
Av
00

A
v

X
a S
b D
c D

A

In
(F
eq
m
th
so
lid
rh
ph
of

1.

su
of
sim

[4
la
ad
flo
m
A 
re
by
fo
𝒙

*

ht
Re
Journal of Computational Physics 522 (2025) 113589

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

 deterministic–particle–based scheme for micro-macro 

iscoelastic flows

uelian Bao a, Chun Liu b, Yiwei Wang c,∗

chool of Mathematics, South China University of Technology, Guangzhou, Guangdong 510641, People’s Republic of China
epartment of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, United States
epartment of Mathematics, University of California, Riverside, Riverside, CA 92521, United States

 B S T R A C T

 this article, we introduce a new method for discretizing micro-macro models of dilute polymeric fluids by integrating a finite element method 
EM) discretization for the macroscopic fluid dynamics equation with a deterministic variational particle scheme for the microscopic Fokker-Planck 
uation. To address challenges arising from micro-macro coupling, we employ a discrete energetic variational approach to derive a coarse-grained 
icro-macro model with a particle approximation first and then develop a particle-FEM discretization for the coarse-grained model. The accuracy of 
e proposed method is evaluated for a Hookean dumbbell model in a Couette flow by comparing the computed velocity field with existing analytical 
lutions. We also use our method to study nonlinear FENE dumbbell models in different scenarios, such as extensional flow, pure shear flow, and 
-driven cavity flow. Numerical examples demonstrate that the proposed deterministic particle approach can accurately capture the various key 
eological phenomena in the original FENE model, including hysteresis and 𝛿-function-like spike behavior in extensional flows, velocity overshoot 
enomenon in pure shear flows, symmetries breaking, vortex center shifting, and vortices weakening in lid-driven cavity flows, with a small number 
 particles.

 Introduction

Complex fluids comprise a large class of soft materials, such as polymeric solutions, liquid crystals, ionic solutions, and fiber 
spensions. These are fluids with complicated rheological phenomena, arising from different “elastic” effects, such as the elasticity 
 deformable particles, the interaction between charged ions, and bulk elasticity endowed by polymer molecules [1]. Modeling and 
ulations of complex fluids have been interesting problems for a couple of decades [2–5].
Mathematical models of complex fluids are typically categorized as pure macroscopic models [6–8] and micro-macro models 
,9]. The pure macroscopic models employ an empirical constitutive equation for the stress tensor 𝝉 to supplement the conservation 
ws of mass and momentum [6–8]. Examples include the Oldroyd-B model [10] and the FENE-P model [11]. This approach is 
vantageous due to its low computational cost, but the closed form of the constitutive equation may fail to capture the intricate 
w behaviors of complex fluids, including hysteresis effects in polymeric fluids. Micro-macro models, on the other hand, couple the 
acroscopic conservation laws with the microscopic kinetic theory, which describes the origin of the macroscopic stress tensor [4,9]. 
typical example of a micro-macro model is the dumbbell model of a dilute polymeric fluid [4,5]. In this model, a polymer chain is 
presented by an elastic dumbbell consisting of two beads connected by a single spring. The molecular configuration is characterized 
 an end-to-end vector of the dumbbell, represented by 𝒒 ∈ℝ𝑑 . The microscopic dynamics is described by a Fokker-Planck equation 
r the number density distribution function 𝑓 (𝒙, 𝒒, 𝑡) with a drift term depending on the macroscopic velocity field 𝒖(𝒙, 𝑡). Here, 
∈Ω ⊂ℝ3 is the macroscopic position, and Ω is assumed to be a bounded domain with smooth boundary. The macroscopic motion 
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 the fluid is described by a Navier–Stokes equation with an elastic stress 𝝉 (𝒙, 𝑡) induced by the microscopic configuration of polymer 
ains. The corresponding micro-macro model is formulated as follows:

⎧⎪⎨⎪⎩
𝜌(𝒖𝑡 + 𝒖 ⋅∇𝒖) + ∇𝑝 = 𝜂𝑠Δ𝒖+∇ ⋅ 𝝉 , 𝝉 = 𝜆𝑝𝔼𝑓 (∇𝒒Ψ⊗ 𝒒) = 𝜆𝑝 ∫ℝ𝑑 𝑓∇𝒒Ψ⊗ 𝒒d𝒒,
∇ ⋅ 𝒖 = 0,
𝑓𝑡 + 𝒖 ⋅∇𝑓 +∇𝒒 ⋅ ((∇𝒖)𝒒𝑓 ) =

2
𝜁
∇𝒒 ⋅ (𝑓∇𝒒Ψ) +

2𝑘𝐵𝑇
𝜁

Δ𝒒𝑓 ,

(1)

bject to a suitable boundary condition on 𝒖 and 𝑓 . Throughout this paper, ∇ with no indices denotes the derivatives with respect 
 the macroscopic variable 𝒙 and ∇𝒒 denotes the derivatives with respect to the microscopic variable 𝒒. Here, 𝜌 > 0 is the constant 
nsity of the fluid, 𝜆𝑝 > 0 is a constant that represents the polymer density, 𝑘𝐵 is the Boltzmann constant, 𝑇 is the absolute tem-
rature, 𝜂𝑠 > 0 is the solvent viscosity, 𝜁 > 0 is a constant related to the polymer relaxation time, and Ψ(𝒒) is the spring potential. 
pical choices of the elastic potential Ψ(𝒒) include

Ψ(𝒒) = 1
2
𝐻|𝒒|2, and Ψ(𝒒) =

⎧⎪⎨⎪⎩
−
𝐻𝑄2

0
2 ln

(
1 −
( |𝒒|
𝑄0

)2)
, |𝒒| <𝑄0,

+∞, |𝒒| ≥𝑄0,

(2)

own as Hookean and FENE (Finite Extensible Nonlinear Elastic) potentials. Here, 𝐻 > 0 is the elastic constant, and 𝑄0 is the 
aximum dumbbell extension in FENE models. The interactions among polymer chains are neglected due to the dilute assumption. 
ternatively, the microscopic dynamics can be described by a stochastic differential equation (SDE), or a Langevin equation, given 
 [4]

d𝒒(𝒙, 𝑡) =
(
−𝒖 ⋅∇𝒒(𝒙, 𝑡) + (∇𝒖)𝒒(𝒙, 𝑡) − 2𝜁−1∇𝑞Ψ(𝒒(𝒙, 𝑡))

)
d𝑡+

√
4𝑘𝐵𝑇 𝜁−1d𝐖𝑡, (3)

here d𝐖𝑡 is the standard multidimensional white noise. One of the important properties of the model (1) is that the solution satisfies 
e following energy-dissipation law (see section 2 for details):

d
d𝑡 ∫

Ω

(
1
2
𝜌|𝒖|2 + 𝜆𝑝 ∫

ℝ𝑑

𝑘𝐵𝑇𝑓 ln𝑓 +Ψ𝑓d𝒒
)
d𝒙 = −∫

Ω

(
𝜂𝑠|∇𝒖|2 + ∫

ℝ𝑑

𝜆𝑝𝜁

2
𝑓 |∇(𝑘𝐵𝑇 ln𝑓 +Ψ)|2d𝒒)d𝒙 . (4)

e energy-dissipation law plays a crucial role in understanding the underlying physics of the micro-macro model [12], as well as in 
tablishing the well-posedness of the model [13].
Although micro-macro type models give an elegant description of the origin of the macroscopic stress tensor for various com-
ex fluids [4,9,13], directly simulating micro-macro models has been a long-standing challenge. Various computational techniques 
ve been developed to solve the micro-macro model (1) [14–19]. The two main approaches are Langevin-equation-based stochas-
 simulation methods and direct simulation methods based on the microscopic Fokker-Planck equation [18]. One of the earliest 
ngevin-equation-based numerical methods is the CONNFFESSIT (Calculation of Non-Newtonian Flow: Finite Elements and Stochas-
 Simulation Technique) algorithm, which couples a finite element discretization to the macroscopic flow with a numerical solver 
r the microscopic SDE (3) [17,19]. Along this direction, other stochastic approaches, such as the Lagrangian particle method (LPM) 
5] and the Brownian configuration field (BCF) method [16], were proposed to reduce the variance and computational cost of the 
iginal CONNFFESSIT algorithm. Several extensions and corresponding numerical experiments have been extensively investigated 
 recent years [4,20–25]. Although stochastic approaches have been the dominant simulation methods for micro-macro models, 
ey suffer from several shortcomings, including high computational costs and stochastic fluctuations. An alternative approach is 
 simulate the Fokker-Planck equation in the configuration space directly. Examples include Galerkin spectral element technique 
6–30] and the lattice Boltzmann technique [31,32]. However, such methods are well suited only for polymeric models having 
w-dimensional configuration spaces, and the computational cost of Fokker–Planck–based methods increases rapidly for simulations 
 strong flows (with highly localized distribution function) or involving high-dimensional configuration spaces [18].
In the context of solving Fokker–Planck type equations, deterministic particle methods have recently gained considerable attention 
3–37]. These methods handle the diffusion terms in the equation by using various kernel regularizations [36,34,35,33]. Unlike 
ngevin dynamics-based stochastic particle methods, deterministic particle methods often require less number of particles and do 
t suffer from stochastic fluctuations. The success of deterministic particle methods in solving Fokker–Planck equations has motivated 
 to develop an efficient numerical method for micro-macro models by incorporating a deterministic particle method. However, the 
icro-macro coupling in these models presents new challenges that need to be addressed.
The goal of this paper is to develop an efficient numerical method for micro-macro models by utilizing a deterministic particle 
ethod for solving the microscopic Fokker-Planck equation. To overcome these difficulties arising from the micro-macro coupling, 
e construct a numerical discretiztaion based on the variational formulation of the model. More precisely, we apply a deterministic 
rticle approximation at the energy-dissipation law (4) level and employ an energetic variational approach [38] to derive a coarse-
ained micro-macro model with a particle approximation first. A particle-FEM discretization is developed for the coarse-grained 
odel. Various numerical experiments have been performed to validate the new scheme via several benchmark problems. Despite its 
plicity, the deterministic particle method is robust, accurate, and capable of catching various rheological behaviors of polymeric 
2

ids. The numerical results obtained by our scheme are in agreement with those from the former work [17,39,25,40,41]. More-
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er, deterministic particle discretization is often more efficient than most stochastic particle methods, where a large ensemble of 
alizations of the stochastic process and a small temporal step size are needed.
The rest of this article is organized as follows. In section 2, we present the basic energy-dissipation law associated with the micro-
acro model (1) and show that the continuous model can be derived from the energy-dissipation law using an energetic variational 
proach. In section 3, we employ the energetic variational approach to derive a coarse-grained particle-based micro-macro model 
 applying particle approximation at the energy-dissipation law level, and we construct a deterministic particle-FEM scheme for 
e coarse-grained model. Various numerical experiments are presented in Section 4. Finally, the concluding remarks are given in 
ction 5.

 Preliminary

In this section, we briefly introduce the energetic variational approach (EnVarA). Motivated by non-equilibrium thermodynamics, 
rticularly the celebrated works of Rayleigh [42] and Onsager [43,44], the EnVarA has been successfully applied to build various 
athematical models in physics, chemical engineering, and biology [12,45]. It also serves as a valuable guideline for developing 
ucture-preserving numerical schemes for these systems [38].
The key idea of EnVarA is to describe an isothermal and mechanically isolated system by its energy and the rate of energy 
ssipation over time, along with kinematic (transport) assumptions on the employed variables. The dynamics of the system, i.e., the 
fferential equation model, can be derived by combining the Least Action Principle (LAP) and the Maximum Dissipation Principle 
DP) [12]. More precisely, according to the first and second laws of thermodynamics [12,46], an isothermal and closed system 
ssesses an energy-dissipation law

d
d𝑡
𝐸total(𝑡) = −△ (𝑡) ≤ 0 . (5)

re, 𝐸total is the total energy, which is the sum of the Helmholtz free energy  and the kinetic energy ; △(𝑡) ≥ 0 stands for the rate 
 energy dissipation, which equals to the rate of entropy production in this case. Once these quantities are specified, for the energy 
rt, one can employ the LAP, taking variation of the action functional (𝒙) = ∫ 𝑇0 (− ) d𝑡 with respect to 𝒙 (the trajectory in 
grangian coordinates) [12,47], to derive the conservative force, i.e., 𝛿 = ∫ 𝑇0 ∫Ω(forceiner−forceconv) ⋅ 𝛿𝒙 d𝒙d𝑡. For the dissipation 
rt, one can apply the MDP, taking the variation of the Onsager dissipation functional  with respect to the “rate” 𝒙𝑡, to derive 
e dissipative force, i.e., 𝛿 = ∫Ω forcediss ⋅ 𝛿𝒙𝑡 d𝒙, where the dissipation functional  = 1

2△ in the linear response regime [43]. 
nsequently, the force balance condition results in

𝛿
𝛿𝒙

= 𝛿
𝛿𝒙𝑡

, (6)

hich is the dynamics of the system. In the case that  = 0, 𝛿
𝛿𝒙

= − 𝛿
𝛿𝒙
, then the dynamics can be written as 𝛿

𝛿𝒙𝑡
= − 𝛿

𝛿𝒙
, which is a 

neralized gradient flow. It is important to notice that the force balance equation (6) uses the strong form of the variational result, as 
e test functions may be in different spaces in the original variational weak form [12]. From a modeling perspective, one advantage 
 utilizing an energy-dissipation law to model a complex system, rather than equations, is that it allows for the systematic inclusion 
 multiscale and multiphysics coupling and competition.

1. EnVarA for a simple fluid

To illustrate the idea of EnVarA, we first consider a simple incompressible fluid, which is usually described by an incompressible 
vier–Stokes equation

⎧⎪⎨⎪⎩
𝜌(𝒖𝑡 + 𝒖 ⋅∇𝒖) + ∇𝑝 = 𝜂Δ𝒖,
∇ ⋅ 𝒖 = 0,
𝜌𝑡 +∇ ⋅ (𝜌𝒖) = 0 ,

(7)

ith a boundary condition 𝒖 = 0 and initial conditions. Here, 𝒖 is the fluid velocity, 𝒖 ⋅∇𝒖 =
∑3
𝑗=1 𝑢𝑗𝜕𝑗𝑢𝑖, 𝜌 is the fluid density, 𝜂 > 0

the viscosity, and 𝑝 is the hydrodynamic pressure. Multiplying the first equation of (7) by 𝒖 and using the integration by parts, one 
n show 𝒖 satisfies the following energy-dissipation law

d
d𝑡 ∫

Ω

1
2
𝜌|𝒖|2d𝒙 = −∫

Ω

𝜂|∇𝒖|2d𝒙 , (8)

here |∇𝒖| is the Frobenius norm for matrix ∇𝒖. Here, the kinetic energy , the free energy  and the Onsager dissipation function 
are given by

 = 𝜌|𝒖|2d𝒙,  = 0,  = 1
𝜂|∇𝒖|2d𝒙 . (9)
3

∫
Ω

∫
Ω

2
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The goal of EnVarA is to derive the equation of 𝒖, i.e., the momentum equation in (7), from the energy-dissipation law (8), using 
e LAP and MDP. To apply the LAP and MDP, one needs to introduce a Lagrangian description of the system by defining the flow 
ap associated with the velocity field 𝒖(𝒙, 𝑡) through an ordinary differential equation:

d
d𝑡
𝒙(𝐗, 𝑡) = 𝒖(𝒙(𝐗, 𝑡), 𝑡), 𝒙(𝐗,0) =𝐗, (10)

here 𝐗 ∈Ω0 is the Lagrangian coordinates, and Ω0 is the reference domain. For fixed 𝐗, 𝒙(𝐗, 𝑡) describes the trajectory of a particle 
itially located at 𝐗. For fixed 𝑡, 𝒙(𝐗, 𝑡) is a diffeomorphism between a reference domain Ω0 to the current domain Ω𝑡. In the current 
se, we have Ω𝑡 = Ω. It is convenient to define the deformation tensor associated with the flow map 𝒙(𝐗, 𝑡) in both Eulerian and 
grangian coordinates by

𝖥̃(𝒙(𝐗, 𝑡), 𝑡) = 𝖥(𝐗, 𝑡) = ∇𝐗𝒙(𝐗, 𝑡) , (11)

 the deformation tensor 𝖥(𝐗, 𝑡) carries all the transport information of employed variables [48]. Here, the notation (∇𝐗𝒙(𝐗, 𝑡))𝑖𝑗 =
𝑖

𝑗
is used. Applying the chain rule, one can show that in Eulerian coordinates, the deformation tensor 𝖥̃(𝒙, 𝑡) satisfies the transport 

uation [13]

𝖥̃𝑡 + 𝒖 ⋅∇𝖥̃ = (∇𝒖)𝖥̃ , (12)

here (∇𝒖)𝑖𝑗 = 𝑢𝑖,𝑗 =
𝜕𝑢𝑖
𝜕𝑥𝑗
. For the incompressible fluid, we have

𝜌(𝒙(𝐗, 𝑡), 𝑡) = 𝜌0(𝐗), det 𝖥(𝐗, 𝑡) = 1, (13)

here 𝜌0(𝐗) is the initial density. Hence, the action [𝒙] can be written as

[𝒙(𝐗, 𝑡)] =
𝑇

∫
0

−d𝑡 =

𝑇

∫
0

∫
Ω0

𝜌0(𝐗)|𝒙𝑡(𝐗, 𝑡)|2d𝐗d𝑡 (14)

 Lagrangian coordinates, which is a functional of the flow map 𝒙(𝐗, 𝑡). To compute the variation [𝒙] with respect to 𝒙(𝐗, 𝑡), we 
nsider a perturbation 𝒙𝜖(𝐗, 𝑡) = 𝒙(𝐗, 𝑡) + 𝜖𝒚(𝐗, 𝑡), where 𝒚(𝐗, 𝑡) = 𝒚̃(𝒙(𝐗, 𝑡), 𝑡) is the perturbation satisfying 𝒚̃ ⋅ 𝐧 = 0 with 𝐧 being 
e outer normal of Ω. By direct computation, we have

d
d𝜖
|||𝜖=0[𝒙𝜖] =

𝑇

∫
0

∫
Ω0

𝜌0(𝐗)𝑥𝑡(𝐗, 𝑡) ⋅ 𝒚𝑡(𝐗, 𝑡) d𝐗d𝑡 =
𝑇

∫
0

∫
Ω0

−𝜌0(𝐗)𝑥𝑡𝑡(𝐗, 𝑡) ⋅ 𝒚(𝐗, 𝑡) d𝐗d𝑡, (15)

here the second identity follows the integration by parts. Pushing forward to Eulerian coordinates, we have

d
d𝜖
|||𝜖=0[𝒙𝜖] =

𝑇

∫
0

∫
Ω

−𝜌(𝒖𝑡 + 𝒖 ⋅∇𝒖) ⋅ 𝒚̃ d𝒙d𝑡 , (16)

hich indicates

𝛿
𝛿𝒙

= −𝜌(𝒖𝑡 + 𝒖 ⋅∇𝒖) (17)

 Eulerian coordinates. For the dissipation part, we apply the MDP by considering a perturbation 𝒖𝜖(𝒙, 𝑡) = 𝒖(𝒙, 𝑡) + 𝜖𝒗(𝒙, 𝑡). A direct 
mputation shows that

d
d𝜖
|||𝜖=0 ⎛⎜⎜⎝∫Ω 𝜂|∇𝒖𝜖|2 − 𝑝(∇ ⋅ 𝒖𝜖)d𝒙

⎞⎟⎟⎠ = ∫
Ω

(−𝜂Δ𝑢+∇𝑝) ⋅ 𝒗d𝒙 , (18)

hich indicates

𝛿
𝛿𝒙𝑡

= 𝛿
𝛿𝒖

= −𝜂Δ𝑢+∇𝑝 . (19)

re, 𝑝 is the Lagrangian multiplier for the incompressible condition ∇ ⋅ 𝒖 = 0. Recall the force balance condition (6), we obtain the 
omentum equation in the incompressible Navier-Stokes equation (7) by combining (17) and (19).

2. EnVarA for the micro-macro model

As mentioned in the introduction, the well-used micro-macro model (1) employs an energy-dissipation law (4). More precisely, 
4

 a direct calculation, we can show the following result:
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oposition 2.1. Suppose that (𝒖(𝒙, 𝑡), 𝑓 (𝒙, 𝒒, 𝑡)) is a smooth solution of (1) and satisfies the boundary conditions

𝒖(𝒙, 𝑡) = 0, 𝑓 (𝒙,𝒒, 𝑡) = 0, 𝒙 ∈ 𝜕Ω, lim‖𝒒‖→∞
𝑓 (𝒙,𝒒, 𝑡) = 0,

en (𝒖(𝒙, 𝑡), 𝑓 (𝒙, 𝒒, 𝑡)) satisfies the following energy-dissipation law

d
d𝑡 ∫

Ω

(
1
2
𝜌|𝒖|2 + 𝜆𝑝 ∫

ℝ𝑑

𝑘𝐵𝑇𝑓 ln𝑓 +Ψ𝑓d𝒒
)
d𝒙 = −∫

Ω

(
𝜂𝑠|∇𝒖|2 + ∫

ℝ𝑑

𝜆𝑝𝜁

2
𝑓 |𝐕− (∇𝒖)𝒒|2d𝒒)d𝒙 , (20)

ere

𝐕(𝒙,𝒒, 𝑡) = (∇𝒖𝒒) − 2
𝜁
∇𝒒Ψ−

2𝑘𝐵𝑇
𝜁

∇𝒒(ln𝑓 ) (21)

the microscopic velocity associated with the microscopic Fokker-Planck equation in (1).

oof. We multiply the first equation of (1) by 𝒖 and integrate with respect to 𝒙 over domain Ω. Using integration by parts and the 
ct that 𝒖 is divergence-free, we have

d
d𝑡 ∫

Ω

1
2
𝜌|𝒖|2d𝒙 = −∫

Ω

𝜂𝑠|∇𝒖|2d𝒙− ∫
Ω

𝝉 ∶ ∇𝒖d𝒙 , (22)

here 𝐴 ∶𝐵 =
∑
𝑖,𝑗 𝐴𝑖𝑗𝐵𝑖𝑗 . Next, we multiply the third equation of (1) by 𝑘𝐵𝑇 ln𝑓 +Ψ and integrate with respect to both 𝒒 over ℝ𝑑

d 𝒙 over Ω. Again, using integration by parts and the fact that 𝒖 is divergence-free, we can obtain

d
d𝑡 ∫

Ω
∫
ℝ𝑑

𝑘𝐵𝑇𝑓 ln𝑓 + 𝑓Ψ d𝒒d𝒙 = −∫
Ω

∫
ℝ𝑑

2
𝜁
𝑓 |∇𝒒(𝑘𝐵𝑇 ln𝑓 +Ψ)|2 + 𝑓 (∇𝒒Ψ⊗ 𝒒) ∶ ∇𝒖 d𝒒d𝒙. (23)

deed, due to ∇ ⋅ 𝒖 = 0 and ∇Ψ(𝒒) = 0 (as Ψ doesn’t depend on 𝒙), we have

∫
Ω

∫
ℝ𝑑

(𝒖 ⋅∇𝑓 )(𝑘𝐵𝑇 ln𝑓 +Ψ)d𝒒d𝒙 = ∫
Ω

∫
ℝ𝑑

−(∇ ⋅ 𝒖)(𝑘𝐵𝑇𝑓 ln𝑓 + 𝑓Ψ) − 𝑘𝐵𝑇𝒖 ⋅∇𝑓d𝒒d𝒙 = ∫
Ω

∫
ℝ𝑑

𝑘𝐵𝑇𝑓 (∇ ⋅ 𝒖)d𝒒d𝒙 = 0 (24)

d

∫
Ω

∫
ℝ𝑑

∇𝒒 ⋅ ((∇𝒖)𝒒𝑓 )(𝐾𝐵𝑇 ln𝑓 )d𝒒d𝒙 = ∫
Ω

∫
ℝ𝑑

−𝑘𝐵𝑇 ((∇𝒖)𝒒) ⋅∇𝑞𝑓d𝒒d𝒙

= ∫
Ω

∫
ℝ𝑑

𝑘𝐵𝑇∇𝒒 ⋅ ((∇𝒖)𝒒)𝑓d𝒒d𝒙 = ∫
Ω

∫
ℝ𝑑

𝑘𝐵𝑇 (∇ ⋅ 𝒖)𝑓d𝒒d𝒙 = 0.
(25)

Recall the definition of the microscopic velocity (21), the first term on the right-hand side of (23) can be written as

2
𝜁
𝑓 |∇𝒒(𝑘𝐵𝑇 ln𝑓 +Ψ)|2 = 𝜁

2
𝑓 |𝑽 − (∇𝒖)𝒒|2. (26)

ultiplying (23) by 𝜆𝑝 and adding it to (22), we obtain the energy-dissipation law (20). □

In what follows, we show that the micro-macro model (1) can be derived from the energy-dissipation law (20) along with the 
nematics of the number density distribution function 𝑓 (𝒙, 𝒒, 𝑡):

𝜕𝑡𝑓 +∇ ⋅ (𝑓𝒖) + ∇𝒒 ⋅ (𝑓𝑽 ) = 0 , (27)

ing the EnVarA. Here, 𝒖(𝒙, 𝑡) is the macroscopic velocity, and 𝑽 (𝒙, 𝒒, 𝑡) is microscopic velocity in the configuration space. The goal 
to derive the equation of 𝒖(𝒙, 𝑡) and 𝑽 (𝒙, 𝒒, 𝑡) from (20) by combining LAP and MDP.
We first look at the microscopic dynamics at the configuration space for any given 𝒙, which is described by the microscopic 
ergy-dissipation law

d
d𝑡
micro = −2micro, micro = ∫

ℝ𝑑

𝑘𝐵𝑇𝑓 ln𝑓 +Ψ𝑓d𝒒, micro = 1
2 ∫
ℝ𝑑

𝜁

2
𝑓 |𝑽 − (∇𝒖)𝒒|2d𝒒. (28)

 the case that 𝒖 = 0, the microscopic energy-dissipation law (28) at each 𝒙 corresponds to the energy-dissipation law of a linear 
kker–Planck equation [49]. Similar to (10), we can define a flow map in the configuration space, 𝒒(𝒙, 𝑸, 𝑡) ∶ℝ𝑑 →ℝ𝑑 , associated 
ith the microscopic velocity 𝑽 (𝒙, 𝒒, 𝑡), for any given 𝒙, as follows
5

d
d𝑡
𝒒(𝒙,𝑸, 𝑡) = 𝑽 (𝒙,𝒒(𝒙,𝑸, 𝑡), 𝑡), 𝒒(𝒙,𝑸,0) =𝑸, ∀𝒙. (29)
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e refer to 𝒒(𝒙, 𝑸, 𝑡) as the microscopic flow map, to distinguish it from the macroscopic flow map 𝒙(𝐗, 𝑡). The microscopic dissipation 
n be interpreted as the relative friction between the microscopic velocity 𝑽 and the macroscopic induced velocity 𝐕̃(𝒙, 𝒒, 𝑡) = (∇𝒖)𝒒. 
e macroscopic induced velocity is derived by assuming the effects of macroscopic flow on the microscopic configuration include 
e linear transport of the center of mass and the stretching of the polymer chain, i.e., 𝒒(𝒙, 𝑸, 𝑡) = 𝖥̃(𝒙, 𝑡)𝑸 [13], which indicates that

𝐕̃(𝒙,𝒒, 𝑡) = d
d𝑡

(
𝖥̃𝑸

)
=
(

d
d𝑡
𝖥̃

)
𝑸 = (𝖥̃𝑡 + 𝒖 ⋅∇𝖥̃)𝑸 = (∇𝒖)𝖥̃𝑸 = (∇𝒖)𝒒 ,

here the transport equation of the deformation tensor (12) is used. The relation 𝒒(𝒙, 𝑸, 𝑡) = 𝖥̃(𝒙, 𝑡)𝑸 is the same as the Cauchy–Born 
le in solid mechanics that relates the macroscopic deformation of crystals to changes in lattice vectors [50].
To derive the microscopic dynamics, one can apply the EnVarA to the microscopic energy-dissipation law (28). Since the micro-
opic dynamics is a gradient flow with mirco = 0, we only need to compute the variation of the microscopic free energy

micro[𝒒(𝒙,𝑸, 𝑡)] = ∫
ℝ𝑑

𝑘𝐵𝑇𝑓0 ln
(

𝑓0(𝒙,𝑸)
det𝐺(𝒙,𝑸, 𝑡)

)
+Ψ(𝒒)𝑓0(𝒙,𝑸)d𝑸, (30)

ith respect to the microscopic flow map 𝒒(𝒙, 𝑸, 𝑡). Here, 𝑓0(𝒙, 𝑸) is the initial density and 𝐺(𝒙, 𝑸, 𝑡) =∇𝑸𝒒(𝒙, 𝑸, 𝑡) is the microscopic 
formation tensor. Similar to Eqs. (16) and (17), we take the variation of Eq. (30) with respect to 𝒒 in the microscopic Lagrangian 
ordinates, and push forward to microscopic Eulerian coordinates, we have

𝛿micro[𝒒]
𝛿𝒒

= 𝑓∇𝒒(𝑘𝐵𝑇 ln𝑓 +Ψ) . (31)

r the dissipation part, by taking variation of

micro = 1
2 ∫
ℝ𝑑

𝜁

2
𝑓 |𝑽 − (∇𝒖)𝒒|2d𝒒,

e have 𝛿micro

𝛿𝑽
= 𝜁

2 (𝐕 −∇𝒖𝒒). By the force balance condition (6), we obtain

𝜁

2
𝑓 (𝐕−∇𝒖𝒒) = −𝑓∇𝒒(𝑘𝐵𝑇 ln𝑓 +Ψ). (32)

mbining Eq. (32) with Eq. (27), we get the equation on the microscopic scale:

𝑓𝑡 +∇ ⋅ (𝑓𝒖) + ∇𝒒 ⋅ (∇𝒖𝒒𝑓 ) =
2
𝜁
∇𝒒 ⋅ (𝑓∇𝒒Ψ) +

2𝑘𝐵𝑇
𝜁

Δ𝒒𝑓. (33)

mark 2.1. The above derivation is based on the Lagrangian description of microscopic dynamics in the configuration space. 
ternatively, the microscopic dynamics can be interpreted as a Wasserstein type gradient flow [51] corresponding to the microscopic 
e energy in Eulerian coordinates, i.e.,

𝑓𝑡 +∇ ⋅ (𝑓𝒖) + ∇𝒒 ⋅ (∇𝒖𝒒𝑓 ) =
2
𝜁
∇𝒒 ⋅ (𝑓∇𝒒

𝛿micro

𝛿𝑓
), (34)

here micro is the microscopic free energy defined in (28), and

𝛿micro

𝛿𝑓
= 𝑘𝐵𝑇 (ln𝑓 + 1) +Ψ (35)

the variation of micro with respect to the number distribution function 𝑓 (𝒙, 𝒒, 𝑡).

The variation procedure on the macroscopic scale is similar to that in the simple fluid. To account for the “separation of scale”, 
e should treat 𝒒 and 𝑽 as being independent from 𝒙(𝐗, 𝑡) when deriving the macroscopic force balance. The micro-macro coupling 
taken into account by the dissipation term |𝑽 − (∇𝒖)𝒒|2. Hence, the action functional is defined by

(𝑥) =

𝑇

∫
0

∫
Ω

⎡⎢⎢⎣12𝜌|𝒖|2 − 𝜆𝑝 ∫ℝ3

(𝑘𝐵𝑇𝑓 (ln𝑓 − 1) +Ψ(𝒒)𝑓 )d𝒒
⎤⎥⎥⎦d𝒙d𝑡, (36)

d the LAP (taking variation of (𝒙) with respect to 𝒙) gives rise to

𝛿
𝛿𝒙

= −𝜌𝒙𝑡𝑡 = −𝜌(𝒖𝑡 + 𝒖 ⋅∇𝒖). (37)

eanwhile, for the dissipation part, since  = 1
2 ∫Ω 𝜂𝑠|∇𝒖|2 +micro d𝒙, the MDP results in

𝛿 𝜆𝑝𝜁
6

𝛿𝒙𝑡
= −𝜂𝑠Δ𝒖+ 2

∇ ⋅ ∫ 𝑓 (𝑽 −∇𝒖𝒒)⊗ 𝒒d𝒒 , (38)
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here, ⊗ denotes a tensor product and 𝒖⊗𝐯 is a matrix (𝑢𝑖𝑣𝑗 ) for two vectors 𝒖 and 𝐯. Hence, the force balance results in the equation 
 the macroscopic scale:

𝜌(𝒖𝑡 + 𝒖 ⋅∇𝒖) + ∇𝑝 = 𝜂𝑠Δ𝒖+∇ ⋅ 𝝉 , (39)

here 𝑝 is the Lagrangian multiplier of the incompressible condition, and 𝝉 is the induced elastic stress tensor, given by

𝝉 =
𝜆𝑝𝜁

2 ∫ −𝑓 (𝑽 −∇𝒖𝒒)⊗ 𝒒d𝒒 = 𝜆𝑝 ∫ 𝑓 (∇𝒒(𝑘𝐵𝑇 ln𝑓 +Ψ))⊗ 𝒒d𝒒

= 𝜆𝑝 ∫ 𝑘𝐵𝑇∇𝒒𝑓 ⊗ 𝒒 + 𝑓∇𝒒Ψ⊗ 𝒒d𝒒 = 𝜆𝑝 ∫ −𝑘𝐵𝑇𝑓 𝐈+ 𝑓∇𝒒Ψ⊗ 𝒒d𝒒

= 𝜆𝑝
⎛⎜⎜⎝∫ℝ𝑑 𝑓∇𝒒Ψ⊗ 𝒒d𝒒 − 𝑘𝐵𝑇 𝑛𝐈

⎞⎟⎟⎠ .
(40)

e expression (40) is known as the Kramers form of the stress tensor [19]. Since −𝑘𝐵𝑇 𝑛𝐈 is a diagonal matrix, it can contribute to 
e pressure term, so that it is convenient to drop it as in (1) [19].

mark 2.2. The induced stress 𝝉 can be written as

𝝉 = 𝜆𝑝 ∫ 𝑓 (∇𝒒(𝑘𝐵𝑇 ln𝑓 +Ψ))⊗ 𝒒d𝒒 = 𝜆𝑝𝔼𝑓 ((𝑘𝐵𝑇∇𝒒 ln𝑓 +∇𝒒Ψ)⊗ 𝒒) , (41)

hich can be interpreted as the Irving–Kirkwood formula [52]. Here, 𝑘𝐵𝑇∇𝒒 ln𝑓 can be viewed as an entropic force or Brownian 
rce [53]. In the case of incompressible flow, this term will contribute to the pressure, as shown in (40).

mark 2.3. In the above derivation, the induced stress tensor is derived from the dissipation part in the energy-dissipation law. 
ternatively, one should consider the microscopic configuration to be transported with the flow in the macro-scale, which indicates 
at 𝒒 = 𝖥𝑸 and 𝐕 = 𝐕̃ = (∇𝒖)𝒒 when performing EnVarA on the macro-scale. Hence, the action functional [𝒙] can be written as

[𝒙] =

𝑇

∫
0

∫
Ω0

[
1
2
𝜌|𝒙𝑡|2 − 𝜆𝑝 ∫

ℝ𝑑

𝑘𝐵𝑇𝑓0 ln𝑓0 + Ψ(𝖥𝑸)𝑓0d𝑸
]
d𝐗d𝑡 (42)

 Lagrangian coordinates. Here, 𝑓0(𝐗, 𝑸) is the initial number distribution function. Consider a perturbation 𝒙𝜖(𝐗, 𝑡) = 𝒙(𝐗, 𝑡) +
(𝐗, 𝑡), where 𝒚(𝐗, 𝑡) = 𝒚̃(𝒙(𝐗, 𝑡), 𝑡) is the perturbation satisfying 𝒚̃ ⋅ 𝐧 = 0 with 𝐧 being the outer normal of Ω. Then

d
d𝜖

(𝒙𝜖)|||𝜖=0 =
𝑇

∫
0

∫
Ω0

[
−𝜌𝒙𝑡𝑡 ⋅ 𝒚 − 𝜆𝑝 ∫

ℝ𝑑

𝑓0∇𝒒Ψ⊗𝑸 ∶ ∇𝐗𝒚d𝑸
]
d𝐗d𝑡.

shing forward to Eulerian coordinates, we have

d
d𝜖

(𝒙𝜖)|||𝜖=0 =
𝑇

∫
0

∫
Ω

[
−𝜌(𝒖𝑡 + 𝒖 ⋅∇𝒖) ⋅ 𝒚̃ − 𝜆𝑝 ∫

ℝ𝑑

𝑓∇𝒒Ψ⊗ 𝒒 ∶ ∇𝒙𝒚̃)d𝒒
]
d𝒙d𝑡

=

𝑇

∫
0

∫
Ω

⎛⎜⎜⎝−𝜌(𝒖𝑡 + 𝒖 ⋅∇𝒖) + 𝜆𝑝∇ ⋅ (∫
ℝ𝑑

𝑓∇𝒒Ψ⊗ 𝒒d𝒒)
⎞⎟⎟⎠ ⋅ 𝒚̃d𝒙d𝑡 .

nce, the LAP leads to

𝛿
𝛿𝒙

= −𝜌(𝒖𝑡 + 𝒖 ⋅∇𝒖) + 𝜆𝑝∇ ⋅
(
∫
ℝ𝑑

𝑓∇𝒒Ψ⊗ 𝒒d𝒒
)

(43)

 Eulerian coordinates. For the dissipation part, due to the “separation of scale”, the second term in the dissipation in (20) vanishes as 
= 𝑽̃ for the macroscopic dynamics. Hence, same to (19), we have 𝛿

𝛿𝒙𝑡
= −𝜂𝑠Δ𝒖+∇𝑝 by employing MDP. Here, 𝑝 is the Lagrangian 

ultiplier for the incompressible condition ∇ ⋅ 𝒖 = 0.

3. Nondimensionalization of the micro-macro model

It is convenient to nondimensionalize the micro-macro model by introducing the following nondimensionalized parameters:

𝜌𝑈̃𝐿̃ 𝜆𝑈̃ 𝜂𝑠 𝜂𝑝 𝜁
7

Re =
𝜂
, Wi =

𝐿̃
, 𝜂̃𝑠 = 𝜂

, 𝜖𝑝 = 𝜂
, 𝜆 =

4𝐻
,
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here 𝐿̃ =
√

𝑘𝐵𝑇

𝐻
is the characteristic length scale, 𝑈̃ is the characteristic velocity, 𝜂𝑝 = 𝜆𝑝𝑘𝐵𝑇𝜆 is related to the polymer viscosity, 

is the total fluid viscosity and 𝜂 = 𝜂𝑠 + 𝜂𝑝. The final nondimensionalized system reads as follows,

⎧⎪⎪⎨⎪⎪⎩
Re(𝒖𝑡 + 𝒖 ⋅∇𝒖) + ∇𝑝 = 𝜂̃𝑠Δ𝒖+∇ ⋅ 𝝉 , 𝝉 =

𝜖𝑝

Wi ∫ 𝑓∇𝒒Ψ⊗ 𝒒d𝒒,

∇ ⋅ 𝒖 = 0,

𝑓𝑡 +∇ ⋅ (𝒖𝑓 ) + ∇𝒒 ⋅ (∇𝒖𝒒𝑓 ) =
1

2Wi
∇𝒒 ⋅ (𝑓∇𝒒Ψ) +

1
2Wi

Δ𝒒𝑓,

(44)

here

Ψ(𝒒) = 1
2
|𝒒|2, ∇𝒒Ψ= 𝒒,

 Hookean model, and

Ψ(𝒒) = − 𝑏
2
ln(1 − |𝒒|2∕𝑏), ∇𝒒Ψ=

𝒒

1 − |𝒒|2∕𝑏 , |𝒒| ≤ 𝑏
ith 𝑏 =𝐻𝑄2

0∕𝑘𝐵𝑇 in FENE model.

 The deterministic particle-FEM method

In this section, we construct the numerical scheme for the micro-macro model (1), which combines a finite element discretization 
 the macroscopic fluid dynamic equation [54–56] with a deterministic particle method for the microscopic Fokker-Planck equation 
7]. To overcome the difficulty arising from micro-macro coupling, we first employ a discrete energetic variational approach to derive 
article–based micro–macro model. The discrete energetic variational approach follows the idea of “Approximation-then-Variation”, 
hich first applies particle approximation to the continuous energy dissipation law. As an advantage, the derived coarse-grained 
stem preserves the variational structure at the particle level.

1. A coarse-grained deterministic particle-based model

For simplicity, we consider the spatially homogeneous case, and assume the number density function satisfies

∫
ℝ𝑑

𝑓 (𝒙,𝒒, 𝑡)d𝒒 = 1, ∀𝒙 ∈Ω . (45)

mark 3.1. The spatial homogeneous assumption is valid if the initial condition 𝑓0(𝒙, 𝒒) satisfies Eq. (45). Indeed, recall Fokker-
anck equation

𝑓𝑡 +∇ ⋅ (𝑓𝒖) + ∇𝒒 ⋅ (∇𝒖𝒒𝑓 ) =
2
𝜁
∇𝒒 ⋅ (𝑓∇𝒒Ψ) +

2𝑘𝐵𝑇
𝜁

Δ𝒒𝑓. (46)

t 𝑛(𝒙, 𝑡) = ∫ℝ𝑑 𝑓 (𝒙, 𝒒, 𝑡)d𝒒 be the number density of polymer chains. Integrating Eq. (46) with respect to 𝒒 and using the incom-
essible condition, Eq. (46) gives

𝜕

𝜕𝑡
𝑛(𝒙, 𝑡) + 𝒖 ⋅∇𝒙𝑛(𝒙, 𝑡) = 0,

hich indicates that 𝑛(𝒙(𝐗, 𝑡), 𝑡) = 𝑛0(𝐗) in Lagrangian coordinates. Hence, 𝑛0(𝐗) = 1 leads to 𝑛(𝒙, 𝑡) = 1.

The idea of the deterministic particle approximation is to approximate 𝑓 (𝒙, 𝒒, 𝑡) by

𝑓𝑁 (𝒙,𝒒, 𝑡) = 1
𝑁

𝑁∑
𝑖=1
𝛿(𝒒 − 𝒒𝑖(𝒙, 𝑡)), ∀𝒙 ∈Ω , (47)

here 𝑁 is the number of particles at 𝒙 and time 𝑡, {𝒒𝑖(𝒙, 𝑡)}𝑁𝑖=1 represents the set of particles at 𝒙 and time 𝑡. In general, the 
terministic particle approximation should be written as 𝑓𝑁 (𝒙, 𝒒, 𝑡) =

∑𝑁
𝑖=1𝜔𝑖(𝒙, 𝑡)𝛿(𝒒 − 𝒒𝑖(𝒙, 𝑡)), where 𝜔𝑖(𝒙, 𝑡) denotes the weight 

 𝑖-th particle, satisfying 
∑𝑁
𝑖=1𝜔𝑖(𝒙, 𝑡) = 1. In the current study, we only seek for a deterministic particle solution that satisfies 𝜔̇𝑖 = 0

3]. Moreover, since {𝒒𝑖(𝒙, 0)}𝑁𝑖=1 is sampled from the initial distribution 𝑓0(𝒙, 𝒒), we have 𝜔𝑖(𝒙, 𝑡) = 𝜔𝑖(𝒙, 0) =
1
𝑁
.

mark 3.2. {𝒒𝑖(𝒙, 𝑡)}𝑁𝑖=1 can be viewed as representative particles that represent information of the number density distribution 
𝒙, 𝒒, 𝑡) at 𝒙. Since only {𝒒𝑖(𝒙, 𝑡)}𝑁𝑖=1 need to be computed at each time-step, the computational cost can be largely reduced, compared 
8

 computing 𝑓 (𝒙, 𝒒, 𝑡) directly.
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One can derive a deterministic particle model by directly applying the particle approximation (47) to the micro-macro model (1). 
r the microscopic Fokker-Planck equation (46), recalling the definition of the microscopic velocity 𝑽 (𝒙, 𝒒, 𝑡) in (21), we have

𝒒̇𝑖 ≈ 𝑽 (𝒙,𝒒𝑖, 𝑡) = (∇𝒖)𝒒𝑖 −
2
𝜁
∇𝒒

(
𝛿micro

𝛿𝑓

)|||𝒒=𝒒𝑖 = (∇𝒖)𝒒𝑖 −
2
𝜁
∇𝒒Ψ(𝒒𝑖) −

2𝑘𝐵𝑇
𝜁

∇𝒒 ln𝑓 (𝒒𝑖) . (48)

e difficulty is how to estimate ∇𝒒 ln𝑓 (𝒒𝑖)when 𝑓 is replaced by the empirical measure 𝑓𝑁 . One approach is to replace the empirical 
easure 𝑓𝑁 (𝒒) = 1

𝑁

∑𝑁
𝑗=1 𝛿(𝒒 − 𝒒𝑗 ) by

𝑓ℎ
𝑁
(𝒒) = 𝑓𝑁 ∗𝐾ℎ =

1
𝑁

𝑁∑
𝑗=1
𝐾ℎ(𝒒,𝒒𝑗 ) , (49)

here 𝐾ℎ(𝒒, 𝒒𝑗 ) is a smooth kernel function and ℎ is the kernel bandwidth [34]. A typical choice of 𝐾ℎ(𝒒, 𝒒𝑗 ) is the Gaussian kernel, 
ven by

𝐾ℎ(𝒒,𝒒𝑗 ) =
1

(
√
2𝜋ℎ)𝑑

exp

(
−
|𝒒 − 𝒒𝑗 |2

2ℎ2

)
,

here 𝑑 is the dimension of the space. By a direct computation, we have

∇𝒒 ln𝑓ℎ𝑁 (𝒒) =
∇𝒒𝑓

ℎ
𝑁
(𝒒)

𝑓ℎ
𝑁
(𝒒)

=
∑𝑁
𝑗=1 ∇𝒒𝐾ℎ(𝒒,𝒒𝑗 )∑𝑁
𝑗=1𝐾ℎ(𝒒,𝒒𝑗 )

, (50)

hich leads to

𝒒̇𝑖 = (∇𝒖)𝒒𝑖 −
2
𝜁
∇𝒒Ψ(𝒒𝑖) −

2𝑘𝐵𝑇
𝜁

∑𝑁
𝑗=1 ∇𝒒𝑖

𝐾ℎ(𝒒𝑖,𝒒𝑗 )∑𝑁
𝑗=1𝐾ℎ(𝒒𝑖,𝒒𝑗 )

. (51)

 the macroscopic scale, the deterministic particle approximation leads to an approximated stress tensor

𝝉 ≈ 𝜆𝑝 ∫
ℝ𝑑

𝑓𝑁∇𝒒Ψ⊗ 𝒒d𝒒 =
𝜆𝑝

𝑁

𝑁∑
𝑖=1

∇𝒒Ψ(𝒒𝑖)⊗ 𝒒𝑖 (52)

 replacing 𝑓 by 𝑓𝑁 . However, the above approximation fails to maintain the variational structure, i.e., admits an energy-dissipation 
w as a counterpart of (20).
To maintain the variational structure in the particle level, we adopt the idea of “approximation-then-variation”, which first substi-
tes the approximation (47) into the energy-dissipation law (20). To derive the equation of 𝒒𝑖, we first substitute the approximation 
7) into the microscopic energy-dissipation law (28). Since the term ln𝑓𝑁 (𝒙, 𝒒, 𝑡) can not be defined in a proper way, we introduce 
e kernel smoothing (49) to handle the ln𝑓 term. More precisely, we first define a regularized microscopic free energy [36]:

micro
ℎ

[𝑓 ] = ∫
ℝ𝑑

𝑘𝐵𝑇𝑓 ln(𝑓 ∗𝐾ℎ) + Ψ𝑓d𝒒 , (53)

here 𝐾ℎ is a kernel function introduced before. Replacing 𝑓 with 𝑓𝑁 in (53), we end up with a microscopic free energy in terms of 
rticles {𝒒𝑖}𝑁𝑖=1, given by

micro
𝑁,ℎ

(𝒒1,… ,𝒒𝑁 ) = 1
𝑁

𝑁∑
𝑖=1

[
𝑘𝐵𝑇 ln

(
1
𝑁

𝑁∑
𝑗=1
𝐾ℎ(𝒒𝑖,𝒒𝑗 )

)
+Ψ(𝒒𝑖)

]
. (54)

e microscopic dissipation potential micro can be approximated by

micro
𝑁,ℎ

= 1
2
𝜁

2
1
𝑁

𝑁∑
𝑖=1
|𝒒̇𝑖 −∇𝒖𝒒𝑖|2 , (55)

here the approximation 𝑉 (𝒙, 𝒒𝑖, 𝑡) ≈ 𝒒̇𝑖 is used, and 𝒒̇𝑖 = 𝜕𝑡𝒒𝑖 + 𝒖 ⋅ ∇𝒒𝑖 is the material derivative of 𝒒𝑖. One can view (∇𝒖)𝒒𝑖 as 
rticle velocity that is induced by the macroscopic flow as in the continuous model.
Within the microscopic free energy (53) and dissipation (55) in the particle level, the dynamics of 𝒒𝑖(𝒙, 𝑡) can be derived by 
rforming the EnVarA in terms of 𝒒𝑖 and 𝒒̇𝑖, i.e.,

𝛿micro
𝑁,ℎ

𝛿𝒒̇𝑖
= −

𝛿micro
𝑁,ℎ

𝛿𝒒𝑖
.

9

 a direct computation, we have
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𝜁

2
1
𝑁

(𝒒̇𝑖 −∇𝒖𝒒𝑖) = −𝝁𝑖 , (56)

here

𝝁𝑖 =
1
𝑁

[
𝑘𝐵𝑇

(∑𝑁
𝑗=1 ∇𝒒𝑖

𝐾ℎ(𝒒𝑖,𝒒𝑗 )∑𝑁
𝑗=1𝐾ℎ(𝒒𝑖,𝒒𝑗 )

+
𝑁∑
𝑘=1

∇𝒒𝑖
𝐾ℎ(𝒒𝑘,𝒒𝑖)∑𝑁

𝑗=1𝐾ℎ(𝒒𝑘,𝒒𝑗 )

)
+∇𝒒𝑖

Ψ(𝒒𝑖)
]
. (57)

e equation (56) can be rewritten as

𝜕𝑡𝒒𝑖 + 𝒖 ⋅∇𝒒𝑖 = (∇𝒖)𝒒𝑖 −
2
𝜁

[
𝑘𝐵𝑇

(∑𝑁
𝑗=1 ∇𝒒𝑖

𝐾ℎ(𝒒𝑖,𝒒𝑗 )∑𝑁
𝑗=1𝐾ℎ(𝒒𝑖,𝒒𝑗 )

+
𝑁∑
𝑘=1

∇𝒒𝑖
𝐾ℎ(𝒒𝑘,𝒒𝑖)∑𝑁

𝑗=1𝐾ℎ(𝒒𝑘,𝒒𝑗 )

)
+∇𝒒𝑖

Ψ(𝒒𝑖)
]
. (58)

can be noticed that Eq. (58) is a gradient flow with respect to 𝒒𝑖 in the absence of the flow, i.e. 𝒖 = 0 at ∀𝒙. Comparing (58) with 
1), we notice an additional term, crucial for preserving the variational structure at the particle level, which can only be derived 
rough the approximation-then-variation approach.

mark 3.3. The same deterministic particle scheme can be obtained by replacing micro in (34) by micro
ℎ

[57]. Through direct 
lculation, we have

𝛿micro
ℎ

𝛿𝑓
=
(
𝑘𝐵𝑇 ln(𝐾ℎ ∗ 𝑓 ) + 𝑘𝐵𝑇

(
𝐾ℎ

𝐾ℎ ∗ 𝑓

)
∗ 𝑓 +Ψ

)
. (59)

nsequently, the microscopic velocity equation becomes

𝑓𝑽 (𝒙,𝒒, 𝑡) = 𝑓 (∇𝒖)𝒒 − 2
𝜁
(𝑓∇𝒒

𝛿micro
ℎ

𝛿𝑓
). (60)

e kernel regularized microscopic free energy micro
ℎ

permits a direct substitution of 𝑓 with 𝑓𝑁 in Eq. (60). In other word, (60) has 
e property that “particles remain particles” [36]. By a direct calculation, we have

𝑉 (𝒙,𝒒𝑖, 𝑡) = (∇𝒖)𝒒𝑖 −
2
𝜁
∇𝒒

(
𝑘𝐵𝑇 ln

(
1
𝑁

𝑁∑
𝑗=1
𝐾ℎ(𝒒,𝒒𝑗 )

)
+ 𝑘𝐵𝑇

𝑁∑
𝑘=1

𝐾ℎ(𝒒,𝒒𝑘)∑𝑁
𝑗=1𝐾(𝒒𝑘,𝒒𝑗 )

+ Ψ(𝒒)

)|||||𝒒=𝒒𝑖 , (61)

hich is equivalent to (58).

The variational procedure for the macroscopic flow is almost the same as that in the continuous case, as shown in Section 2. By 
plying the LAP, we obtained (37), while the MDP leads to

𝛿𝑁
𝛿𝒙𝑡

= −𝜂𝑠Δ𝒖+
𝜆𝑝𝜁

2
∇ ⋅

(
1
𝑁

𝑁∑
𝑖=1

(𝒒̇𝑖 −∇𝒖𝒒𝑖)⊗ 𝒒𝑖

)
, (62)

here 𝑁 = 1
2 ∫Ω 𝜂𝑠|∇𝒖|2 + 𝜆𝑝micro

𝑁
d𝒙 is the macroscopic dissipation. Hence, we can define the stress as

𝝉 = −
𝜆𝑝𝜁

2
1
𝑁

𝑁∑
𝑖=1

(𝒒̇𝑖 −∇𝒖𝒒𝑖)⊗ 𝒒𝑖 = 𝜆𝑝
𝑁∑
𝑖=1

𝝁𝑖 ⊗ 𝒒𝑖. (63)

e final micro-macro system with particle approximation is given by

⎧⎪⎨⎪⎩
𝜌(𝒖𝑡 + 𝒖 ⋅∇𝒖) + ∇𝑝 = 𝜂𝑠Δ𝒖+∇ ⋅ 𝝉 , 𝝉(𝒙, 𝑡) = 𝜆𝑝

𝑁∑
𝑖=1

𝝁𝑖 ⊗ 𝒒𝑖,

∇ ⋅ 𝒖 = 0,

(64)

here 𝒒𝑖(𝒙, 𝑡) satisfies Eq. (58).

mark 3.4. One can notice that the stress tensor obtained through the energetic variational approach differs from that obtained 
 directly replacing 𝑓 with 𝑓𝑁 in the stress in Eq. (1). The main reason is that the Brownian force in the particle approximation 
𝒒𝑖
ln𝑓ℎ

𝑁
can no longer be written in a diagonal matrix form as in (40). Therefore, it does not only contribute to the pressure term 

 it does in the continuous model.

One can view the macroscopic flow equation (64) along with the microscopic evolution equation (58) as a coarse-grained model for 
e original micro-macro model (1). As an advantage of the energetic variational approach, one can maintain the variational structure 
 the particle level, which is crucial in establishing the well-posedness of the coarse-grained model and proving the convergence for 
10

→∞. More precisely, we have the following result:
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oposition 3.1. The coarse-grained model (56)-(64) satisfies the energy-dissipation law

d
d𝑡 ∫

Ω

1
2
𝜌|𝒖|2 + 𝜆𝑝

𝑁

𝑁∑
𝑖=1

[
𝑘𝐵𝑇 ln

(
1
𝑁

𝑁∑
𝑗=1
𝐾ℎ(𝒒𝑖 − 𝒒𝑗 )

)
+Ψ(𝒒𝑖)

]
d𝒙 = −∫

Ω

𝜂𝑠|∇𝒖|2 + 𝜆𝑝𝜁2 1
𝑁

𝑁∑
𝑖=1
|𝒒̇𝑖 −∇𝒖𝒒𝑖|2d𝒙. (65)

oof. The proof is similar to that in the continuous case. Let 𝐹 (𝒒1, … 𝒒𝑁 ) = micro
𝑁,ℎ

(𝒒1, … , 𝒒𝑁 ). Multiplying (56) by 𝝁𝑖, summing 
ith respect to 𝑖, and integrating over the domain, we have

d
d𝑡 ∫

Ω

𝐹 (𝒒1,…𝒒𝑁 )d𝒙 = ∫
Ω

𝑁∑
𝑖=1

((∇𝒖)𝒒𝑖) ⋅ 𝝁𝑖 −
𝑁∑
𝑖=1

2𝑁
𝜁
|𝝁𝑖|2d𝒙

= ∫
Ω

(
𝑁∑
𝑖=1

𝝁𝑖 ⊗ 𝒒𝑖) ∶ (∇𝒖) −
𝜁

2
1
𝑁

𝑁∑
𝑖=1
|𝒒̇𝑖 −∇𝒖𝒒𝑖|2d𝒙 ,

(66)

e to the fact that

𝑁∑
𝑖=1

∫
Ω

(𝒖 ⋅∇𝒒𝑖) ⋅ 𝝁𝑖d𝒙 = ∫
Ω

𝒖 ⋅∇𝐹 (𝒒1,…𝒒𝑁 ) = −∫
Ω

(∇ ⋅ 𝒖)𝐹 (𝒒1,…𝒒𝑁 )d𝒙 = 0. (67)

Similar to Proposition 2.1, we multiply (64) by 𝒖 and integrate with respect to 𝒙 over domain Ω. Using integration by parts and 
e fact that 𝒖 is divergence-free, we have

d
d𝑡 ∫

Ω

1
2
𝜌|𝒖|2d𝒙 = −∫

Ω

𝜂𝑠|∇𝒖|2 − 𝝉 ∶ ∇𝒖d𝒙. (68)

By multiplying (66) by 𝜆𝑝 and adding the result to (68), we obtain the energy-dissipation law (65) at the particle level. □

The coarse-grained model (58)-(64) can be non-dimensionalized by using the same nondimensionalized parameters as in the 
ntinuous case. The final nondimensionalized system reads

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Re(𝒖𝑡 + 𝒖 ⋅∇𝒖) + ∇𝑝 = 𝜂̃𝑠Δ𝒖+∇ ⋅ 𝝉 , 𝝉 =
𝜖𝑝

Wi

𝑁∑
𝑖=1

𝝁𝑖 ⊗ 𝒒𝑖,

𝝁𝑖 =
1
𝑁

(∑𝑁
𝑗=1 ∇𝒒𝑖

𝐾ℎ(𝒒𝑖,𝒒𝑗 )∑𝑁
𝑗=1𝐾ℎ(𝒒𝑖,𝒒𝑗 )

+
𝑁∑
𝑘=1

∇𝒒𝑖
𝐾ℎ(𝒒𝑘,𝒒𝑖)∑𝑁

𝑗=1𝐾ℎ(𝒒𝑘,𝒒𝑗 )
+ ∇𝒒𝑖

Ψ(𝒒𝑖)
)
,

∇ ⋅ 𝒖 = 0,

(69)

ith 𝒒𝑖(𝒙, 𝑡) satisfying

𝜕𝑡𝒒𝑖 + 𝒖 ⋅∇𝒒𝑖 − (∇𝒖)𝒒𝑖 = − 1
2Wi

(∑𝑁
𝑗=1 ∇𝒒𝑖

𝐾ℎ(𝒒𝑖,𝒒𝑗 )∑𝑁
𝑗=1𝐾ℎ(𝒒𝑖,𝒒𝑗 )

+
𝑁∑
𝑘=1

∇𝒒𝑖
𝐾ℎ(𝒒𝑘,𝒒𝑖)∑𝑁

𝑗=1𝐾ℎ(𝒒𝑘,𝒒𝑗 )
+ ∇𝒒𝑖

Ψ(𝒒𝑖)
)
. (70)

e to the presence of the convection term 𝒖 ⋅ ∇𝒒𝑖(𝒙, 𝑡), 𝒒𝑖(𝒙, 𝑡) should be viewed as a field rather than a particle at 𝒙. However, 
troducing a spatial discretization might significantly increase the computational cost. To overcome this difficulty, we will adopt 
Lagrangian approach to deal with the convection term, which leads to an independent ensemble of particles at each 𝒙 when 
⋅∇𝒒𝑖(𝒙, 𝑡) ≠ 0.

mark 3.5. A key step in the above deterministic particle approximation is to replace the empirical measure 𝑓𝑁 by 𝑓ℎ
𝑁
using 

rnel smoothing (49) when computing ln𝑓 in the free energy. The choice of kernel bandwidth ℎ is important for the accuracy and 
bustness of the numerical scheme below. Intuitively, if ℎ is too small, then 𝑓ℎ

𝑁
will be oscillated. Consequently, it fails to provide 

good approximation to ln𝑓 and ∇(ln𝑓 ), and the term 
∑𝑁
𝑗=1 ∇𝒒𝑖

𝐾ℎ(𝒒𝑖 ,𝒒𝑗 )∑𝑁
𝑗=1𝐾ℎ(𝒒𝑖 ,𝒒𝑗 )

+
∑𝑁
𝑘=1

∇𝒒𝑖
𝐾ℎ(𝒒𝑘,𝒒𝑖)∑𝑁

𝑗=1𝐾ℎ(𝒒𝑘,𝒒𝑗 )
will be very large. On the other hand, 

ℎ is too large, 𝑓ℎ
𝑁
will be flattened and the term 

∑𝑁
𝑗=1 ∇𝒒𝑖

𝐾ℎ(𝒒𝑖 ,𝒒𝑗 )∑𝑁
𝑗=1𝐾ℎ(𝒒𝑖 ,𝒒𝑗 )

+
∑𝑁
𝑘=1

∇𝒒𝑖
𝐾ℎ(𝒒𝑘,𝒒𝑖)∑𝑁

𝑗=1𝐾ℎ(𝒒𝑘,𝒒𝑗 )
will be almost zero, which also fails to 

proximate ∇ ln𝑓ℎ
𝑁
. The optimal kernel bandwidth depends on the potential Ψ(𝒒) and the macroscopic flow. In the current study, 
11

e choose the kernel bandwidth ℎ through multiple numerical experiments (see the numerical sections for details).
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2. Full discrete scheme

In this subsection, we construct a full discrete scheme for the coarse-grained model (Eqs. (69) and (70)). To solve the micro-macro 
stem numerically, it is a natural idea to develop some decoupled schemes. Precisely, we propose the following scheme for the 
mporal discretization:

• Step 1: Treat the viscoelastic stress 𝝉𝑛 explicitly, and solve the equation (69) to obtain updated values for the velocity and 
pressure.

• Step 2: Use the updated velocity field 𝒖𝑛+1 to solve the equation of 𝒒𝑖 at each node, and then update values of the viscoelastic 
stress, denoted by 𝝉𝑛+1.

Eq. (69) in the first step can be solved by a standard incremental pressure-correction scheme [58] reads as follows:

• Step 1.1:

Re
(
𝒖̃𝑛+1 − 𝒖𝑛

Δ𝑡
+ 𝒖𝑛 ⋅∇𝒖̃𝑛+1

)
+∇𝑝𝑛 = 𝜂̃𝑠Δ𝒖̃𝑛+1 +∇ ⋅ 𝝉𝑛, (71)

• Step 1.2:

⎧⎪⎨⎪⎩
𝒖𝑛+1 − 𝒖̃𝑛+1

Δ𝑡
+∇(𝑝𝑛+1 − 𝑝𝑛) = 0,

∇ ⋅ 𝒖𝑛+1 = 0 .
(72)

We use the finite element method developed in Refs. [55,56] for spatial discretization, employing the inf-sup stable Iso-P2/P1 
ement [59,60] for velocity and pressure, and a linear element for each stress component. More precisely, let Ω be the bounded 
mputational domain, ℎ and ̂ℎ be two triangulations of Ω, with ℎ being the uniform refinement of ̂ℎ . We denote ℎ and ̂ℎ as 
ts of simplexes {𝜅𝑒|𝑒 = 1, … , 𝑀} and {𝜅̂𝑒|𝑒 = 1, … , 𝑀̂}, respectively. 𝑁ℎ = {𝒙1, … , 𝒙𝑁𝑥} and 𝑁̂ℎ = {𝒙̂1, … , ̂𝒙𝑁̂𝑥} are sets of nodal 
ints. We construct the finite-dimensional subspaces 𝑆ℎ , 𝑆̂ℎ ⊂𝐻1(Ω) and 𝑆0

ℎ
⊂𝐻1

0 (Ω) as follows:

𝑆ℎ = {𝑔 ∈ 𝐶0(Ω) ∶ 𝑔|𝜅 ∈ 𝑃1(𝜅)}, 𝑆̂ℎ = {𝑔 ∈ 𝐶0(Ω) ∶ 𝑔|𝜅̂ ∈ 𝑃1(𝜅̂)}, 𝑆0
ℎ
= {𝑔 ∈ 𝑆ℎ ∶ 𝑔|𝜕Ω = 0},

here 𝑃𝑟(𝜅) is the space of polynomial functions of degree less than or equal to 𝑟 on the simplex 𝜅. We let 𝑉𝝉 = (𝑆ℎ)𝑑
2
with 𝑑 the 

mension of space, 𝑉𝒖ℎ = (𝑆0
ℎ
)𝑑 and 𝑀ℎ = 𝑆̂ℎ ∩𝐿2

0(Ω). One can show that 𝑉𝒖ℎ and 𝑀ℎ satisfy the inf–sup condition [61,59]

inf
𝑝ℎ∈𝑀ℎ

sup
𝒖ℎ∈𝑉𝒖ℎ

∫Ω 𝑝ℎ∇ ⋅ 𝒖ℎ𝑑𝒙‖𝑝ℎ‖‖𝒖ℎ‖1 ≥ 𝐶,
here 𝐶 > 0 is independent of mesh size ℎ and ‖𝒖ℎ‖1 = ‖∇𝒖ℎ‖ + ‖𝒖ℎ‖.
The full discretization scheme for Step 1 can be summarized as follows. Given 𝒖𝑛

ℎ
∈ 𝑉𝒖ℎ , 𝝉

𝑛
ℎ
∈ 𝑉𝝉 and 𝑝𝑛ℎ ∈𝑀ℎ for 𝑛 > 0, we 

mpute 𝒖𝑛+1
ℎ

and 𝑝𝑛+1
ℎ

by the following algorithm:

• Step 1.1: Find 𝒖̃𝑛+1
ℎ

∈ 𝑉𝒖ℎ , such that for any 𝐯 ∈ 𝑉𝒖ℎ ,

Re
(

1
Δ𝑡

𝒖̃𝑛+1
ℎ

+ 𝒖𝑛
ℎ
⋅∇𝒖̃𝑛+1

ℎ
,𝐯
)
+ (𝜂̃𝑠∇𝒖̃𝑛+1ℎ

,∇𝐯) = Re
(

1
Δ𝑡

𝒖𝑛
ℎ
,𝐯
)
− (∇𝑝𝑛

ℎ
,𝐯) + (∇ ⋅ 𝝉𝑛

ℎ
,𝐯).

• Step 1.2: Find 𝑝𝑛+1
ℎ

∈𝑀ℎ, such that for any 𝜓 ∈𝑀ℎ,

(∇(𝑝𝑛+1
ℎ

− 𝑝𝑛
ℎ
),∇𝜓) = − 1

Δ𝑡
(∇ ⋅ 𝒖̃𝑛+1

ℎ
,𝜓),

and update 𝒖𝑛+1
ℎ

by

𝒖𝑛+1
ℎ

= 𝒖̃𝑛+1
ℎ

−Δ𝑡∇(𝑝𝑛+1
ℎ

− 𝑝𝑛
ℎ
).

mark 3.6. In Step 1, the pressure-correction scheme has been adopted to decouple velocity 𝒖𝑛+1 and pressure 𝑝𝑛+1 in Eq. (69). 
though the pressure-correction scheme can lead to an invertible discrete linear system at each time step regardless of whether the 
f-sup condition is satisfied, the inf-sup condition is crucial for the stability and convergence of the numerical scheme [58]. In the 
rrent study, the inf-sup stable Iso-P2/P1 element is adopted.

Next we discuss how to solve the microscopic part (58) with a given 𝒖𝑛+1
ℎ

at each node 𝒙𝛼 . One difficulty is that 𝒒𝑖 is a function 
12

 𝒙 and 𝑡 due to the convection term 𝒖 ⋅∇𝒒𝑖(𝒙, 𝑡). Many earlier numerical studies based on CONNFFESSIT algorithms either focus 
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 the shear flows in which the convection term vanishes or ignores the convection term [62,19]. To deal with the convection term 
 stochastic methods, two types of methods have been developed. One is to introduce a spatial-temporal discretization to 𝒒𝑖, as used 
 Brownian Configuration Field method [63,64,25]. Another way is to use a Lagrangian viewpoint to compute the convection term 
5]. In the current study, we use the idea of the second approach, and use an operator splitting approach to solve Eq. (58). Initially, 
e assign ensemble of particles {𝒒𝛼,𝑖}𝑁𝑖=1 to each node 𝒙𝛼 (𝛼 = 1, 2, … 𝑁𝑥). We assume that 𝑓 (𝒙, 𝒒, 0) is spatially homogeneous, and 
e the same ensemble of initial samples at all 𝒙𝛼 . Within the values 𝒖𝑛+1ℎ

, we solve the microscopic equation (58) by the following 
o steps:

• Step 2.1: At each node 𝒙𝛼 , solve Eq. (70) without the convection term 𝒖𝑛+1
ℎ

⋅∇𝒒𝑖 by

1
𝑁

𝒒
𝑛+1,∗
𝑖

− 𝒒𝑛
𝑖

Δ𝑡
= − 1

2Wi
𝛿̂ℎ
𝛿𝒒𝑖

({𝒒𝑛+1,∗
𝑖

}𝑁
𝑖=1),

𝒒𝑛+1,∗∗ = (𝐈+ (∇𝒖𝑛+1
ℎ

)Δ𝑡)𝒒𝑛+1,∗,
(73)

where ̂ℎ[{𝒒𝑖}𝑁𝑖=1] = 1
𝑁

∑𝑁
𝑖=1

[
ln
(

1
𝑁

∑𝑁
𝑗=1𝐾ℎ(𝒒𝑖 − 𝒒𝑗 )

)
+Ψ(𝒒𝑖)

]
is the non-dimensionalized discrete microscopic free energy at 

each node. We omit the index 𝛼 when it does not cause confusion.
• Step 2.2: To deal with the convection term 𝒖 ⋅∇𝒒𝑖, we view each node 𝒙𝛼 as a Lagrangian particle, and update it according to 
the Eulerian velocity field 𝒖𝑛+1

ℎ
at each node

𝒙̃𝛼 = 𝒙𝛼 +Δ𝑡(𝒖𝑛+1
ℎ
|𝒙𝛼 ), 𝛼 = 1,2,…𝑁𝑥. (74)

Hence, {𝒒𝑛+1,∗∗
𝛼,𝑖

} is an ensemble of samples at the new point 𝒙̃𝛼 . To obtain 𝒒𝑛+1𝛼,𝑖
at 𝒙𝛼 , we use a linear interpola-

tion to get 𝒒𝑛+1
𝛼,𝑖

(at mesh with {𝒙𝛼} being the set of nodes) from 𝒒𝑛+1,∗∗
𝛼,𝑖

(at mesh with {𝒙̃𝛼} being nodes) for each 
𝑖.

An advantage of the above update-and-projection approach is that it doesn’t require a spatial discretization on 𝒒𝑖(𝒙, 𝑡). 
ithin the ensemble of particles {𝒒𝑛+1

𝛼,𝑖
}𝑁
𝑖=1 on each node 𝒙𝛼 , the updated values of the viscoelastic stress 𝝉𝑛+1ℎ

at each 
de, denoted as {𝝉𝑛+1𝛼 }𝑁𝑥

𝛼=1, can be obtained through the second equation of Eq. (69). And then project them into the fi-
te element space of 𝝉 , i.e. 𝑉𝝉 . To this end, we choose the projection operator , such that, for each component of the 
ess 𝜏𝑛+1

𝛼,𝑙,𝑘
with 𝑙, 𝑘 = 1, ⋯ 𝑑, ({𝜏𝑛+1

𝛼,𝑙,𝑘
}𝑁𝑥
𝛼=1) ∶=

∑𝑁𝑥
𝛼=1 𝜏

𝑛+1
𝛼,𝑙,𝑘

𝜙𝛼 , where {𝜙𝛼 ∶ 𝛼 = 1, ⋯ , 𝑁𝑥} ⊂ 𝑆ℎ denotes the nodal basis for 
.

mark 3.7. The operator splitting approach has been widely used in many previous Fokker-Planck based numerical approaches 
r micro-macro models [65]. One important reason is that the system admits a variational structure without the convention terms. 
oreover, by separating the convection component, the particles at each physical location can be treated independently, which 
rgely saves the computational cost.

Since the first step in (73) admits a variational structure, the implicit Euler discretization can be reformulated as an optimization 
oblem. In more detail, at each node 𝒙𝛼 , we define

𝐽𝑛[{𝒒𝑖}𝑁𝑖=1] =
1
𝑁

𝑁∑
𝑖=1

( 1
2Δ𝑡
|𝒒𝑖 − 𝒒𝑛𝑖 |2)+ 1

2Wi
̂ℎ[{𝒒𝑖}𝑁𝑖=1],

here ̂ℎ[{𝒒𝑖}𝑁𝑖=1] = 1
𝑁

∑𝑁
𝑖=1

[
ln
(

1
𝑁

∑𝑁
𝑗=1𝐾ℎ(𝒒𝑖 − 𝒒𝑗 )

)
+Ψ(𝒒𝑖)

]
. We can obtain a solution to the nonlinear system by solving an 

timization problem [37,66]

{𝒒𝑛+1,∗
𝑖

}𝑁
𝑖=1 = argmin

{𝒒𝑖}𝑁𝑖=1

𝐽𝑛({𝒒𝑖}𝑁𝑖=1) . (75)

 advantage of this reformulation is that we can prove the existence of the 𝒒𝑛+1,∗
𝑖

. More precisely, we have the following result.

oposition 3.2. For any given {𝒒𝑛
𝑖
}𝑁
𝑖=1 at 𝒙𝛼 , there exists at least one minimal solution {𝒒

𝑛+1
𝑖

}𝑁
𝑖=1 of (75) that also satisfies

1
2Wi

̂ℎ({𝒒𝑛+1𝑖
}𝑁
𝑖=1) − ̂ℎ({𝒒𝑛𝑖 }𝑁𝑖=1)

Δ𝑡
≤ − 1

2𝑁Δ𝑡2

𝑁∑
𝑖=1
|𝒒𝑛+1
𝑖

− 𝒒𝑛
𝑖
|2. (76)

oof. Let 𝑿 ∈ℝ𝐷 (𝐷 =𝑁 × 𝑑) be vectorized {𝒒𝑖}𝑁𝑖=1, namely,
13

𝑿 = (𝑞1,1,… , 𝑞𝑁,1, 𝑞1,2,… , 𝑞𝑁,2,… , 𝑞𝑁,𝑑 ).
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Fig. 1. Schematic representation of (a) the initial simple shear flow and (b) the lid-driven cavity flow.

note ̂ℎ({𝒒𝑖}𝑁𝑖=1) and 𝐽𝑛({𝒒𝑖}𝑁𝑖=1) as ̂ℎ(𝑿) and 𝐽𝑛(𝑿) respectively. For given 𝑿𝑛 = {𝒒𝑛
𝑖
}𝑁
𝑖=1, we define

𝑆 = {𝐽𝑛(𝑿) ≤ 𝐽𝑛(𝑿𝑛)}

 the admissible set. Obviously, 𝑆 is non-empty and closed, since 𝑿𝑛 ∈ 𝑆 and 𝐽𝑛(𝑿) is continuous. Moreover, it’s easy to prove that 
(𝑿) is bounded from below, since

ln

(
1
𝑁

𝑁∑
𝑗=1
𝐾ℎ(𝒒𝑛𝑖 ,𝒒

𝑛
𝑗 )

)
≥ ln

(
1
𝑁

1
(
√
2𝜋ℎ)𝑑

)
and Ψ(𝒒𝑖) ≥ 0.

d thus, 𝐽𝑛(𝑿) is coercive and 𝑆 is a bounded set. Hence, 𝐽𝑛(𝑿) admits a global minimizer 𝑿𝑛+1 in 𝑆 . And thus, we 
ve

1
𝑁

𝑁∑
𝑖=1

( 1
2Δ𝑡
|𝒒𝑛+1
𝑖

− 𝒒𝑛
𝑖
|2)+ 1

2Wi
̂ℎ(𝑿𝑛+1) ≤ 1

2Wi
̂ℎ(𝑿𝑛), (77)

hich is equivalent to Eq. (76). □

In the numerical implementation, we adopt the Barzilai-Borwein gradient method [67] to solve the optimization problem (75). The 
rzilai-Borwein method is a gradient descent algorithm with an adaptive stepsize, which updates 𝑿𝑘 (vectorized {𝒒𝑖}𝑁𝑖=1) through

𝑿𝑘 =𝑿𝑘−1 − 𝛼𝑘−1∇𝑿𝐽𝑛(𝑿𝑘−1), (78)

here 𝛼𝑘−1 = 𝒔T
𝑘
𝒔𝑘∕(𝒔T𝑘𝒚𝑘) is a BB stepsize. Here, 𝒚𝑘 = ∇𝑿𝐽 (𝑿𝑘−1) −∇𝐽𝑿 (𝑿𝑘−2) and 𝒔𝑘 =𝑿𝑘−1 −𝑿𝑘−2. We compute 𝑿1 by using 

adient descent with stepsize 10−7. The initial guess, 𝑿0, is taken as vectorized {𝒒0
𝑖
}𝑁
𝑖=1. The stopping criteria are either ‖∇𝑿𝐽 (𝑿)‖2 ≤

−9 or reaching the maximum number of inner iterations, which is set to 50.

mark 3.8. In the current numerical scheme, we estimate the macroscopic stress tensor by taking microscopic distribution function 
 the empirical measure of the finite number of particles {𝒒𝑖}𝑁𝑖=1. More advanced techniques can be applied to this stage to obtain a 
ore accurate estimation to the stress tensor, such as the maximum-entropy based algorithm developed in Ref. [68] and Ref. [69], 
hich reconstructs basis functions from particles. We’ll explore this perspective in future works.

 Results and discussion

In this section, we perform various numerical experiments to validate the proposed numerical scheme by studying various well-
own benchmark problems for the micro-macro models [17,19,41].
We consider two flow scenarios: a simple shear flow and a lid-driven cavity flow. In a simple shear flow, a viscous fluid is enclosed 
tween two parallel planes of infinite length, separated by a distance 𝐿, see Fig. 1(a) for an illustration. At 𝑡 = 0, the lower plane 
oves in the positive 𝒙 direction with a constant velocity 𝑈 . Due to the special geometry of simple shear flows, it is common to 
e the ansatz 𝒖(𝒙, 𝑡) = (𝑢(𝑦, 𝑡), 0), which means the velocity field 𝒖(𝒙, 𝑡) is in the 𝒙-direction and depends only on the 𝑦-variable. 
ditionally, we use the ansatz that 𝒒𝑖 depends only on 𝑦-variable, which implies that 𝒖 ⋅∇𝒒𝑖 = 0 [6,17]. Hence, the micro-macro 
14

odel can be simplified into:



X.

Fig

lin
loc

w
𝒈

an
th
no

in
of

4.

co
2D
re

an
pr

at
pa
sta
an
ov
w

Journal of Computational Physics 522 (2025) 113589Bao, C. Liu and Y. Wang

. 2. (a) Time evolution of velocity at 𝑦 = 0.8 with different numbers of particles. The analytical solution of the corresponding Oldroyd-B model is shown in a black 
e. (b) Comparison of the velocity of the Hookean case with particle number 𝑁 = 200 (marker) and the analytical solution (solid line) at different times and different 
ations (𝑦 = 0.2, 0.4, 0.6, 0.8). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Re 𝜕𝑢
𝜕𝑡

(𝑦, 𝑡) = 𝜂̃𝑠
𝜕2𝑢

𝜕𝑦2
(𝑦, 𝑡) +

𝜕𝜏21
𝜕𝑦

(𝑦, 𝑡),

𝜏21 =
𝜖𝑝

Wi
1
𝑁

𝑁∑
𝑖=1

(∑𝑁
𝑗=1[∇𝒒𝑖

𝐾ℎ(𝒒𝑖,𝒒𝑗 )]1∑𝑁
𝑗=1𝐾ℎ(𝒒𝑖,𝒒𝑗 )

+
𝑁∑
𝑘=1

[∇𝒒𝑖
𝐾ℎ(𝒒𝑘,𝒒𝑖)]1∑𝑁

𝑗=1𝐾ℎ(𝒒𝑘,𝒒𝑗 )
+ [∇𝒒𝑖

Ψ(𝒒𝑖)]1
)
𝑞𝑖2(𝑦, 𝑡),

𝜕𝑞𝑖1
𝜕𝑡

(𝑦, 𝑡) − 𝜕𝑢
𝜕𝑦
𝑞𝑖2(𝑦, 𝑡) = − 1

2Wi

([∑𝑁
𝑗=1[∇𝒒𝑖

𝐾ℎ(𝒒𝑖,𝒒𝑗 )]1∑𝑁
𝑗=1𝐾ℎ(𝒒𝑖,𝒒𝑗 )

+
𝑁∑
𝑘=1

[∇𝒒𝑖
𝐾ℎ(𝒒𝑘,𝒒𝑖)]1∑𝑁

𝑗=1𝐾ℎ(𝒒𝑘,𝒒𝑗 )

]
+ [∇𝒒𝑖

Ψ(𝒒𝑖)]1

)
,

𝜕𝑞𝑖2
𝜕𝑡

(𝑦, 𝑡) = − 1
2Wi

([∑𝑁
𝑗=1[∇𝒒𝑖

𝐾ℎ(𝒒𝑖,𝒒𝑗 )]2∑𝑁
𝑗=1𝐾ℎ(𝒒𝑖,𝒒𝑗 )

+
𝑁∑
𝑘=1

[∇𝒒𝑖
𝐾ℎ(𝒒𝑘,𝒒𝑖)]2∑𝑁

𝑗=1𝐾ℎ(𝒒𝑘,𝒒𝑗 )

]
+ [∇𝒒𝑖

Ψ(𝒒𝑖)]2

)
,

(79)

here 𝜏21 is the off-diagonal component of the extra-stress tensor 𝝉 , 𝒒𝑖 = (𝑞𝑖1, 𝑞𝑖2) and [𝒈]𝑙 denotes the 𝑙th component of the vector 
(𝑙 = 1, 2).
In the lid-driven cavity flow, the polymeric fluid is bounded in a two-dimensional rectangular box of width 𝐿𝑥 and height 𝐿𝑦, 
d the fluid motion is induced by the translation of the upper wall at a velocity 𝑈 . The width of the cavity is set to be 𝐿𝑥 = 1, and 
e horizontal velocity of the lid 𝑢(𝑥) = 𝑈 = 1. The three other walls are stationary, and the boundary conditions applied to them are 
n-slip and impermeable (see Fig. 1(b)). In this case, a full 2D Navier-Stokes equation needs to be solved.
For all the numerical experiments carried out in this section, we assume that the flow is two-dimensional and the dumbbells lie 

 the plane of the flow, namely, the configuration vector 𝒒 is also two-dimensional. At each node, we use the same initial ensemble 
 𝑁 particles, sampled from the 2-dimensional standard normal distribution.

1. Hookean model: simple shear flow

It is well known that the micro-macro model (1) with a Hookean potential Ψ(𝒒) = 1
2𝐻|𝒒|2 is equivalent to a macroscopic vis-

elastic model, the Oldroyd–B model. For the Oldroyd-B model, an analytical solution for the start-up of plane Couette flow in a 
 channel is available (see [17,25]). So we can test the accuracy of the proposed numerical scheme by comparing the simulation 
sults of the micro-macro model with the analytical solutions of the corresponding Oldroyd-B model.
We choose the physical parameters as follows: Re = 0.11, Wi = 0.1, 𝜂̃𝑠 = 0.11 and 𝜖𝑝 = 0.89. The number of elements is 𝑀 = 40
d the time step is Δ𝑡 = 10−3. Additionally, we choose the kernel bandwidth as ℎ =med𝑛∕

√
2 log𝑁 , motivated by the median trick 

oposed in [70], to compute {𝒒𝑛+1}𝑁
𝑖=1. Here, med𝑛 denotes the median of the pairwise distances between the particles {𝒒

𝑛
𝑖
}𝑁
𝑖=1.

We begin by examining the impact of the number of particles on numerical results. Fig. 2. (a) shows the time evolution of velocity 
 𝑦 = 0.8 for different numbers of particles (𝑁 = 50, 100, 200 and 500). We perform 10 independent runs, where we use the same 
rameters and different sets of initial particles. Each marker on the plot represents the mean values, indicating mean values ± 
ndard errors [6]. The results show that as the number of particles increases, the mean values converge to the analytical solution 
d the standard errors decrease. We notice that, for 𝑁 = 200, the maximum standard error [6] and relative error [16] in the velocity 
er time across all locations turns out to be approximately 0.008 and 9%, respectively. Since a good numerical result can be achieved 
15

ith 𝑁 = 200 in this case, we set 𝑁 = 200 in all the following numerical experiments for the efficiency of the numerical method.
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. 3. The start-up case with 𝑟 = 4: (a) the time evolution and (b) the hysteresis of normal stress 𝜏11 − 𝜏22 ; (c) the hysteresis of the normal stress with 𝑟 = 4, 5 and 6.

Fig. 2 (b) presents the time evolution of the simulated velocity at 𝑦 = 0.2, 0.4, 0.6, 0.8 for the micro-macro model with 𝑁 = 200
rticles, compared to the analytical solution (solid line). It shows that our particle scheme with particle number 𝑁 = 200 yielded 
od numerical results.

2. FENE model: simple extensional flows and hysteresis behavior

The FENE models account for the finite extensibility of polymer chains, and can capture the hysteresis behavior of dilute polymer 
lutions in simple extensional flows during relaxation, which can be observed through the normal stress or elongational viscosity 
rsus mean-square extension [7,8,71]. However, many macroscopic closure models for the FENE potential fail to capture this behav-
r [8,41]. In this subsection, we demonstrate that the deterministic particle scheme is capable of capturing the hysteresis behavior 
 FENE models.
We consider the elongational velocity gradient given by [6]:

𝜿(𝑡) = 𝜀(𝑡)diag(1,−1) , (80)

here 𝜀(𝑡) is the strain rate and diag(1, −1) is the 2 × 2 diagonal matrix with diagonal entries being 1 and −1. Since the numerical 
ulations are carried out with a given velocity gradient ∇𝒖 = 𝜿(𝑡), the Fokker-Planck equation can be reduced to

𝑓𝑡 +∇𝒒 ⋅ (𝜿(𝑡)𝒒𝑓 ) =
1

2Wi
∇𝒒 ⋅ (𝑓∇𝒒Ψ) +

1
2Wi

Δ𝒒𝑓, (81)

here the distribution function 𝑓 = 𝑓 (𝒒, 𝑡) is spatial homogeneous. The reduced Fokker-Planck equation (81) is employed for inves-
ating the hysteresis behavior of the FENE model. The parameters in the model are taken as follows: Wi = 1; 𝑏 =

√
50.

Throughout this subsection, the initial data of particles is sampled from the 2-dimensional standard normal distribution. As stated 
 Section 4.1, we set kernel bandwidth ℎ =med𝑛∕

√
2 log𝑁 for Hookean models, where med𝑛 is the median of the pairwise distance 

tween the particles {𝒒𝑛
𝑖
}𝑁
𝑖=1. However, the median trick is not suitable for the FENE potential, as the equilibrium distribution is 

 longer Gaussian type and the median of the pairwise distance can become very large. Numerical experiments show that taking 
rnel bandwidth ℎ = 0.01 produces a good result for 𝑁 = 200 for the FENE model in simple extensional flows. We also fix kernel 
ndwidth ℎ = 0.01 and 𝑁 = 200 for the following numerical experiments of the FENE models. We’ll explore the effects of different 
rnel bandwidth ℎ in future work. The temporal step-size is taken as Δ𝑡 = 10−3.
We first consider the start-up case, in which 𝜀(𝑡) given by

𝜀(𝑡) =
⎧⎪⎨𝑟 0 ≤ 𝑡 ≤ 9

𝑟
,

(82)
16

⎪⎩0 otherwise .
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. 4. The position of particles (left) and the underlying distribution of particles obtained by kernel density estimation (middle and right) in the configuration space 
different times with 𝑟 = 4. (a) Start-up case at 𝑡 = 3 (the first row) and 𝑡 = 12 (the second row). (b) The constant-gradient velocity case at 𝑡 = 3 (the first row) and 
12 (the second row).

e time evolution of normal stress 𝜏11 − 𝜏22 and the normal stress versus the mean-square extension ⟨𝒒2⟩∕𝑄2
0 for 𝑟 = 4 are plotted 

 Fig. 3 (a)-(b). The comparison of hysteresis behavior of the FENE model for different extensional flow rates (𝑟 = 4, 5, 6) is shown 
 Fig. 3 (c). It is observed that when the strength of velocity gradient is getting smaller, the hysteresis behavior becomes narrower. 
e numerical results are consistent with those obtained in the former work [41].
As discussed in [41], to catch the hysteresis of the original FENE model, a coarse-grained model should be able to catch 
e spike-like behaviors of the probability density in the FENE model in the large extensional effect of the flow field. The peak 
sitions of the probability distribution function (PDF) distribution of the FENE model depend on the macroscopic flow field 
d change in time under the large macroscopic flow effects [40]. We show the position of particles (blue markers) and their 
derlying distribution probability density (obtained by the kernel density estimation) in the configuration space at different 
es (𝑡 = 3 and 𝑡 = 12) for the start-up case with 𝑟 = 4 in Fig. 4 (a). The distribution splits into two spikes and then shows 
adual centralized behavior. Eventually, it forms a single peak in the center, as shown in Fig. 4 (a). Notice that the numer-
al results in the equilibrium state are consistent with the equilibrium solution of the Fokker-Planck equation with zero flow 
te, as the velocity rate turns to zero when 𝑡 is big enough (𝑡 > 9∕𝑟). We also consider a constant-gradient velocity case, in 
hich 𝜀(𝑡) = 𝑟. In this case, the particles show two regions of higher concentration near the boundary of the configuration do-
ain at the equilibrium state (i.e., with stable double spikes) [40]. Fig. 4 (b) shows the numerical results for 𝑟 = 4 at 𝑡 = 3 and 
. The numerical results also indicate that the deterministic particle method can capture the 𝛿-function-like spike in the FENE 
17

odel.
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. 5. For the FENE model: the velocity 𝑢 with respect to location 𝑦 at different times (a); the time evolution of the velocity 𝑢 at different locations (b); the time 
olution of the shear stress(c) and normal stress difference(d) at location 𝑦 = 0.2, 𝑦 = 0.5, 𝑦 = 0.8 and 𝑦 = 1.

3. FENE model: simple shear flow

In this subsection, we evaluate the proposed algorithm’s performance for the micro-macro model with a FENE potential 
 a start-up plane Couette flow as shown in Fig. 1(a). We set 𝐿 = 1, 𝑀 = 20, Δ𝑡 = 10−3. The non-dimensional parame-
rs are chosen to be Re = 1.2757, 𝜂̃𝑠 = 0.0521, Wi = 49.62, 𝜖𝑝 = 0.9479, and 𝑏 =

√
50, which are the same as those used in 

f. [17].
Fig. 5 (a) shows the velocity evolution with respect to the location 𝑦 at different times. It reveals the velocity overshoot 
enomenon for the FENE model, which is a typical property of viscoelastic fluids. Fig. 5 (b) displays the velocity evolu-
n with respect to time 𝑡 at three locations 𝑦 = 0.2, 𝑦 = 0.5 and 𝑦 = 0.8. It can be seen that the velocity overshoot oc-
rs sooner in fluid layers nearer to the moving plane. Figs. 5(c-d) show the temporal evolution of the shear stress and the 
rmal stress difference at different locations 𝑦 = 0.2, 𝑦 = 0.5, 𝑦 = 0.8, and 𝑦 = 1. The stress response is sharper in fluid 
yers nearer to the moving plane, which is consistent with the behavior of velocity overshoot. We observe that the max-
um of the normal stress occurs after the maximum of the shear stress. Specifically, the shear stress of the FENE model 
aches its maximum at around 𝑡 = 6, but the maximum of the normal stress is reached at about 𝑡 = 10. The numerical re-
lts agree well with the former work [17,25], indicating the accuracy of our numerical scheme in the FENE case. More-
er, compared with the former work, our numerical results obtained by the deterministic particle scheme show fewer oscilla-
ns.

4. FENE model: lid-driven cavity flow

In this subsection, we simulate the FENE model for lid-driven cavity flows (see Fig. 1(b)). It is a 2D problem and a full 2D 
vier–Stokes equation needs to be solved. Our experiments consider rectangular cavities with different heights: 𝐿𝑦 = 0.2, 0.5, and 

 To avoid numerical difficulties that arise from the geometric singularity at the edges of an idealized lid-driven cavity, we adopt a 
gularized horizontal lid velocity [72] of the form:

𝑢(𝑥) = 16𝑈 (𝑥∕𝐿𝑥)2(1 − 𝑥∕𝐿𝑥)2.

To discretize the problem spatially, we choose ℎ to be a uniform triangular mesh with the mesh size 𝑁𝑥 = 50, 𝑁𝑦 = 20 for 
= 0.2, 𝑁𝑥 = 50, 𝑁𝑦 = 25 for 𝐿𝑦 = 0.5, and 𝑁𝑥 = 50, 𝑁𝑦 = 50 for 𝐿𝑦 = 1. We set the time step size Δ𝑡 = 10−3 for the temporal 
scretization. Unlike the shear flow cases, the convection term 𝒖 ⋅ ∇𝒒 is non-zero, which is dealt with by a Lagrangian approach 
 introduced in Section 3. Other parameters in the numerical experiments are set as follows: Re = 1; 𝜂̃𝑠 = 0.11; 𝜖𝑝 = 0.889; 𝑏 =
18

50.
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. 6. The streamlines and vortices contours of the lid-driven cavity flow in the FENE case at 𝑇 = 1 with 𝐿𝑦 = 0.2 ((a): Wi = 0.1; (b): Wi = 1), 𝐿𝑦 = 0.5 ((c): Wi = 0.1; 
: Wi = 1) and 𝐿𝑦 = 1 ((e): Wi = 0.1; (f): Wi = 1). The profile of 𝑢-velocity with respect to 𝑦 at position 𝑥 = 0.5 for Wi = 0.1, 1 with 𝐿𝑦 = 0.2 (g), 𝐿𝑦 = 0.5 (h) and 
= 1 (i).

Figs. 6(a)-(f) display the streamlines and vortices contours for different 𝐿𝑦 at time 𝑇 = 1 with Wi = 0.1 and Wi = 1. Notice that 
e streamlines show symmetry structure when Wi = 0.1. And this symmetry structure holds for different 𝐿𝑦. However, as elasticity 
comes more important, namely, the Weissenberg number (Wi) increases, the symmetries in the streamline structures break due to 
e presence of elastic effects [73]. Meanwhile, as the flow becomes asymmetric, the vortex center in the cavity shifts progressively 
ward and opposite to the direction of lid motion [39]. This phenomenon is more evident in Figs. 6(g)-(i), which plot the 𝑢-velocity 
ofiles at 𝑥 = 0.5 for the cavity flow with different 𝐿𝑦 and Wi. Additionally, the introduction of elasticity also weakens the strengths 
19

 vortices near the moving lid [72].
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The numerical results indicate that the particle-based scheme can capture these complex behaviors. The qualitative agreement 
tween our simulation results and those in the former work [25,39] validates our numerical scheme for the 2D lid-driven cavity 
w case.

 Conclusion

In this article, we present a novel deterministic particle-finite element method discretization for micro-macro models of dilute 
lymeric fluids. The proposed scheme employs a finite element method for the fluid flow equation with a variational particle scheme 
ed for the kinetic viscoelastic model. It is validated through various benchmark problems, including steady flows, shear flows, and 
 lid-driven cavity flows. The numerical results show excellent agreement with those from the former work [17,25,39–41] and 
monstrate that the proposed scheme can capture certain complex behaviors of the nonlinear FENE model, including the hysteresis 
d 𝛿-function like spike behavior in extensional flows [40,41], velocity overshoot phenomenon in pure shear flows [17], symmetries 
eaking, vortex center shifting and vortices weakening in lid-driven cavity flows [25]. Compared with the stochastic simulation 
ethods in the former work [16,17,25], where a large ensemble of realizations of the stochastic process is needed, the deterministic 
rticle scheme can achieve good numerical results with reduced oscillations using only a small number of particles.
The proposed method can also be applied to other complex fluid models, such as the Doi-Onsager model for liquid crystal polymers 
4], the multi-bead spring model [75], and a two-species model for wormlike micellar solutions [76,77], which involves a reaction 
 the microscopic equation. Additionally, as a direction for future work, we aim to develop an energy-stable scheme for the overall 
stem.
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