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Abstract The Ensemble Streamflow Prediction (ESP) framework combines a probabilistic forecast
structure with process‐based models for water supply predictions. However, process‐based models require
computationally intensive parameter estimation, increasing uncertainties and limiting usability. Motivated by
the strong performance of deep learning models, we seek to assess whether the Long Short‐Term Memory
(LSTM) model can provide skillful forecasts and replace process‐based models within the ESP framework.
Given challenges in implicitly capturing snowpack dynamics within LSTMs for streamflow prediction, we also
evaluated the added skill of explicitly incorporating snowpack information to improve hydrologic memory
representation. LSTM‐ESPs were evaluated under four different scenarios: one excluding snow and three
including snow with varied snowpack representations. The LSTM models were trained using information from
664 GAGES‐II basins during WY1983–2000. During a testing period, WY2001–2010, 80% of basins exhibited
Nash‐Sutcliffe Efficiency (NSE) above 0.5 with a median NSE of around 0.70, indicating satisfactory utility in
simulating seasonal water supply. LSTM‐ESP forecasts were then tested during WY2011–2020 over 76 western
US basins with operational Natural Resources Conservation Services (NRCS) forecasts. A key finding is that in
high snow regions, LSTM‐ESP forecasts using simplified ablation assumptions performed worse than those
excluding snow, highlighting that snow data do not consistently improve LSTM‐ESP performance. However,
LSTM‐ESP forecasts that explicitly incorporated past years' snow accumulation and ablation performed
comparably to NRCS forecasts and better than forecasts excluding snow entirely. Overall, integrating deep
learning within an ESP framework shows promise and highlights important considerations for including
snowpack information in forecasting.

Plain Language Summary The Ensemble Streamflow Prediction (ESP) framework generates
probabilistic water supply forecasts using process‐based models. However, process‐based models often face
challenges because estimating their parameters is complex and introduces uncertainties. Inspired by emerging
deep learning techniques, our study investigates whether the Long Short‐Term Memory (LSTM) model can
provide skillful forecasts and potentially replace process‐based models within ESP. We also explore how
including explicit information about snow, which significantly influences water flow, could enhance these
forecasts. Our findings indicate that in regions with heavy snowfall, using a simpler representation of snowpack
led to less accurate forecasts than those excluding snow information, suggesting that snowpack information
does not consistently improve forecast performance. However, LSTM‐ESP forecasts incorporating a
sophisticated representation of snowpack information performed comparably to current operational forecasts
and better than those excluding snowpack information. Integrating deep learning techniques within an ESP
could improve water supply forecasts, but careful consideration of how to incorporate snowpack information is
crucial for optimal results.

1. Introduction
Water Supply Forecasts (WSFs) from sub‐seasonal to seasonal lead times, that is, weeks to months ahead, can aid
in water allocation decisions (Chiew et al., 2003; Kaune et al., 2020), crop selection strategies (Mushtaq
et al., 2012), water supply controls (Crochemore et al., 2016), managing extremes like droughts and floods
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(Amnatsan et al., 2018; Ficchì et al., 2016; Watts et al., 2012), and water market planning (Turner et al., 2017).
WSFs are issued at hundreds of points, primarily basin outlets, across the western US near the first of the month
between January and June each year. Water at many of these forecast points originates as melt from winter
snowpack, emphasizing the role of accurate snow information in supporting the performance of the WSFs (Daly
et al., 2000; Li et al., 2017). A popular choice for operational forecasting is the use of Ensemble Streamflow
Predictions (ESPs) that use historical weather data and process‐based models (Förster et al., 2018; Girons Lopez
et al., 2021; Harrigan et al., 2018; Singh, 2016; Wang et al., 2010; Yuan et al., 2016). The historical weather data
used by ESPs functions as an analog for seasonal climate forecast uncertainty and serves as a simple estimate of
forecast uncertainty (Day, 1985; Troin et al., 2021). Despite the variety of physical representations within
process‐based models, they suffer from other notable uncertainties arising from simplified model structures and
challenges in identifying model parameters. Alternatively, emerging deep learning techniques like the Long
Short‐Term Memory (LSTM) models learn complex patterns from data using interconnected layers. These
models have demonstrated the ability to improve streamflow prediction (Arsenault et al., 2022; Kratzert
et al., 2018; Kratzert, Klotz, Herrnegger, et al., 2019; Kratzert, Klotz, Shalev, et al., 2019; Nearing et al., 2021),
raising the question about how to effectively leverage deep learning frameworks to enhance WSF performance.
Here, we seek to evaluate the potential utility of the emerging deep learning technique, LSTMs, in an ESP
framework for water supply forecasting in the western US.

Probabilistic seasonal streamflow forecast information can aid in making risk‐based decisions. These often take
the form of ESPs that generate an ensemble of equiprobable future streamflow traces with lead times of between
30 and 180 days that is, at sub‐seasonal to seasonal timescales. At the core of the ESPs are the initial hydrologic
conditions that represent the current state of the hydrologic system and set the starting point for the forecasts. To
date, ESPs have relied on process‐based models to generate WSFs. However, the reliability and applicability of
process‐based models used in generating ESP forecasts are limited by several factors. Among these factors are
biases in initial hydrologic conditions, which arise due to a lack of knowledge and incomplete process repre-
sentation of factors controlling initial conditions, which ultimately contribute to inaccuracies in forecasting
(DeChant & Moradkhani, 2011). Additional limiting factors include challenges in identifying process‐based
model parameters, necessitating computationally expensive and potentially ill‐constrained calibration
(Arheimer et al., 2020; Hirpa et al., 2015; Wood et al., 2016).

Emerging deep learning techniques learn complex patterns from data using interconnected layers, enabling them
to minimize or avoid the issues facing process‐based models. Deep learning is a subset of machine learning and is
a powerful method that leverages successive layers of nonlinear transformations (i.e., neural networks) to learn
complex predictor mapping from input data to target outputs (Chollet & Chollet, 2021). Recently, multiple in-
vestigations have shown improved streamflow performance of deep learning models attributed to large data
availability, for for example, CAMELS (Addor et al., 2017; Newman et al., 2014), CONUS404 (Rasmussen
et al., 2023), and Caravan (Kratzert et al., 2023), and an implicit accounting of physical relationships through
input‐output mappings of predictors to predictands (Fleming et al., 2021). These models have been shown to
perform equally or better than process‐based models in studies including, but not limited to Arsenault
et al. (2022), Kratzert, Klotz, Herrnegger, et al. (2019), and Nearing et al. (2021). Considering these performance
improvements of deep learning models over process‐based models, a parallel surge in streamflow forecasting
applications has been driven by the growing exploration of deep learning methodologies (Ibrahim et al., 2022; Ng
et al., 2023; Sit et al., 2020). Reasons for the growing interest in deep learning forecasts versus process‐based
forecasts primarily include lower development and operational costs, the handling of complex tasks with
limited domain knowledge, and regionalization performance—extrapolating information from multiple basins to
make predictions in individual gaged or ungauged basins (Kratzert, Klotz, Herrnegger, et al., 2019; Kratzert,
Klotz, Shalev, et al., 2019).

There are several types of deep learning models. Simple recurrent neural networks retain limited information,
rendering them generally unsuitable for hydrological modeling applications (Bengio et al., 1994), where time‐
tracking of physical components across multiple weeks or months is essential. LSTM is a special kind of
recurrent neural network, first proposed by Hochreiter and Schmidhuber (1997), designed to learn long‐term
dependencies in time‐series data. A detailed description of the workings of an LSTM model and its compo-
nents is provided in Kratzert et al. (2018) and Kratzert, Klotz, Herrnegger, et al. (2019). LSTMs have now been
well established for streamflow modeling through the intercomparison of modeling approaches (Kratzert, Klotz,
Herrnegger, et al., 2019; Kratzert, Klotz, Shalev, et al., 2019; Mai et al., 2022), the ability to predict
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unprecedented extremes (Frame et al., 2022), and regionalization (Ayzel et al., 2020; Kratzert et al., 2018;
Nearing et al., 2021). Owing to better streamflow prediction accuracy and regionalization capabilities, LSTMs
present a viable alternative to process‐based models in an ESP framework by eliminating the need for domain‐
specific calibration and flexibility in handling diverse domains.

Similar to the utility of initial hydrologic conditions in initializing the process‐based ESP forecasts, the LSTM's
memory states serve as a useful proxy for generating ESP forecasts. While LSTMs memory states can be
conceptually understood as a kind of storage or model state (Kratzert et al., 2018), their utility in generating an
ESP forecast requires a comprehensive analysis. As stated earlier, initial hydrologic conditions are crucial for an
ESP forecast, with snowpack information identified as the main source of predictive skill across snow‐dominated
western regions (Koster et al., 2010; Shukla & Lettenmaier, 2011; Wood et al., 2016). Snow serves as a critical
source of hydrologic memory, acting as a predictor that impacts the performance of ESP forecasts. While LSTMs
trained for streamflow have demonstrated the ability to capture snow dynamics implicitly, there are limitations
associated with them since these LSTMs are only trained for streamflow and not explicitly for snow (Kratzert
et al., 2018). Hence, identifying the best way to incorporate snow explicitly is a nontrivial endeavor, given the
deviation of LSTMs architecture from traditional process‐based models.

Motivated by the aforementioned performance of LSTM models compared to process‐based models, as well as
the limitations associated with process‐based ESPs, our study introduces a novel implementation of a LSTM
model in an ESP framework. The analysis includes assessing LSTM‐ESP forecasts generated by LSTM models,
which are trained regionally using information from a large sample of basins across the CONUS domain. A set of
four forecast experiments are explored in the new LSTM‐ESP framework: one that excludes snow data and three
that integrate snow data representations ranging from simple to complex. We seek to understand whether
explicitly providing different degrees of snowpack information can improve the LSTM‐ESP forecasts. Lastly, we
compare the LSTM‐ESP with operational forecasts from the NRCS, serving as an operational water supply
forecasting benchmark using a consistent methodology over a sufficiently long overlapping period with generated
LSTM‐ESP forecasts.

2. Methods
We first outline the specifics of the training data and basin selection criteria in Section 2.1. In Section 2.2, we
introduce the LSTM by providing details on the model architecture and training process. In Section 2.3, we
describe the training protocols of the LSTM models tested here: one model trained without snow information—
LSTMNoSnow, and one that uses snow information—LSTMSnow. This section also describes the implementation of
these LSTM models in an ESP framework. Section 2.4 outlines the design of four LSTM‐ESP forecast experi-
ments, with one using LSTMNoSnow model and three other experiments using the LSTMSnow model. Section 2.5
provides an overview of forecast performance metrics.

2.1. Study Domain and Training Data

We selected a diverse set of drainage basins across the western US, spanning a range of hydroclimatic charac-
teristics. A total of 664 drainage basins were identified by analyzing the geospatial attributes from the USGS
Geospatial Attributes of Gages for Evaluating Streamflow (GAGES‐II; Falcone, 2011; Falcone et al., 2010) data
set, the Hydro‐Climatic Data Network (HCDN; Slack & Landwehr, 1992), and the Catchment Attributes and
Meteorology for Large‐sample Studies (CAMELS; Addor et al., 2017; Newman et al., 2014) data set. The
screening procedure is described in Section 2.1.1, and a map of training basins is shown in Figure S1 in Sup-
porting Information S1.

The predictors for training LSTM models were selected and employed based on the works of Arsenault
et al. (2022), Kratzert, Klotz, Herrnegger, et al. (2019), and Kratzert, Klotz, Shalev, et al. (2019). These predictors
(Table 1) include North American Land Data Assimilation System Phase 2 (NLDAS2; Xia et al., 2012) mete-
orological forcings, aggregated on a daily basis and spatially averaged for each basin from 1/8° (∼12‐km) grids.
These forcings consist of precipitation, average wind speed, 2 m average air temperature, incoming longwave and
shortwave radiation, near‐surface air pressure, and near‐surface vapor pressure. Additionally, the static predictors
incorporate basin‐wide attributes from GAGES‐II that remain constant at each daily time step (U.S. Geological
Survey, 2023). In general, the selection of the GAGES‐II basin attributes mirrors those utilized in the CAMELS
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data set. Daily streamflow estimates from the USGS's National Water Information System (USGS NWIS) were
obtained for the USGS stream gages corresponding to the basin outlets (United States Geological Survey, 2024).

We obtain daily snow information from the gridded snow data set, developed at the University of Arizona
(Broxton et al., 2019; Zeng et al., 2018—now UA), spatially averaged for each basin from 1/16‐degree grids. This
data set assimilates snowpack observations from in situ networks like SNOTEL and compares favorably to
remote sensing and airborne lidar measurements (Zeng et al., 2018). For a supporting analysis, we also obtained
daily SWE from the Natural Resource Conservation Service's SNOTEL network. To handle spatial interpolation
from multiple sites, we followed the NRCS's approach that spatially averages snow from all stations inside and

Table 1
Training Predictors Consisting of Meteorological Forcings (Source: NLDAS2), Static Basin Attributes (Source: GAGES‐II), and Snow Data (Source: UA) With
Streamflow Data (Source: USGS) as the Predictand

Category Name Description

Static PPTAVG_BASIN Mean annual precipitation (mm)

PET Mean annual potential evapotranspiration (mm)

T_AVG_BASIN Average annual air temperature (oC)

SNOW_PCT_PRECIP Snow percent of total precipitation estimate

WDMAX_BASIN Watershed average of monthly max. number of days of measurable precipitation

WDMIN_BASIN Watershed average of monthly min. number of days of measurable precipitation

PRECIP_SEAS_IND Precipitation seasonality index (Dingman, 2002; Markham, 1970). Index of how much
annual precipitation falls seasonally (high values) or spread out over the year (low values).

RUNAVE7100 Mean annual total runoff (mm)

RE Runoff efficiency = PPTAVG_BASIN/RUNAVE7100

ELEV_MAX_BASIN Maximum watershed elevation (m)

ELEV_MIN_BASIN Minimum watershed elevation (m)

DRAIN_SQKM Watershed drainage area (km2)

SLOPE_PCT Mean watershed slope (%)

FORESTNLCD06 Watershed percent forest (%)

PLANTNLCD06 Watershed percent planted/cultivated

PNV_BAS_PCT Percentage of the watershed covered by the dominant potential natural vegetation

ROCKDEPAVE Average value of total soil thickness examined (in)

AWCAVE Average value for the range of available water capacity for the soil layer

CLAYAVE Average value of clay content (%)

SILTAVE Average value of silt content (%)

SANDAVE Average value of sand content (%)

PERMAVE Average permeability (in/hr)

KFACT_UP Average K‐factor for the uppermost soil horizon in each soil component. K‐factor is an
erodibility factor which quantifies the susceptibility of soil particles to detachment and
movement by water.

Meteorological PRCP Average daily precipitation (mm/day)

WIND Average wind speed (m/s)

TAS 2 m daily average air temperature (oC)

SRAD Incoming shortwave solar radiation (W/m2)

LRAD Incoming longwave solar radiation (W/m2)

PRES Near‐Surface Air pressure (Pa)

VP Near‐Surface Vapor Pressure (Pa)

Snowa SWE Average Snow Water Equivalent (mm)

Streamflow SF Average daily streamflow (mm/day)

Note. The asterisk indicates that the predictor was only included in one of the two trained LSTM models. aSnow was the only variable used in LSTMSnow that was not
used in LSTMNo‐Snow.
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within a certain radius of the basin boundary (i.e., within 40 km of the basin boundary; more details are provided
in Text S1 in Supporting Information S1).

2.1.1. Basin Screening Procedure

The basin screening procedure applied here was similar to the CAMELS approach (Addor et al., 2017; Newman
et al., 2014) but allowed us to include a slightly larger number of basins relative to CAMELS basins. Both
CAMELS and additional basins screened are a subset of the GAGES‐II data set that were filtered for minimal
human influence, resulting in a majority of basins being headwater basins that fall below a drainage area threshold
of 2,500 km2. Thus, we specifically included basins with minimal anthropogenic influence with drainage areas up
to 2,500 km2 (with an average size of roughly 560 km2) and a minimum of 30 years of streamflow observations to
ensure sufficient data for model training and testing. For additional non‐CAMELS basins sourced from GAGES‐
II, we enforced certain attribute criteria. These included limiting the number of major dams (storage >5,000 acre‐
feet) to 1 or fewer, the ratio of reservoir storage to average streamflow from 1971 to 2000 to less than 10%, and the
GAGES‐II hydro‐disturbance index is less than 10 (Falcone et al., 2010). To ensure that the basin boundaries and
drainage area were accurately represented in the selected basins, additional criteria based on the GAGES‐II
boundary attributes were employed. The first was basin boundary confidence greater than or equal to 8, that
is, how well the basin boundary matches the true drainage area, with value 10 representing high confidence and 2
low confidence. It is important to note that this metric represents a qualitative assessment, not a quantitative one,
based on the reliability of the delineation process and its consistency with verified hydrological and geological
data (Falcone, 2011). In addition, a percent difference in area less or equal to 10% was used as compared to values
reported in the USGS National Water Information System database. The second was a qualitative check of their
HUC10 boundaries that are deemed to be at least “reasonable” or “good” based on three factors: (a) how closely
the drainage area matches the USGS National Water Information System database, (b) visual comparison of basin
boundary to HUC10 boundaries, and (c) streamflow outlet location relative to basin boundary and streamlines
(these attributes are further described in Falcone, 2011; Falcone et al., 2010). We chose to work with these
specific categories because our focus was on training LSTM models using spatially averaged predictors, which
did not require very strict constraints. It should be noted that only 76 basins (out of 664 basins used for training)
had official NRCS forecasts available for comparing the experimental forecast skill. These basins are colored in
Figure 1 by the ratio of April 1 SWE to water‐year to date cumulative precipitation that is derived from gridded
snow product and NLDAS2, respectively. The mean annual ratio of April 1 SWE, used here as a proxy for peak
SWE (Pagano et al., 2004), to water‐year to date cumulative precipitation (SWE/P) is calculated over the water
years 1982–2022. This ratio is one way to quantify the degree to which a basin could be considered snowmelt‐
dominated, with higher values corresponding to more snowmelt‐dominated streamflow, and vice versa for lower
values. We explore this ratio to ensure that we are incorporating varying snowpack characteristics across the
western US. A majority of these basins lie within the US Environmental Protection Agency's snow level III
ecoregions labeled in Figure 1.

2.2. Long Short‐Term Memory (LSTM) Models

While any neural network can learn non‐linear systems, LSTMs excel at handling sequences of inputs over
extended periods due to their unique architectures. LSTMs have two key memory states that manage information:
the hidden state, which acts as a working memory retaining information from recent events, and the cell state,
which functions like a conveyor belt to store and retrieve information from past events. This study adopts a setup
similar to Kratzert, Klotz, Herrnegger, et al. (2019) (now onwards “K19”) for the experimental setup, as they were
shown to work well with CAMELS basins that have minimal anthropogenic influence and have sufficient data for
training and testing (data sets are described in Section 2.1). Since we generated forecasts for in‐sample basins (i.e.,
for only basins used in training), we adopted the setup of “LSTM (with statics)” from Kratzert, Klotz, Herrnegger,
et al. (2019). This setup only includes hyperparameters and not model parameters or training inputs. Hyper-
parameters are externally set before the training starts and govern the training process itself, whereas model
parameters are learned from the training data during the training process. The hyperparameters used by K19 were
not modified due to marginal performance gains observed with varying hyperparameter selection and model
architectures (Arsenault et al., 2022). For this study, we elaborate on selected model parameters and hyper-
parameters crucial to the training process (Table 2 and Figure 2). Specifically, the model parameters consist of
weights and biases, whereas hyperparameters include the number of hidden layers, the number of units in each
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layer, the input sequence length, batch size, dropout rate, number of epochs, optimizer, and batch size. The list of
hyperparameters is briefly outlined in Table 2 and explained in the subsequent paragraphs.

Using the K19 model structure, the LSTM includes a single hidden layer comprising 256 units, where units act as
computational units through which data flows, and the hidden layer is responsible for learning the intricate
structures in data. Additionally, the hidden layer is configured with a dropout rate of 0.4, which involves randomly
dropping neurons during training to mitigate overfitting. The input sequence length used is 270 days, which
specifies the number of preceding time steps fed into the LSTM to produce streamflow on a given day.

Figure 1. A map of the study domain, comprising 76 USGS drainage basins across the western US colored by the ratio of
April 1 SWE to water year‐to‐date precipitation. The purple boundaries indicate the North American snow ecoregions Level
III generated by the US Environmental Protection Agency (US EPA, 2015).

Table 2
The Long Short‐Term Memory Hyperparameters Used in This Study

Parameter Description Selected value

Number of hidden layers The number of stacked LSTM layers in the model 1

Number of units The number of memory cells in each LSTM layer that determine the capacity to learn
from the data

256

Input sequence length The length of preceding time steps fed into the LSTM 270

Batch size The number of training samples used in one iteration 2,000

Dropout rate The fraction of the units to drop during training to prevent overfitting 0.4

Number of epochs The number of times the entire training data set is passed through the model 40

Optimizer The algorithm used to minimize the loss function Adam

Learning rate The step size used by the optimization algorithm to update the model weights 0.001

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004582

MODI ET AL. 6 of 22

 19422466, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004582 by U
niversity O

f C
olorado B

oulder, W
iley O

nline Library on [19/06/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



A schematic of the LSTM training process is shown in Figure 2. As a first step, the weights and biases are
initialized using the Xavier uniform distribution (Glorot & Bengio, 2010). Following the initialization, a subset of
2,000 samples (i.e., batch size—an LSTM hyperparameter) is randomly extracted in every iteration from all
available training samples to make predictions. Similar to K19, the training is done regionally, that is, training
samples from 664 basins across the CONUS are used. Each sample consists of one streamflow observation on a
given day, representing the value of the dependent variable, alongside the input from a sequence of the preceding
270 days, such that we construct a “sequence to value” LSTM prediction. More details on trained LSTM models
and training data are provided in Sections 2.1 and 2.3.1, respectively.

Since streamflow observations on a particular day are solely contingent upon predictors from the preceding
270 days, a batch can encompass random time steps or random basins devoid of any chronological ordering
requirement (Kratzert et al., 2018). This batch configuration is possible because static basin attributes are included
as inputs, informing the model about the characteristics of the basin. During each iteration, the predictors (X) are
passed through the model, which comprises weights (w) and biases (b), to generate predictions (ysim) and compute
the error, also known as loss relative to observations (yobs). Subsequently, this loss is employed to update the
model parameters through back‐propagation algorithms (Figure 2). Since the training encompasses basins with
varying hydroclimatic characteristics, the training loss function is a basin‐averaged Nash‐Sutcliffe Efficiency
(NSE) that is modified to normalize the mean squared error within each basin using the variance of discharge
observations (Kratzert, Klotz, Herrnegger, et al., 2019; Kratzert, Klotz, Shalev, et al., 2019). This is done to avoid
overweighting large and humid basins within the training loss function.

Similar to the calibration process in traditional process‐based models, where parameters are calibrated based on
objective criteria, LSTM model parameters (specifically weights and biases) are updated iteratively using a
training loss function. However, the iteration concept differs between both models. In process‐based models, each
iteration corresponds to a full model run during calibration, with parameters updated after each iteration. In
contrast, in LSTM models, parameter updates occur after every epoch, where one epoch refers to the complete

Figure 2. Schematic of Long Short‐Term Memory model training for each iteration within an epoch. In each iteration, 2,000
independent random samples are drawn from 18 years of daily data from 664 basins totaling 4.36 million basin‐days. Each
sample consists of 270 days, that is, input sequence length, of preceding predictors (X) and one target observation (yobs). The
loss is computed between observed discharge (yobs) and the network's prediction (ysim). The model parameters, including
weights (w1…wm) and biases (b1…bm), are updated after every iteration. Epoch refers to the complete passing of the entire
training data set through the model algorithm once. The weights and biases are model parameters, whereas the batch size,
input sequence length, and number of epochs are the hyperparameters.
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passing of all training data through the model algorithm once. For example, if the entire training data comprises
100,000 samples and the batch size is 2000, one epoch would comprise 50 iterations, for example, 100,000/2,000.
Consequently, within each epoch, each sample out of all samples is selected without replacement until all samples
have been utilized at least once (Kratzert et al., 2018). This study uses 40 epochs for training with a single seed
and an Adam optimizer, which offers more adaptability and efficiency as compared to the Stochastic Gradient
Descent (Ruder, 2016). We chose 40 epochs based on the experiments performed by Arsenault et al. (2022),
Kratzert et al. (2018), and Kratzert, Klotz, Herrnegger, et al. (2019). We did not repeat the training process for
multiple seeds as the impact on the performance was minimal (Table 2; Kratzert, Klotz, Shalev, et al., 2019).

2.3. Experimental Setup

In Section 2.3.1, we first describe the training process of two distinct LSTM models: one trained without snow
information—LSTMNoSnow—and one that uses snow information—LSTMSnow. This is followed by a comparison
with the reproduced K19 model. In Section 2.3.2, we outline the process of running these LSTM models in an ESP
framework.

2.3.1. LSTM Model Training

Two distinct LSTM models were trained. The LSTMNoSnow used only meteorological forcings and basin attri-
butes and no snow information, providing a baseline for comparison. The LSTMSnow was trained using meteo-
rological forcings, basin attributes, as well as gridded snow data. LSTM models were trained from WY1983–2000
with a predictand of daily USGS streamflow data at the basin outlets. Following the model training, we evaluated
the performance of both LSTM models against K19 and observations in years WY2001–2010 over 493 basins,
which represents the subset of the CAMELS basins that are common between K19 and this study. It should be
noted that we reproduced the K19 model (“LSTM—with statics”) based on Kratzert, Klotz, Herrnegger,
et al. (2019) with a single seed. The LSTM‐ESP forecasts from all the regional models were only generated in
recent years, WY2011–2020, due to the widespread availability of forecasts for comparison (further described in
Section 2.4). It is important to highlight that the ESP forecasts, which generate daily streamflow, were accu-
mulated to April–July water supply volumes, a primary component of the analysis.

2.3.2. Ensemble Streamflow Predictions

In general, ESP forecasts generated on April 1 hold significant operational importance. This is because April 1
historically serves as a surrogate for the timing of peak SWE conditions and provides near‐maximum predictive
information (Pagano et al., 2004). However, anticipated future reductions in snow may diminish the predictive
efficacy of April 1 (Livneh & Badger, 2020; P. A. Modi et al., 2022). Hence, for this study, we include three
forecast dates—February 1, March 1, and April 1 and one evaluation period—April–July. The forecast period
extends from the forecast date through the end of July. While most of our analysis focuses on April 1 as the
forecast date, we also included two additional forecast dates: February 1 and March 1. These forecast dates were
selected because they are commonly used in operational forecasting (Pagano et al., 2009) and accommodate for
regional variations in the timing of peak SWE across our study basins (Musselman et al., 2021).

For ESP forecasts on a given forecast date, the LSTM simulation begins at the start of the water year, that is,
October 1, using true meteorological forcings to obtain LSTM's memory states on the forecast date. Using these
memory states on the forecast date and historical meteorological forcings, an ensemble of streamflow traces is
produced in the forecast period as a function of the current hydroclimatic state and retrospective weather con-
ditions (Day, 1985; Troin et al., 2021). The result is a daily probabilistic hydrologic forecast ranging from 30 days
up to 180 days from the forecast date that uses the spread in historical data from the past ∼20–30 years as an
analog for the uncertainty in meteorological conditions after the forecast date.

A conceptual illustration of an ESP forecast generated on April 1 using LSTM is shown in Figure 3. The thick red
line indicates the model run before the forecast date using “true” meteorological forcings. Ensemble streamflow
traces (shown in light red) are generated using the memory states on April 1 (shown in blue) and historical
meteorological forcings from the past 23 years. For example, the streamflow prediction for a given day in the
forecast period will be generated using 270 days (i.e., input sequence length) of preceding predictors that consist
of observed meteorological forcings prior to April 1 and historical meteorological forcings from April 1 until the
day of prediction.
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2.4. Forecast Experiments

We designed four forecast experiments to examine the performance of LSTM‐ESP forecasts under varying levels
of snowpack information. These experiments ranged from providing no direct snowpack information (implicit) to
directly supplying true snowpack information (explicit). In the implicit setup, the LSTM received only meteo-
rological observations, relying on the model's ability to essentially map inputs onto outputs, by inferring the
impact of how snow dynamics inherently affect the target variable of streamflow. While using only meteoro-
logical forcings implicitly captures snowpack dynamics within LSTMs for streamflow prediction, ESPs would be
limited by the lack of known snowpack information on and beyond the forecast date, which impacts their ability to
represent hydrologic memory after the forecast date. Conversely, in the explicit setup, the LSTM was provided
with direct snowpack data, enabling it to incorporate this information as an additional predictor. By including
explicit snowpack information on and beyond the forecast date, we aim to provide LSTM‐ESP with different
degrees of snowpack information and a better representation of hydrologic memory. These include known
snowpack information on the forecast date and assumptions about snow evolution after the forecast date as a way
to boost the representation of hydrologic memory that is commensurate with the physical hydrological system.

From the start of the water year until the forecast date, for example, before April 1 (or Mar. 1 or Feb 1), all
experiments use common predictors like “true” meteorological forcings and basin attributes, while the snow
forecast experiments also use “true” snow information. Then, “during” the forecast period, that is, after April 1 (or
Mar. 1 or Feb. 1), we use meteorological forcings from earlier historical years as is common in ESP, as well as
basin attributes, and the snow experiments use three different treatments of snow as predictors, depending on the
experiment. These treatments of snow combine the “true” snowpack conditions up to and including the forecast
date, with snowpack data after the forecast date that come from the same historical years as the ESP meteoro-
logical forcing. These forecast experiments are defined based on the degree of historical snow information used—
ESPNoSWE, ESPLinearSWE, ESPRetroSWE, and ESPActualSWE. Figure 4 provides more details, and Figure 5a provides
a graphical depiction of April 1 ESP forecasts. Importantly, only in the ESPNoSWE experiment uses the trained
LSTMNoSnow model, while the latter three experiments (ESPLinearSWE, ESPRetroSWE, and ESPActualSWE) utilize the
LSTMSnow trained model.

The ESPNoSWE experiment employs the LSTMNoSnow model (Section 2.3.1) and operates under the assumption
that no historical snowpack information is available during the forecast period. This is shown in Figure 5a by the
green zero SWE line that indicates no snow information was included during the forecast period. Snow treatment
in this experiment is considered implicit because it may indirectly infer the impact of snow from the LSTM's
“memory states” and relationships between streamflow and available historical meteorological forcings rather
than directly incorporating snow as a predictor.

Figure 3. Illustration of an LSTM‐ESP forecast issued on April 1. The thick red line depicts the Long Short‐Term Memory
model run before the forecast date using “true” meteorological forcings starting from October 1. Using the memory states on
April 1 (shown in blue) and historical meteorological forcings from the past 23 years, ensemble streamflow forecasts are
generated (shown in light red). Data based on USGS basin 13313000—Johnson Creek, ID for the forecast year 2011. It
should be noted that the x‐axis shown here is not uniform and represents the LSTM‐ESP conceptually.
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The ESPLinearSWE, ESPRetroSWE, and ESPActualSWE forecast experiments employ the LSTMSnow model (Sec-
tion 2.3.1) to assess the impact of differing levels of historical snowpack information on forecast performance.
Explicitly using snow information during the forecast period means that the generated forecasts will not only
depend on LSTM's memory states and historical meteorological forcings but also on the snow information
provided during the forecast period in the form of a predictor. Just as ESP models do not know the true mete-
orology during the forecast period, they also do not know the true snow information (i.e., SWE values). Thus, we
test multiple types of snow data to see how they affect forecast performance.

The ESPLinearSWE applies the known SWE information on the forecast date with average linear ablation rates
computed based on historical data, representing a simplified baseline case. In the case of ESPLinearSWE, for a given
ensemble year, the ablation rate is estimated by taking the ratio of total ablation and the total number of days the
ablation was greater than zero during the forecast period. These estimates are calculated for each ensemble year
from UA snow data. A straight line is constructed for each ensemble year by using the SWE on the forecast date
(from the forecast year) as an initial intercept and ablation rate (from the ensemble year) as the slope (shown by
multiple blue lines in Figure 5a). The Linear SWE assumes that no accumulation happens after the forecast date
and that ablation occurs at a constant rate making it highly simplified and it's use solely as a diagnostic tool to
understand the potential value of limited snow information follows from earlier studies (Barnhart et al., 2016;
Evan & Eisenman, 2021; Trujillo & Molotch, 2014). We expect the linear ablation assumption to be particularly
disadvantageous in high snow regions with significant snow accumulation after the forecast date (e.g., after April
1 in high snow regions).

The ESPRetroSWE is more sophisticated, since it integrates the known SWE information on the forecast date (from
the forecast year) with explicit accumulation and ablation rates after the forecast date from individual historical
years (shown by multiple red lines in Figure 5a). The accumulation rate is estimated similarly to the ablation rate,
that is, by taking the ratio of total accumulation and the total number of days where accumulation was greater than

Figure 4. Chart of trained Long Short‐Term Memory models and their corresponding forecast experiments, including names
and descriptions. A graphical portrayal of the treatment of snow for each experiment is provided in Figure 5.
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zero during the forecast period. A snow curve is constructed for each ensemble year by using SWE on the forecast
date as an initial intercept and then tracing the ensemble year's snow curve with accumulation and ablation rates.
We trace this curve by systematically tracking changes in the snowpack, that is, when ablation happens, the
ablation rate is applied, and when accumulation happens, the accumulation rate is applied. It should be noted that
we cannot use the historical SWE curves directly since that would create a discontinuity in SWE values on the
forecast date.

The ESPActualSWE experiment uses the “true” snowpack evolution from the respective forecast year that occurred
during the forecast period (solid orange line, Figure 5a). However, this experiment is not a forecast per se, because
snowpack information beyond the forecast date would be unknown. In addition, unlike the ESPLinearSWE and
ESPRetroSWE experiments, the ESPActualSWE experiment presents a single SWE curve (from the forecast year) as a
predictor during the forecast period alongside common predictors regardless of the ensemble year.

Figure 5. Demonstration of forecast experiment design: (a) historical snowpack information used as a predictor in the form of
ESPLinearSWE (only ablation), ESPRetroSWE (accumulation and ablation), and ESPActualSWE, (b) demonstration of median
Ensemble Streamflow Prediction (ESP) forecasts on April 1 corresponding to each forecast experiment, and (c) cumulative
volumes from each ESP forecast with a dashed black line and a solid gray line representing observed and climatological
volumes respectively. Data for this example is based on USGS basin 13313000—Johnson Creek, Idaho for the forecast year
2011.
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We employ these treatments of snow information in the forecast experiments to determine the extent to which
they enhance or degrade forecasts with respect to the ESPNoSWE experiment. The daily ESP forecasts generated
from these forecast experiments are illustrated in Figure 5b alongside the observed streamflow. The forecasted
daily streamflow from each experiment is further cumulated to seasonal volumes (i.e., April–July—evaluation
period) and used for comparison with operational forecasts (Figure 5c). It is important to note that the purpose of
Figure 5c is solely to illustrate how the AMJJ volume changes with varying levels of snowpack information. The
evaluation of forecast performance is addressed in detail in later Sections 3.2–3.4. Additionally, these forecast
volumes are shown for the year 2011, which experienced much above‐normal snowpack, characterized by late
snowmelt and elevated streamflow. This hydrological anomaly (a) explains the deviation between the observed
streamflow and the climatological average, and (b) may also account for why most of the models underpredicted
streamflow in Figure 5c.

2.4.1. Forecast Comparison

We use Natural Resources Conservation Services (NRCS) statistical forecasts as a proxy for operational forecasts
over the study watersheds for benchmarking purposes. These forecasts were chosen since they are methodo-
logically consistent across all regions and easily accessible for a larger number of basins and years. The NRCS
employs a Principal Component Regression model. This model is usually modified to retain the principal
components (Garen, 1992; Lehner et al., 2017) and uses predictors like SWE and accumulated precipitation from
SNOTEL and antecedent streamflow USGS to predict seasonal streamflow volumes (i.e., April–July in this
study).

NRCS forecasts include five forecasted exceedance probabilities at 90%, 70%, 50%, 30%, and 10%. To clarify,
90% means there is a 90% chance that the observed streamflow volume will exceed this forecast value and a 10%
chance that it will be less than this forecast value. They are generated for multiple forecast points and different
evaluation periods (e.g., Apr–Jul, Mar–June, May–Aug, etc.). In order to make LSTM‐ESP forecasts comparable,
the same five probabilities of exceedance were obtained from the LSTM‐ESP ensemble.

2.5. Performance Metrics

The Nash Sutcliffe Efficiency (NSE) was used to quantify streamflow prediction accuracy of the different LSTM
models. The NSE ranges from negative infinity to 1, with 1 indicating perfect agreement between the simulated
and observed values, and values closer to 0 indicating poorer performance.

We employed three forecast performance metrics, drawing from those widely adopted operationally and recently
used in the Bureau of Reclamation's WSF challenge (DrivenData, 2023). The Normalized Root Mean Square
Error (NRMSE, in %) was used to analyze the skill of seasonal volumes from the forecasts against the corre-
sponding observed streamflow volumes. The RMSE was normalized by the median of observed streamflow
volumes and values closer to 0 indicate better forecast performance.

Internal Coverage refers to the proportion of the observed values that fall within the ensemble. This metric de-
termines whether the ensemble spread adequately captures the expected interannual variability in the forecasts or
if it is too narrow. Well‐calibrated forecasts are expected to have a coverage value of 0.8 or higher to ensure
forecast uncertainty is well‐represented (DrivenData, 2023). The equation for interval coverage is shown in
Equation 1 as:

IC =
1
n

∑
n

i=1
1( ŷ0.1,i ≤ yobs ≤ ŷ0.9,i)

(1)

Where 1 is an indicator function that assigns a value of 1 if the condition is satisfied or 0 otherwise. yi represents
the actual observed value for the ith observation, ŷ0.1,i and ŷ0.9,i represents the predicted value for the 0.1 and 0.9
quantiles of the ith observation and n represents the total number of observations.

An additional NRMSE skill score (SSNRMSE) quantifies forecast skill relative to the skill of a reference clima-
tological forecast, which is the mean seasonal observed volume from WY1982–2005. The climatology would
have a skill score of 0, whereas a perfect forecast would result in a skill score of 1 (Equation 2).
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SSNRMSE = 1 −
NRMSEforecast

NRMSEclimatology
(2)

Lastly, a one‐sided Mann‐Whitney U test was also performed to test whether the performance from different
forecast experiments is equal for any forecast metric. The non‐parametric hypothesis test was chosen over a
parametric Student's paired t‐test as it performs well with non‐normally distributed data. Statistical significance
was reported at the 95% confidence level (p ≤ 0.05).

3. Results
We first compare the historical model performance from both LSTM models with observations, as well as relative
to the performance of the K19 model (Section 3.1). Following this, we examine the forecast skill from LSTM‐ESP
forecast experiments, initially comparing among themselves on April 1 (Section 3.2) and, subsequently,
comparing selected forecast experiments with NRCS forecasts issued on April 1 (Section 3.3). We lastly compare
this forecast performance across different lead times alongside NRCS (Section 3.4).

3.1. Evaluating Historical LSTM Model Performance: The Impact of Snow on Streamflow Prediction
Accuracy

We first compared the daily NSE (through the entire year) of LSTMNoSnow and LSTMSnow models with the K19
model during the testing period, WY2001–2010, which is separate from the training period, WY1983–2000.
Approximately 80% of the 493 common basins with the K19 study showed an average daily NSE of 0.5 or greater
with both models (Figures 6a and 6b). Both LSTM models (LSTMNoSnow and LSTMSnow) showed statistically
higher NSE (median—0.72, 0.74) than K19 model (median—0.70) based on a one‐sided Mann‐Whitney U test
(p ≤ 0.05). These modest performance gains may be a result of adding more basins in the model training (531
basins in K19 vs. 664 basins in this study). Furthermore, we assessed the NRMSE of total April–July stream-
flow volumes, accumulated from daily streamflow. Approximately 50% of basins showed an NRMSE of 25% or
less for both LSTM models (Figures 6c and 6d), and only the LSTMSnow model (median—23%) showed sta-
tistically lower NRMSE compared to the K19 model (median—25%) based on a one‐sided Mann‐Whitney U test
(p ≤ 0.05).

3.2. Intercomparison of Skill From Forecast Experiments on April 1

April 1 forecast skill was evaluated across 76 basins during the period WY2011–2020. These 76 basins were
categorized into low (SWE/P < 0.4), moderate (0.4 ≤ SWE/P ≤ 0.8), and high snow regions (SWE/P > 0.8).
Figure 7 compares NRMSE, Internal Coverage, and SSNRMSE across the range of April 1 SWE/P ratios. Sur-
prisingly, the ESPNoSWE experiment showed reasonable NRMSE in high snow regions (median—21%), though it
performed less effectively in regions with low (median—28%) to moderate snow (median—32%). However,
lower Internal Coverage (median ∼ 0.4 across all categories) and lower skill scores (median ∼ 25% across all
categories) suggest ESPNoSWE does not adequately capture the variability in the forecasts.

Conversely, the ESPLinearSWE experiment, which relies on simplified ablation rates, showed poor performance in
the high snow regions, with median NRMSE reaching up to 30% and median Internal Coverage of 0.2. This
finding highlights the negative impact of using a simplified representation of snow on the forecast skill in high
snow regions. However, ESPLinearSWE demonstrated better NRMSE in low (median—21%) to moderate (median
—24%) snow regions, most likely attributable to the majority of snow accumulation occurring before April 1,
making ablation information more sufficient for forecasting purposes. These improvements in low and moderate
snow regions are evidenced by better Internal Coverage and skill scores compared to ESPNoSWE.

In colder regions like the Idaho Batholiths, Middle Rockies, and Wasatch and Uinta Mountains (Figure 1),
significant snow accumulation occurs for up to 40 days after April 1 (Musselman et al., 2017). The ESPRetroSWE

experiment, which relies on both historical ablation and accumulation rates, showed a median NRMSE of 15%
and skill score of 50%, an improvement in high snow regions compared to ESPNoSWE and ESPLinearSWE.

As expected, the ESPActualSWE experiment, which uses true snow information during the forecast period,
generally showed lower NRMSE (median—18%, 22%, 17%) and higher skill scores (median—55, 59, 45) across
three SWE/P categories (Figures 7a and 7c) but demonstrated a lower Internal Coverage (median—0.5, 0.4, 0.3)
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in general. This discrepancy arises because, in the ESPActualSWE experiment, the SWE remains constant across all
ensemble years throughout the forecast period (Figure 5a and as described in Section 2.4). It should be noted that
this is not the case in ESPLinearSWE and ESPRetroSWE experiments where the SWE varies across ensemble members
(Figure 5a).

In general, the interannual variability in the forecast was best captured by the ESPRetroSWE (Figure 7b), and it
performed statistically better (p ≤ 0.05) than ESPNoSWE and ESPLinearSWE experiments across all SWE/P cate-
gories. Overall, this comparison demonstrated the importance of the quality of snowpack information in
generating LSTM‐ESP streamflow forecasts across the western US.

3.3. Comparison of LSTM‐ESP Forecasts With NRCS Forecasts on April 1

As shown in Section 3.2, the ESPRetroSWE experiment yielded overall better forecast performance across snow‐
based experiments and was chosen for further comparison to benchmark against ESPNoSWE and NRCS forecasts.
ESPNoSWE and ESPRetroSWE exhibited NRMSE (median across all SWE/P categories—25%, 20%) and SSNRMSE

(median across all SWE/P categories—29, 50) comparable to the NRCS forecasts (NRMSE—18%, SSNRMSE ‐

Figure 6. (a–b) Daily Nash‐Sutcliffe Efficiency and (c–d) Normalized Root Mean Square Error of the total April–July
streamflow volumes compared through the entire year during the testing period, WY2001–2010. Comparison shown for the
common 493 basins for LSTMNoSnow and LSTMSnow models alongside the K19 model. The brackets in the legend indicate
median values for the respective metric.
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40), with the ESPRetroSWE experiment performing statistically similar (p ≤ 0.05) to NRCS across all SWE/P
categories (Figures 8a and 8c). The ESPNoSWE performs reasonably well but demonstrates higher NRMSE and
lower skill scores than the NRCS and ESPRetroSWE forecasts. As shown in Figure 8b, the NRCS demonstrates a
wider ensemble spread (i.e., high Internal Coverage) than both LSTM‐ESP forecasts, that is, NRCS better
captures the observations within the forecast range. This is attributable to number of ensemble years, architectural
differences and input data between the models, as well as subjective manual hydrologist intervention to the NRCS
forecasts (Fleming et al., 2021; Garen, 1992). We also compared the ESPRetroSWE and NRCS forecasts spatially.
The performance of the ESPRetroSWE was generally similar (white dots in Figures 8d and 8f) to the NRCS, albeit
with some instances of mixed outcomes (red and blue dots in Figures 8d and 8f). Moreover, the ESPRetroSWE

illustrated a narrow ensemble spread across most of the basins (red dots in Figure 8e).

Importantly, we investigated whether the snow‐based LSTM‐ESP findings were specific to the UA SWE product or
not. To this end, we repeated all snow‐based forecast experiments (ESPLinearSWE, ESPRetroSWE, and ESPActualSWE)
using SNOTEL observations for each basin instead of UA snow while keeping all other aspects of the experiment
identical. The resulting comparison is provided in Text S1 in Supporting Information S1. Similar forecast skill
responses were seen overall (Figure S2 in Supporting Information S1), without any clear regional pattern. Limited
basin‐wise disparities were seen and are likely attributable to inherent differences between station‐based snow
measurements and gridded data. Overall, this comparison suggests the findings reported here would not be
quantitatively different if using either UA or SNOTEL snow data.

3.4. Comparison of LSTM‐ESP Forecasts With NRCS Forecasts Across Different Lead Times

Given the interest from water resource managers and government agencies in assessing skill across different
forecast lead times, we compared the ESPNoSWE and ESPRetroSWE experiments to the NRCS forecasts at three
distinct lead times (i.e., Feb 1, Mar 1, and Apr 1). Consistent with our expectations, the performance (i.e., NRMSE
and SSNRMSE) from both LSTM‐ESP forecasts as well as NRCS usually improved up to 15% from longer
(February) to shorter (April) lead times (Figures 9a and 9c). The ESPRetroSWE forecast showed statistically better
performance (i.e., NRMSE and SSNRMSE—p ≤ 0.05) than both NRCS and ESPNoSWE forecasts (Figures 9a and
9c), particularly across February and March whereas the NRCS showed statistically better Internal Coverage
(p ≤ 0.05) than both LSTM‐ESP forecasts (Figure 9b). Commensurate with our earlier findings, we see lower
Internal Coverage from both LSTM based ESPs across all lead times. The disparities in forecast metrics were
largely consistent, showing improvement at shorter lead times. However, the ESPNoSWE's Internal Coverage on
April 1 was dramatically smaller compared to Feb 1 and Mar 1 forecasts, possibly due to lack of explicit
snowpack information. This analysis was constrained to only 53 out of the 76 basins due to the availability of
NRCS forecasts across the different lead times.

Figure 7. April 1 forecast performance over the period WY2011–2020 from all forecast experiments (ESPNoSWE,
ESPLinearSWE, ESPRetroSWE, and ESPActualSWE) across 76 basins for the (a) Normalized Root Mean Square Error, (b) Internal
Coverage, and (c) SSNRMSE. The boxplot whiskers represent the 15th and 85th percentiles, and the square brackets (x‐axis)
indicate the number of basins in each SWE/P category.
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4. Discussion
This study was motivated by recent literature showing that LSTM performance could consistently exceed that of
process‐based models (Ng et al., 2023). Our analysis demonstrated the viability of LSTM in an ESP framework.
LSTM‐ESP forecasts were developed by leveraging LSTM's regionalization and structural abilities using a
combination of predictors, including historical meteorological forcings, basin attributes, and snowpack

Figure 8. Normalized Root Mean Square Error, Internal Coverage, and SSNRMSE compared on April 1 across WY2011–2020
from ESPNoSWE and ESPRetroSWE experiments and Natural Resources Conservation Services (NRCS) across 76 basins (a–c).
The spatial plots (d–f) represent the difference between ESPRetroSWE and NRCS forecasts for each performance metric. The
boxplot (a–c) whiskers represent the 15th and 85th percentiles, and the square brackets (x‐axis) indicate the number of basins
in each SWE/P category.

Figure 9. Normalized Root Mean Square Error (NRMSE), Internal Coverage, and SSNRMSE compared at different lead times
in WY2011–2020 from Natural Resources Conservation Services, ESPNoSWE and ESPRetroSWE forecasts across 53 basins.
The whiskers on the box plots represent the 15th and 85th percentiles.
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information. Two LSTM models (i.e., LSTMNoSnow and LSTMSnow) were trained regionally by maximizing
available training inputs across the CONUS, resulting in better predictor mapping across the different hydro-
logical processes. Using regionally trained LSTM models provided flexibility in application compared to a
process‐based model that requires basin‐wise parameter calibration or regionalization using donor basin in the
case of an ungauged basin (Arsenault et al., 2022).

The model performance from the LSTMNoSnow and LSTMSnow models was compared with the K19 model, given
the similarities of data sets used in both studies and to test the performance of our chosen underlying model
architecture. Despite incorporating a larger number of basins into training both LSTM models compared to K19,
only minor performance differences were observed with the generated hindcasts (Figure 6). These differences
also meant that including snow as an additional predictor did not significantly improve LSTM model perfor-
mance. This finding is attributed to both the utilization of a sufficiently diverse set of basins with varying hydro‐
climatological regimes in the K19 model and inclusion of highly sensitive basin traits that exert a significant
influence on the streamflow, for example, drainage area, average basin precipitation—Ciulla & Varadhar-
ajan, 2023), in our model and in the K19 model.

We designed the forecast experiments to examine the overall capability of LSTM in an ESP framework and to
assess the impact of different degrees of snowpack information on forecast skill. Notably, the ESPNoSWE forecast
exhibited better performance in high snow regions but showed reduced performance in low and moderate snow
regions (Figure 7). This may suggest that the implicit role of snow was only captured by the ESPNoSWE forecast for
regions where it had a more consistent effect on streamflow. On the contrary, the ESPLinearSWE experiment led to
lower performance in high snow regions while still providing reasonable skill in low and moderate snow regions.
This disparity between ESPNoSWE and ESPLinearSWE highlights the fact that omitting snowpack information may
be better than incorporating simplified representations of snow during the forecast period, particularly in the high
snow regions. Given the reasonable skill demonstrated by the ESPNoSWE experiment, it could serve as a viable
forecasting alternative in situations where snow observations are scarce or unavailable. Subsequently, the
ESPRetroSWE, accounting for both accumulation and ablation during the forecast period demonstrated improved
performance across all regions in comparison to both ESPNoSWE and ESPLinearSWE experiments (Figure 7).
The ESPActualSWE experiment did not have a large enough ensemble spread to consistently capture the obser-
vations (as explained in Sections 2.4 and 3.2), even though it did provide a good benchmark for comparing the
other LSTM‐ESP forecast experiments. Overall, these various forecast experiments demonstrated and confirmed
that forecast skill is significantly influenced by the level of “known” predictor information during the forecast
period (i.e., snowpack in this study). However, disparities between forecasts (ESPNoSWE and ESPLinearSWE) also
suggest that snow data does not consistently improve LSTM‐ESP performance.

All the forecast experiments perform slightly worse in low and moderate snow regions compared to high snow
regions. Sparse precipitation and snowpack observations in high‐elevation regions (Henn et al., 2018) and
minimal snowmelt contribution to streamflow hinder the model's ability to predict streamflow accurately
(Kratzert et al., 2018). It should be noted that the small sample size of basins raises the possibility that the results
might be due to random variation, as suggested by the law of small numbers. Furthermore, streamflow in these
regions may be influenced by factors (e.g., climate indices) not captured well by the predictors optimized for
snow‐dominated basins used in this study, highlighting the need for future testing to better understand these
dynamics. However, as the LSTM model is not process‐based, these differences observed in this study cannot be
attributed to specific physical mechanisms. One way we address this limitation is by training the model over
hydro‐climatologically diverse basins across the CONUS, aiming to improve its reliability in low and moderate
regions. However, region‐specific adjustments (Hosseini et al., 2024) or grouping‐based training strategies (Yu
et al., 2024) were not performed here, although these might further improve model predictions in low and
moderate snow regions.

To analyze the potential utility of LSTM‐based ESP forecasts, we compared the ESPNoSWE and ESPRetroSWE

against the official NRCS forecasts. We found that ESPRetroSWE forecast showed comparable performance to
NRCS but lacked a wider ensemble spread as compared to the NRCS forecasts (Figure 8b). This meant that the
ensemble spread from these forecasts did not capture the interannual variability during the WY2011–2020 as well
as the NRCS forecasts. These differences arise from disparities in model structures, input data, number of
ensemble years, and, in particular, the manual forecast intervention noted in Section 3.3 (Fleming et al., 2021;
Garen, 1992) to expand ensemble spread in the NRCS forecasts. However, it should be noted that one of the
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disadvantages of a wider ensemble spread is greater uncertainty levels and low confidence during decision‐
making. To verify the robustness of the snow‐based ESP experiments, we reran our experiments using the
SNOTEL data set instead of the UA data set, which are in situ observations assimilated as part of the gridded UA
data set. Despite exhibiting some basin‐wise differences, the SNOTEL data set showed a similar response to the
UA data set (Figure S2 in Supporting Information S1). This confirms that the overall findings of the paper were
qualitatively similar, irrespective of the snow product used. Lastly, we tested the ESPNoSWE and ESPRetroSWE

forecasts at two additional lead times (i.e., Feb‐1 and Mar‐1 in this study). The forecast differences from LSTM‐
ESP experiments were largely consistent at different lead times except for the Internal Coverage, which showed a
dramatic decline on April 1 with respect to Feb. 1 and Mar 1 forecasts (Figure 9). It is important to recognize that
the reasons why certain types of snow treatments perform better than others still remain uncertain and require
further diagnosis. Given that these data are integrated into LSTM's hidden state, which some propose serves as an
analog for storage (Kratzert et al., 2018), it is not possible to conclusively determine whether the model is
improving its hydrologic representation of snow processes via different treatments of snow.

A number of limitations should be noted with this study. We recognize that a comparison with process‐based ESP
forecasts generated by the River Forecast Centers (RFC) might be regarded as more appropriate for this study.
However, due to the limited availability of operational ESP forecasts (starting in 2015) for our study basins, as
well as inconsistent methodologies across regions, we chose to use the NRCS forecasts. These inconsistent
methodologies often arise due to technical heterogeneity (e.g., the use of different hydrologic models), stake-
holder needs, and challenges due to diverse regional differences (NOAA, 2024). Frameworks such as the
Community Hydrologic Prediction System were proposed to enhance operational forecasting by offering
modular, flexible, scalable workflows for integrating forecasts across diverse hydrologic conditions (Restrepo
et al., 2010). Importantly, it should be noted that the differences in forecast volumes between NRCS and RFC
results are minor in the context of the overall forecast uncertainty (Lukas & Payton, 2020). Development of
regional data sets for large‐scale hydrological analysis, such as CAMELS (Addor et al., 2017; Newman
et al., 2014), CONUS404 (Rasmussen et al., 2023), and Caravan (Kratzert et al., 2023) have been useful in
producing deep learning forecasts. However, these data sets typically have their own limitations, including a lack
of common standards for intercomparison, a lack of uncertainty estimates for assessing data reliability, and a lack
of characterization of human intervention (Addor et al., 2020). Recent literature has also tackled the question of
physical interpretability and time‐tracking diagnostic information by employing physics‐guided or theory‐guided
ML architectures. For instance, Feng et al. (2022a, 2022b) exhibited a differentiable, learnable, process‐based
model that approached the performance of the LSTM model and also provided the outputs of untrained vari-
ables like soil moisture, groundwater storage, and snowpack that can be useful for diagnosis and understanding
the physics from big data. Recent advances in LSTM architecture, for example, by Hoedt et al. (2021), is designed
to follow mass conservation laws, providing a solution to overcome the lack of physical constraints. While such
deep‐learning architectures improve interpretability and respect physical laws, they still do not reach the level of
model process descriptions or model physical structures (Feng, Liu, et al., 2022).

With respect to the experimental design, there exist additional limitations. We only tested a single deep learning
model—LSTM, which could be replaced by other neural networks like Gated Recurrent Units (GRUs; Cho
et al., 2014), transformers (Vaswani et al., 2017) or physics‐guided ML architecture (Feng, Beck, et al., 2022;
Feng, Liu, et al., 2022; Hoedt et al., 2021). Subsequently, testing different sets of LSTM hyperparameters, higher
resolution meteorological forcings (e.g., CONUS404), a larger training period, and including only snow‐
dominated basins might show improvement in the overall LSTM model performance and corresponding ESP
forecasts. Despite assessing the impact of different snow products, we only tested three treatments of snow
(Linear, Retrospect, and Actual), and there are several other ways the snowpack information can be used to guide
such ESP forecasts.

Furthermore, the ESPLinearSWE and ESPRetroSWE experiments contain simplifications that limit their skill in
comparison to the ESPActualSWE case. First, they use “estimated” snow information in the forecast experiments,
which does not have the same range of variability and will have different properties than the full complexity of
snowpack dynamics. Second, the Snow LSTM model was trained using “true” snow information and it did not
contain the same types of estimates used in some of the forecast experiments, potentially leading to gaps in
predictive accuracy. The impact of these constraints could be evaluated by training additional LSTM‐ESP models
using estimated snow information. The relatively large computational effort to conduct such a retraining falls
outside the scope of this analysis.
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Future avenues for wide acceptance and viability of such deep learning based seasonal streamflow forecasts
include a systematic comparison with operational models (Mai et al., 2022) and the use of physics‐guided or
theory‐guided DL approaches (Feng, Beck, et al., 2022; Feng, Liu, et al., 2022; Hoedt et al., 2021; Shen
et al., 2023). The potential for enhancing the hydrological interpretability of deep‐learning models is evident,
offering significant scope for the advancement of streamflow forecasting through architectural modifications (De
La Fuente et al., 2023) and the development of hybrid models (Feng, Liu, et al., 2022; Slater et al., 2023).

5. Conclusions
This study developed deep learning based ESP streamflow forecasts using the LSTM model across western US
basins with the aim to evaluate the potential utility of these emerging techniques in generating seasonal
streamflow forecasts. The bulk of our analysis used two LSTM models: one that did not use snow as a predictor
(LSTMNoSnow), and another that used snow as a predictor (LSTMSnow), both trained regionally. This regional
training was done to maximize the information available for training and produce computationally efficient ESP
forecasts. The performance of these LSTM models was evaluated and compared to a published model, K19
(Kratzert, Klotz, Herrnegger, et al., 2019), owing to the similarity of the data sets and similar model archi-
tecture. The comparison showed comparable performance, where approximately 80% of the tested basins
showed an NSE of 0.5 or more, and 50% showed an NRMSE of 25% or less, confirming our LSTM would have
satisfactory utility for generating seasonal streamflow forecasts. Notably, the inclusion of snow as a predictor,
in addition to the meteorological forcings and basin attributes, did not significantly improve the model per-
formance, demonstrating the LSTM's abilities to incorporate snowpack information implicitly based on the
information provided.

The forecast experiments were designed to explore the viability of LSTM in an ESP framework and assess the
impact of snowpack information in guiding these LSTM‐ESP forecasts. These forecast experiments were
compared internally and with the NRCS operational forecasts that are widely used in operational settings. In
general, the results showed that the LSTM‐ESP forecast, explicitly incorporating previous years' snow accu-
mulation and ablation (ESPRetroSWE), showed comparable performance to the NRCS operational forecasts with
the exception of lacking a comparably wide ensemble spread. However, particularly in high snow regions, ESP
forecasts incorporating a simplified representation of snowpack information (ESPLinearSWE), which only included
ablation information, performed poorer as compared to those excluding snowpack information entirely
(ESPNoSWE). This disparity between ESPLinearSWE and ESPNoSWE also suggest that snow data does not consis-
tently improve the performance of LSTM‐ESP forecasts.

A consistent trend was observed with LSTM ESPs across all lead times (February–April), with performance
showing improvement at shorter lead times. The disparities and biases between LSTM‐ESP forecasts and NRCS
operational forecasts stem from differences in model architectures, input data, the number of ensemble years, and
manual adjustments. Overall, this study underscores the prospective utility of employing deep learning models to
generate seasonal streamflow forecasts and how information, such as those from snow, can influence forecast
skill in such predictions.

Data Availability Statement
All data products used in the analysis are publicly available. A total of 664 GAGES‐II basins are selected
following screening criteria that ensure minimal upstream regulation and continuous data availability for at least
30 years. The meteorological forcings, basin attributes, snow and streamflow data are obtained from NLDAS2
(Xia et al., 2009, 2012), GAGES‐II (U.S. Geological Survey, 2023), UA (Broxton et al., 2019) and the US
Geological Survey streamflow gages (United States Geological Survey, 2024) respectively. NRCS forecast data
and SNOTEL snowpack observations are downloaded from the National Water and Climate Center portal (United
States et al., 2024). The Modi and Livneh (2024) data set provides the source code, training data, and model runs
for the LSTM model used in this research.
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