204. Shani, G., Pineau, J., Kaplow, R.: A survey of point-based POMDP solvers.
Auton. Agents Multi Agent Syst. 27(1), 1–51 (2013). https://doi.org/10.1007/
s10458-012-9200-2

58 R. Andriushchenko et al.

205. Sickert, S., Esparza, J., Jaax, S., Kretínský, J.: Limit-deterministic Büchi au-
tomata for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) 28th In-
ternational Conference on Computer Aided Verification (CAV). Lecture Notes in
Computer Science, vol. 9780, pp. 312–332. Springer (2016). https://doi.org/10.
1007/978-3-319-41540-6_17

206. Sickert, S., Kretínský, J.: MoChiBA: Probabilistic LTL model checking using
limit-deterministic Büchi automata. In: Artho, C., Legay, A., Peled, D. (eds.)
14th International Symposium on Automated Technology for Verification and
Analysis (ATVA). Lecture Notes in Computer Science, vol. 9938, pp. 130–137
(2016). https://doi.org/10.1007/978-3-319-46520-3_9

207. Spel, J., Junges, S., Katoen, J.P.: Are parametric Markov chains monotonic? In:
Chen, Y.F., Cheng, C.H., Esparza, J. (eds.) 17th International Symposium on
Automated Technology for Verification and Analysis (ATVA). Lecture Notes in
Computer Science, vol. 11781, pp. 479–496. Springer (2019). https://doi.org/10.
1007/978-3-030-31784-3_28

208. Spel, J., Junges, S., Katoen, J.P.: Finding provably optimal Markov chains. In:
Groote, J.F., Larsen, K.G. (eds.) 27th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes
in Computer Science, vol. 12651, pp. 173–190. Springer (2021). https://doi.org/
10.1007/978-3-030-72016-2_10

209. Suilen, M., Jansen, N., Cubuktepe, M., Topcu, U.: Robust policy synthesis for
uncertain POMDPs via convex optimization. In: Bessiere, C. (ed.) 29th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). pp. 4113–4120. ijcai.org
(2020). https://doi.org/10.24963/ijcai.2020/569

210. Suilen, M., Simão, T.D., Parker, D., Jansen, N.: Robust anytime learning of
Markov decision processes. In: NeurIPS (2022)

211. Taylor, L., Israelsen, B., Zhang, Z.: Cycle and commute: Rare-event probability
verification for chemical reaction networks. In: Nadel, A., Rozier, K.Y. (eds.)
23rd Conference on Formal Methods in Computer-Aided Design (FMCAD). pp.
284–293. TU Wien Academic Press (2023). https://doi.org/10.34727/2023/ISBN.
978-3-85448-060-0_37

212. Van Kampen, N.G.: Stochastic processes in physics and chemistry, vol. 1. Elsevier
(1992)

213. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: 1st Annual IEEE Symposium on Logic in
Computer Science (LICS). pp. 332–344. IEEE Computer Society (1986)

214. Velasquez, A., Alkhouri, I., Beckus, A., Trivedi, A., Atia, G.K.: Controller syn-
thesis for omega-regular and steady-state specifications. In: Faliszewski, P., Mas-
cardi, V., Pelachaud, C., Taylor, M.E. (eds.) 21st International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). pp. 1310–1318. Inter-
national Foundation for Autonomous Agents and Multiagent Systems (2022).
https://doi.org/10.5555/3535850.3535996

215. Villén-Altamirano, J.: RESTART vs splitting: A comparative study. Perform.
Evaluation 121-122, 38–47 (2018). https://doi.org/10.1016/j.peva.2018.02.002

216. Volk, M., Junges, S., Katoen, J.P.: Advancing dynamic fault tree analysis – get
succinct state spaces fast and synthesise failure rates. In: Skavhaug, A., Guiochet,
J., Bitsch, F. (eds.) 35th International Conference on Computer Safety, Reliability,
and Security (SAFECOMP). Lecture Notes in Computer Science, vol. 9922, pp.
253–265. Springer (2016). https://doi.org/10.1007/978-3-319-45477-1_20

Tools at the Frontiers of Quantitative Verification 59

217. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Ind. Informatics 14(1), 370–379 (2018). https:
//doi.org/10.1109/TII.2017.2710316

218. Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization.
Oper. Res. 62(6), 1358–1376 (2014). https://doi.org/10.1287/opre.2014.1314

219. Winkler, T., Junges, S., Pérez, G.A., Katoen, J.P.: On the complexity of reacha-
bility in parametric Markov decision processes. In: Fokkink, W.J., van Glabbeek,
R. (eds.) 30th International Conference on Concurrency Theory (CONCUR).
LIPIcs, vol. 140, pp. 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2019). https://doi.org/10.4230/LIPIcs.CONCUR.2019.14

220. Wolff, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain Markov de-
cision processes with temporal logic specifications. In: 51th IEEE Conference on
Decision and Control (CDC). pp. 3372–3379. IEEE (2012). https://doi.org/10.
1109/CDC.2012.6426174

221. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event sys-
tems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) 14th In-
ternational Conference on Computer Aided Verification (CAV). Lecture Notes in
Computer Science, vol. 2404, pp. 223–235. Springer (2002). https://doi.org/10.
1007/3-540-45657-0_17

222. Yu, H., Bertsekas, D.P.: Discretized approximations for POMDP with average
cost. In: Chickering, D.M., Halpern, J.Y. (eds.) 20th Conference on Uncertainty
in Artificial Intelligence (UAI). p. 519. AUAI Press (2004)

223. Zhang, J., Watson, L.T., Cao, Y.: Adaptive aggregation method for the chemical
master equation. Int. J. Comput. Biol. Drug Des. 2(2), 134–148 (2009). https:
//doi.org/10.1504/IJCBDD.2009.028825

	Tools at the Frontiers of Quantitative Verification

