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Abstract

Fix k > 0, and let G be a graph, with vertex set partitioned into k subsets (“blocks”) of approximately
equal size. An induced subgraph of G is “transversal” (with respect to this partition) if it has exactly
one vertex in each block (and therefore it has exactly k vertices). A “pure pair” in G is a pair X,Y
of disjoint subsets of V(G) such that either all edges between X,Y are present or none are; and in
the present context we are interested in pure pairs (X,Y) where each of X, Y is a subset of one of the
blocks, and not the same block. This paper collects several results and open questions concerning
how large a pure pair must be present if various types of transversal subgraphs are excluded.



1 Introduction

Graphs in this paper are finite, and without loops or parallel edges. Let A, B C V(G) be disjoint.
We say that A is complete to B, or A, B are complete, if every vertex in A is adjacent to every vertex
in B, and similarly A, B are anticomplete if no vertex in A has a neighbour in B. A pure pair in G
is a pair A, B of disjoint subsets of V(G) such that A, B are complete or anticomplete. The number
of vertices of G is denoted by |G|. The complement graph of G is denoted by G. If X C V(G), G[X]
denotes the subgraph induced on X.

A blockade B in a graph G is a sequence (B, ..., By) of pairwise disjoint nonempty subsets of
V (@), called the blocks of B; and the width of B is the minimum cardinality of its blocks, and its
length is k. An induced subgraph H of G is B-rainbow if each of its vertices belongs to a block of
B, and it has at most one vertex in each block; and B-transversal if it is B-rainbow and has exactly
one vertex in each block (and therefore has exactly k vertices). A copy of a graph H in a graph G
means an induced subgraph of G that is isomorphic to H.

In earlier papers of this sequence we proved several theorems that say that if we have a blockade
B and there is no B-rainbow copy of some special graph H, then there must be a pure pair X,Y
with | X, |Y| large (in terms of the width of the blockade). For instance, in [1] we proved:

1.1 For every forest H, there exists d > 0, such that, for every graph G with a blockade B of length
at least d, if every vertex of G has degree less than W/d, and there is no anticomplete pair X,Y in
G with | X|,|Y| > W/d (where W is the width of B), then there is a B-rainbow copy of H in G.

In this paper we investigate what happens if we ask for a B-transversal copy of H rather than just
a B-rainbow copy.

This leads naturally to the question, what if we ask even more? Let H be a graph together
with a fixed linear ordering of its vertex set, say vi,ve,...,vg. (We call this an “ordered graph”.)
If B= (Bi,...,By) is a blockade in a graph G, an ordered B-transversal copy of H means a B-
transversal induced subgraph J of G, such that there is an isomorphism ¢ from H to J, with
¢(v;) € B; for 1 <¢ < k. Erdds, Hajnal and Pach [6] proved:

1.2 For every ordered graph H, there exist c,e > 0, such that for every graph G, and every blockade
B = (Bi,...,B) in G, where k = |H|, either:

e there is an ordered B-transversal copy of H in G; or

e there are distincti,j € {1,...,k}, and X C B; andY C Bj, such that X,Y is a pure pair, and
| X|,|Y| > eWe€, where W is the width of B.

This is where we will start. We would particularly like to know, for which graphs H can we take
¢ = 1 in the second bullet? (Sadly, almost never: only for graphs H with at most two vertices.) And,
more promising: for which H can we get | X| > eW and |Y| > eW¢ in the second bullet?

At the other extreme, we cannot get past the following open question, a variant of a conjecture
of Conlon, Fox and Sudakov [2] that is discussed further in [3] (a “triangle” means a copy of the
complete graph K3):

1.3 Question: Do there exist ¢,e > 0 with the following property? Let B = (Bi, Be, Bs) be a
blockade in a graph G, and let W be its width. If there is no B-transversal triangle, then there exist
distinct i,j € {1,2,3} and X C B; and Y C Bj, such that X,Y is a pure pair, and |X| > W, and
Y| > eWe.



Settling 1.3 was our initial goal in this research (although we were not able to do it), and it is easy
to see that it can be reduced to the sparse case, when for all distinct i, j € {1,2,3}, every vertex in
B; has at most |B;|/100 neighbours in B; (and 100 can be replaced by any other number).

We say a blockade B = (Bj, ..., By) has local degree X\ if A > 0 is the maximum of the number
of neighbours of v in Bj, maximized over all distinct 7,5 € {1,...,k} and all v € B;. (We set this
to be zero if k < 1.) All our results concern blockades with local degree at most a small constant
times the width. Also, we will look for pure pairs X,Y where X, Y are each a subset of a block, and
not the same block; and we will no longer need pure pairs X,Y with X complete to Y. Let us say
a blockade B = (B, ..., By) is (z,y)-cohesive if for all distinct ¢,5 € {1,...,k}, there do not exist
X C B; and Y C Bj such that |X| > z, and |Y| > y, and X is anticomplete to Y. (This is true if
k < 1.) Here are our main results, first for unordered copies of H:

1.4 (Proved in 4.2 and 4.3.) If H is a cycle with k > 4 vertices, then there exist €,¢ > 0 with the
following property. Let B = (By,...,By) be a blockade in a graph G, with local degree less than eW
and (eW,eW€)-cohesive, where W is its width. Then there is a B-transversal copy of H in G.

This statement for & = 3 is open and equivalent to 1.3.

1.5 (Proved in 2.2.) For every integer k > 1, there exists € > 0 with the following property. Let
B = (Bi,...,B) be a blockade in a graph G, with local degree less than eW and (eW,eW')-cohesive,
where W is its width. Then there is a B-transversal copy of a k-vertex path in G.

The statement of 1.5 is also true for the tree obtained from a path with k — 2 vertices by adding two
extra vertices, both adjacent to the last vertex of the path, provided that £ > 5; and also for the tree
obtained from a path with k — t vertices by adding ¢ extra vertices, each adjacent to the last vertex
of the path, provided that k > t?2¢. (These are proved in 3.4.) It is not true for the tree obtained
from a (k — 6)-vertex path by adding six extra vertices, three adjacent to the first vertex of the path
and three adjacent to the last. (This is 3.1.)

For ordered copies of H, we have:

1.6 (Proved in 5.1.) If H is an ordered tree with k > 2 wvertices, then there exists € > 0 with the
following property. Let B = (By,...,By) be a blockade in a graph G, with local degree less than eW

and (eW, EWI/(k_l))—cohesive, where W is its width. Then there is an ordered B-transversal copy of
H.

For caterpillars we can strengthen this. A caterpillar is a tree in which all the vertices of degree
more than one belong to one path.

1.7 (Proved in 5.5.) If H is an ordered caterpillar with k vertices, then there exists € > 0 with the
following property. Let B = (By,...,By) be a blockade in a graph G, with local degree less than eW,
and (eW, EWl/d)—cohesz've, where W is its width, and d is the maximum degree of H. Then there is
an ordered B-transversal copy of H.

And a counterexample (if ¢ > 1 is an integer, Sy denotes the star with ¢ + 1 vertices, that is, the
tree in which one vertex is adjacent to all the others):

1.8 (Proved in 5.9.) Lett > 3 be an integer, and let S; be obtained from S; by linearly ordering
its vertex set. For all ¢ > 1/t and all € > 0, there is a graph G and a blockade B = (By, ..., Bi+1)
in G, with local degree less than eW and (eW,eW€)-cohesive where W is its width, such that there
is no ordered B-transversal copy of S; in G.



2 Two easy covering theorems

We say that a graph H has the strong transversal property if there exists € > 0 with the following
property: for every graph G, if B = (B, ..., By)) is a blockade in G, with local degree less than
eW and (eW, eW)-cohesive, where W is its width, then there is a B-transversal copy of H in G. If
this holds we say that ¢ is an STP-coefficient. We start with asking, which graphs have the strong
transversal property? A sparse random graph of girth at least |H| + 1 shows that every such graph
H must be a forest, and one might hope that all forests have the property, extending the results
of [1], but this is not true, as we shall see. Nevertheless, some forests have the strong transversal
property: here is what we know about them.

2.1 Let H be a graph.
o If H is not a forest then H does not have the strong transversal property.

o [If every component of H has the strong transversal property then so does H (the converse is

false).
e If H is a path, then H has the strong transversal property.

e If|H| > 4 and H is obtained from a path by adding two new vertices adjacent to the last vertex
of the path, then H has the strong transversal property.

o If|H|>2'(t? —t+1) and H is obtained from a path by adding t new vertices adjacent to the
last vertex of the path, then H has the strong transversal property.

o If H is obtained from a path by adding six new vertices, three adjacent to the first vertex of the
path and three adjacent to the last, then H does not have the strong transversal property.

o If H has a vertex of degree at least d where 29~ > |H|, then H does not have the strong
transversal property.

In particular, it is not true that if a graph H has the property then so do all its induced subgraphs,
or indeed all its components: the graph S3 does not have the property (by the last bullet of 2.1) but
if we add a vertex of degree zero, this five-vertex forest has the property. Indeed, it follows from
one of the results of [1] that for any forest, if we add enough vertices of degree zero we will obtain a
forest with the strong transversal property.

We will prove the various statements of 2.1 as separate theorems (except for the first two, which
we leave to the reader).

If G is a graph and A, B C V(@) are disjoint, we say A covers B if every vertex in B has a
neighbour in A. For convenience, let us say a blockade B = (Bj, ..., By) in G is e-coherent if for all
distincet 4,5 € {1,...,k}:

e cach vertex in B; has fewer than ¢|B;| neighbours in Bj, and

e there do not exist X C B; and Y C Bj with |X| > ¢|B;| and |Y| > ¢|B;| and X anticomplete
to Y.



This is very much like e-cohesion, but is different when the blocks have different sizes. This new
definition is not really needed, but it works nicely and is a little more compact than using cohesion
(and we used the same concept in earlier papers). Let us first prove the third statement of 2.1, that
is, 1.5, which we restate in a slightly stronger form:

2.2 Letk > 2 be an integer, and 0 < e < 1/(2k—2). Let B = (B4, ..., By) be an e-coherent blockade
in a graph G. Then there is a B-transversal k-vertex path in G with an end-vertex in Bi.

Proof. We define t1,...,t; with {t1,...,tx} = {1,...,k}, and A; C B; for 1 < i < k, as follows. Let
t; = 1. Inductively, let 1 <4 < k, and suppose that ¢1,...,¢; and Ay, ..., Ay, , have been defined,
with the properties that

e 0 # A, CBy forl<h<i
o for 1 <h<i—1, Ay, covers Ay, ;
o for 1 < g < h <iwith h —g > 2, there are no edges between A;, and Ay, ;

e foreach j € {1,...,k}\{t1,...,t;}, at least (1 —2(i—1)e)| B;| vertices in B; have no neighbour
in Ay, U---UA,_,; and

i—17

e if i > 2, at least ¢|By,| vertices in By, have a neighbour in A;, , and have no neighbour in
Ay U---UA, .

Let J ={1,...,k}\{t1,...,t;}. For each j € J, let C; be the set of vertices in B; with no neighbour
in Ay, U---UAy,_,; thus [C5] > (1 —2(t —1)e)|By|. If i = 1let D = By, and if i > 2 let D be
the set of vertices in By, that have a neighbour in A;, |, and have no neighbour in A;, U---U A4;, ,;
thus |D| > ¢|By,|. If i = k, let A, = D and the inductive definition is complete, so we assume that
i < k—1. For each j € J, fewer than ¢|B;| vertices in B; have no neighbour in D, since |D| > ¢|B, |
and the blockade is e-coherent; and since |C;| > (1 — 2(i — 1)¢)|B;| > 2¢|Bj|, at least ¢|B;| vertices
in C; have a neighbour in D.

Since J # (), there exists Ay, C D minimal such that for some j € J, at least ¢|B;| vertices in
C; have a neighbour in A;,. From the minimality of A;,, for each j € J there are fewer than 2¢|B;|
vertices in C; with a neighbour in Ay, and hence there are at least |Cj| — 2¢|B;| > (1 — 2ie)|Bj]
vertices in C; with no neighbour in A;,. Choose j € J such that at least ¢|B;| vertices in C; have a
neighbour in A, and define ¢;4; = j. This completes the inductive definition.

Choose ay, € Ay, Since Ay, | covers Ay, , there exists a, , € Ay, | adjacent to ay, ; and similarly
fori=Fk—2,k—3,...,1 there exists a;; € Ay, adjacent to az,,,. But for 1 <¢ < j <k with j > i+2,
there are no edges between Ay, At,; s0 at,-az,--- - a, is an induced path. This proves 2.2. |

A somewhat similar proof (the proofs of 2.2 and 2.3 are both specializations of the proof of the
main theorem of [7]) shows:

2.3 Let k > 1 be an integer, let K =21+ 1, and let 0 < e <37 K. Let B= (By,...,Bg) be an
e-coherent blockade in a graph G. Then there is a B-rainbow copy of Sy in G.



Proof. If J C{1,..., K}, a star-partition of B (see figure 1) with element set J is a sequence
(hb II7 h2) 127 ceey ht7 It)

where J = {hy,..., 4} UI; U---U I, and a choice of a nonempty subset A; C B; for each i € J,
with the following properties:

et >1,and hy,...,h € {1,...,K} are distinct, and the sets I1,...,I; are pairwise disjoint
subsets of {1,..., K} \ {hi,ho,...,u};

o for 1 <s <t and all j € I, A; covers Ap_;
o for 1 <s<tandall je I, A;is anticomplete to

— all the sets Aj for j € I, \ {j};
— all the sets Ay, , for 8" € {1,...,t} \ {s}; and
— all the sets A for s € {1,...,t}\ {s} and j' € I,.

Figure 1: A star-partition.

The linkage of a star-partition is the maximum over all distinct ¢, € {h1, ..., h} of the maximum
over v € A; of n/|Bj| where n is the number of neighbours of v in A; (or zero if t < 1). Its length
is t, and its value is 211l 4 ... 4 217l There is a star-partition with linkage less than e, length K
and value K, since we may set ¢ = K and the sets I, ..., Ix all empty, and A; = B; for 1 <1i < K.
Choose t > 1 minimum such that there is a star-partition with linkage less than 3%, length t and
value at least K, say

(hl, I, hg, Ih,..., I’Lt, It)

and A; C B; for each ¢ € J, where J is its element set.

Suppose that ¢t > 2. We may assume that |I;| < |I;|,...,|[;—1]. Choose C}, C Ap, minimal such
that Cj, covers at least one-third of one of the sets Ap,,..., Ay, ,, say of Ay,. Let C}, be the set
of vertices in Ay, with a neighbour in Cj,, and for 2 < s <t — 1, let C}, be the set of vertices in
Ap, with no neighbour in Cj,. Thus |Ch, | > |Ap,|/3, and from the minimality of C},, and since the
linkage is less than 35—, it follows that

[Ch.| = (2/3 — 3570 Ap, | = A, /3



for2<s<t—1. Let J/=J\ I, and for each i € J with i ¢ {hqy,...,h4_1,h¢} let C; = A;. Then
(hlall U{ht}7h27127"'7ht717[t71)

and the sets C; (i € J') form a star-partition with linkage less than €35 ~*1 length ¢ — 1 and value
at least K, contrary to the minimality of ¢.

Hence t = 1, and so ol11] > K, and therefore |I1| > k. We may assume that h; = 1, and
2,...,k+ 1€ I. Choose u € Ay; then for 2 < i < k + 1 there exists v; € A; adjacent to u, and the
subgraph induced on {u,vy,..., v} is a B-rainbow copy of Sk. This proves 2.3. |

Next we show that the expression 2¥~1 + 1 in 2.3 is best possible, and hence the final statement
of 2.1 holds, because of the following:

2.4 For every integer k > 2, and all € > 0, there is a graph G, and an e-coherent blockade B in G
of length 25=1, such that there is no B-rainbow copy of S in G.

The proof needs the following two lemmas, which will also be needed later in the paper. The first is
a standard estimate:

2.5 Ifn >k > 1 are integers then (}) < (en/k)* (where e is Euler’s number).
Proof. By Stirling’s formula [8], we have
kI > V2R 2R/ 02K1) 5 (g o)k
for £ > 1, and so
(Z) < nk /R < nF(k/e) ™ = (en/k)F.
This proves 2.5. |

The second lemma is also a well-known result.

2.6 Let e > 0; then there exists d > 0 such that for all sufficiently large n, there is a bipartite graph
with bipartition (A, B), where |A| = |B| = n, such that every vertex has degree less than d, and there
do not exist anticomplete sets A’ C A and B' C B with |A'|,|B’| > en.

Proof. Choose ¢ > 4¢721og2, and choose d with 2log2 < dlog(d/(2ce)). Now let n be sufficiently
large, and let A, B be disjoint sets both of cardinality 2n. For each u € A and v € B, let u,v be
adjacent with probability ¢/n, independently. The expected number of anticomplete pairs (A, B")
with A’ C A and B’ C B and with |A'|,|B’| > en is at most

24n(1 _ C/?’L)SQHQ < 24n67052n < 1/2

(since c£? > 4log?2) if n is sufficiently large. The probability that a given vertex v € AU B has
degree at least d is at most

(%)) ey < 2enayice/myt = (aceya'.



by 2.5. Consequently the probability that at least n vertices in A have degree at least d is at most
227(2ce/d)™ < 1/4 (since 2log2 < dlog(d/(2ce))) if n is sufficiently large. Hence, if n is sufficiently
large, with positive probability there is no anticomplete pair (A’, B') with A’ C A and B’ C B and
with |A|,|B’| > en, and at most n vertices in A, and at most n vertices in B have degree at least
d. Thus by deleting the n vertices in A with largest degree, and the same for B, we obtain a graph
satisfying the theorem. This proves 2.6. |

To prove 2.4, for inductive purposes we will prove something a little stronger, the following.

2.7 Let e > 0. For every integer k > 2, and every integer p > 0, there exists W (k,p) such that for
all integers W > W(k,p), if H is a graph with 2F=1W wertices, and with mazimum degree at most
p, there is a graph G with the same vertex set and with H as a subgraph, and an e-coherent blockade
B in G of length 2571, such that there is no B-rainbow copy of Sy in G.

Proof. We prove 2.7 by induction on k. Suppose first that & = 2. Choose d and ng such that 2.6
holds for all n > ng. Let W (2,p) = max(no, (p + d)/e); we claim that W (2, p) satisfies the theorem.
Let W > W(2,p), and let H be a graph with 2IW vertices, and with maximum degree at most p.
Let By, By be two disjoint subsets of V(H) both of cardinality W. By 2.6 there is a graph J with
bipartition (Bj, Bz), such that every vertex has degree less than d, and there is no anticomplete pair
(A’, B") with A’ C By and B’ C By and with |A'|,|B’| > eW, that is, in J the blockade B = (B1, Ba)
has local degree less than d and is (¢W,eW)-cohesive. Let G be the union of H,J; then in G the
same blockade B has local degree less than p + d and is (eW, eW)-cohesive. Since it only has two
blocks and therefore there is no B-rainbow copy of Ss, the result holds.

Now we assume inductively that £ > 3 and the theorem holds for £k — 1. Choose d and ng such
that 2.6 holds for all n > ng, with e replaced by 22~ Fe.

Let

W (k,p) = max (ng, (p+d)/e, W(k — 1,p+ (p+ d)?)) .

We claim that W (k,p) satisfies the theorem. Let W > W (k,p), and let H be a graph with k=1
vertices, and with maximum degree at most p. Let Vi, V5 be two disjoint subsets of V(H) both of
cardinality 2¥=21/. By 2.6 there is a graph J with bipartition (V4,V3), such that every vertex has
degree less than d, and there is no anticomplete pair (A’, B") with A’ C V; and B’ C V5 and with

A, |B| > (2°7Fe)|A'| = eW.

For ¢ = 1,2, let H; be the graph with vertex set V;, in which distinct vertices u,v € V; are adjacent
if and only if either they are H-adjacent, or they have a common (H U J)-neighbour in V(H)\V;. It
follows that H; has maximum degree at most p+ (p+d)2. Since W(k,p) > W (k—1,p+ (p+d)?), the
inductive hypothesis implies that for ¢ = 1,2 there is a graph G; with vertex set V; and with H; as a
subgraph, and an e-coherent blockade B; in G; of length 2°~2, such that there is no B;-rainbow copy
of S;_1 in GG;. Let G be the union of G1, G2 and H U J, and let B be the blockade with blocks all the
blocks of By and all those of B2 (in some order). It follows that, in G, the blockade B is e-coherent
(since p+d < eW). Suppose there is a B-rainbow copy T of Sy in G, and let v be the vertex of T},
that has degree k in T;. From the symmetry we may assume that v € V4. Since all neighbours of v
in V5 are pairwise adjacent (since Hy C G2 C G) and T is induced in G, it follows that at most one
vertex of 1" belongs to V5, and so there is a Bi-rainbow copy of Sip_1 in G, a contradiction. This
proves 2.7. |



3 Brooms

Let P be a path with vertices p1,...,pr in order; and let H be obtained from P by adding ¢ new
vertices, each adjacent to px. We define B(k,t) = H; such a graph is a broom.

If instead we add s + ¢ new vertices to P, s of them adjacent to p; and the other ¢ to pg, the
graph we produce is called a double broom and is denoted B(k,s,t). We still have three parts of 2.1
to prove (namely that B(k,2) has the strong transversal property, and so does B(k,t) if k > ¢, and
that B(k,3,3) does not), and we will do that in this section. We begin with the easiest:

3.1 For every integer k > 1, the double broom B(k,3,3) does not have the strong transversal
property.

Proof. Suppose that B(k,3,3) has the strong transversal property, with STP-coefficient €. Choose
d and ng such that 2.6 holds for all n > ng. Let

W = max (no, (((k + 3)d + 2d + 3(k + 3)d*)* + d + 3(k + 3)d?) /e) .

Let Bi,...,Bi+¢ be pairwise disjoint sets each of cardinality W. Let B = (By,...,Bits), and
Vi = Bi4a U Bpys U Bpgg, and Vo = By U---U Byggs. For 1 <i < j < k+6, let J;; be a graph
with bipartition (B;, B;) with maximum degree less than d, such that there is no anticomplete pair
A',B" with A’ C B; and B’ C Bj and |A4’|,|B’| > ¢W. Let J be the union of all the graphs J; ;. Let
L be the graph with vertex set V; in which distinct u, v are adjacent if there is a B-rainbow path in
J with ends u, v, of length one or two and with its interior vertex (if any) in V. Let R be the graph
with vertex set V5 in which distinct u, v are adjacent if there is a B-rainbow path of J U L with ends
u,v and with every internal vertex in V;. Let G=JULU R.

Since J is a subgraph of G it follows that B is (¢W,eW)-cohesive in G. The only edges of G
between V3, V; are those of J; and L has maximum degree at most 2d + 3(k + 3)d?, since each vertex
in V4 has degree at most (k + 3)d in J, and each of those neighbours has degree at most 3d in J. If
P is a B-rainbow path of J U L with ends in V5 and with every internal vertex in Vi, then P has at
most five vertices; and since J U L has maximum degree at most (k+ 3)d + 2d + 3(k + 3)d?, it follows
that each vertex in V4 is an end of at most ((k + 3)d + 2d + 3(k + 3)d?)* such paths, and so R has
maximum degree at most ((k + 3)d + 2d + 3(k + 3)d?)*.

Consequently B has local degree at most

(k +3)d + 2d + 3(k + 3)d*)* + d + 3(k + 3)d> < eW.

From the choice of ¢, there is a B-rainbow copy H of B(k,3,3) in G. Let it be constructed from a
k-vertex path with vertices p1,...,pg in order, by adding three new vertices ¢, g2, g3 adjacent to p;
and three new vertices 71, 72,73 adjacent to py. Every path of H with both ends in V5 has all its
internal vertices in V3, since otherwise there would be an induced B-rainbow path of G with both
ends in V5 and all internal vertices in V;, with its ends nonadjacent; and this would contradict the
construction of R. If one of py, ..., pr belongs to V; then one of ¢1, g2, g3 and one of r1, ry, r3 belongs
to Vo, contradicting the claim just made; so p1,...,pr € Va. So exactly three of q1,qs2,q3,71,72,73
belong to Vi; and so two of them have a common neighbour in V5, contradicting the definition of L.
This proves that there is no such €, and so proves 3.1. |



Let B = (Bi,...,By) be a blockade in G, and let J be a digraph with vertex set {1,...,k}.
(Digraphs in this paper do not have loops or parallel edges, but they may have antiparallel edges.
Thus, if there is an edge from ¢ to j then it is unique, but there might also be an edge from j to i.)
For 7 > 0, we say that J is a 7-covering digraph for B if for 1 <4 < k there exists A; C B;, and for
each edge ij of J there exists X;; C B;, with the following properties:

o |A;| > 7IEDIB;| for 1 <i < k;

e for each edge ij of J, X;; covers A; and Xj; is anticomplete to Ay, for all h € {1,...,k}\{4,5};
and

o for all edges ij,7'j" of J with ¢ # ¢, and i # j" and ¢’ # j, the sets X;;, X;7;» are anticomplete.

We call the sets (Aq,..., Ag) a core for J. There is a 7-covering digraph, because we can take J with
no edges and A; = B; for each i. A 7-covering digraph for B is optimal if no 7-covering digraph for B
has strictly more edges. If X C V(G) we denote by N(X) or Ng(X) the set of vertices in V(G) \ X
that have a neighbour in X.

3.2 Let B=(By,...,B) be a blockade in a graph G, let 7 > 0, and let J be an optimal T-covering
digraph for B, with core (Ay,...,Ay). Suppose that for all distinct i,j € {1,...,k}, every vertex in
B, has fewer than (1 — 27)71E| B;| neighbours in Bj. Let 1 <i <k and X C A;. Then either

o there exists j € {1,...,k}\ {i} such thatij € E(J) and |A; \ N(X)| < 7/PDHB|; or

o for every j € {1,...,k}\ {i} such thatij ¢ E(J) we have |A; N N(X)| < 7IEIH1 B,
Proof. Let s = |E(J)|. We assume the second bullet of the theorem is false, so there exists
j e {l,...,k}\ {i} with ij ¢ E(J) such that |A; N N(X)| > 7°7|B;|. Choose Y C X minimal
such that there exists j € {1,...,k} \ {i} with ij ¢ E(J) such that |4; N N(Y)| > 757} B;|. Let
C; = AjNN(Y), let C; = A;, and for each h € {1,...,k} \ {i,5} let Cp, = A, \ N(Y). Thus
|C;| > 751 Bj|. If |Cn| > 75| By| for every h € {1,...,k} \ {4,7}, then adding the edge ij to
J gives a T-covering digraph for B with core (Cq,...,Cy), contrary to the optimality of J. Thus

there exists h € {1,...,k}\ {i,j] with |Cy| < 75F|By|. If ih ¢ E(J), the minimality of ¥ and the
hypothesis about local degree imply that

[An \ Cl < (77 + (1 = 20)7%)) [ Bl = (7° = 7°71) | Bal,

and so
|Cn| > 7By,

a contradiction. Thus ih € E(J). Since |Cy| < 7511|By|, and
AR\ N(X) C AR\ N(Y) = Cp,

the first bullet of the theorem holds. This proves 3.2. |



We deduce:

3.3 Let B=(By,...,Bx) be a blockade of length at least two in a graph G, and let J be an optimal
T-covering digraph for B, with core (A1, ..., Ag). If B is (1 — 27)71ED _coherent, then every vertex
of J has outdegree at least one.

Proof. Suppose that ¢ has outdegree zero in J; we may assume that ¢ = 1. Let |E(J)| = s. Since
k> 2 and Bis (1 — 27)7%-coherent and |A;| > 7°|By|, it follows that |4y \ N(A41)| < (1 —27)7%|Ba|,
and so

|As N N(Ay)| > |Az| — (1 = 27)7%| Ba| > 7571 By.

But then both the outcomes of 3.2 (with i = 1 and X = A;) are false, a contradiction. This proves
3.3. |

We use these results to prove one of the remaining parts of 2.1:

3.4 Let k,t >0 be integers witht > 2 and k > 2'(t> =t + 1) —t + 1. Then B(k,t) has the strong
transversal property.

Proof. Let 7 = 1/6, and let ¢ = T(k+t)23_k; we will show that B(k,t) has the strong transversal
property with STP-coefficient e.

Thus, let B = (By,...,Bii:) be an e-coherent blockade in a graph G. We must show that there
is a B-transversal copy of B(k,t) in G. Let J be an optimal 7-covering digraph for B, with core
(A1,..., Akyt). Let z =|E(J)|. By 3.3, every vertex of J has outdegree at least one.

Since |A;| > 7%|B;| for 1 <i < k+t, and 7% > 7D? and e < T(k+t)23*k, and B is e-coherent,
it follows that the blockade (Aq, ..., Ag) is 3~*-coherent.

(1) We may assume that every vertex of J has indegree less than t.

Suppose that, say, k is J-adjacent from each of k+1,...,k+¢. Thus for each j € {k+1,...,k+t},
there exists X C Bj as in the definition of 7-covering digraph. Since the blockade (Ay,..., Ay) is
3~*_coherent, by 2.2 there is an (Ay, ..., Ay)-transversal k-vertex path in G with an end-vertex in
Ay, say with vertices p1,...,py in order, where p; € A; for 1 <i < k. Foreach j € {k+1,...,k+t},
choose ¢; € X1, adjacent to pj, (this exists, since X covers Ay). Then gyy1,..., k4t are pairwise
nonadjacent, and nonadjacent to p1,...,pr—1, from the properties of the sets X . Hence the sub-
graph induced on {p1,...,pk,q1,...,q} is a B-transversal copy of B(k,t), as required. This proves

(1).

(2) There is a subset of 2 + 1 elements of {1,...,k + t}, pairwise nonadjacent in J, and such
that no two of them have a common out-neighbour in J.

From (1) and averaging, there is a vertex i of J with outdegree less than ¢; and so the set of
vertices that are either equal to i, J-adjacent to i, J-adjacent from 4, or share a J-outneighbour with
i, has cardinality at most 1+ 2(t — 1) + (¢t — 1)(t — 2) = t*> — t + 1. By deleting this set from J, we
obtain some digraph; again we find a vertex with outdegree at most ¢ — 1 in this digraph, and again
delete the corresponding set of vertices, and continue. We can repeat this at least 2! + 1 times, since
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|J| = k+t > 2!(t> —t+1). Thus we construct a set of 2! + 1 vertices of .J satisfying (2). This proves

(2).

From (2) we may assume that {1,...,2" + 1} is a stable set in J and no two of its members
have a common J-outneighbour. If F' is a B-rainbow copy of Siy1, then it has a vertex of degree
t + 1, that belongs to a block B; say, and t 4+ 1 other vertices, in blocks B; (j € I) say, where
IC{1,...;k+t}\{i} with |[I| =t + 1. Let us call (i, I) the type of F.

(3) We may assume that for some n > 0 there are copies Fi,...,F, of Si+1, each (A1, ..., Apio)-
transversal and pairwise disjoint, and all with type (1,{2,...,t+2}), and there existr € {1,...,t+2}
and s € {t+3,...,t + k} with [N(FNA,)NAg| > |As|/(2t +4), where F =V (F)U---UV(F,).

Choose a maximal set F of pairwise disjoint (Aq,..., Ayt 1)-rainbow copies of Sy11, and for 1 <7 <
2! +1 let D; be the set of vertices of A; that are not in any member of F. There is no (D1, ..., Datq)-
rainbow copy of Si11; and so by 2.3, the blockade (Di,..., Dyt ) is not 372"~1_coherent (or one
of the sets D; is empty); and it follows that |D,| < £32+1|B,| for some r € {1,...,2 +1}. Since
|A,| > 7* D% B, | and e32' ! < 7+ /2 it follows that

A\ Dy| 2 (7050 — 3241 ) B, | = 747 B, /2.

Hence there is a subset 7/ C F with cardinality at least ktD)? | Br|/2, such that each of its members
has a vertex in A,.

There are only at most (24 1)*2 possible types of A-rainbow copies of Syy1; so within our set F’
there is a subset of 7(*9*(2f 4 1)=1=2| B, | /2 of them all with the same type, and from the symmetry
we may assume this common type is (1,{2,...,t+2}), and r € {1,...,t + 2}.

Thus there are n pairwise disjoint (A1, ..., Ay+2)-rainbow copies of S;y1, all of type (1,{2,...,t+
21, say Fi,...,F,, where n > 7®t0*(20 4 1)~1=2|B,|/2. Let F = V(F) U--- U V(F,). Since
T*HD* (20 4 1)t-2/2 > ¢ fewer than ¢|B; 3| vertices in B3 have no neighbour in F N A,, and so

IN(F N Ap) N Apys| = [Args| — €| Begs| = [Avas]/2 2 |Aegs|/ (2t + 4).
We deduce that (3) holds, setting s = ¢ + 3. This proves (3).

Let us choose n minimum satisfying (3), and let F' = V(F;) U --- U V(F,). We recall that
z=[E(J)|.

(4) For each i € {1,...,t+ 2}, there is no j € {1,...,k+t}\ {i} such that
|45\ N(F 0 Ay < 757 Byl.

Consequently, if j € {1,...,k+t}\ {i} and |N(F N A;) N A;| > 72T By, then j is J-adjacent from
i, and so j >t + 3.

For the first assertion, suppose that such i, j exist. It follows that

[Aj NN (F N Ay)| > 4] = 757 By

11



From the minimality of n, we deduce that
‘Aj N N(F N Az)’ < ’A]’/(zt + 4) + €’Bj‘.

Consequently
|Aj] = 71 B;| < |A;1/(2t +4) + e[ By,
and so
(1—1/(2t+4))|A;] < (77! + )| By].
Since |A;| > 77| B,], it follows that (1 — 1/(2t + 4))7* < 7%F! + ¢, contrary to the choice of e. This
proves the first assertion. The second follows immediately from 3.2, and so this proves (4).

Choose 7,5 as in (3). Let us say a vertex v € Ay is good if v has a G-neighbour in F N A, and
has no G-neighbour in F'\ A,. Let Cs be the set of all good vertices in As.

(5) |Cs| = [Asl/ (4t + 8).

We have seen that s is J-adjacent from r. Since no two of 1,...,t+2 have a common J-outneighbour,
s is not J-adjacent from any element in {1,...,¢t+ 2} \ {r}. From the second assertion of (4),
IN(FNA;)NAg| < 72 By| for each i € {1,...,t+2}\ {r}. Hence at most (¢ + 1)7°T!| B,| vertices
in B; have a G-neighbour in F'\ A,; and so at least |As|/(2t +4) — (¢t + 1)7°T1| B,| vertices in A are
good. Since

(t+ )7 By < 77|By|/(4t + 8) < | A/ (4t +8)

we deduce that |Cs| > |As|/(4t + 8). This proves (5).

We know that r € {1,...,¢ 4+ 2}, but the argument to come depends on whether » = 1 or not.
Ifr=1lett =t+1and F/ = F \ Ay1o, and otherwise let t' =t +2 and F/' = F. For 1 <m <mn
let F/, = Fy, \ Aigo if 7 = 1, and otherwise let F) = F,,. Thus if r = 1, F] is a copy of S, and
otherwise F), is a copy of Syi1. For each j € {t' +1,...,k+t} with j # s, let C; be the set of all
vertices in A; with no neighbour in F”.

(6) |C5| > |Ajl/(4t + 8) for each j € {t' +1,...,k+t}.

Let j € {¢ +1,...,k +t}. By (5) we may assume that j # s. From the minimality of n, for
1 <4 <t at most |A;|/(2t +4) + €| B;| vertices in A; have a neighbour in F’ N A;; and so at most
(t+2)(|A;]/(2t +4) + €| Bj|) have a neighbour in F. Thus

G5l > 1451 = [431/2 = (t+ 2l Byl = |4;1/2 = (¢ + el Bj| > | 4,1/ (4t +8).
This proves (6).

From (6) the blockade (Cyy1,...,Clqt) is (4t + 8)eT~*-coherent, and since (4t + 8)er™* <
3=+ (hecause 2 < (k+t)(k+t—1) and ¢/ —t < 2) 2.2 implies that there is a (Cp i1, . . ., Chyt)-
transversal path P with end-vertex in Cs. Let its end in Cy be v. From the definition of Cj, there
exists u € F' N A, adjacent to v. Let u € F), say, where 1 < m < n. Since v € Cj, v is good and so
has no neighbour in F}, except u; and since every other vertex of P belongs to some set C; where
je{t'+1,...,k+t}\ {s}, the edge uv is the only edge of G between V(P) and V(F},). Thus the
union of P, F,,, and the edge uv is a B-rainbow copy of B(k,t). This proves 3.4. |
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Thus, if ¢t < logyk — (2 + o(1))loglog, k, 3.4 tells us that B(k,t) has the strong transversal
property, and for ¢ > (1 + o(1))logy k, 2.7 tells us that it does not. More exactly, for ¢ > 2, if
k>2'(t? —t+1) —t+ 1 then B(k,t) has the property, and if 2 < k < 2¢ — ¢ then it does not. We
have not decided the values of k£ in the middle, except when ¢ = 2. In that case 3.4 tells us that
B(k,2) has the property when k£ > 11, but this can be improved to:

3.5 If k=1 or k > 3 then B(k,2) has the strong transversal property, and if k = 2 it does not.

Proof. We just sketch the proof, since it is similar to that of 3.4. The claims for £k =1 and k = 2
follow from 1.5 and 2.4 respectively, so we assume that £ > 3. With an appropriate choice of 7 and
€, we choose an optimal 7-covering digraph J; and we may assume no vertex has indegree more than
one in J, as in the proof of 3.4, and every vertex has outdegree at least one, by 3.3. Consequently J
is a disjoint union of directed cycles. Next we use a lemma (we omit the proof here), that for any
T-covering digraph J and for every directed cycle of J, some edge of the cycle is in a directed cycle
of length two (this is true in general, not just in the present context). Consequently J is the disjoint
union of directed cycles of length two, and in particular, |J| is even. Thus there are three pairwise
nonadjacent vertices of J, say 1,2, 3; and as in the proof of 3.4 we find many pairwise disjoint copies
of Sy, all (A, Ag, As)-rainbow and all with middle vertex in A;. (Note that we look for copies of
Sy, not for copies of S3, which is what setting ¢ = 2 in the proof of 3.4 would suggest.) We may
assume that 4,5 and 6 are J-adjacent to and from 1,2,3 respectively. Now the proof is finished
more-or-less as in 3.4; with notation as in 3.4, if r = 1 we follow the proof of 3.4, that is, we delete
from Ay, ..., Agyo the small number of vertices with the wrong adjacency to F, and then apply 2.2
to the resulting blockade (Cy,C5, ..., Cii2), finding a path with first vertex in Cy. If r = 2 say, we
do the same, but apply 2.2 to the blockade (Cs,...,Cki2), finding a path with first vertex in C,
and then turning this into a copy of B(2,k) by adding F,, and a vertex of X, ;. We omit further
details. |

4 The cycle

Our remaining results all concern looking for an anticomplete pair of sets that have polynomial size
rather than linear size. So, we are not working with the strong transversal property any more, nor
with e-coherence.

In this section we prove 1.4. We handle the cases k = 4 and k > 5 separately. Both proofs are
related to the proofs of theorems in [4]. (These theorems have recently been superceded by theorems
in [5], but the proof methods of the latter are quite different.)

We will need the following lemma:

4.1 Let 0 < e < 1/2, and let B = (B1, B2) be a blockade in a graph G, with local degree less than
eW and (eW,eW€)-cohesive where W is its width. Then eW¢ > 1; and if X C By with |X| > 2eW,
there are fewer than eW¢ vertices in By that have at most W'=¢/2 neighbours in X .

Proof. Let v € B;. Since B has local degree less than eW, v has at most eW neighbours in Bo;
and so has at least (1 — &)W > W non-neighbours in By. Thus B is not (¢W, 1)-cohesive, and so
eW€¢ > 1. This proves the first assertion.
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Suppose the second assertion is false; then there exists Y C By with |Y| = [¢W¢], such that
every vertex in Y has at most W'~¢/2 neighbours in By. Since eW¢ > 1, it follows that |Y| < 2eW¢.
Hence at most |Y|W!=¢/2 < W vertices in X have a neighbour in Y, and since |X| > 2¢eW, X has
a subset of cardinality at least eV that is anticomplete to Y, a contradiction. This proves 4.1. |

First we show the following, which is a strengthening of the k = 4 case of 1.4:

4.2 Lete = 1/4, and let B = (By,...,By) be a blockade in a graph G, with local degree less than
eW and (eW, 5W1/3)—cohesz’ve where W is its width. Then there is a B-transversal copy of a cycle
of length four in G.

Proof. Let B = (Bj,...,B4) be a blockade in a graph G, with local degree less than ¢éW and
(eW, eW/3)-cohesive where W is its width. From 4.1:

(1) eW'3 > 1; and if i,j € {1,...,4} are distinct, and X C B; with |X| > 2eW, and Y is a
set of vertices in Bj each with at most W2/3 /2 neighbours in X, then |Y| < eW/3,

Let v3 € Bs and vq € By be adjacent. We say the edge vsvy is
e 1-good if v3 has at least W?2/3 /2 neighbours in By;
e 2-good if it is 1-good and vy has at least W?2/3 /2 neighbours in By that are nonadjacent to vs.

We claim:
(2) More than half the edges between Bs, By are 2-good.

By (1), fewer than eW'/3 vertices in B3 have at most W?2/3/2 neighbours in By, so at most
€W1/3W2/3/2 = ¢W/2 edges between Bs, B4 are not l-good. Now let vs3 € Bs and let Ny be
the set of its neighbours in By, and let Ny be the set of its neighbours in By. Thus |Na| < €|Bs|, and
50 |Ba\ No| > (1 —¢)|Ba| > 2eW; s0 by (1), fewer than eW/? vertices in N; have fewer than W2/3 /2
neighbours in Bs \ Ny. Consequently at most eW/3 of the edges between v and Ny are 1-good and
not 2-good. Since this holds for every choice of v3 € Bs, it follows that at most eW?/3 | B3| edges
between Bs, By are 1-good and not 2-good. Hence in total, at most W /3| Bs|+£W/2 edges between
Bs, By are not 2-good. But at least |Bs| — eW'/3 vertices in Bs have at least W?2/3/2 neighbours in
By, so there are at least
(|Bs| — W5 )W/ /2

edges between Bj, By. Since
eW3|Bs| +eW/2 < (|Bs| — eWY3)W?/3/4
because, for instance,
(W23 /4 — eW3)|Bs| > (W3 /4 — eWVHW > eW /2 + eW/A4,

this proves (2).
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(3) We may assume that there exist anticomplete subsets C1 C By and Cy C Ba, with |Cy|,|Cs| >
W2/3/2.

By (2), and the same statement with Bs, By exchanged and Bj, Bs exchanged, it follows that there
is an edge vsvy with vg € By and vy € By, such that vy has at least w2/3 /2 neighbours in By that
are nonadjacent to vs, and vs has at least W2/3 /2 neighbours in By that are nonadjacent to vy. Let
(' be the set of vertices in B; that are adjacent to vs and not to vy, and define Co C By similarly.
If there is an edge between C', Cs, then adding v3, v4 makes a B-transversal cycle of length four; so
we may assume there is no such edge. This proves (3).

Choose C1,C5 as in (3).

(4) There exists vs € Bs with at least eW1/3 neighbours in C1 and at least eW1/3 neighbours in
Cs.

Suppose that there is a set As C Bz with cardinality [2eTV], such that each of its members has
fewer than eW'/3 neighbours in C;. By (1), fewer than eW /3 vertices in C} have fewer than W?/3 /2
neighbours in As; and so there are at least

(|C1| — eW '/ BYyW2/3 /2
edges between C1, A3. But from the definition of As, there are at most ]Ag\&Wl/ 3 such edges; so
(IC1] — W B) (W23 )2) < |As|(eW'/P).
Since |Cy| > W?/3/2, and |A3| < 3eW (since € = 1/4 and W > 64), it follows that
(W23 )2 — sW3Y (W23 /2) < 3eW (eW/3),

which (since € = 1/4) simplifies to W'/3 < 2, a contradiction since W'/3 > ¢=1 = 4. Thus there are
fewer than 2¢W vertices in Bs with fewer than eWW'/3 neighbours in C;; and fewer than 2eW vertices
in By with fewer than eW'/3 neighbours in Cy, similarly. Since 4eW = W < |Bs|, this proves (4).

Choose v3 as in (4), and for i« = 1,2 let A; be the set of neighbours of vs in C7 and in Co
respectively. Since B is (eW, ewl 3)-cohesive, fewer than W vertices in By have no neighbour in
Aq; fewer than eW vertices in B4 have no neighbour in As; and fewer than W vertices in By are
adjacent to vs. Since 3eW < W < |By|, there exists vy € By with a neighbour v; € Aj, and a
neighbour vy € Ao, and non-adjacent to vs. But then there is a B-transversal 4-cycle induced on
{v1,v2,v3,v4}. This proves 4.2. |

To complete the proof of 1.4, next we prove the following, a strengthening of 1.4 when k > 5:

4.3 Let k > 5 be an integer, and let ¢ = 1/(3k). Let B = (By,...,B) be a blockade in a graph
G, with local degree less than eW and (eW,eW/?)-cohesive where W is its width. Then there is a
B-transversal copy of a cycle of length k in G.

15



Proof. Let B = (Bj,...,Bx) be a blockade in a graph G, with local degree less than ¢éW and
(eW, eW/?)-cohesive where W is its width. From 4.1:

(1) eW'2 > 1; and if i,j € {1,...,k} are distinct, and X C B; with |X| > 2¢W, and Y is a
set of vertices in Bj each with fewer than W'/2 /2 neighbours in X, then |Y| < eW/2.

Next we prove the following:

(2) Let iy, ia, ... is € {1,...,k} be distinct, and let D; C B;, for1 < r < s, such that |D;,| > eW/2,

and |D;, | > es|B;,| for 2 < r < s. There there is an induced path of G with vertices vy -+ - -v;,,
where v;, € D;_ for1 <r <s.

We proceed by induction on s; if s = 1 the result is trivial, so we assume that s > 2 and the
result holds for s — 1. Let i1,49,...,is and D;, C B;, for 1 <r < s as above. From the symmetry
we may assume that i, = r for 1 <r < s. Since s > 2, and consequently |Ds| > se|Ba| > 2¢| B/, (1)
implies that there exists v; € D; with at least W1/2 /2 neighbours in Dy. Let Eo be the set of these
neighbours, and for 3 < r < s let E, be the set of vertices in D, nonadjacent to v;. Since v; has
fewer than €|B,| neighbours in By, it follows that |E,| > |D,|—¢|B;| > (s — 1)| B;|. Hence from the
inductive hypothesis applied to 2,...,s and the sets Fs,..., Fs, there is an induced path of G with
vertices va- - - - -vg, where v, € F,. for 2 < r < s. Adding v; and the edge v1vo gives a path satisfying
(2). This proves (2).

From (1), all vertices in B; except at most e/W1/2 have at least W'/2/2 neighbours in By, and
the same for Bjs; so there exists vy € By with at least W1/2/2 neighbours in By and at least W'/2/2
neighbours in Bs. For i = 2,3 let A; be the set of neighbours of vy in B;, and for 4 < i < k let A; be
the set of vertices in B; that are nonadjacent to v;. Thus |As|, |As| > W1/2/2. Since v; has at most
e|Bj| neighbours in Bj, it follows that [A;| > (1 —¢)|B;| for 4 < j < k.

All except at most eW vertices in A4 have a neighbour in As, so we may choose Cy C Ay minimal
such that for some j € {4,...,k}, at least |B;|/3 vertices in A; have a neighbour in C. Choose some
such j; and from the symmetry we may assume that j = 4. Let Cy be the set of vertices in A4 that
have a neighbour in Cs. For 5 < i < k, let C; be the set of vertices in A; with no neighbour in Cs.
Thus |Cy| > |Ba4|/3; and from the minimality of Co, it follows that fewer than |B;|/3 + €| B;| have a
neighbour in Cy, for each i € {5,...,k}. Hence for each i € {5,...,k},

Cil > [Ail = |Bil/3 — e|Bi| = (1 - &)|Bi| — [Bil/3 — e[ Bi| = (2/3 — 2¢)|Bi| > [Bil/3.

By (1), at most eW /2 vertices in A3 have fewer than W'/2/2 neighbours in Cj (this is where we use
k > 5); and since |As| > W1/2/2 > eW/2, there exists v3 € Az with at least W'/2/2 neighbours in
Cs.

Let D5 be the set of neighbours of vs in C5; let C; = By, and for i € {1,4} U{6,...,k}, let Dy
be the set of vertices in Cj nonadjacent to vz. Hence |Ds| > W'/2/2, and

|Dn| > |Ch| — €[ Bal = (2/3 — 3¢)| By

for i € {1,4} U {6,...,k}.
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Every vertex in D4 has a neighbour in Cs, which may or may not be adjacent to vs. So either at
least |Dy4|/2 vertices in D4 have a neighbour in Cy nonadjacent to vs, or at least |Dy4|/2 vertices in
D, have a neighbour in Cy adjacent to v3. We handle these two cases separately.

First, assume that at least |Dy|/2 vertices in Dy have a neighbour in Cy nonadjacent to vs; let
Dy be the set of vertices in Co nonadjacent to vz, and let D) be the set of vertices in Dy with a
neighbour in Dy. Thus

D4 = [Dal/2 = (2/3 = 3€)| Bal/2 = (k — 3)e|Bul,

since ¢ < 1/(3k). By (2), there is an induced path P of G vs-vg----- vg-v4, where v, € D, for
5 < r < kand vy € D). Choose vy € Do adjacent to vs; then the union of P and the path
V4-U2-V1-V3-V5 gives a B-transversal cycle satisfying the theorem.

Now we assume that at least |Dy4|/2 vertices in Dy have a neighbour in Cy adjacent to vs; let Dy
be a subset of Cy, all adjacent to v3, minimal such that either at least |D4|/2 vertices in Dy, or at
least |D1|/2 vertices in Dy, have a neighbour in Dj.

Suppose there is a set D)) C D4 with cardinality at least |Dy4|/2, all with a neighbour in Dy. From
the minimality of Ds, at most |D;|/2 + ¢|Bj| vertices in D; have a neighbour in Dj, and so there is
a subset D] C D with cardinality at least |D1|/2 — e|B1| > (k — 2)e|By|, anticomplete to Dy. By
(2), there is an induced path P of G with vertices vs-- - - - Vg-v}-v4, where v, € D, for 5 <r < k and
v} € D] and vy € D). Choose va € Do adjacent to vg; then the union of P and the path with vertices
V4-V9-U3-v5 gives a B-transversal cycle satisfying the theorem.

Finally we may assume that there is a set D| C D; with cardinality at least |Di|/2, all with a
neighbour in Dy. From the minimality of Ds, at most |Dy4|/2+ ¢|B4| vertices in D4 have a neighbour
in Do, and so there is a subset D) C D, with cardinality at least |D4|/2 — €|By| > (k — 2)e|By,
anticomplete to Dy. By (2), there is an induced path P of G with vertices vs--- - - V-v4-v], where
vp € D, for 5 <r < k and vy € D) and v} € D). Choose v € D9 adjacent to v{; then the union
of P and the path with vertices v}-va-vs-vs gives a B-transversal cycle satisfying the theorem. This
proves 4.3. |

We do not know whether the exponents of 1/3 (in 4.2) and 1/2 (in 4.3) are best possible.

5 Ordered transversal subgraphs
Now we turn to excluding ordered graphs. We begin with 1.6, which we restate:

5.1 If H is an ordered tree with k > 1 vertices, then there exists € > 0 with the following property.
Let B = (By,...,By) be a blockade in a graph G, with local degree less than eW and (eW, e W/ (=1).
cohesive where W is its width. Then there is an ordered B-transversal copy of H.

To prove this we need to prove a strengthening (which implies 5.1 by setting ¢ = 1/(k —1)):

5.2 Let H be an ordered tree with k > 1 vertices, and let ¢ > 0 with (k—1)c < 1. Let e = 4'7F. Let
B = (Bi,...,Bx) be a blockade in a graph G, with local degree less than eW and (eW,eW€)-cohesive
where W is its width. Then there are at least 4 Wk =(:=1¢ ordered B-transversal copies of H.
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Proof. We proceed by induction on k. The result is trivial for £ = 1, so we assume that k > 2
and the result holds for £ — 1. Let the ordering of H be pi,...,pr. We may assume that pp has
degree one in H, and pg_1 is its unique neighbour. Let B = (Bj, ..., Bx) be a blockade in a graph
G, with local degree less than eW and (eW, eW¢)-cohesive where W is its width. We may assume
that |B;| = W for 1 <i < k. From 4.1:

(1) eWe > 1; and if X C By with |X| > 2eW, there are fewer than eW¢ vertices in Bi_1 that
have at most W1=¢/2 neighbours in X .

In particular, there are at least (W — eW¢)W1=¢/2 > W?27¢/4 edges between By_; and By, so if
k = 2 the result is true. Thus we may assume that k& > 3.

Let H' be the ordered tree obtained from H by deleting pg (with ordering p1,...,pr_1), and
similarly let H” be the ordered forest obtained by deleting both pg,px_1. Let B = (By,...,Br_1),
and B” = (By,...,Bi_2). Let H be the set of all ordered B-transversal copies of H, let H' be the set
of all ordered B’-transversal copies of H’', and let H” be the set of all ordered B”-transversal copies
of H”.

For each F' € H", let n(F') be the number of vertices v € By such that the subgraph induced on
V(F)U{v} is an ordered B'-transversal copy of H'. Let m(F’) be the number of edges uv with u € By,
and v € By_1 such that the subgraph induced on V (F)U{u, v} is an ordered B-transversal copy of H.

(2) For each F € H", m(F) > (n(F) — eWe)W'=</2.

Let F' € H” and let N be the set of vertices v € By_1 such that the subgraph induced on V (F)U {v}
is an ordered B’-transversal copy of H'. Let X be the set of vertices in Bj with no neighbours in
V(F). Thus

IX| > [Bi] — (k — 2)e| By| > 2W,

(since € < 1/k), and so by (1), there are fewer than eW¢ vertices in N that have at most W!'=¢/2
neighbours in X. All the others have more than W'=¢/2 neighbours in X, and every such edge
contributes to m(F'). This proves (2).

Summing n(F), m(F) and 1 over all ' € H" gives |H|,|H'| and |H"| respectively, so by summing
the inequality of (2) over all F' € H”, we deduce that

2AH| > W H | — eW|H"| > W H | — eW L,
But from the inductive hypothesis,
H| > 42 Rk -2 5 o pprh-2e
(the latter since ¢ < 1/(k — 1) and e = 4'~%). Consequently
H| > WIe|!|/2 > a2~ kwh—1=(k=2epyimc jg _ o . gl-kypk—(k=D)e,

This proves 5.2. |
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The exponent of 1/(k—1) in 5.1 is best possible in the sense that for the tree Sk_;, the exponent
cannot be replaced by any larger constant, as we shall see. But perhaps it can be replaced by 1/d
where d is the maximum degree of the tree? We propose:

5.3 Conjecture: If H is an ordered tree with k > 1 vertices and mazximum degree d, then there
exists € > 0 with the following property. Let B = (By,...,By) be a blockade in a graph G, with
local degree less than eW and (eW,eW/)-cohesive where W is its width. Then there is an ordered
B-transversal copy of H.

The next result shows that this is true for caterpillars:

5.4 Let H be an ordered caterpillar with k > 1 vertices and maximum degree d, and let € = 4*d/k.
Let B = (By,...,By) be a blockade in a graph G, with local degree less than eW and (eW,eW/)-
cohesive where W is its width. Then there is an ordered B-transversal copy of H.

For inductive purposes it is helpful to prove something stronger. If H is a caterpillar, there is a path
of H containing all vertices of H with degree more than one. If there is such a path with one end v
we call v a head of the caterpillar. (Thus, the head is not necessarily unique.) We will show:

5.5 Let H be an ordered caterpillar with k > 1 wvertices, with ordering vi,...,v; where vy is a
head. Let v1 have degree dy, and let every vertex of H have degree at most d, and let ¢ = 4=%/k.
Let B = (By,...,By) be a blockade in a graph G, with local degree less than eW and (eW,eW1/4)-
cohesive where W is its width. Let C1 C By, where |Cq| > gdh—dyydi/d - Then there is an ordered
(C1, Ba, ..., By)-transversal copy of H.

Proof. Let G, B = (By,...,By) and C; be as in the theorem. We may assume that |Bj|,...,|B| =
W. If k = 1 the result is trivial; and if £ = 2, then d; = d = 1, and so |Cy| > W, and therefore
there is an edge between C7, By and the claim holds. So we may assume that k& > 3, and proceed by
induction on k.

Suppose first that d; > 2, and let v; say be a neighbour of v; that has degree one in H. Let H’
be obtained from H by deleting vg. By 4.1, there are fewer than eW1/¢ vertices in C; that have at
most W'=1/¢/2 neighbours in By. Hence there are at least (|Cy|—eWV/)W1-1d/2 > |C W1/ /4
edges between C and By, since |Cy| > Wwdi/d > ogyyt/d, Consequently some vertex ux € B has at
least |C}|W =1/ /4 neighbours in Cy. Let C be the set of these neighbours; then

’CH 2 |01’W71/d/4 Z 4d17dwd1/dW71/d/4 Z 4d1717dw(d171)/d'

For 2 < i < k —1, let B} be the set of vertices in B; nonadjacent to uy; so |B}| > (1 —&)W. Let
the blockade (Bi, Bb, ..., B} ;) have width W’ say; then W’ > (1 —&)W. Let & = 47¢/(k — 1);
then &'W’ > eW, and so (B1, B, ..., B},_,) has local degree less than ¢/W’ and is (¢'W’, &/(W')!/4)-
cohesive. (Note that ¢/(W/)/¢ > eW'/4) From the inductive hypothesis, there is an ordered
(C1, By, ...,B)_,)-transversal copy of H \ {vi}; and adding uj, gives an ordered B-transversal copy
of H containing a vertex of Cf.

So we may assume that d; = 1; let vy be the unique neighbour of v; in H, and let H' be obtained
from H by deleting v1. Thus vs is a head of H'.

By 4.1, since |[C1] > 4'=4W/e > cW/4 there is a vertex u; € Cy with at least W'~1/4/2
neighbours in By; let Cy be the set of these neighbours. For 3 < i < k, let B] be the set of vertices
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in B; nonadjacent to wy, so |Bj| > (1 —e)W. Let the blockade (B2, Bj,...,Bj) have width W’
say. Then W’ > (1 — )W, and as before, it has local degree less than /W’ and is (¢/W’, &' (W')}/%)-
cohesive where ¢/ = 47¢/(k—1). From the inductive hypothesis, there is an ordered (Cs, BS, . . ., Bj)-
transversal copy of H \ {v1}, and adding u; gives a an ordered B-transversal copy of H containing
a vertex of C. This proves 5.5. |

Finally, let us see that the exponents in 5.4 and 5.5 cannot be replaced by any larger constant.
We need the following three lemmas:

5.6 Let t > 3 be an integer. Let 0 < € < 1 be rational, and let ¢ > d > 1/t, where d — 1/t <
(c—=1/t)/(t—1), and d < 2/t, and ¢,d are rational. Let K > elog(e/e)/(—log(1l —¢€)). Let n be an
integer such that n¢,n% n'=% n'/t en are all integers. If n is sufficiently large, there is a graph with

bipartition A, B , where |A| = n and |B| = n*/*, such that
e cvery vertex in A has degree at mostt —1;

o for every X C A with | X| > en®, there are at least Kn® vertices in B that have a neighbour in
X;

o for every X C A with |X| > en, there are at least (¢/e)|B| vertices in B with a neighbour in
X; and

1-d

o cvery vertex in B has less than n neighbours in A.

Proof. Let A, B be disjoint sets of cardinalities n, n2/t respectively. For each v € A, choose
v1,...,0—1 in B uniformly and independently at random (and therefore not necessarily distinct),
and add edges to make v adjacent to v1,...,v;_1. Let G be the graph this constructs. We claim
that if n is sufficiently large then with high probability G satisfies the theorem.

Let X C A with |X| = en€, and let Y C B with |Y| = Kn? The probability that for every
vertex in X, all its neighbours are in Y, is

<<Knd) /‘B’)S(t—l)nc _ (Kndﬂ/t)g(t_l)nc.

By 2.5 there are at most ((e/e)n!=¢)"" choices of X, and at most ((e/K)nz/t_d)K”d choices of Y.
Thus the probability that there is a choice of X, Y such that for every vertex in X, all its neighbours
are in Y, is at most the product of these, that is

(5ent=2) T ((efeynt=) ((efmpm2/i=2)" "
The logarithm of this (L say) is
e(t—1)n¢ (log K + (d — 2/t)logn) +enc (log(e/e) + (1 — ¢)logn)+ Kn? (log(e/K) + (2/t — d) logn).

Since ¢ > d, 1/t, for sufficiently large n the two terms containing n¢logn are much larger than
the others, and the sum of their coefficients is e(t — 1)(d — 2/t) + (1 — ¢). This is negative, since
d—1/t < (c—1/t)/(t—1); and so for sufficiently large n, L is large and negative, and therefore with
high probability, the second bullet of the theorem holds.
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Now let X C A and Y C B, with |X| =¢en and |Y| = |(¢/e)|B|]. The probability that for every
vertex in X, all its neighbours are in Y, is at most (¢/e)(*=De", By 2.5 there are at most (e/c)="
choices of X, and at most 27*'" choices of Y. Thus the probability that there is a choice of X,Y such
that for every vertex in X, all its neighbours are in Y, is at most

t

(¢/e)t=Ven (¢ /e)enon®",
The logarithm of this (L say) is
(t — Denlog(e/e) + enlog(e/e) + n*/tlog 2.
The two terms linear in n dominate for large n, and the sum of their coefficients is
(t —1)elog(e/e) + clog(e/e) = —(t — 2)elog(e/e) < 0,

so for sufficiently large n, L is large and negative, and therefore with high probability, the third
bullet of the theorem holds.
Finally, let v € B and let X C A with |X| = n'=%. The probability that v is adjacent to every

1—-d 1—d
vertex in X is at most ((t — 1)n*2/t)n . The number of choices of X is at most (end)n , S0 the

probability that some vertex in B has degree at least n!~% is at most

1-d

((t - 1)n2/t>n1d (end>n . n.

The logarithm of this is
n'~4 (log(t — 1) — (2/t)logn) + n'~%(1 4 dlogn) + logn.

The n'~%logn terms dominate, for large n, and the sum of their coefficients is —2/t + d; and this is
negative since d < 2/t. Consequently with high probability, the fourth bullet of the theorem holds.
This proves 5.6. |

5.7 Let t > 3 be an integer. Let 0 < ¢ < 1 be rational, and let ¢ > d > 1/t, where d — 1/t <
(c—=1/t)/(t — 1) and d < 2/t, and c,d are rational. Let K > log(e/e). Let n be an integer such
that n¢,enc,n, nt/t en,n1=, (e/2)n? are all integers. If n is sufficiently large, there is a graph with
bipartition B,C, where |B| = n?/* and |C| = n, such that

e cvery vertex in B has degree at most n'=9;

e for every X C B with |X| > Kn?, there are more than (1 — ¢)n vertices in C that have a
neighbour in X; and

o for every X C B with |X| > (¢/e)|B|, there are more than n—en® vertices in C' with a neighbour
mn X.

e cvery vertex in C has degree at most (£/2)n?.
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Proof. Let B,C be disjoint sets of cardinalities n2/?, n respectively. For each v € B, choose n!~%

vertices in B uniformly and independent at random (and therefore not necessarily distinct), and
add edges to make v adjacent to them. Let G be the graph this constructs. We claim that if n is
sufficiently large then with high probability G satisfies the theorem.

Let X C B with |X| = Kn?, and let Y C C with |Y| = (1 — £)n. The probability that for every
vertex in X, all its neighbours are in Y, is

(1 _ 6)Kn < e—aKn‘

d
By 2.5 there are at most ((e/K)nz/t_d) K% choices of X, and at most (e/e)™ choices of Y. Thus
the probability that there is a choice of X,Y such that for every vertex in X, all its neighbours are

in Y, is at most
K 2jt—a) K
e (/K2 =) (/o)

The logarithm of this is
—eKn+ Kn? (log(e/K) + (2/t — d)logn) + enlog(e/e).

For sufficiently large n the terms linear in n dominate, and the sum of their coefficients is —e K +
elog(e/e); and this is negative since K > log(e/e), so with high probability, the second bullet of the
theorem holds.

Now let X C B and Y C C, with | X| = [(¢/e)|B|] and |Y| = n — en®. The probability that for
every vertex in X, all its neighbours are in Y, is at most

1+2/t—d e_encfl(g/e)nl+2/t7d . e—(e2/e)nc+2/t*d

(1 _ gnc—l)(ﬁ/e)nQ/tnl_d _ (1 _ Enc—l)(f/e)n

By 2.5 there are at most 27*" choices of X, and at most ((e/e)nlfc)mc choices of Y. Thus the
probability that there is a choice of X,Y such that for every vertex in X, all its neighbours are in
Y, is at most
e—(€2/6)nc+2/t_d2n2/t ((6/8)77,1_0)8”6 )
The logarithm of this is
—(2/e)n<t¥1=d L 2/t 1og 2 + en® (log(e/e) 4 (1 — ¢) logn) .

Since ¢+ 2/t —d > max(2/t, c), the first term dominates if n is sufficiently large, and so with high
probability, the third bullet of the theorem holds.
Let v € C and let X C B with |X| = (¢/2)n?. The probability that v is adjacent to every vertex

d d
in X is (n™%) (&/2n% _ =(/2dn¢  There are at most ((Qe/s)nQ/t*d)(E/mn choices of X by 2.5, and n
choices of v, so the probability that there is a choice of v, X such that v is adjacent to every vertex
in X, is at most

= (e/2dn? <(2e/£)n2/t_d> (e/2)nn.
The logarithm of this is
—(g/2)dn%logn + (£/2)n? (log(2¢/e) + (2/t — d) logn) + log n.
The terms in nlogn dominate for large n, and the sum of their coefficients is
—(e/2)d+ (¢/2)(2/t —d) =e(1/t — d) < 0.
Consequently with high probability the fourth bullet holds. This proves 5.7. |
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5.8 Let 0 < ¢ < 1. If n is sufficiently large, and en, en® are both integers, there is a graph with
bipartition A, B, where |A| = |B| = n, such that every vertex has degree at most (2/e?)n'=¢, and the
blockade (A, B) is (en,en®)-cohesive.

We leave the proof to the reader; it is like that of 2.6. The three preceding lemmas are used for
the following:

5.9 Lett > 3, and let S;” be obtained from S; by ordering its vertex set. For all ¢ > 1/t and all
e > 0, there is a graph G, and a blockade (B, ..., Bi+1) in G, with local degree less than eW and
(eW,eW€)-cohesive where W is its width, such that there is no ordered B-rainbow copy of S; in G.

Proof. We may assume that c, e are rational, by slightly decreasing them if necessary. We call the
vertex of S; of degree t its centre. From the symmetry we may assume that the centre is the last in
the ordering of S;". Choose d such that ¢ > d > 1/t, where d — 1/t < (c — 1/t)/(t — 1) and d < 2/t,
and d is rational. Choose an integer n such that n¢, nd n/t en,nt=? end are all integers, and n is
large enough to satisfy each of 5.6, 5.7 and 5.8. Choose K as in 5.6 and 5.7.

Take t 4 2 pairwise disjoint sets By, By, ..., Bi+1, where |By| = n?/t and By, .. ., Bty all have
cardinality n. We attach bipartite graph onto various pairs of the sets By, ..., By as follows:

e Let Ji11,0 be a copy of the graph of 5.6 with bipartition By, 1, Bo.
e For 1 <i<t, let Jy,; be a copy of the graph of 5.7 with bipartition (By, B;).
e For 1 <i < j <t let J;; be a copy of the graph of 5.8 with bipartition B;, B;.

Now for1 <i < j <t+1,andallu € B; and v € Bj, add an edge between u, v if they have a common
neighbour in By. Finally, delete By; this defines a graph G, with a blockade B = (Bjy, ..., Bit1) of
width W = n, and we claim it satisfies the theorem.

Suppose first that there is an ordered B-rainbow copy of St+ in G. Thus there exists viy1 € By
adjacent in G to some v; € B; for 1 < i <, such that vy,...,v; are pairwise G-nonadjacent. From
the construction, for 1 < ¢ < ¢ every vertex of B; G-adjacent to v41 is Jy,-adjacent to a vertex
w € By that is Jiy1 o-adjacent to viy;. There are only ¢t — 1 such vertices, because of the properties
of Jiy1,0; so there exist distinct 4,5 € {1,...,t} and w € By, such that v;,v;,vi41 are all adjacent
(in Jos, Jo,j, Ji+1,0 respectively) to w. But then v; is G-adjacent to vj, a contradiction. This proves
that there is no ordered B-rainbow copy of S; in G.

To check the local degree of B: each vertex in By is Jiy1 0-adjacent to at most ¢ — 1 vertices in
By; and each of these neighbours has at most nl—d Jo,i-neighbours in B;; so each vertex in By4q has
at most (¢ — 1)n'~? G-neighbours in B;, for 1 <i <t, and (t — 1)n'~% < en if n is large enough.

Each vertex in B; is Jy;-adjacent to at most (g/ 2)n? vertices in By, and they have degree less
than n'~% in Ji41,0; so each vertex in B; has at most en/2 G-neighbours in By, for 1 < i <t.

For 1 < i < j < t, each vertex in B; has at most (2/e?)n'=¢ J; j-neighbours in Bj; and in
addition, it is Jp;-adjacent to most (g/ 2)nd vertices in By, and they have degree at most n!~% in
Joj. Consequently each vertex in B; is G-adjacent to at most (2/e2)n'=¢ + (¢/2)nn!~? vertices in
Bj. For large n, this is less than en. The same holds for j > i. Consequently B has local degree less
than en.

To check that it is (en,en®)-coherent: first, let X C By1q and Y C B; where 1 < i < t, with
|X| > en and |Y| > en®. From the properties of Jy11 ¢ there is a set Z C By with |Z] > (¢/e)n?/t,

23



and all its members have a J; 11 g-neighbour in X; and from the properties of Jy ;, more than n —en®
vertices in B; have a Jy;-neighbour in Z; and consequently some vertex in Y is G-adjacent to a
vertex in X.

Next, let X C By11 and Y C B; where 1 < i < ¢, with |X| > en® and |Y| > en. By a similar

argument it follows that X, Y are not anticomplete in G.

Finally, let 1 <i < j <t,and let X C B; and Y C Bj;, with |X| > en and |Y| > en®. From the

properties of J; ;, X, Y are not anticomplete in J; ; and hence not in GG. This proves 5.9. |
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