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ABSTRACT This paper discusses the theory and algorithms for interacting large language model agents

(LLMAs) using methods from statistical signal processing and microeconomics. While both fields are

mature, their application to decision-making involving interacting LLMAs remains unexplored. Motivated

by Bayesian sentiment analysis on online platforms, we construct interpretable models and stochastic control

algorithms that enable LLMAs to interact and performBayesian inference. Because interacting LLMAs learn

from both prior decisions and external inputs, they can exhibit bias and herding behavior. Thus, developing

interpretablemodels and stochastic control algorithms is essential to understand andmitigate these behaviors.

This paper has three main results. First, we show using Bayesian revealed preferences from microeconomics

that an individual LLMA satisfies the necessary and sufficient conditions for rationally inattentive (bounded

rationality) Bayesian utility maximization and, given an observation, the LLMA chooses an action that

maximizes a regularized utility. Second, we utilize Bayesian social learning to construct interpretable models

for LLMAs that interact sequentially with each other and the environment while performing Bayesian

inference. Our proposed models capture the herding behavior exhibited by interacting LLMAs. Third,

we propose a stochastic control framework to delay herding and improve state estimation accuracy under

two settings: 1) centrally controlled LLMAs and 2) autonomous LLMAs with incentives. Throughout

the paper, we numerically demonstrate the effectiveness of our methods on real datasets for hate speech

classification and product quality assessment, using open-source models like LLaMA and Mistral and

closed-sourcemodels like ChatGPT. Themain takeaway of this paper, based on substantial empirical analysis

and mathematical formalism, is that LLMAs act as rationally bounded Bayesian agents that exhibit social

learning when interacting. Traditionally, such models are used in economics to study interacting human

decision-makers.

INDEX TERMS Bayesian social learning, large language models, Bayesian revealed preferences, structural

results, optimal stopping POMDPs, self-attention, rational inattention, model collapse.

I. INTRODUCTION

This paper discusses the theory and algorithms for interacting

Large Language Model Agents (LLMAs) by leveraging

techniques from Bayesian inference, stochastic control,

and microeconomics. Specifically, we focus on developing

interpretable models and stochastic control algorithms for

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

LLMAs, enabling them to interact sequentially for Bayesian

inference.

We construct interpretable models of LLMAs at two levels

of abstraction, as outlined in Figure 1. First, we model an

individual LLMA as a rationally inattentive Bayesian utility

maximizer, capturing the agent’s decision-making process

under limited attention. Second, we extend this approach to a

sequence of LLMAs engaging in Bayesian social learning or

groupthink, where each agent is a Bayesian utility maximizer.
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Our models are inspired by the self-attention mechanism in

large languagemodels (LLMs) and observed challenges, such

as model collapse, that arise during LLM training.

Furthermore, motivated by the observed bias in the

behavior of interacting LLMAs, we demonstrate that a

sequence of LLMAs engaging in Bayesian social learning

end up making identical decisions, or ‘‘herd’’. To address

this phenomenon, we propose a stochastic control approach,

formulating an optimal stopping problem to balance the

trade-off between privacy and herding, to detect the failure

state. Our approach is designed for two scenarios: (a) when

the LLMAs are centrally controlled, and (b) when they

operate autonomously.

The overarching goal of this paper is to demonstrate

that concepts from controlled sensing and microeconomics,

traditionally applied to human decision-making, can be used

to both understand and synthesize the behavior of interacting

LLMAs [1], [2], [3], [4], [5]. We support our theoretical

findings with numerical experiments using advanced LLMs

for Bayesian inference [6] on real-world data. This paper is

written to engage a broad readership, highlighting applica-

tions of Bayesian agents in diverse fields, including financial

news analysis, e-commerce review evaluation, and online

toxicity detection. These examples underscore the flexibility

of our methodologies for cross-disciplinary applications. The

reproducible code for our experiments is publicly accessible

at github.com/aditj/sociallearningllm.

A. MOTIVATION

LLM agents (LLMAs) are being rapidly deployed for

different applications [7], and to quote Sam Altman, CEO

of OpenAI (creators of ChatGPT, a popular LLM which has

200 million weekly active users): ‘‘in 2025, we may see the

first AI agents join the workforce’’ [8].

LLMAs use a large language model (LLM) to parse the

input and have additional functionality to perform tasks.

LLMs (such as ChatGPT and LLaMA) are neural networks

with billions of parameters trained on trillions of tokens of

textual data to parse long texts for summarizing, compiling

key facts, and generating new text. The key technical

improvement that leads to the efficient deployment of LLMs

is the transformer architecture [9]. The effectiveness of LLMs

on textual texts has made their deployment and adoption

widespread [10]. Many applications have been proposed in

healthcare, online platform moderation, and finance, where

these LLMs are used to parse the textual observations and

suggest decisions based on their outputs [11]. In many tasks,

the outputs of the LLMs are often part of a more extensive

pipeline; for example, the output of the LLMs, either in a

specified format or as embeddings, is frequently used as

inputs to other Bayesian entities, including classifiers [12].

The Bayesian framework also becomes essential in appli-

cations where the LLMs have to output decisions and need

to provide confidence in the decision output. Thus, it is of

interest to study a single Bayesian agent that uses the LLM to

parse text observations, update its Bayesian belief, and take

action. This paper studies such entities and refers to them

as Large Language Models Agents (LLMAs). Constructing

interpretable models for LLMAs is crucial to understanding

and controlling their interaction.

1) INTERACTING LARGE LANGUAGE MODEL AGENTS

It is predicted that by 2030, 90% of web content will be

generated by large language models (LLMs) [13]. In recent

practical implementations, individual LLMs are part of a

bigger system, referred to as LLMAs, and interact with

the content generated by other LLMAs and the external

environment [14]. Furthermore, recent research has shown

how generative models are trained on the data generated

by other generative models can collapse [15]. Therefore,

naturally, LLMAs interact with each other either implicitly

or explicitly.

Hence, controlling the dynamics of interacting LLMAs

is essential to improve the accuracy and trustworthiness

of decisions by LLMAs. To the best of our knowledge,

only a few recent works systematically study the behaviors

of LLMAs using tools from microeconomics and signal

processing [16]. This study aims to bridge this gap by

systematically reviewing LLMAs and the different mathe-

matical frameworks by studying Bayesian social learning in

a sequence of LLMAs to achieve Bayesian inference.

2) INTERPRETABLE ENGINEERING OF LLMAs

Many different third-party services have already started

providing various kinds of LLMAs as a service, including

Agentforce by Salesforce and IBM AI agents [17]. The

underlying intelligence engine of these third-party agents is

an LLM or a vision language model (VLM). The LLMAs

are used in personal applications for coding, shopping,

and scraping data and in enterprise applications for getting

insights on user activity and automating industrial workflows.

Therefore, it becomes imperative to study interpretable

models for these agents since many of the proposed

applications for these agents involve sensitive information

(like personal records, financial information, bio-medical

data, and personal preferences). By interpretable, we refer to

models that facilitate a transparent understanding of complex

models through clear and explainable representations of

their decision-making processes. The workflows of the AI

agents also include making decisions, and the interpretability

and reliability of these agents become vital for them to

be trustworthy. Therefore, mathematical models are needed

to aid in engineering and deploying LLMAs. To this end,

we propose a LLMA composed of an LLM and a Bayesian

engine, which by construction is interpretable. Further,

we use Bayesian revealed preferences1 to reconstruct a

Bayesian utility function for both our constructed LLMA and

for off-the-shelf LLMAs.

1The framework of Bayesian revealed preferences is also referred to as
inverse optimization or inverse reinforcement learning.
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FIGURE 1. Summary of the proposed contributions: We discuss the different blackbox models for LLMA and how LLMAs
can be used as a sensing mechanism to perform Bayesian inference. Part 1 models the LLMAs as a rationally inattentive
Bayesian utility maximizer and numerically establishes the behavior in applications of product quality identification and
hate speech classification. Part 2 discusses how Bayesian social learning in a sequence of LLMAs can be used for
sequential state estimation. However, in Part 3, we show that the agents can perform the same incorrect action due to
herding. We then discuss a stochastic control approach to delay herding when LLMAs are centrally controlled and when
they are autonomous but are incentivized.

FIGURE 2. Engineering with large language model agents (LLMAs): We propose engineering with LLMs
on three different levels: a) First, we construct LLMAs with an LLM attached to the Bayesian engine.
The LLM acts as a sensor for the text input and outputs interpretable low-dimensional outputs, which
are used by the Bayesian engine to produce a state estimate. b) Second, we formulate necessary and
sufficient conditions for a LLMAs to be a rationally inattentive Bayesian utility maximizer (RIBUM).
We also present algorithms to reconstruct feasible utilities and rational inattention costs if the LLMA
is indeed a RIBUM, attributing the LLMA with an interpretable microeconomic model. c) Finally,
we demonstrate how a sequence of LLMAs can efficiently perform sequential Bayesian social learning
by controlling their outputs to delay herding optimally. Our Bayesian social learning models can be
extended to study Bayesian social learning in a network of LLMAs.

3) BAYESIAN INFERENCE FROM MULTI-MODAL DATA

STREAM

In various applications, like online e-commerce platforms,

video streaming platforms, and social networks, there is

a rich stream of multimodal data available using text,

images, and videos. Different inference tasks involve fusing

information from various data streams to get actionable

insights. With the recent progress in deep learning, many

of the traditional signal processing methods are being

replaced with contemporary methods that use LLMs and

VLMs. However, just using static models is not sufficient

to model the dynamics of real-life settings, e.g. on online

platforms, and underlying dynamics are better modeled in

a Bayesian framework. Therefore, motivated by practical

applications, we propose the construction of LLMAs which

can performBayesian inference sequentially on a data stream.

This complements continual learning, which deals with

continually learning new tasks without forgetting what was

learned previously [18].

B. MAIN RESULTS

This paper builds on Bayesian revealed preferences from

microeconomics (inverse reinforcement learning), sequential

Bayesian estimation (from signal processing), and structured

stochastic control to construct interpretable models and

synthesize interaction of LLMAs. The impact of our results

on more efficient, systematic, and interpretable engineering
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FIGURE 3. Organization of the paper: The paper is divided into three parts. Part 1 deals with interpretable models for an individual LLM agent.
Part 2 extends the models to a social learning setting where LLM agents interact with each other to perform Bayesian inference. Part 3 proposes
stochastic control methods to delay herding in a sequence of LLM agents.

of LLMAs is summarized in Figure 2. Themain contributions

of this paper are:

1) We propose constructing a LLMA as a composition

of a large language model (LLM) sensor,2 which acts

as a low-dimensional map from the text space, and a

Bayesian engine, which uses the measurement from

the LLM to update the posterior and act optimally.

We show how this model is useful for interpretable

Bayesian inference with applications in sequential data

on online platforms.

2) To obtain an interpretable utility function for a LLMA,

we provide necessary and sufficient conditions in

Theorem 1 for a LLMA to be a rationally inat-

tentive Bayesian utility maximizer (RIBUM). For a

LLMA who is a RIBUM, we propose Algorithm 2

and Algorithm 3 to reconstruct the max-margin and

sparsest utility estimate, respectively. Our methods

are applicable to both our LLMA and off-the-shelf

LLMAs.

3) We study Bayesian social learning in a LLMAs,

sequentially estimating a state given text observations

and in Theorem 2 show that such a sequence of LLMAs

form an information cascade and herd in their actions.

We show that this is true for both when no private

observations are shared and when a finite number of

private observations are shared. Further, we provide a

detailed analysis of the effect of the quality of results

from LLM of the LLMA and the number of private

observations.

4) To delay herding in a sequence of LLMAs, we formu-

late an optimal stopping problem for two regimes:

a) when the LLMAs are centrally controlled by an

entity b) when the LLMAs are autonomous but are

incentivized by an entity. We show in Theorem 3

2We consider LLMs as social sensors and not physical sensors since they
do not sense physical quantities like temperature but virtually analyze text
and multimodal data to provide observations.

and Theorem 4 that under certain assumptions on the

observation matrix and cost functions, the optimal

policy for the partially observed Markov decision

process of both the optimal stopping problems has a

threshold structure. We then propose a policy gradient

algorithm in Algorithm 7, which exploits the structural

results to estimate the optimal policy parameters.

The algorithm does not need access to the system

parameters, is computationally efficient, and can track

changes in the system.

5) We finally present several numerical experiments to

demonstrate the efficacy of our proposed methods.

We show how our constructed LLMA can be used

for interpretable Bayesian inference for analyzing

financial data. We show how the Bayesian revealed

preferences framework can estimate the utility of

an off-the-shelf LLM when used for hate-speech

detection. Finally, we show numerical studies on two

examples of sequential Bayesian inference: hate speech

peddler identification and product quality analysis,

to demonstrate herding of LLMAs, and the applicabil-

ity of our structural results.

To summarize, this paper attempts to answer the following

questions with respect to interacting LLM Agents,

1) How can LLMAs be constructed so that they can be

used for sequential Bayesian inference such that the

observation and outputs are interpretable?

2) What is a principled approach to analyze whether

a LLMA is a Bayesian utility maximizer and also

reconstructs its utility function given only blackbox

access?

3) How does one systematically study Bayesian social

learning in multiple interacting LLMAs to explain

observed behaviors such as herding and model col-

lapse?

4) How can herding in (centrally controlled or autono-

mous) LLMAs be optimally delayed so that the agents
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optimally switch between preserving privacy and

improving estimation to achieve sequential detection?

C. ORGANIZATION

This paper is organized into three parts, and the schematic of

the organization is given in Figure 3. Part I discusses the inter-

pretable model for a single LLMA and attempts to answer

questions 1 and 2 above. Section II discusses the related work

in large language models, agents using LLMs, and current

interpretable models for Bayesian inference. Section III

discusses the mathematical model used for modeling LLMAs

in this paper andmotivates the different components involved.

Section IV gives the necessary and sufficient conditions

for the LLMAs to be rationally inattentive Bayesian utility

maximizers (RIBUM). It further proposes algorithms to

estimate the utility function for a LLMA which is a RIBUM.

Part II discusses interpretable models for interacting

LLMAs and attempts to answer question 3. Section V

discusses the mathematical framework of Bayesian social

learning in LLMAs and proves that a sequence of LLMAs

form an information cascade in finite time. Section VIII

discusses a stochastic control problem for the optimal

stopping time problem to achieve quickest time herding with

minimal loss to the privacy of LLMAs. Section VI discusses

interpretablemodels to explainmodel collapse and data incest

in LLMAs using word-of-mouth and asynchronous social

learning.

To decrease the bias when a sequence of LLMAs perform

Bayesian inference, Part III deals with stochastic control for

delaying herding in interacting LLMAs performing Bayesian

sequential learning proves structural results, and proposes a

policy gradient approach. Section IX considers the problem

of a central controller optimally optimizing a sequence

of autonomous LLMAs to achieve the state estimation by

optimally controlling herding. Section X proposes a policy

gradient based approach to approximate the optimal policy,

which has a threshold switching curve. Numerical results on

real-life text classification tasks and related applications are

discussed in Section XI. Section XII concludes the paper with

discussions on future works, open problems, and research

opportunities. The appendix contains the proofs and details

about the numerical experiments.

We emphasize that the paper is built around a coherent

framework with the unifying theme of building interpretable

models for interacting LLMAs using Bayesian social learning

and powerful generative models from behavioral economics.

For the ease of the reader, we have included a motiva-

tion and a discussion subsection in each section, which

grounds the different aspects of LLMAs to a real-life

application and different microeconomics and statistical

signal processing tools presented in the section. We also

provide different block diagrams and illustrative examples

to further aid the reader. All the results reported in this

paper are fully reproducible with code downloadable from

github.com/aditj/sociallearningllm.

II. BRIEF LITERATURE REVIEW AND RELATED WORK

In this section, we review related work on LLMs,3 LLMAs

and social learning using LLMs. We first provide a brief

background on LLMs and discuss the different applications

and models for LLMAs. We provide motivation for the

interpretability of the LLM agents. Finally, we review

literature in sequential state estimation setup studied in

this paper and provide motivation for using a sequence

of contemporary LLMAs in a classical Bayesian inference

setting. We also review applications of sequential Bayesian

inference using LLMAs. Table 1 summarizes some of the

related work.

TABLE 1. Summary of Related Literature studying LLMAs and their
interaction: There has been work in engineering, sciences, and
economics, which motivates a careful study.

A. BACKGROUND ON LLMs

Large language models (LLMs) have become omnipresent in

various industry applications, given the drastic improvement

in compute availability and rapid development of open

and closed-sourced models [20]. They are being rapidly

deployed for various applications, including education,

information retrieval, gaming, recommendation systems, and

understanding graphs [21], [22], [23], [24].

The primary reason for the proliferation of LLMs is that

they can take a high-dimensional multi-modal (text, images,

audio etc.) data input and provide useful inferences about

them. This is possible because they are deep learning net-

works (transformer architecture) with billions of parameters

trained on massive amounts (in the order of petabytes)

of data (CommonCrawl, etc.) using extremely fast GPUs

that can parallelize computations efficiently. There are two

different classes of LLMs: a) open source LLMs like LLaMA

and Mistral [57], [58] and b) closed source LLMs like

ChatGPT and Claude. Open source LLMs make available

the underlying deep learning architecture that they use, some

even share the data that the LLM is trained on; closed-

source LLMs on the other hand only provide an inferencing

interface, where the LLM can be asked different questions,

3In this paper, LLMs also refer to the various transformer architectures
that process multi-modal data, including images, audio, and documents.
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the answer to which is provided by the LLM. The methods

and framework of our paper only require blackbox access to

these LLMs and are generally applicable to both classes.

Although the adaption of LLMs is rapidly increasing, from

a safety and reliability perspective, their deployment in sen-

sitive applications like healthcare, finance, and defense still

poses challenges [20]. Even in general-purpose applications,

LLM-based chatbots provide spurious information, a phe-

nomenon referred to as hallucination [20]. There have been

different approaches to ensure that the outputs of the LLMs

are reliable and interpretable, and many of the challenges

specific to the new paradigm require revisiting traditional

interpretability literature [59]. As reviewed in [60], one of the

approaches is to improve the reasoning capabilities of LLMs

so that the LLMs provide a descriptive reason for the output.

Another school of thought is to mechanistically understand

the transformer architecture and training procedure that is

the backbone of an LLM [43], [44] to better understand the

working and eliminate the sources of bias, if possible.

B. LLM AGENTS

Standalone LLMs are powerful tools for many applications,

but there is strong motivation to consider networked LLMs

as part of complex systems and integrate them into existing

workflows. These networked LLMs are often given function-

ality to interact with the virtual environment and are referred

to as LLM agents (LLMAs) [25]. There are two distinct

features that LLMAs have that make them different from

LLMs:
1) Decisions: In the workflows that the LLMAs are

used in, they are provided functionality (agency) using

different mechanisms, including function calls

2) Communication: The LLMAs are allowed to commu-

nicate with other LLMAs, to exchange information.

Often, tasks are also broken into smaller sub-tasks and

are performed parallelly and sequentially by different

LLMAs leading to different topologies of LLMAs [26].

1) APPLICATIONS OF LLM AGENTS

An important application LLMAs are used for is program-

ming, primarily because of LLMs ability to generate code

given a text prompt. LLMAs are used to automate different

parts of the software lifecycle, including development,

deployment, testing, and fixing bugs [26]. Other applications

propose using LLMAs in healthcare for counselling [28],

financial trading [27], automating customer service [17] and

shopping assistants [31].

2) MODELS FOR LLM AGENTS

The different components used in the standard model of

a LLMA include a memory, retrieval mechanism, action

sets, and an environment. [32] studies different cognitive

architectures using these components for LLMAs. There

has been a lot of work to improve the capabilities of these

components in LLMAs, using a dynamic context [42] and

using self notes to perform continual learning [61]. However,

we propose augmenting the LLM with a Bayesian engine to

perform sequential Bayesian inference on a stream of data.

The Bayesian enginemodel proposed in this paper can also be

used for more general tasks, as we discuss in the conclusion.

3) NETWORKS OF AGENTS

Since many of the LLM agents interact with other agents

directly or through content generated by them, there is a

need for more systematic and mathematically rich blackbox

models for LLMs and LLM agents (LLMAs). Such models

help understand their behavior and eventually control it to

ensure reliability. Often, the collaboration of LLMAs are

modeled as a directed graph [25], [36], [37], which [34]

proposes dynamically adapting depending on the task. There

are various different programmatic frameworks where the

LLMAs can be abstractly programmed to perform different

tasks [35], [62]. Some of these frameworks even allow

making these agents autonomous [14]. The methods in this

paper deal with a line graph topology of LLMAs, which

perform sequential Bayesian estimation. The setup studied in

this paper can be extended to more general graph structures,

and different issues such as data incest can be studied.

C. BAYESIAN SOCIAL LEARNING IN A SEQUENCE OF LLM

AGENTS

1) MULTIPLE BAYESIAN AGENTS SEQUENTIALLY

ESTIMATING A STATE

The interaction of multiple such Bayesian agents, each

receiving a private observation, is motivated by privacy,

improved detection, and finite context length. If the same pri-

vate observation (even the low-dimensional representation) is

used, the LLM can be fine-trained on this data, which might

contain sensitive information [39]. Also, different LLMs can

be given a diverse set of contexts, which enables reducing the

bias involved with their decisions [19]. Also, practically due

to the finite context length, the observations can be considered

private with respect to consecutive LLMAs evaluations.

2) FRAMEWORK OF BAYESIAN SOCIAL LEARNING

Recent work has looked at social learning in LLMs using

a teacher-student framework [40], but this work was in

a static setting where the LLMs do not have a belief

that they adaptively update. In general, sequential social

learning in Bayesian agents has been studied extensively [3],

and our work formalizes the problem of Bayesian social

learning in LLMAs. The theoretical results presented in

this paper have been studied before in the context of

distributed Bayesian sensors in [2] and [4]. Compared

to [2], [4], we view the LLMAs as interpretable Bayesian

sensors and provide a more comprehensive outlook. We also

consider multiple observations being shared and provide a

concentration inequality (Theorem 5) for overspending the

incentive with respect to a budget constraint. Recently [63],

looked at detecting information cascades using deep learning.

Although in this paper we focus on delaying an information
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cascade to improve estimation accuracy, methods similar

to [63] can be integrated with our approach.

3) INCENTIVIZATION OF THE LLMAs BY A CENTRAL

CONTROLLER

Recent research has studied modeling LLMs as autonomous

agents and making LLM part of bigger autonomous agents,

including robots, self-driving cars, and programming co-

pilots [30], [64]. Such autonomous agents can be leased

from third-party services at a unit cost. The incentive can

also be looked at from the following perspective: providing

more context to the same LLM can lead to a more accurate

output [19] but increases the cost of processing the query.

Third-party LLMAs often offer a tiered pricing structure,

where higher pricing provides access to more accurate LLMs.

D. INTERPRETABILITY AND SOCIAL FAIRNESS

There has been recent work in augmenting the LLM with

an explainable artificial intelligence (xAI [50]) system to

provide more interpretable outputs as in [45]. This work is

more aligned with the latter, in which we propose using the

LLM as a sensor that provides interpretable low-dimensional

outputs, used by a Bayesian engine to estimate the state.

However, we use an interpretable Bayesian model to

perform sequential Bayesian inference from text observations

of an underlying state, whereas [45] create an xAI model

with decision trees and n-gramsmodels using outputs from an

LLM. Another such work is [65], where the authors propose

training a separate concept neural network that uses the

output of an LLM to interpretably classify text embeddings.

This approach can complement the work in this paper when

the setting is dynamic. Our work uses tools from revealed

preferences and social learning to analyze the behavior of

individuals and interacting LLMAs from a microeconomic

lens.

Further, our focus is also on designing LLMAs, which

are safe, reliable, and fair, goals which are aligned with

operationalizing responsible AI [51]. This becomes challeng-

ing to do since LLMAs have been known to show biases

which are inherent to human beings like conformity [66]

and bias towards different attributes [67]. These effects will

be more prominent when the LLMAs interact with each

other in different scenarios like a Mindstorm [33] or a

language model cascades [68]. Finally, the need to study

interpretable models for LLMAs is motivated by the rise of

unified agents [69], which are a representation of a trend in

artificial intelligence that the different models are converging

to a single efficient model [70]. This paper therefore tries

to systematically understand Bayesian social learning in

LLMAs, to help prevent undesirable phenomena like model

collapse [15], [38].

There has been substantial work in the fairness of

the machine learning models [48], and even evaluating

large language models for different measures of social

fairness [71]. However, [49] recently highlighted how it is

extremely difficult to benchmark LLMs on existing fairness

metrics because of the way LLMs are used. This becomes

even more challenging for LLMAs, where the agents further

have functionality and can also communicate with other

LLMAs. Therefore, the focus of our study is to construct

interpretable models for LLMAs, which can be used to

understand the decisions of LLMAs. This understanding can

help construct more suitable societal fairness metrics. Our

work additionally has relatively mild assumptions on the

utility/cost function of the LLMAs, and hence can be adapted

for different sociological costs.

E. APPLICATIONS OF SEQUENTIAL STATE ESTIMATION

USING BAYESIAN SOCIAL LEARNING IN LLMAs

We detail examples of real-life problems where textual obser-

vations of the state are available and sequential Bayesian

learning in LLMAs is used to perform state estimation.

1) HATE SPEECH PEDDLER IDENTIFICATION ON SOCIAL

NETWORKS

Identifying hate speech4 and toxic content has been studied in

various contexts, e.g., in reducing unintended bias, detecting

covert hate speech, and mitigating hate speech on online

platforms [73]. [54] have looked at how to quantify the

intensity of hate speech and created labeled datasets. In [74],

the authors looked at controlling federated learning for hate

speech classification. In this paper, we look at the problem

of Bayesian agents identifying hate speech peddlers by

sequentially parsing comments from users using an LLM.

2) FINANCIAL NETWORKS

In financial networks, LLMs can be used as sensors to parse

textual information, including news articles, opinions on

social networks, and financial reports. This can be especially

useful for making decisions based on the low-dimensional

observations from the LLMs. This process can be automated

using LLMAs, based on algorithmic rules [27]. But, since the

actions of LLMAs of a single entity affect the environment

(market), such a sequence of agents can herd in their

decisions, leading to a financial bubble. This has been studied

classically in human traders [3] and makes the study of

sequential Bayesian learning in LLMAs interesting.

3) PRODUCT QUALITY IDENTIFICATION

One of the issues on e-commerce platforms is to identify

poor quality products early on; however, just using numerical

ratings can be uninformative, especially when the number

of ratings is less. However, there is a lot of information

contained in the descriptive reviews of the product, which one

can efficiently extract using LLMs. Therefore, a sequence of

4There is an active debate on the definition of hate speech and the

tradeoff between free speech and hate speech [72]. Hence, to circumvent this
discussion, we use hate speech as an exemplary case study of our methods,
and the definition of hate speech is implicit from the source of the dataset
in the experiments. Our techniques can be applied to different definitions of
hate speech and other applications as is described later.
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LLMAs can efficiently analyze the reviews of a product to

identify if the product is of good quality or not. This is an

extended and sophisticated version of opinion mining, which

has shown to be effective in sentiment analysis on online

platforms [53].

4) PERSONALIZED RECOMMENDATION SYSTEMS

Another primary application of LLMs is in recommendation

systems [55], where the LLMs act as a natural language

interface between the user and the item (e.g., movies,

products) database. LLMAs can be further used to enhance

the recommendation quality by analyzing the past activity

of the user and of the user’s social network. However, using

LLMAs directly raises privacy concerns since the users

information is sensitive. This paper proposes one way to deal

with this, by ensuring that each LLMAs has a different private

observation.

F. COMPARISION TO PRIOR WORK

The primary focus of this paper is to employ ideas from

statistical signal processing and microeconomic theory to

model and analyze interacting LLMAs. However, given the

domain-specific constraints that are inherent to LLMAs,

we claim the following modeling and theoretical innovation

over prior work in Bayesian social learning and interpretable

utility reconstruction: a) There is a hierarchical observation

structure inherent to the Bayesian sensor model of an LLMA

considered here, whereas the Bayesian revealed preference

framework only has a single observation likelihood [1]

b) There has been limited research on interpretable models

for LLMAs. However, in contrast to the other interpretable

machine learning literature, including glassbox models,

we reconstruct a utility function and an information acquisi-

tion cost given only blackbox access to the LLMAand ismore

closely aligned to [46]. c) We study the effect of sharing more

private observations and a better observation likelihood on

herding in a classical Bayesian social learning setting [3], [75]

d) The social learning framework considered here allows for

LLMAs with different LLMs and is presented for the specific

application of Bayesian inference in contrast to [40].

Part I: Analyzing a Single LLM Agent

In Part I of this paper, we consider a single LLMA in

isolation, where we first construct a Bayesian sensor model

for a LLMA which comprises an LLM and a Bayesian

engine. Then, we look at the LLMA as a rationally inattentive

Bayesian utility maximizer and propose methods to recon-

struct utilities for both our constructed Bayesian LLMA and

more general LLMA. The motivation for this modeling from

this perspective from the self-attention mechanism inherent

to LLMs. Part I of this paper comprises of Section III and

Section IV.

III. LLM AGENT AS A SOCIAL SENSOR

Motivated by interpretable Bayesian inference on online

platforms using LLMAs this section discusses the Bayesian

sensor model we consider for a single large language

model agent. We propose the model of LLMs as a sensing

mechanism as a map from a high dimensional space (e.g., text

prompt) to a low dimensional space (e.g., structured outputs).

The LLMs are equipped with a Bayesian engine and are

referred to as an LLM agent (LLMA), which updates the prior

regarding the state to be estimated using the text observations.

This proposed model is depicted in Figure 4.

The different aspects of the mathematical model for

the LLMAs are discussed, and the utility of a LLMA is

introduced, which can be reconstructed for a blackbox LLMA

using the Bayesian revealed preference framework discussed

later. We discuss how the framework and the results of the

paper can be extended to contemporary models like vision

language models (VLMs). In essence, this section, therefore,

shows how LLMA acts as a social sensor, which can be

applied to sophisticated settings such as online platforms

where physical sensors do not work to sense the underlying

state from observation obtained by the interaction of humans.

A. MOTIVATION. LLM AGENT FOR INTERPRETABLE

SENTIMENT ANALYSIS

Since in many contemporary applications, LLMs are used

for inferring the underlying state given a text observation;

we construct an LLM (which acts as a likelihood function)

equipped with a Bayesian engine, both of which act as a

LLMA to perform Bayesian inference on textual data with

applications in sentiment analysis on online platforms [53].

We further motivate the construction of such a Bayesian

sensor model for an LLM from the point of view of

interpretability, reliability, and controllability. There has

been a lot of work done to improve the interpretability

of the output of a standard LLM [59]. In the blackbox

setting, the approach proposes asking the LLMs to provide

a reason in addition to the output [60]. This works well in

practice for simple applications, however when sequential

Bayesian inference needs to be performed on millions of

text observations interpreting the reason itself becomes a

tedious task. Therefore, we propose using the LLMs as a

low-dimensional map from the high-dimensional text space

by designing prompts that are useful in analyzing. The LLMs

can either be explicitly controlled using the system prompt or

their outputs can be restricted to a certain state.

A Bayesian engine then uses these low-dimensional

variates to update the belief, which is an easier task to do

than on the high-dimensional text data due to the curse of

dimensionality. This helps in using the LLMA in a reliable

way since the LLMAs can provide confidence in the actions

they would take given the observations. Such a model of

LLMA is also controllable with respect to the cost function

associated with the Bayesian engine, as we illustrate below.

Notation: x ′ denotes the transpose of vector x. diag(x′)

denotes a diagonal matrix with x as diagonal entries. Capital

letters (e.g. B) denote matrices and By denotes y
th row of the

matrix.
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FIGURE 4. Brief schematic of a large language model agent as a sensing mechanism for Bayesian Inference: LLM Input is
composed of the system instruction prompt, which is also the control; the user prompt, which is a private observation;
and the in-context examples generated from the previous LLM agents are the past actions. Based on the input, the LLM
outputs an intermediate textual output. The Bayesian engine uses a likelihood function and past actions to select an
action maximizing the expected utility. If utility function is not explicitly given, Bayesian revealed preference is used to
obtain a set-valued estimate using an input-output dataset. The paper discusses variations of this model with application
in Bayesian sentiment analysis.

B. BAYESIAN UTILITY MAXIMIZATION MODEL FOR LLMA

We consider a LLMA composed of a large language model

(LLM) and a Bayesian Engine.

1) ABSTRACTING A LARGE LANGUAGE MODEL (LLM) AS A

SENSOR

First, we give a mathematical model for a general-purpose

LLM. For this paper, we consider blackbox access to the

LLM and hence both open-source LLMs like LLaMA3 [58]

and closed-source LLMs like ChatGPT. One of the ways to

model a blackbox LLM is as an input-output block. The input

to an LLM is a single text prompt, which we decompose

into three things: the system prompt, which we refer to as

control, the context, and the user prompt, which we refer to

as observation.

Assume that the dictionary of all words of the LLM

(tokens5) is given by D, and this dictionary also includes

the blank word. The time index is given by k = 1, 2, . . . .

A blackbox LLM can be viewed as an input-output block.

The control or the system prompt is an input to the LLM,

often prepended before the in-context examples and the user

prompt, which is used to give instructions to the LLMs on

how exactly to respond. This is used to control the behavior

of the LLM and ensure that the LLM behaves (outputs) as

required. We assume a control of length mcontrol and at time

k denote the control by ck ∈ Dmcontrol .

Following the system prompt, the next input is a context

to the LLM. This context could contain external information

and examples that are time-dependent and may depend on

previous interactions, which is dynamic and can not be put as

a part of the system prompt. We consider a context of length

mcontext and at time k denote it by »k ∈ Dmcontext .

Finally, the user prompt, which we also refer to as the

private observation, is the text sequence to which the LLM

is supposed to give a response conditioned on the control ck
and the context »k . The private observation at time index k is

5Although the input of the LLM is text, in most of the architectures, the
text (or more generally multi-modal data) input is first decomposed into
different tokens and the tokens are processed, but since we consider the
LLM as a blackbox, our interpretable models abstract these implementation
details.

given by zk ∈ Y ′. Where Y ′ is the text observation space and

for a maximum length of muser, Y
′ = Dmuser .

We consider an LLM, which is pre-trained on trillions of

tokens of text to autoregressively generate the next-token.6

For developing a token of length 1, the output of the LLM is

given by a conditional probability distribution,

Æ(ck , »k , zk ) = P(·|ck , »k , zk ),

where z ∈ Y ′ is the user prompt, ck is the system prompt and

»k is the context. Therefore the function Æ,

Æ : Dmcontrol ×Dmcontext ×Dmuser → P(D),

outputs a probability distribution over the dictionary D. For

generating an output of an LLMwith length> 1, we consider

a function g which takes in the function Æ and outputs tokens

from the spaceDmoutput , where moutput is the maximum length

of the output. The output of the LLM, denoted by y is obtained

as y = g(Æ, ck , »k , zk ). Therefore, we can represent a black

box LLM with the following tuple,

L = (D,mcontrol,mcontext,muser,moutput, Æ, g). (1)

Bayesian inference involves estimating an unknown state

x ∈ X where X is the state space using observations of

the state. If we are performing Bayesian inference using

text observations, LLM can be a powerful tool, as illustrated

below in Example 1 and Example 2. The LLM can be directly

used to infer an underlying state. In fact, it is already used

to do so, as highlighted before in the motivation section.

However, we now remark on the challenges with directly

using an LLM using the formalism described above:
1) Current Large LanguageModels (LLMs) in production

lack the ability to explicitly express confidence in their

generated outputs. This limitation significantly hinders

their deployment in critical domains like finance and

healthcare, where system safety and reliability are

paramount.

2) Furthermore, the absence of explicit confidence scores

presents a significant challenge for human-in-the-loop

6There are other techniques of generating the token, but they can be
accommodated by a suitable augmentation in the mathematical formulation
presented here.
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systems. These systems rely on the ability to seamlessly

integrate human expertise when an LLM’s confidence

in its response falls below a certain threshold. Without

this crucial feedback mechanism, it becomes difficult

to effectively leverage human oversight. Finally, exclu-

sive reliance on a single LLM for critical tasks is

inherently risky. LLMs are vulnerable to adversarial

prompting, where carefully crafted inputs can induce

them to generate incorrect or misleading outputs.

This vulnerability underscores the need for robust

mechanisms to assess and mitigate the risks associated

with LLM-based systems.

3) For a task where the LLMs are being used to infer the

state given a sequential stream of text observations, the

LLMs alone do not explicitly make use of the temporal

nature of the observations and can not characterize how

many of such observations are enough to be sufficiently

confident in the estimate of the underlying state.

Therefore, we propose using the LLM as part of a

mechanism (LLMA) where, in addition to the LLM, there

is a Bayesian engine that tackles the challenges enlisted

above. This ensures that the LLMA acts not just based on

the Bayesian estimate of the underlying state, making the

decisions of the LLMA more interpretable.

To this end, we propose using the LLM as a map from

the high-dimensional space Y ′ to a low-dimensional space

Y which takes value from whose cardinality Y j Dmuser .

We construct a Bayesian engine composed of two probability

distributions, the prior of the state, Ã ∈ P(X ) and the

likelihood of a low-dimensional observation O : X → P(Y)

and is a conditional probability distribution. We use B and O

to denote the observation matrices in the rest of the paper.

From an implementation standpoint, there are different

ways we can take to ensure that the output of the LLM is

from a low-dimensional space. The low-dimensional output

could be a structured output like JSON or a Python dictionary.

One way is provide the LLMs with a few examples of the

type of outputs we want, for instruction-tuned LLMs this

technique has been shown to be very useful [10]. Next we

can restrict the dictionary space of the output and reject

text tokens not in the restricted dictionary, this is refered to

as restrictive or constrained decoding and has been shown

to be very effective [76]. Additionally, a lot of LLMs,

including ChatGPT, give explicit access to structured outputs

(platform.openai.com/docs/guides/structured-outputs).

The following example illustrates how LLMs can be used

to map the text space to a low-dimensional space. We discuss

how this low-dimensional space can be constructed by an

analyst or engineer so that the posterior computed by the

Bayesian engine is interpretable.

Example 1: Consider the text dataset of interactions

between a customer-service agent and a customer (either a

transcript of a call or a chat interface). A service quality

engineer is interested in analyzing whether or not the problem

of the customer was resolved. The engineer could use an

LLM directly and design a prompt to assess if the issue

was resolved. However, there is no interpretability, and if the

engineer asks the LLM to give the reason for its answer, then

it becomes more difficult for the engineer to analyze. The

engineer could, however, design a system prompt so that the

LLM answers a specific set of binary (yes-or-no) questions.

For example, the engineer could ask the following set of

questions:

1) What part of the product was the user concerned about?

2) Did the user understand the solution being provided?

3) How satisfied did the last three messages of the

customer seem? (attaches last three messages)

4) Is the solution the best possible solution for the

problem?

Note that even if we assume the dictionary has |D| =

100 words, and the conversation has length muser = 500, the

dimension reduction is substantial from 500100 to 24.

2) CONSTRUCTION OF BAYESIAN ENGINE

Owing to dimensionality reduction because of an LLM

sensor, we discuss next how a Bayesian engine uses the

low-dimensional output to provide an interpretable model

based on which an optimal action can be taken. Note that in

general, LLMA need not just be used for Bayesian inference

but for more general tasks like coding, shopping assistants,

research writing, etc., we construct the Bayesian engine to

be more general purpose and detail on how a particular cost

function leads to Bayesian inference. Also, note that each of

the general tasks involves multiple Bayesian inference steps.

For a state x ∈ X , the LLMA receives a text observation

y′ ∈ Y ′ which the LLM of the LLMA parses and provides

a low-dimensional output y ∈ Y . The LLMA has a

Bayesian engine which has a prior on the state space given

by Ã and an observation likelihood O. The LLMA uses

the low-dimensional output from the LLM to compute the

posterior using Bayes’ rule,

T (Ã, y) = PO,Ã (x|y) =
Oy,xÃ (x)

∑

x Oy,xÃ (x)
.

Let U denote the finite action space of the LLMA. Let r :

X × U → R be the utility that the Bayesian agent receives

from taking action u ∈ U when the underlying state x. Then,

the Bayesian agent performs the action, which maximizes the

expected utility under the posterior distribution.

u = argmax
u∈U

∑

x∈X

r(x, u)PO,Ã (x|y).

Therefore, our LLMAcan be described as the following tuple,

LLMA(L, Ã,O, r), (2)

where L is an LLM of the form (1), Ã is the prior over the

state, O. We make the following remarks on our interpretable

sensor model construction of a LLMA.

Remark 1: We described the operation of Bayesian infer-

ence on a single observation when there is a stream of
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FIGURE 5. LLMAs can be used to detect and analyze the change in financial indicators (difference of close prices) by
parsing financial news to extract 16 interpretable features in Example 2. We analyze the news articles from 03/2020 to
08/2020 corresponding to the AAPL stock. We query the LLM for 16 binary with different features, including whether the
news article indicates optimism about the market and whether there is investor interest in the stock. The interpretable
features can be used to analyze the stock (and subsequently for Bayesian inference), as illustrated by the difference in the
ratio of the stock prices across days.

observations y1, . . . , yk then the prior is updated after every

step with the computed posterior Ãk+1 = T (Ãk , y).

Remark 2: In Section V, when we describe Bayesian

social learning in a sequence of LLMAs, we will note that

the equations of the social learning protocol are the same as

the above equation. However, the prior of all the subsequent

agents is updated based on the actions of agents subsequent to

them (evenwhen the rest of the agents do not observe a private

observation at any given point), which leads to herding.

Remark 3: For the case of Bayesian inference of the states,

the action space is taken to be U = X , and one of the possible

utility functions is the indicator function r(u, x) = 1(u = x).

Remark 4: The framework presented in this section can

be extended to multi-modal models like the vision language

models (VLMs [77]) for more general tasks by accordingly

modifying dictionary D and output generation mechanism g.

Remark 5: The likelihoodO can be computed by using the

LLM on a set of synthetic or public offline data where we

simulate the state and use the text observations to obtain the

low-dimensional observations from the LLM.

3) ILLUSTRATIVE EXAMPLE FOR INTERPRETABLE FEATURE

EXTRACTION USING LLMAs

In example 1, we discussed how the low-dimensional

representation can be constructed to reduce the observation

space. The example can be extended to illustrate Bayesian

inference, for example, by analyzing the performance of

a particular customer service agent given its interactions

with different customers. We next present an example for a

different application, financial news analysis using LLMAs.

Example 2: Consider a financial analyst who receives a

stream of financial news and public opinion data from social

media. The state in which the financial analyst wishes to

estimate if the market is in an upturn or downturn. Similar to

example 1, the analyst can design questions using her domain

knowledge, which extracts relevant information from the text.

Since the stream of data is temporal in nature, the analyst can

use our model of a LLMA, to adaptively update the belief of

the underlying state, and any point interpet the interminent

outputs y to identify trading opportunities. We consider

FNSPID, a financial news dataset [78], where we analyze

news pertaining to the AAPL stock. We use LLaMA-3, and

for each news article, ask 16 binary questions. The questions

are provided in the appendix, and we plot the distribution

of the difference of the ratio of close prices (a performance

metric used to gauge the performance of a stock across days)

in Figure 5. It is clear how LLM can be used as a sensor to

parse textual observations and extract interpretable features.

The illustrative example using the financial news dataset

focuses on theAAPL stock to demonstrate the applicability of

the study to readers who may be less familiar with the subject

or come from a different disciplinary background, such as

finance. We note that the period that we consider was during

COVID-19, and therefore was an exception to the standard
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stock market behaviour. However we again highlight that the

purpose of our methods is to enable analysis by providing an

interpretable toolbox and not to analyse any specific event.

C. SUMMARY

In order to construct an interpretable model of a LLMA

performing Bayesian inference, we use the LLM as a

sensor attached to a Bayesian engine. This section gave a

mathematical model for the LLMA, which is modeled as

Bayesian sensors. The LLMA we consider in this paper is

composed of an LLM and a Bayesian engine. We assumed

that the entity interested in using the LLMA has access to

the observation matrix described in this section, O. However,

this might not be the case where the LLMA is used by a

third party, and the Bayesian engine might not be explicit,

but still, the entity might be interested in controlling and

understanding the actions (decision) of the LLMA. We,

therefore, discuss in the next section under what conditions

we can reconstruct the utilities of the LLMA by probing

the LLMA given blackbox access. This extends the work

done in explainable machine learning, where the deep neural

network is modeled as a rationally inattentive Bayesian

utility maximizer, and the post-training classifications are

explained using the utilities obtained from the Bayesian

revealed preferences framework [46], [47].

IV. LLM AGENT AS A RATIONALLY INATTENTIVE

BAYESIAN UTILITY MAXIMIZER

There are intriguing parallels between self-attention in LLMs

and rational inattention in microeconomics. Self-attention is

a special type of rational inattention mechanism. Therefore,

we use Bayesian revealed preferences from microeconomics

to estimate the utilities of a LLMA, which can then be used

to understand and control its behavior.

Motivated by the inherent self-attention mechanism of an

LLM, this section discusses how an interpretable model for

a single LLMA is to model to them as Rationally Inattentive

Bayesian Utility Maximizers. First, we state the protocol that

a Bayesian agent who is rationally inattentive follows. Then,

we consider the problem of the viewpoint of an analyst who

only observes the states of nature and the actions of a LLMA

and wishes to analyze if the LLMA is a Rationally Inattentive

Bayesian Utility Maximizer. For this, we state the necessary

and sufficient conditions for LLMAs to act as Rationally

Inattentive Bayesian Utility Maximizers. Finally, we discuss

algorithms that can be used to get a max-margin estimate and

a sparse estimate of the utility function. A few illustrative

examples are presented on real-life datasets to explain how

the framework can be practically used to systematically

obtain utilities of a LLMA and also a standalone LLM.

A. MOTIVATION. SELF-ATTENTION MECHANISM OF LLM

The LLM of the LLMA is driven by a transformer neural net-

work. The key innovation of the transformer neural network

is the self-attentionmechanism. Self-attention allows amodel

to focus on different input parts when processing each token.

In NLP tasks, for example, it helps a model understand which

tokens in a sentence are important in relation to a given token.

This relation is then to autoregressively generate texts [9].

In microeconomics, on the other hand, rational inattention

is used to model the behavior of individuals managing

cognitive resources by prioritizing certain information while

ignoring less relevant details due to the inherent ‘‘cost’’ of

processing. This is akin to how self-attention mechanisms

in machine learning assign weights to different parts of an

input sequence, prioritizing relevant segments to optimize

understanding or prediction. Both processes are fundamen-

tally about efficient allocation: rational inattention models

decisions based on the economic trade-off of information pro-

cessing costs, while self-attention models adaptively weigh

parts of data to capture context, streamlining processing.

Motivated by the inherent self-attentionmechanism central

to the LLM transformer architecture [20], the LLMA can

be modeled as a rationally inattentive Bayesian utility maxi-

mizer using the microeconomics model of Bayesian revealed

preferences. Rational inattention is about constrained human

decision-making due to limited attention, while self-attention

is about LLMs assigning attention weights to different parts

of input data to optimize understanding or predictions.

Another motivation for studying LLMAs from Bayesian

revealed preferences [1] is to model the cost-accuracy

tradeoff that is inherent in analyzing large amounts of data

done by the LLM of an LLMA. Namely, a LLMAs can

output more accurate outputs by increasing the attention

effort expended (by a better observation matrix using an

LLM with a larger number of parameters or a larger context

window). Such a rationally inattentive model for Bayesian

agents was first proposed by Nobel laureate Christopher A.

Sims. We present the theoretical framework of Bayesian

revealed preferences and present experiments on real-life

datasets using LLMAs.

B. RATIONALLY INATTENTIVE BAYESIAN UTILITY

MAXIMIZING AGENT

In the last section, we discussed a Bayesian Sensor model

of a single LLMA. If the LLMA is designed by the entity

that is deploying them, then the utility function of the LLMA

can be set manually by the cost of the function r of the

Bayesian engine. However, if these LLMAs are used off

the shelf with or without an explicit Bayesian mechanism,

then the utility function is unknown to the entity using

them. Although heuristics like confusion matrices or domain

knowledge-based cost functions can be used, we need a more

systematic approach to estimate the utility functions of a

LLMA.

We now present the model of an agent who is a rationally

inattentive Bayesian utility maximizer (RIBUM) [46], [47].

Consider a state x belonging to a finite state space X

which is sampled from a prior denoted by Ã0 ∈ P(X ).

A RIBUM operates in M environments indexed by m

and performs an action (denoted by u) from the finite

set U . The utility functions of the RIBUM are given by
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rm,u = [rm,u(1, u), . . . , rm,u(X , u)]
′ for each action u ∈

U and each environment m ∈ {1, . . . ,M}. The RIBUM

observes the states x through observations y from a finite

observation space Y . For a given observation matrix (which

is a stochastic matrix) B = (Bxy = p(y|x), x ∈ X , y ∈ Y),

the RIBUM has an information acquisition cost Z (B, Ã).

Let By = diag(B1y, . . . ,BXy), y ∈ Y denote the different

probabilities for observing a particular y ∈ Y . Let 1 denote

the set of all X × Y stochastic kernels B.

Then the RIBUM follows the following protocol:

1) (Step 1) The RIBUMfirst optimizes for the observation

matrix by maximizing the expected utility regularized

by the information acquisition cost. This optimization

is given by,

B(m) ∈ argmax
B∈1

U (rm,Y, Ã0)− Z (B, Ã0)

U (rm,Y, Ã0) ≜ E{max
u∈U

E{rm(x, u)|y}}

=
∑

y∈Y

max
u∈U

r ′m,uByÃ0. (3)

2) (Step 2) A state of nature x0 ∈ X is drawn from prior

Ã0 and is not known to the RIBUM.

3) (Step 3) The RIBUM draws an observation y from

optimized observation likelihood Bx0y(D).

4) (Step 4) Given an observation y the RIBUM computes

its posterior using Bayesian update step:

Ã = T (Ã0, y,m) ≜
By(m)Ã0

1′By(m)Ã0
, (4)

where 1 is a row vector [1, . . . , 1]′.

5) (Step 5) Finally, the RIBUM performs the action

maximizing the expected utility where the expectation

is taken with respect to the posterior computed in

Step 4,

u ∈ argmax
u′

E
{

rm(x, u
′)|y
}

= argmax
u′∈U

r ′m,uBy(m)Ã0.

(5)

Therefore, given the above protocol a RIBUM agent can be

parameterized by the following tuple [5],

(M,X ,Y,U, Ã0,Z , {B(m), rm,m ∈M}). (6)

We now make several remarks on the above protocol.

Remark 6: The information acquisition cost Z (B, Ã0) of

Step 1 can be considered as the sensing cost that RIBUM

incurs in acquiring the information to make the decision on

which action u to perform. The information acquisition cost

can also be interpreted as,

Z (B, Ã0) =
∑

y

E(T (Ã0, y,m), Ã0)1
′By(m)Ã0,

where E is an entropic regularizer (e.g., mutual information

or Renyi Entropy) [47]. Intuitively, a higher information cost

is incurred for a more accurate attention strategy since we

obtain a more accurate estimate of the state [46].

Remark 7: Using the above interpretation of the informa-

tion acquisition cost, the optimization of (3) can be seen as the

RIBUM agent optimally choosing the observation sampling

strategy. This strategy is chosen to maximize the expected

utility regularized by a rational inattention cost.

Remark 8: We now remark on the correspondence

between the model of the LLMA from (2) and the RIBUM

tuple of (6). First note that even a single LLM L of the form 6

can be considered as a RIBUM where the L optimizes its

self-attention matrix to optimize for picking the tokens that

best predict the next token using the conditional probability

distribution Æ. Further the LLMA can be considered as a

product of three observation matrices: 1) from the state to

the text observations 2) from the L (as described above) and

3) from the Bayesian engine, O. 1) is not in control of the

LLMA; however, it is known to the analyst who simulates

the text observations for a given state x. 2) comes from

the pretraining of the LLM, which involves minimizing an

entropic loss with respect to the self-attention mechanism. 3)

comes from the LLMA which has a pre-trained likelihood

function on a suitable dataset.

C. VIEWPOINT OF ANALYST

An analyst who observes the actions (behavior) of the LLMA

under different states aims to ascertain if the LLMA behaves

as a RIBUM. In particular, the analyst the following dataset,

D = {Ã0, pm(u|x), x ∈ X , u ∈ U,m ∈M} . (7)

where Ã0 denotes the prior distribution of the state and

pm(u|x) denotes the conditional probability of performing

the action u given the state x and environment m. The

joint probability of the state-action pair (x,u) is given by

pm(u, x) = Ã0(x)pm(u|x) and the probability of state x given

action u by,

pm(x|u) =
pm(u, x)

∑

x̄ pm(u, x̄)
.

Remark 9: In practice, given the state-action pairs, the

analyst empirically estimates the action posterior pm(u|x),

and by Kolmogorov’s law of large numbers, the empirical

estimate converges to the true distribution w.p. 1 as the

number of the state-action pairs goes to infinity.

Given the dataset D, the analyst aims to a) check if the

LLMA is a RIBUM and b) if LLMA is indeed a RIBUM then

obtain the reconstructed utility (reward) function r̂ which

rationalizes the behavior of the LLMA.

We next state the necessary and sufficient conditions for a)

from Bayesian Revealed Preferences [1] and then discuss two

algorithms describing how b) can be performed.

1) NECESSARY AND SUFFICIENT CONDITIONS FOR

RATIONALLY INATTENTIVE BAYESIAN UTILITY MAXIMIZING

BEHAVIOUR

As proved in the seminal work of [1], there are two

inequalities, the No Improving Action Switches (NIAS)

and the No Improving Action Cycles (NIAC), which are
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necessary and sufficient for an agent (in our case LLMA) to

be a RIBUM.

We now state the NIAS and NIAC conditions and provide

intuition for both of them,

No Improving Action Switches (NIAS)
∑

x

pm(x|u)(r̂m(x, ū)− r̂m(x, u)) f 0 ∀u, ū ∈ U,m ∈M.

(8)

Remark 10: The NIAS condition enforces that for any

environment m, the agent chooses the optimal action with

respect to the posterior probability mass function.

No Improving Action Cycles (NIAC)
∑

u

max
ū

∑

x

pl(x, u)r̂m(x, ū)− zl

−

(

∑

u

∑

x

pm(x, u)r̂m(x, u)− zm

)

f 0 ∀l,m ∈M.

(9)

Remark 11: The NIAC inequality operates on pairs of

environments and ensures that the agent has an attention

strategy that is optimal for all M environments. The above

inequality is a pairwise version from [47] of the original

combinatorial inequality of [1]. The combinatorial inequality

gives a more intuitive explanation for the same, wherein the

agent takes actions that are consistent across all possible

subsets of the environments. Here, consistency is with

respect to the action posterior. Intuitively, NIAC ensures that

every agent chooses the best attention strategy in a given

environment.

We now state the main results, which show that for a

LLMA to be a RIBUM, it is sufficient to check if the

dataset D obtained from the RIBUM satisfies the NIAS and

NIAC conditions. We summarize this feasibility check in

Algorithm 1, where the input is the dataset D of the form (7),

obtained from the LLMA and ascertains if the LLMA is a

RIBUM or not.

Theorem 1 (Necessary and Sufficient Conditions for

LLMA to be a RIBUM): Let D be the dataset that the analyst

has, as described in (7) for a LLMA performing protocol

(Step 1 to 5 of Sec.IV) in M g 2 environments. Then

the LLMA is a RIBUM iff there exists a feasible solution

{r̂m(x, u), zm(x, u)|x ∈ X , u ∈ U}Mm=1 to the NIAS inequality

of (8) and the NIAC inequality of (9).

The result was first derived in [1] and has been used

extensively to verify if different engineering systems,

including RADARs and Deep Learners, are RIBUM or not

[46], [47].

Remark 12: The above theorem gives an if and only if

condition for a LLMA to be a RIBUM. If the inequalities

have a feasible solution, then there exists a reconstructable set

of utilities and information acquisition costs that rationalize

D. The necessity implies that for a RIBUM, the true utilities

satisfy the NIAC and NIAS conditions; hence, Theorem 1

yields consistent estimates of the utilities.

Algorithm 1 Bayesian Revealed Preferences Feasibility

(BRP)

Input: Dataset D of the form (7) from LLMA.

Ascertain: If ∃ r̂m and zm∀m ∈ M satisfying the NIAS

inequality from (8) and NIAC inequality from (9)

Remark 13: The feasibility check is summarized in

Algorithm 1 which is derived from Theorem 1. Any utility

that satisfies the NIAS and NIAC inequalities with respect

to the dataset D is a feasible utility. Hence, the Bayesian

revealed preference returns a set-valued estimate (rather than

point estimates) of the true utility. This set-valued estimate is

given by r̂ and the reconstructed information cost Ẑ can be

derived as [5],

Ẑ (D) = max
m∈M

(

zm +
∑

u

max
ū∈U

∑

x

pm(x, u)r̂m(x, ū)

−
∑

u

∑

x

pm(x, u)r̂m(x, u)

)

. (10)

Although Theorem 1 is an extremely powerful result,

for practical applications, we often need a single utility

estimate rather than a set-valued estimate. We next discuss

two different methods to obtain a point estimate for the utility:

the max-margin method and the sparsest utility estimation.

D. ESTIMATING SET-VALUED AND POINT ESTIMATES FOR

THE UTILITIES

Estimating the utility function of the LLMAs is an inverse

optimization or inverse reinforcement learning problem,

which is, in general, ill-posed. Hence, instead of reconstruct-

ing point-valued utility estimates, we describe how the BRP

test can be used to reconstruct set-valued utility estimates.

Each of the utilities in the set-valued estimate is a feasible

utility. We provide two algorithms that return a point-valued

estimate from the set, which satisfy certain other structural

properties.

Firstly, we describe the max-margin approach to recon-

struct the utility function. Since trivial utilities can satisfy

the NIAS and NIAC conditions, we maximize the margin

with which each condition is satisfied, denoted by decision

variables ϵ1 and ϵ2, respectively. Specifically, we consider the

following convex program summarized in Algorithm 2,

argmin
{r̂m(x,u),zm(x,u)}

M
m=1,ϵ1,ϵ2

(ϵ1 + ϵ2)

NIAS(·) f −ϵ1,NIAC(·) f −ϵ2,

ϵ1, ϵ2 > 0. (11)

The max-margin formulation is especially useful when the

analyst wishes to estimate the utilities of LLMA which pass

the NIAC and NIAS tests maximally. There is no guarantee

that this will be close to the true utility because of the bias in

the observed data. Still, this estimate is a useful reconstruction

that has shown to work well in practice [46], [47].

Next, we describe the utility reconstruction method, which

minimizes the ℓ1-norm of the reconstructed utility so as
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FIGURE 6. Reconstructed Max-Margin Utility of a LLMA for Illustrative Example 3. The
utilities near the diagonal are comparatively higher than off-diagonal entries, showing that
LLMA correctly classifies the states. Along the diagonal, utility is highest for the state 5 which
is the most toxic, hence the LLMA gives the highest utility to classifying the most toxic state.

Algorithm 2Max-Margin Utility Reconstruction for LLMA

Input: Dataset D of the form (7) from LLMA.

Output: Reconstructed utilities r̂m and information

acquisition cost Ẑ of the LLMA in m ∈M environments;

Margins for NIAS ϵ1 and NIAC ϵ2.

if BRP(D) is True then

solve: Optimization (11) for r̂m, zm∀m ∈M, ϵ1, ϵ2
Obtain Ẑ from equation (10)

else

return: Feasibility Error : LLMA is not a RIBUM.

end if

to obtain a sparse representation. Here, we manually set

tolerances ϵ1 ∈ R
+ and ϵ2 ∈ R

+ for the margins with which

each condition is satisfied. Ideally, the margin should be as

high as possible such that the linear inequalities still have a

feasible solution. Therefore, some trial and error is required to

select a suitable ϵ1 and ϵ2. However, this is possible since the

Bayesian revealed preference step is offline.Weminimize the

following convex program, and we summarize the procedure

in Algorithm 3,

argmin
{r̂m(x,u),zm(x,u)}

M
m=1

∑

m∈M,u∈U ,x∈X

|r̂m(x, u)|

NIAS(·) f −ϵ1,NIAC(·) f −ϵ2. (12)

The sparsest utility reconstruction is especially useful when

the analyst is interested in understanding the key state-action

pairs that the LLMA finds especially useful. This sparse

utility can be informative in focussingdg the design of the

environment and the system prompt that the LLMA uses.

Remark 14: Note that the above Bayesian revealed prefer-

ences framework can be used even if the LLMAdoes not have

an explicit Bayesian engine. This is because, as remarked

above, even a standalone LLM has an observation matrix

from its pertaining, and the Algorithm 1 only requires access

to the state-action pairs from interacting with the LLMA.

Algorithm 3 Sparsest Utility Reconstruction for LLMA

Input: Dataset D of the form (7) from LLMA, Margins

for NIAS ϵ1 and NIAC ϵ2.

Output: Reconstructed utilities r̂m and information

acquisition costs Ẑ of the LLMA inm ∈M environments;

if BRP(D) is True then

solve: Optimization (12) for r̂m, zm∀m ∈M

Obtain Ẑ from equation (10)

else

return: Feasibility Error: LLMA is not a RIBUM.

end if

Remark 15: Algorithm 1 is a feasibility test with

M (|U ||X | + 1) free variables and M2 + M (|U |2 − |U | −

1) linear inequalities. The number of free variables and

inequalities in the feasibility test of Algorithm 1 scale

linearly and quadratically, respectively, with the number of

environments,M .

Remark 16: During pre-training, LLMs are trained on

massive datasets like the CommonCrawl, which are of the

order of hundreds of terabytes, and therefore, they can

produce outputs for different contexts. Therefore there is no

sample size restriction on the dataset for applying Bayesian

revealed preferences to LLMAs. It is important to emphasize

the Bayesian revealed preferences provide a necessary

and sufficient condition for Bayesian utility maximization,

thereby providing a rigorous data analysis tool for real-world

data. The primary requirement of both algorithms is that the

dataset must be collected in at least two environments, with

the action posterior properly defined. There are no additional

prerequisites for reconstructing the set-valued utilities from

the action posteriors. However, in practice, when the action

posterior is estimated empirically, errors are introduced due

to finite sample approximations. Characterizing the exact

convergence of empirical action posterior probabilities to

their true values would be an intriguing direction for future

research.
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The feasibility condition of Theorem 1 provides a

set-valued estimate for the utilities since any utility that

satisfies the NIAS and NIAC conditions is a valid util-

ity function. However, for many applications, a single

utility function is desired. Therefore, we now describe

two algorithms that use the Bayesian revealed preference

framework along with Theorem 1 to obtain the reconstructed

utility of the LLMA along with information acquisition

cost.

E. NUMERICAL EXPERIMENT WITH LLAMA LLM-BASED

AGENT

We illustrate the Bayesian revealed preferences for LLMAs

in the toy example for hate-speech classification.

Example 3: We consider the example of analyzing a

LLMA which classifies a text into six levels of hate speech.

Therefore for this task the action space U is same as the state

space X = {0, 1, . . . , 5}. The levels indicate the intensity of

hate speech. The details of the different levels and the exact

construction of the LLMA are given in Section XI. We then

obtain 200 pairs of state and actions from the LLMA, which

forms our dataset D. We run the Algorithm 2 and provide the

reconstructed max-margin estimates of the utility in Figure 6.

It can be seen that the utilities quantify the observed behavior

of the LLMA.

F. SUMMARY

The LLM of a LLMA uses a entropic regularization method

to provide its output, this motivates looking at the LLMA

from the lens of rationally inattentive Bayesian utility

maximization, which is a form of entropic regularized utility

maximization. This section discussed the necessary and

sufficient conditions for a LLMA to be a rationally inattentive

Bayesian utility maximizer (RIBUM). We proposed two

algorithms to reconstruct a point-valued estimate of the utility

of the LLMA if it is a (RIBUM). We illustrate how the

reconstructed utility is useful in analyzing the behavior of a

blackbox LLMA.

Part II: Interacting LLM Agents

We now move on to Part II of the paper. Having studied

a single LLMA in isolation in Part I, we next study social

learning in an interacting network of LLMAs. There is

a lot of work done in studying different topologies of

LLMAs [32]. However, we restrict ourselves to the three

topologies described in Figure 7. We motivate studying

the different topologies to understand, analyze, and explain

some of the observed phenomena in LLMs. We study

Bayesian social learning in a sequence of LLMAs to analyze

information cascade to an incorrect action. Motivated by

model collapse observed while training LLMs from their

generated dataset, we briefly study a different protocol for

social learning in LLMAs: word-of-mouth social learning.

Finally, we illustrate how data-incest can arise if LLMAs

perform Bayesian inference in an asynchronous fashion. Part

II comprises Section V and Section VI.

V. BAYESIAN SOCIAL LEARNING IN A SEQUENCE OF LLM

AGENTS

LLMs are already trained on synthetically generated data

by other models [15] and also often use the output of

other LLMs to output based on the current context [29].

Motivated by studying interacting LLMs, each of which has

computational and privacy constraints, this section introduces

a second layer of abstraction, wherein we study Bayesian

social learning in a sequence of large language model agents.

We first motivate the setting where a sequence of LLMAs

sequentially estimate a state from their private observations

and take a public action, which is used to update the public

belief. We discuss the Bayesian social learning protocol in

a sequence of LLMAs, which aim to detect an underlying

state by sequentially analyzing text observations of the

text. The optimal update equation for the public belief is

derived. We consider two scenarios, one where no private

observations are shared and one where private observations

are shared to the next L LLMAs. Finally, we show that

under both scenarios, an information cascade takes place,

and the agents take the same action irrespective of their

private observation. To show this, we use the martingale

convergence theorem [79]. We illustrate the effect of the

number of private observations revealed and the resolution

of the probe on the convergence in herding. We also present

the mathematical model for incentivized autonomous LLM

agents used later in Section IX, which is motivated by

different entities employing such agents to perform Bayesian

state estimation using textual data.

A. MOTIVATION. INTERACTING LLMS, FINITE CONTEXT

LENGTH AND PRIVACY IN LLM AGENTS

Even if a single LLMA is used in an application, it can be

treated as a sequence of different LLMAs since the context

of the previous LLMA evaluation might not be available

due to privacy of the content and finite-context length [25].

We consider two scenarios, one where no private observation

is shared between the LLMAs and the second where each

LLMAs can observe previous L agents. This is motivated by

practical constraints from the perspective of privacy, context

length, and cost incurred inherent in using LLMAs.

We motivate studying LLMAs using a Bayesian social

learning perspective with the following constraints:

1) PRIVACY

Since the text observations often contain sensitive informa-

tion, the text observations can be used to train the LLM of the

LLMA [80]; hence, to prevent this often, systems involving

LLMs often treat the private observation in a one-shot

setting where the private observation is not stored. Even the

low-dimensional representation of the text observation might

contain information that can be used to identify attributes

of the person the text observation comes from, and in a

social network application, this can lead to unfair decisions

by LLMAs [48]. Therefore to preserve privacy of users,
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FIGURE 7. The three topologies considered for a network of interacting LLMAs, to interpretably understand and mitigate undesirable phenomena
observed in LLMs. We look at sequential Bayesian learning, word-of-mouth learning, and asynchronous Bayesian inference and motivate these
topologies using information cascade, model collapse, and potential data incest.

the LLMAs we consider either do not share the private

observation or only share a limited sequence of private

observations.

2) LIMITED CONTEXT LENGTH AND STORAGE CONSTRAINTS

Another constraint is the limited context length (length of

text that the LLM can process at a time) that is inherent to

the LLM used in the LLMA. Note that there are methods

which allow for infinite context window or a very large

(1 million) context window, however these take a lot of time

to work which is often not feasible in a real-time Bayesian

inference setting. Also, the quality of the responses decreases

with increasing context [19]. There are storage constraints

that won’t allow storage of an arbitrary amount of private

observations, especially if there are methods (like those

presented in this paper) that do not require storage of the

private observations.

3) COMPUTATIONAL RESOURCES AND COST

Computational resources (involving GPUs) are often limited,

especially if the same LLM deployment is used for different

applications. Also, the attention mechanism is such that the

computational complexity grows quadratically (linear for

state space LLMs) in the input length. Therefore, it is often

required to limit the size of the context being provided.

More importantly, the LLM service providers often bill

on a per-token basis. Hence the costs scale linearly with

increasing the size of the private observations, however the

value of information of including a previous observation is

concave.

4) SINGLE LLMA CAN BE MODELED AS A SEQUENCE OF

LLMAs

Finally, we remark that a single LLMA can be modeled

as a sequence of LLMAs, especially given the above three

constraints. This is because when a single LLMA is used

to sequentially perform Bayesian inference, the constraints

from above enforce that no more than L observations can

be considered at any given time. We consider updating the

prior based on the action of the L + 1-th previous LLMA.

This might seem counterintuitive assumption, however in

practical applications often the observations are processed in

batches.

B. SOCIAL LEARNING PROTOCOL WHEN NO PRIVATE

OBSERVATION IS SHARED

A sequence of large language model agents (LLMA) wishes

to estimate an underlying state x ∈ X , where X is finite

dimension discrete space. At time k agent k receives a

private observation zk ∈ Y ′ from the state x, where Y ′

is a high-dimensional discrete space (text). Agent k uses

a large language model (LLM) as a sensor to obtain a

feature vector y ∈ Y where Y is a low-dimensional discrete

space. The text observation is sampled according to the

probability distribution P(z|x). For a given text observation

z, the feature vector is sampled according to the probability

P(y|z),P represents the suitably defined probability measure.

Therefore for a given state, the feature vector is sampled

with probability By,x =
∑

z∈Y ′

P(z|x)P(y|z), where B ∈

R
|Y |×|X | denotes the observation matrix. Let U be a discrete
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action space and c : X × U → R
+ be the cost

function.7

In classical Bayesian social learning, the agent k computes

a posterior belief on the state according to Bayes’ rule,

P(x|yk ) =
Byk ,xÃk (x)

∑

x ′∈X Byk ,x ′Ãk (x
′)
, (13)

where Ãk (x) denotes the public belief belief over the state

space X . The agent k takes an action u ∈ U minimizing the

expected cost with respect to the posterior,8

uk = argmin
u∈U

∑

x

c(x, u)P(x|yk ). (14)

We make the following assumption which is standard in

classical Bayesian social learning [3],

(B1) The observations zm and ym are private, i.e., are only

available to LLMA m, but the actions are public, i.e.,

visible to all subsequent LLMA (k = m+1,m+2, . . . ).

We relax this assumption in the next subsection by allowing

the private observations to be shared with the next L agents,

which allows us to model more realistic Bayesian social

learning in LLMAs. Based on the action uk of the agent k ,

the public belief belief Ãk is updated using the following

filtering equation, which follows from the filtering equation

of a hidden Markov model derived in Appendix XII-B,

Ãk+1 = T (Ãk , uk ), (15)

where T is given by the following equation,

T (Ã, u) =
R(Ã, u)Ã

1XR(Ã, u)Ã
, (16)

where R(Ã, u) = diag([P(u|x = 1, Ã), . . . ,P(u|x = X , Ã)])

is the probability of actions for different states given the prior.

For u ∈ U , P(u|x = i, Ã) is given by,

P(u|x = i, Ã) =
∑

y∈Y

P(u|y, Ã)P(y|x = i, Ã),

P(u|y, Ã) =

{

1, if c′uByÃ f c
′
ũByÃ, ũ ∈ U

0, otherwise
, (17)

where By = diag([P(y|x = 1), . . . ,P(y|x = X )]) and cu =

[c(1, u), . . . , c(X , u)]′.

C. SOCIAL LEARNING PROTOCOL WHEN THE LAST L

PRIVATE OBSERVATIONS ARE SHARED

We now consider a modification of the Bayesian social

learning described in the previous subsection. We let the

agents use the observations from the last L LLMAs to update

their posterior. We weaken assumption (B1) to the following,

(B2) The observations zm and ym are visible to agent m

and the next L agents, i.e., to LLMAs k = m,m +

1, . . . ,m+ L.

7To be consistent with standard Bayesian social learning, we consider cost
minimization in Part 2, however, utility is simply the negative of cost for most
nonpathological cost functions.

8A tie-breaking rule such as uniform sampling can be used if two actions
have the same cost.

Algorithm 4 Social Learning Protocol for LLMAs

1: Agents aim to estimate state x

2: for k ∈ 1, 2, . . . do

3: Agent k observes zk ∼ P(zk |x)

4: Agent k uses LLM to obtain yk ∼ P(yk |zk )

5: Agent k computes posterior using (13) or (18)

depending on availability of previous observations.

6: Agent k takes optimal action according to (14)

7: Agents k+L+1, . . . update public belief using (15)

8: end for

To ensure the privacy of the text zk , only the feature outputs by

the LLMs yk can also be shared, with the implicit assumption

that the likelihood for the different LLMs used by the

previous agents is approximately the same.

Agent k creates a vectors using the L + 1 observations

yk = [yk−L , . . . , yk ]
′. Since each of the observations of yk

of the state x are sampled independently. The augmented

observation space isYL The joint likelihood can be computed

as P(yk|x) =

L
∏

m=0

Byk−m,x . Then the Bayesian update of (13)

can be augmented as follows,

P(x|yk) =
P(yk|x)Ãk (x)

∑

x ′∈X P(yk|x)Ãk (x ′)
. (18)

The LLMA k takes the action uk corresponding to

the action which maximizes the expected cost using (14).

We make the following assumption related to the agents

discarding actions of the previous agents if the observation

is available,

(B3) In lieu of observations ym−L , . . . , yk−1, LLMA m

disregards observed actions um−L , . . . , um−1 of the

previous L agents.

Hence as a consequence of (B3), the action of agent k is used

by agents k + L, k + L + 1, . . . to update their public belief

Ãm,m = k + L, k + L + 1, . . . using (15).

D. EMERGENCE OF HERDS AND INFORMATION

CASCADES

This section proves that the LLMAs described in the previous

section form an information cascade and herd in their actions

when the public belief gets strong.

We first define an information cascade occurring at time k

for the LLMAs in the following definition.

Definition 1 (Information Cascade): An information cas-

cade is said to occur at time K if the public belief of all agents

after time K are identical. That is, Ãk (x) = ÃK (x) for all

states ∀ x ∈ X for all time k g K.

Information cascade implies that the public belief freezes

after time K , and since the public belief freezes, the optimal

action taken using (14) under any the posterior of (13). Since

the information cascade implies the optimal action remains

the same, the following definition naturally describes herding

at time K for LLMAs where the actions remain the same.
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Definition 2 (Herding): Herding in the LLMAs agents

takes place at time K if the action of all agents after K are

identical, i.e. uk = uK for all time k g K.

FIGURE 8. Herding and Learning Regions for state space with 2 states.
The scalar πk ∈ [0, 1] denotes the prior of state 1. If the prior is in the
region π ∈ [π̄1, π̄2], learning happens; otherwise, the LLMAs form an
information cascade and herd in their actions.

It is straightforward to show that an information cascade

(Def. 1) occurring at time k implies that herding also takes

place at time k (Def. 2). We now state the main result

on herding in LLMAs, which shows that the protocol of

Algorithm 4 leads to the agents herding in finite time [5].

Theorem 2 (Herding in Bayesian Social Learning of

LLMAs): The social learning protocol of the LLMAs

described in Algorithm 4, under either assumption (B1) or

assumptions (B2,B3) leads to an information cascade (Def. 1)

and agents herd (Def. 2) in finite time K < ∞ with

probability 1.

Proof: Proof in Appendix. □

Theorem 2 shows that herding happens in finite time, and

therefore, the agents take the same action regardless of

their private observation. Discarding the private observation,

which provides valuable information about the current state,

makes their state estimation incorrect and inefficient.

Remark 17: From a purely statistical perspective, Theo-

rem 2 can be seen as the following: when the priors are

updated without seeing the observation but rather using the

correlated actions, the posterior becomes inconsistent and

need not necessarily converge to the true value asymptoti-

cally.

E. EFFECT OF THE NUMBER OF PRIVATE OBSERVATIONS

REVEALED AND RESOLUTION OF THE PROBE ON

HERDING CONVERGENCE

We next discuss the effect of the resolution of the LLM

probe and the number of private observations in changing

the threshold at which the convergence takes place. For the

purpose of this section, assume that the state space is such

that |X | = 2 and the action space is such that |U | =

2 and consider the case of the Bayesian agents performing

inference.

We first mathematically describe the different regions with

respect to the public belief. Then, we derive the relation

between the threshold of the public belief and the observation

matrix for the different observations. Such a derivation can be

used to see the effect of more accurate observations either by

considering a higher resolution probe or by considering more

number of observations.

We can derive the following for the different regions with

respect to the public belief Ã where herding happens and

where it does not, i.e., where learning happens.

R(Ã ) =


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






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
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

Region 1 (Herding u = 1),

∩y∈Y

{

∑

x∈X

(c(x, 1)− c(x, 2))P(x|y) f 0

}

Region 2 (Learning u = y),

∪y∈Y

{

∑

x∈X

(c(x, 1)− c(x, 2))P(x|y) > 0

}

⋂

∪y∈Y

{

∑

x∈X

(c(x, 2)− c(x, 1))P(x|y) > 0

}

Region 3 (Herding u = 2),

∩y∈Y

{

∑

x∈X

(c(x, 2)− c(x, 1))P(x|y) f 0

}

Remark 18: The above equation can be derived by equa-

tions (15) and (14) by setting the action to be constant for the

herding regions. The regions are also illustrated in Figure 8

for 2 states and are numerically shown for 3 states of a

real-world dataset in Figure 16.

Note that learning (region 2) only happens when the action

taken by the LLMA corresponds to the observation.

Let Ã = [p, 1−p]′ and c(x, u) = |u−x|. We first derive the

expression of the region of herding for a specific observation

y,

−
pBy,1

pBy,1 + (1− p)By,2
+

(1− p)By,2

pBy,1 + (1− p)By,2
f 0

H⇒
(1− p)By,2 − pBy,1

pBy,1 + (1− p)By,2
f 0 H⇒ p g

By,2

By,2 + By,1
,

and then take the intersection to obtain,

p g max
y∈Y

By,2

By,2 + By,1
.

We can prove a similar argument for state 2 and obtain the

following result,

p f min
y∈Y

By,1

By,2 + By,1
.

This discussion shows us that even for a simplistic setup,

improving the probe accuracy of the LLM helps reduce the

herding threshold. However, more accurate LLMs are often

larger and have a higher unit cost, clearly highlighting the

tradeoff between herding and the cost incurred. A similar

result can be derived when the number of shared observations

L increases, as the observation space grows with L.

Example 4: We show empirically how interacting LLMs

can be used to identify a hate speech peddler (HSP) from

a large corpus of data (tweets, blogs, pictures, essays,

opinions). Since LLMs charge per token and have latency

constraints, we consider multiple LLMs that collaborate to

process the large corpus of information. We now experimen-

tally illustrate how information cascades emerge when LLM

agents inter- act to identify an HSP. We used the Mixtral-

8× 7B-v0.1 LLM. The state x ∈ 1 = (not HSP), 2 = (HSP)
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is the ground truth. The observations {zk} are the content

generated by users. When LLM agent k receives zk , it parses

the content to generate a low dimensional observation yk ∈

{1, 2}, designed to detect hate speech. This observation yk
is processed by the Bayesian engine, which computes the

posterior of the state. Based on the posterior, the LLM agent

selects action u ∈ {1 = not HSP, 2 = HSP} by minimizing

the Type-1 error cost P(x = HSP)|u1, ..., uk−1, yk ). This

action uk is broadcast to subsequent LLM agents that parse

the remaining content, but the private observation yk is kept

confidential to preserve privacy. We empirically computed

B11 = B22 = 0.8 from training data. Figure 9 displays

two sample paths of actions generated by the LLM agents

for different initial priors. Both sample paths emerge into

information cascades.

FIGURE 9. Emergence of information cascade in LLM Agents for Bayesian
Inference of Hate Speech Peddler in Example 4. Even though the
underlying state is 2 (not an HSP), the cascade is in the wrong direction
when π0(x = 1) = 0.34.

F. SUMMARY

Given the privacy, computational, and cost constraints,

multiple LLMAs need to interact with each other to perform

sequential Bayesian inference on online platforms. This

section studied Bayesian social learning in a sequence of

LLMAs to analyze multiple LLMAs performing sequen-

tial state estimation on online platforms. We discuss the

relaxation of the standard Bayesian social learning protocol,

in which the agents are allowed to share their private

observations. We illustrate the effect on the herding threshold

of the public belief when LLMAs are allowed to share private

observations and use more accurate LLMs as sensors.

VI. ASYMMETRIC INFORMATION STRUCTURES OF LARGE

LANGUAGE MODEL AGENTS

Motivated by the observed model collapse while training

LLMs in a sequential manner and data incest in asynchronous

Bayesian sensors, this section studies word-of-mouth and

asynchronous social learning. Word-of-mouth social learning

is a hierarchical social learning paradigm characterized by

asymmetric information flow, where lower-level agents pro-

cess and communicate observations, and top-down influence,

where top-level agents dictate public belief. We provide

protocols for both kinds of social learning and a corollary that

shows that information cascades happen in word-of-mouth

learning as well. Techniques to perform stochastic control to

prevent model collapse and data incest are not in the scope of

this paper and can be considered in future work.

A. MOTIVATION. MODEL COLLAPSE IN LLMs

Several recent studies [15] have shown that when LLMs

are repeatedly trained on data generated by other LLMs,

a phenomenon known as ‘‘model collapse’’ can occur.

In model collapse, the output probability distribution of the

model collapses to a degenerate distribution as the model

is trained iteratively on data generated by the previously

trained model [81]. Similar results have been shown on

model distillation, where a smaller LLM is trained using

data generated from a larger LLM [82]. We use the Bayesian

social learning model to show how an information cascade

in LLMAs is similar to the model collapse observed while

training LLMs.

Model collapse observed while training LLMs can be seen

as a special case of sequential Bayesian social learning.

In the case of training LLMs using data generated from

the previous LLM, it can be considered as estimating the

underlying state x, which is the true probability distribution of

the data. However at each time k , instead of receiving a private

observation from the state x LLMA k receives observation

yk from the previous LLMA k − 1. The LLMA k then

minimizes a cost function, which is an entropic regularizer

(maximum likelihood, KL-divergence, or cross-entropy loss)

to obtain an estimate of the state x (represented by x̂) from

the observations yk . The LLMA, then uses the estimate x̂ to

sample observations yk+1 which it provides to agent at k+1.

If the underlying true probability distribution was a

Gaussian, then it can be shown that such a protocol leads to a

slowdown of learning [83]. However, in the case of discrete

distributions in which the LLMs learn such a protocol, it leads

to collapsing on one of the support points [15]; therefore,

model collapse in the training of LLMs can be studied using

the framework of Bayesian social learning.

Asynchronous social learning in LLMAs is motivated by

real-time settings like online platformswhere there is a stream

of data of the order of a hundred thousand every second [34],

[84], [85]. Since LLM functionality within an LLMA often

requires several milliseconds to a few seconds, especially if

these are third-party services, sequential Bayesian learning

is often not possible. This is true particularly when the

LLMAs are used for tasks that are more sophisticated than

just Bayesian inference [26].

B. WORD OF MOUTH BAYESIAN SOCIAL LEARNING IN

LLM AGENTS

Wenow describe the word-of-mouth social learning protocols

in L LLMAs. The protocol is summarized as a pseudo-code

in Algorithm 5. The protocol can be considered to run on

two timescales. On the slower time scale, the first LLMA

receives a new text observation zkL ∼ P(z|x) of the state

x, where P(z|x) is the observation likelihood of text z given

the state x. The LLMA does not explicitly have knowledge
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of P(z|x) but only receives a text observation z from it. On

the faster time scale, the LLMAs communicate with each

other in a sequential fashion by generating text observations

corresponding to the low-dimensional features from the

received text observation. That is, agentm first receives a text

observation zm and uses an LLM to obtain a low dimensional

observation ym. The agent m then takes an action to update

the public belief using (14). Then, the LLMA uses the LLM

to generate a synthetic text observation zm+1 used by the next

agent.

Algorithm 5Word Of Mouth Protocol for LLMAs

1: for k ∈ 0, 1, 2, . . . do

2: LLMA-(kL) receives a observation zkL ∼ P(z|x).

3: for m ∈ kL, kL + 1, kL + 2, . . . (k + 1)L − 1 do

4: LLMA-m obtains low-dimensional features

ym ∼ P(y|zm) using LLM

5: LLMA takes optimal action um using (14).

6: Public prior is updated, Ãk+1 = T (Ãk , um).

7: LLMA-m generates synthetic text observation

zm+1 ∼ P(z|ym, um) using an LLM

8: end for

9: end for

Hence, the main difference is that each agent does not

receive a new private observation. Note that there are different

versions of the word-of-mouth, for example, one where the

prior update is done at the end of the inner loop once. All

of them are interesting to study. However, we focus on the

one presented because we can derive the following result as a

corollary of Th. 2 showing herding of LLMAs inAlgorithm 5.

Corollary 1: The word-of-mouth social learning protocol

of the LLMAs described in Algorithm 5 leads to an

information cascade (Def. 1) and therefore herd (Def. 2) in

their actions with probability 1.

The above result can be proved using Theorem 2, where

each agent has a different observation likelihood based on

the previous agent, each of which is a concatenation of

two observation likelihoods: the LLM as a low-dimensional

sensormap and the LLM sampling a text observation from the

text observation. Corollary 1 shows that even in the modified

protocol of Algorithm 5, where synthetic data is used to aid

the decision-making of LLMAs, cascades are inevitable.

Algorithm 6 Naive Asynchronous Data Fusion in LLMAs

1: Initialize prior Ã0
2: while LLMA k receives new observation zk and a

broadcasted prior Ãk−1 do

3: LLMA k uses LLM to obtain yk ∼ P(y|zk )

4: Broadcast the posterior Ãk = T (Ãk−1, yk )

5: k = k + 1

6: end while

7: Return Estimate using Ãk and Eq. (14)

Asynchronous Social Learning in LLM Agents:We finally

consider the asynchronous social learning setting in LLMAs.

Here, the main difference between the previous two topolo-

gies is that the agents do not necessarily act in a predefined

sequential manner and do not necessarily coordinate.

The protocol is summarized as a pseudo-code in

Algorithm 6. The public belief Ãk is updated asynchronously

when a LLMA receives a new private observation zk ,

which it parses using the LLM to obtain a low-dimensional

observation yk . This observation is used to compute the

posterior at timeÃk using a previous priorÃk−1. The posterior

is then broadcasted.

It is immediate to see how this protocol can lead to data

incest. For example, consider a case where the LLMA k uses

the prior Ãk−1 and updates the prior. The prior Ãk−1 was,

in turn, updated based on an LLMA m, where m f k − 1.

However, LLMA m at time k + 1 sees a new prior and uses

the previous one to compute its estimate without accounting

for the fact that its previous observation was already used to

compute this updated prior. This leads to double counting the

observation and, therefore, to data incest [5].

VII. SUMMARY

We discuss how the phenomenon of model collapse observed

in LLMs is a form of Bayesian social learning. We present

models of asymmetric information structures of LLMAs

including word-of-mouth social learning and asynchronous

social learning protocols. We state a corollary showing how

information cascade occurs with probability 1 even in word-

of-mouth social learning and motivate the careful design of

asynchronous data fusion in LLMAs.

Part III: Stochastic Control for Bayesian Social Learn-

ing in LLM Agents

In Part II, we studied interpretable Bayesian social learning

in LLMAs and proved that information cascade is inevitable;

we would like to at least delay herding. This is especially

important when the LLMAs are prone to cascading to

the wrong prior, which is critical in different practical

applications, including hate-speech peddler identification.

Part III, therefore, looks at stochastic control for LLMAs.

For both regimes of LLMAs, when they are collaborative

and autonomous, the paper formulates optimal stopping

time problems to control herding by balancing the tradeoff

between privacy and estimation. Structural assumptions on

the optimal policy of the stopping time problems are proved

by making structural assumptions on the cost and observation

probabilities. The proposed solutions are extensions to our

work in quickest change detection and quickest time herd-

ing [4], [16], [86]. A policy gradient algorithm is proposed

to estimate the optimal policy without the knowledge of the

transition probabilities.

VIII. OPTIMAL STOPPING TIME CONTROL IN CENTRALLY

CONTROLLED LLMAs

When LLMAs are deployed in real-life settings, they often

exhibit bias in their actions, especially when there are

multiple such agents [67]. The previous section showed that

such bias could be explained by the herding behavior of
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LLMAs. This section formulates an optimal stopping time

problem for quickest time herding in a sequence of LLMAs,

which ensures that the herding is optimally delayed by letting

the LLMAs share private observations. The delay in herding

helps improve the state estimate. We discuss a stochastic

control approach to solve the optimal stopping time problem

and state assumptions that ensure that the optimal policy

for the stopping time problem has a switching threshold

curve with respect to the public belief. This structural

result is exploited in Section X to efficiently approximate

the optimal policy. Finally, we discuss extensions of the

problem framework to the optimal switching between models

of different sizes in sequential state estimation tasks is

discussed. The schematic of the system model considered is

illustrated in Figure 10.

A. MOTIVATION. CONTROLLING FOR BIAS IN DECISIONS

OF INTERACTING LLMAs

Since LLMAs exhibit herding behavior, there is a need to

control them to ensure that the estimation is more accurate.

In order to do this, we propose optimally switching between

sharing the private observation and herding. Our setup is

further motivated by the fact that the publicly available LLMs

are available in different sizes, and with increasing size, the

accuracy of the LLM improves, but so does the unit cost of

using the LLM. As we explained in Section V-E, the herding

can be delayed by using a more accurate LLM. Therefore, the

optimal switching can be considered an optimally stopping

problem for using a larger LLM and switching to a smaller

one so that the cost is minimized and the herding is

optimal. However, solving for the optimal policy of the

stopping time problem is a computationally intensive task.

Since solving the optimal policy for the optimal switching

can be computationally challenging, we look at structural

assumptions on the system parameters such that the optimal

policy has a threshold structure that can be more efficiently

searched for. Note that the POMDP considered in this and

the next section is non-standard and, therefore, allows for

structural results that can be exploited for efficient policy

estimation techniques.

B. SOCIAL WELFARE OBJECTIVE FOR OPTIMAL STOPPING

This subsection formulates an optimal stopping time

problem to delay herding by making the agents opti-

mally switch between two modes, acting benevolently

by sharing their private observations or herding by per-

forming the action from (14). Let ak ∈ {0 =

share private observation, 1 = herd} denote

the decision at k for the chosen mode. Let µ : P(X ) →

{0 = share private observation, 1 = herd}

denotes the stationary policy which maps the public belief

to the decision rule. µ is a sufficient statistic for optimally

delaying herding since the information cascade depends on

only the public belief [5].For this section, we assume that

X = U = Y , that is, in the sequential detection task, the

FIGURE 10. Schematic of a stochastic control approach for optimally
delaying herding in a sequence of centrally controlled large language
model agents. Such a setting is motivated by a central entity hosting the
LLMAs.

observation y is the noisy observation of the underlying state

x and u is the maximum a-priori estimate of the state.

Further, we formulate the stopping time problem such

that one of the states is of special interest (denoted by

e1), and a decision to herd is taken once this state is

estimated. To formulate the objective for the optimal stopping

time problem, we consider the following natural filtration,

Fk of the actions and decisions till time k , Fk =

Ã ({u1, . . . , uk−1, a1, . . . , ak}).

The optimal stopping time problem is to decide when to

stop sharing private observations (ak = 0) and announce state

e1 (ak = 1). Let Ä denote the stopping time with respect to

the filtrations Fk , k = 1, . . . .

We now state the social welfare objective that each LLMA

optimizes to solve the optimal stopping time problem and

achieve quickest time herding,

J (µ) = Eµ

{

Ä−1
∑

k=1

Äk−1E {c(x, uk )|Fk−1}

+

Ä−1
∑

k=1

Äk−1dEµ {1(x = e1)|Fk−1}

+ ÄÄ−1ϒEµ {1(x ̸= e1)}

+
ÄÄ−1

1− Ä
min
u∈U

E {c(x, u)|FÄ−1}

}

. (19)

Here Ä ∈ (0, 1) is the economic discount factor and can be set

to a lower value if the central controller only wants the first

few actions to determine the policy.

Justification for social welfare cost: In (19), the first part

corresponds to the discounted cost incurred if the first Ä

agents perform sensing, and the last term corresponds to the

cost incurred for the agents after the stopping time Ä (which

herd and take the same opportunistic action). The second

term is the delay cost with delay parameter d in announcing

if the underlying state is e1 and the third term is the error

cost for misclassification with ϒ as the parameter. The

social welfare cost incentivizes revealing private observations
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to delay herding so that enough private observations are

available for estimation of the state. The reason we consider

estimation with respect to a single state is that many practical

applications focus on the identification of a critical state (

hateful user, bad product, etc.). The same social welfare cost

function of (19) is optimized to obtain a policy with respect

to the belief which decides when to stop herding.

Remark 19: In a centrally controlled setting, the central

controller is the human operator who manages the platform

the LLMAs are deployed on. The action space of the agents

consists of either performing the optimal action or revealing

their private observation. The decision to ‘stop’ corresponds

to taking the optimal action, as this would result in herding.

Consequently, the optimal stopping formulation inherently

leads to agents sharing their private observations until the

decision to stop is made.

We consider the decision rule such that depending on the

prior, the learners either share the private observation yk or

they output the action which minimizes the expected cost

of (14) under the public belief, i.e., the action uk is of the

form,

uk (Ãk−1, yk , µ) =

{

yk , if µ(Ãk−1) = 2

argmin
u
cuÃk−1 if µ(Ãk−1) = 1.

(20)

The motivation for this decision rule is two-fold: a) the herd-

ing can be delayed by ensuring enough private observations

are shared, and b) the agents can reduce cost by outputting the

opportunistic action once the public belief is strong enough.

Next, we show that under certain assumptions, the optimal

policy µ∗ minimizing the expected cost (19),

µ∗ = inf
µ
J (µ), (21)

indeed has a nice threshold structure that optimally delays

herding and improves the detection of state e1.

C. STRUCTURAL RESULTS ON OPTIMAL POLICY

We make the following assumptions on the cost function c

and the observation matrix.

(S1) c(ei, u)− c(ei+1, u) g 0 ∀i = 1, . . . ,X − 1 ∀u.

(S2) c(eX , u) − c(ei, u) g (1 − Ä)
∑

y

(c(eX , u)BX ,y −

c(ei, u)Bi,y) ∀i = 1, . . . ,X .

(S3) (1 − Ä)
∑

y

(c(e1u)B1,y − c(ei, u)Bi,y) g c(e1, u) −

c(ei, u) ∀i = 1, . . . ,X .

(S4) B is totally positive of order 2 (TP2).9

Discussion of Assumptions: (S1) ensures that the states can

be ordered such that taking action in some states is costlier.

(S2) and (S3) ensure that the cost function is submodular

in the belief. This makes the cost differential between

continuing and stopping (herding) the highest for state e1 and

9Amatrix A is TP2 if all second order minors of the matrix A are positive.

gives incentive to the agents to herd when approaching the

state e1.

The TP-2 condition on the observation matrix in (S4)

ensures consistency of the observations [2], i.e., there is some

order to the observations. For example, for a 2×2 observation

matrix, TP-2 implies that B11 > B21 and B22 > B12. If one

of the observations is more likely for a particular state, then

the other observation must be more likely for the other state.

In our experimental results we consider a standard type-

1 error based misclassification cost, however more general

costs can be considered which satisfy submodularity.

We now state the main structural result on the threshold

structure of the optimal policy (21).

Theorem 3: Consider the sequential decision problem of

LLMAs for detecting state e1 with the social welfare cost

comprising (19) and the constrained decision rule of (20).

Then, under Assumption (S1-S4), the constrained decision

rule of (20) is a threshold in the belief space with respect to

a threshold switching curve that partitions the belief space

P(X ). The optimal policy can be given by,

µ∗(Ã ) =

{

2 (continue) if Ã ∈ S2

1 (stop) if Ã ∈ S1

, (22)

where S1 and S2 are individual connected regions of P(X ).

The above theorem proves that under certain conditions

on the cost function and observation matrix (S1-4), the

optimal policy for solving the discounted social welfare cost

optimal stopping time problem has a switching threshold

curve. Such a switching threshold can be approximated by

set of lines which can be searched for efficiently using

a policy gradient based approach [5]. S1 and S2 are

not known to the LLMA and to the central controller,

and the structural result only shows the existence of such

disjoint regions. These regions are unknown, and we show

in Section X that for |X | = 2, one can efficiently search

for these regions using a policy gradient algorithm. Although

standard reinforcement learning algorithms can be used,

we study the extreme case to derive an efficient algorithm.

This is computationally tractable, unlike optimizing for a

non-structured policywhere a finite approximation is used for

a general infinite-dimensional policy. This is computationally

tractable, in contrast to optimizing for a non-structured

policy since it’s a finite approximation of a general infinite-

dimensional policy.

Remark 20: The LLM agents share their current private

observations, and the stopping-time policy determines when

the sequence of agents ceases sharing private information.

This approach can delay herding while ensuring that not

all private information is disclosed. The privacy loss can be

quantified using an information-theoretic metric that captures

the exact loss of private information. Investigating this in

practical scenarios would be an intriguing direction for future

research.
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D. OPTIMAL SWITCHING BETWEEN DIFFERENT LLMs

The formulation that we proposed in this section can also be

used by the LLMAs to switch between LLMs of different

sizes. LLMs with a higher number of parameters can process

more tokens and give more accurate responses; however, they

are more expensive and use more computational resources.

Therefore we can use an action space U = {1 =

Lsmall,Llarge}, where Llarge is an LLM with significantly

(10×) more parameters than Lsmall.

Since the LLM with more number of parameters (Llarge)

can give a more accurate observation, by the arguments of

Section V-E, we can use it to delay herding. However, the

cost of using Llarge is higher, and accounts for the privacy

cost c considered in this section. And then, once we have

sufficiently many good responses, the LLMAs can switch

to a smaller LLM, which will lead to a quicker information

cascade but can still provide low-dimensional readings useful

for analytical purposes at a lower cost. Such a problem is

often referred to as a quickest change detection problem [5].

E. SUMMARY

When a central entity is designing and deploying LLMAs

for sequential Bayesian inference on online platforms, the

entity needs to ensure such LLMAs do not have a bias due

to herding. In this section, we solved the problem of LLMAs

optimally herding in Bayesian social learning framework

to announce a particular state, such that their opportunistic

cost and cost of obtaining and sharing the observation is

balanced. The Bayesian agents considered in this section

were cooperative and shared the same socialistically optimal

policy. We also briefly discussed how such a scheme can be

used to optimally switch between different sizes of LLMs

to achieve an optimal tradeoff between cost and accuracy of

estimation. In the next section we consider the problem in

a different setting, where a central controller can incentivize

autonomous LLMAs, and needs to control the incentives for

improved state estimation.

IX. OPTIMAL STOPPING TIME CONTROL FOR

AUTONOMOUS LLMAs

The LLMAs used for Bayesian inference can often be from

different third-party services, each of which requires an

incentive to perform the task.Motivated by controlling bias in

such LLMAs, this section considers the problem of the central

learner optimally incentivizing a sequence of autonomous

LLMAs to delay their herding and obtain more accurate

estimates. We first formulate the optimization problem of

the central controller as a discounted cost POMDP and

then show that under structural assumptions on the cost

and observation matrix, the optimal policy has a threshold

structure with respect to the public belief. This structure

is exploited in Algorithm 7 to approximate the optimal

incentivization policy of the central controller. The schematic

of the setup considered in this section is illustrated in

Figure 11.

FIGURE 11. Schematic of stochastic control approach for optimally
delaying herding in a sequence of incentivized autonomous LLMAs. This
is motivated by a central entity deploying third-party LLMAs for Bayesian
inference.

A. MOTIVATION. OPTIMAL INCENTIVIZATION OF THIRD

PARTY LLMAs

There are already several third-party services that offer LLM

agents as a service [17], and such agents can be used for

the task of performing Bayesian inference on an online

platform. Each of these agents has a cost of processing a

query associated with it, and each agent can be asked to give

more accurate responses (by performing more computations

or by using a larger model). Therefore, we can incentivize

the LLMAs to share more accurate private information (low-

dimensional outputs). However as shown in Section V,

LLMAs are still prone to herding, therefore we propose an

optimal stopping time formulation for optimally herding and

at the same time minimize the cost incurred by the central

entity.

B. OPTIMIZATION PROBLEM OF THE CENTRAL

CONTROLLER WITH INCENTIVIZED LLMAs

We now consider a case where the LLMA are incentivized by

a central controller, and the cost function is now dependent

on the incentive p as well. Specifically, we consider a cost

function c as,

c(x, u, p) = ³u1(x ̸= u)+1u + Éup, (23)

here, ³u > 0, 1u > 0 and Éu < 0, u ∈ U are the

coefficient for the misclassification cost, the cost incurred in

performing the action and the coefficient for the incentive,

respectively. The cost accounts for the cumulative cost that

the autonomous LLMA incurs while classifying the textual

input and the incentive received for the same.

The cost incurred by the central controller for performing

information fusion and incentivization is assumed to be linear

in the incentive and is taken to be,

f (pk , k) = pk − g(k)1(uk = yk |Ãk−1), (24)

where g(k) is the function that determines the coefficient

of the reward associated with the LLMA revealing the
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observation (and not herding). Generally, g is decreasing in k

since the benefit of a new observation has diminishing returns

as more observations are made available.

We now discuss our stochastic control approach to

optimally incentivize the LLMAs, such that the fusion cost of

the central controller is minimized.We consider the following

natural filtration, which contains all information known to the

central controller at time k , namely, the initial prior, actions

of the LLMAs and the incentives by the central controller,

Hk = Ã ({Ã0, u0, . . . , uk , p1, . . . , pk−1}).

With the estimates of the cost of the individual LLMAs

and observation matrices, the central controller can use Hk

to compute the public belief using (15). If the cost and

observation matrices are not available, the central control

can learn the optimal policy using policy gradient algorithm,

as discussed in the next section. Similar to the previous

subsection, Ãk can be shown to be a sufficient statistic for

the filtration Hk and therefore the incentivization policy ¿ :

P(X ) → R
+ ∪ {0} of the central controller determines the

incentives as,

pk+1 = ¿(Ãk ).

Therefore, the discounted cumulative cost of the central

controller with a discount factor of Ä can be written as,

J¿(Ã ) = E{

∞
∑

k=0

Äk f¿(pk , k)}. (25)

The expectation is with respect to the observations and the

randomized incentive policy. The optimal incentive policy ¿∗

is then the policy which achieves the minimum cost,

J¿∗ (Ã ) = inf
¿∈5

J¿(Ã ). (26)

Although classical methods like value iteration can be used

to solve the continuous-valued optimization problem of (26),

for the simple case of |U | = |X | = 2, we show in the next

subsection that the optimal policy has a threshold structure

which can be searched much more efficiently using a policy

gradient algorithm. Note that this reduction is still practical

for failure state detection e.g. bad product identification using

product reviews on online platforms.

C. STRUCTURAL RESULTS

To show structural results, in this section, we consider the

simplification that |U | = |X | = 2. To show the structural

results, we make the following assumption on the augmented

cost function of the LLMA given in (23).

(S5) The cost function is submodular in (x, u) for all

incentives p, i.e., for |U | = 2, |X | = 2, c(1, 1, p) +

c(2, 2, p) f c(1, 2, p)+ c(2, 1, p).

We consider the following incentive function,

Ç (y, Ã) =
³2 − ³1

É2 − É1

ByÃ

1ByÃ
+
12 −11

É2 − É1
. (27)

The above incentive function comes naturally when the cost

function of the individual LLMAs ((23)). The derivation

is also there in the appendix. We next state results on the

structure of the optimal incentivization policy of (26).

Theorem 4: Under (S4) and (S5), the optimal incentive

policy ¿∗ : P(X ) → R
+ ∪ {0} of (26) is a threshold with

respect to the public belief and can be computed as,

¿∗(µ) =

{

0, if Ã (2) ∈ [0, Ã̄ ]

Ç (y, Ã), if Ã (2) ∈ [Ã̄ , 1]
, (28)

where Ç is the incentive function of the central controller

from (27) and Ã̄ is the threshold value.

Similar to the result of Theorem 3, this theorem shows that

the optimal incentivization policy of the central controller

is threshold in the public belief. Since the state space has

cardinality 2, the threshold switching curve becomes a single

threshold point Ã̄ , and can be efficiently searched.

Theorem 4 informs that to minimize the discounted cost

of (25), the central controller should incentivize (using the

scheme of (27)) only when the public belief is not too strong

in favor of state 1. This supports the intuition that more

incentive would be required for a stronger public belief ((27)).

Further, the incentivization function of (27) and an optimal

policy with a threshold structure of (28) implies that the

incentive sequence by the central controller is a sub-

martingale. This result and a concentration inequality type

bound on the cumulative incentive spent are formalized in the

next result.

Theorem 5: Considered the controlled incentivized fusion

of information from LLMAs where the cost function is (25)

and the optimal incentive policy, ¿∗ satisfies (26) with the

incentive function of (27). Under (A1) the optimal incentive

sequence pk = ¿∗(Ãk−1) is a sub-martigale, i.e., pk g

E{pk−1}. Further, the cumulative incentive spent is such that

in a sample path is such that, P(
∑

1fkfT

pk g B) f
T

B
, where

B can be considered as a budget constraint.

The above theorem characterizes the nature of a sample path

of incentivization and secondly provides a bound on the

probability that the cumulative incentive exceeds the budget

B. This helps analyze the deviation of the total expenditure

from the budget B, which is a constraint of the central

controller.

D. SUMMARY

Autonomous LLMAs are already offered by third-party enti-

ties as a service [7], [17], [87]. They have a unit monetary cost

associated with using them for any application. Motivated by

such LLMAs, we studied stochastic control of autonomous

LLMAs who are incentivized by a central controller to

perform Bayesian inference. We showed structural results on

the optimal incentive policy and a concentration inequality,

which characterized the probability that the central controller

would exceed their budget. The next section proposes a

policy gradient algorithm that exploits the structural results
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of Theorem 3 and Theorem 4 to search for the corresponding

threshold policy of the social welfare LLMA and the central

controller, respectively.

X. POLICY GRADIENT FOR ESTIMATING THE OPTIMAL

POLICY TO CONTROL HERDING IN LLMAs

We propose a policy gradient algorithm that searches for the

optimal policy for the stochastic control of the social welfare

LLMAs (21) and the central controller (26), which have the

threshold structure of (22) and (28), respectively.

A. MOTIVATION. EFFICIENTLY ESTIMATING THE OPTIMAL

STOPPING TIME POLICY

When LLMAs are deployed on online platforms to perform

Bayesian inference for various purposes, one needs to

control for the herding the LLMAs exhibit. For this purpose,

we proposed two optimal stopping formulations for centrally

controlled and autonomous LLMAs. The efficiency of

estimation of the optimal policy parameters is especially

important in real-life applications where the time to update

the policy parameters is limited. Another constraint is that

in real-life systems, access to the observation matrices is

limited; therefore, the estimation has to be done without

the knowledge of the system parameters. Therefore, we use

structural results on the optimal policies for the stopping time

formulations and use policy gradients to estimate the optimal

policy.

B. POLICY GRADIENT ALGORITHM

Searching for a hard threshold of the form (22) and (28) can

be formulated as a discrete stochastic optimization problem.

However, in this section, we relax the problem to a continuous

stochastic optimization by approximating the hard threshold

policy by a sigmoidal of the form,

µ̂(Ã;2) =
1

1+ exp(Ã−2
ε

)
, (29)

where 2 is the policy parameter representing the threshold,

and ε ∈ (0, 1] is the approximation parameter, and the policy

converges to a hard threshold policy at2 as ε→ 0. To restrict

the policy parameter to be in the range [0, 1], we can

reparameterize it as sin2(¹ ). The approximate parameterized

policy of (29) can be used to obtain an approximate value

of the cumulative value function (of either (25) or (19)) by

interactingwith the system using the policy for T interactions.

For the social welfare cost of (19), we can compute the

approximate cost with respect to a policy by

Ĵ (µ̂(·,2k ))

=

T
∑

k=1

µ̂(Ãk ,2k )
(

Äk−1c(x, uk )+ Ä
k−1d1(x = e1)

)

+ ÄT−
∑T

k=1+0.5+µ̂(Ãk ,2k ),

[

ϒ1(x ̸= e1)+
minu∈U c(x, u)

1−Ä

]

,

(30)

where

T
∑

k=1

+0.5 + µ̂(Ãk ,2k ), just computes the empirical

stopping time in place of the stopping time Ä in (19). Note

that in the above equation, the filtration and the expectations

have been replaced with the realized cost, and hence, this is a

noisy estimate of the true expected cost of (31).

For fusion cost of (25), the approximate cost is given by,

Ĵ (µ̂(2k )) =

T
∑

k=1

f (pk , k). (31)

We now describe our simultaneous pertubation based pol-

icy gradient algorithm, which is summarized in Algorithm 7.

We perform H learning episodes, each of which is initialized

with the same conditions, and we adaptively update the

policy parameter2m across these episodes. For each episode

m, we perturb the policy parameter by ±¶ and obtain

two policy parameters 2+m and 2−m . We then approximate

the cost function for both the parameters using (31) by

performing T interactions each. We approximate the gradient

by finite-difference method (step 6 of Algorithm 7). Finally,

the policy parameter uses a gradient descent step with a step

size 2m. If the parameters of the system are known to be

more or less constant, the step size is decreasing to ensure

asymptotic convergence [88], else a constant step-size can be

used to track changes in the true threshold parameter.

Algorithm 7 Stochastic Gradient Algorithm for Estimating

Optimal Policy

1: Input: Initial Parameter 20, Perturbation ¶, Time

Horizon H , Step Sizes (´m), Episode Length T

2: Output: Terminal Parameter 2H

3: for m in 1, . . . ,H do

4: Perturb parameters 2±m ← 2m ± ¶.

5: Approximate cost with (31) using T interactions with

2+k and 2−k , Ĵ (µ̂(2
+
k )) and Ĵ (µ̂(2

−
k )).

6: Approximate gradient ∇̂J ←
Ĵ (µ̂(2+k ))− Ĵ (µ̂(2

−
k ))

2¶
.

7: Update parameter using 2m+1 = 2m − ´m(∇̂J )m.

8: end for

Remark 21: Apart from the parameters of the algorithm,

the algorithm only requires the approximate reward with a

particular policy. If the cost function is not known to the

controller (which is the case when they are incentivized),

then the framework from Section IV can be used to estimate

the utility of the individual LLMAs using Algorithm 2 or

Algorithm 3. The negative of the utility can be used as the

reward function. This can account for the misclassification

cost. Different incentive regimes can be considered as

different environments to exactly obtain the cost function for

an incentivized autonomous LLMA.

Remark 22: The above algorithm does not need access to

the probability distributions B, which is expensive to obtain,

especially in the incentivized case. Also, if the underlying
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parameters of the setup are evolving on a slower timescale,

the above algorithm can be run with a constant step size to

make the policy parameters track the changes in the system.

These are the key advantages of using Algorithm 7 compared

to the value iteration or other sub-optimalmethods for solving

our proposed non-standard POMDPs. The computational

complexity of Algorithm 7 for each iteration is O(T ).

Remark 23: For the centrally controlled case, only a single

parameter needs to be communicated across the LLMAs

to learn the optimal stopping time policy. Further, since

the LLMAs act in a sequential fashion, such a parameter

can be communicated either by the central controller or

by the previous LLMA, making this a scalable approach.

For the incentivization policy too, a single parameter

needs to be estimated by the central entity employing the

autonomous LLMAs, which makes the policy estimation

protocol independent of the number of agents, and therefore

scalable.

C. SUMMARY

This section proposed a computationally efficient policy

gradient algorithm to estimate the optimal policy of the

stopping time problems for LLMAs of Section VIII and

Section IX. This algorithm does not need the underlying

parameters of LLMAs and is adaptive to changes to the

underlying parameters. The next section presents numerical

studies that illustrate how these models can be used to control

LLMAs.

XI. NUMERICAL RESULTS: SEQUENTIAL BAYESIAN

SENTIMENT ANALYSIS USING LLMAs

Our numerical studies demonstrate how the Bayesian social

learning framework and the stochastic control approach

can be used to perform more accurate and efficient

state estimation in the described applications. We present

numerical studies on applications related to two real-

life datasets: a hate-speech dataset and a product review

dataset. These numerical experiments build on our past

work to build robust hate speech classification using

covert federated learning [74], [89]. The reproducible

code, appendix with proofs, and the dataset link are on

github.com/aditj/sociallearningllm.

A. MOTIVATION

LLMs are already used in different real-world applications,

including on e-commerce platforms, to provide an overview

of the reviews and on social media platforms to flagmalicious

content; therefore, motivated by the real world, we present

numerical experiments where LLMAs are used to perform

Bayesian inference on different real-world datasets.

We first describe the two main real-world tasks and

datasets on which the numerical results are presented. Then,

we show how our construction of a single LLMA leads

to interpretability. We extend the exemplary study from

Section IV and conduct more extensive experiments. Next,

we show numerical results on herding phenomena in a

sequence of LLMAs. Finally, we show how the optimal

policy for optimal stopping has a threshold structure. We also

show the efficacy of policy gradient algorithm in a simulated

setting.

B. TASK DESCRIPTION

For both tasks, the LLMA is an online detection mechanism

equipped with a large language model (LLM) sensor that

analyses comments and flags the state sequentially. The LLM

is used to parse the text and obtain a list of appropriate

features from the finite-dimensional feature space Y , which

the platform could design. The features contain information

about the text and comparisons of the text with a given

context. In our setup, the Bayesian engine of the LLMA

consists of a likelihood parameterized by a neural network.

For a discrete distribution, the likelihood neural network

uses restricted Boltzmann machine (RBM) to generate

samples from the likelihood with 1000 samples of annotated

comments (paragraphs). The experiment results are averaged

over NMC independent runs mentioned along with each

experiment. The posterior can be updated using (13) using the

likelihood and the closed form prior of (15) from the previous

step. The LLMA takes an action according to (14). The action

is classifying whether the user has hateful intent, and the cost

accounts for the misclassification of the state. We use Mixtral

7B, an open-source mixture of experts LLM with 7 billion

parameters [57], LLaMA-3 [58] with 70b parameters, and

ChatGPT-4o which is a closed source LLM. The details of

which LLM was used for this experiment is in the Appendix.

We query using the TogetherAI API for the open-source

LLMs (Mixtral and LLaMA) and OpenAI API for ChatGPT.

1) HATE SPEECH CLASSIFICATION

Motivation: Flagging users who spread toxic content online

is a significant challenge. The state xk represents the category

of peddlers classified based on the intensity and type of

content they are propagating. For example, the state could

be 3-dimensional, indicating the hate-intent of the user

(hateful or not), the hate speech intensity scale [90], and

the particular group the hate speech is directed towards.

The noisy observations are the text comments from the user

that inform about the state and are from a high-dimensional

observation space.

In a social network, there may be multiple LLMAs

deployed to flagmalicious users and decrease the propagation

of hate speech. The flags by the previous LLMA are visible,

but the private observations are not due to computation and

privacy restrictions (so that the LLM can not be fine-trained

on the text or the feature mappings). Since the observations

are generated sequentially, the LLMA may use the same

LLM but with a different context and for a different text

observation. Therefore, a single LLMA can be viewed as a

sequence of LLMAs learning from their private observations

and the past actions of previous LLMAs.
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The state space models the state of the user, X =

{0 = non-hateful, 1 = hateful} × {1, 2, 3, 4, 5}, where

the first dimension corresponds to whether a user is a hate

speech peddler (HSP) or not, and the second dimension

to the intensity of the toxicity of the speech (evaluated by

crowdsourcing [54]). For the numerical result, we consider

an augmented state space with 6-states, X = {0 =

non-hateful, 1, 2, 3, 4, 5}, where the last 5 entries denote an

HSP of different intensities as described later.

The high-dimensional observations of the state are in the

form of text comments posted on online platforms. An LLM

is used to parse the text observations by prompting the

LLM with the text and a system prompt to return an output

belonging to an observation space Y , which contains the

following binary variables: a) targetted towards someone and

b) contains explicit words c) indicate violence d) has bias

e) is dehumanizing f) is genocidal. We augment the output

of the LLM to an observation space of cardinality |Y| =

6. The details of this augmentation, along with additional

experimental details, are in the appendix.

The action space U is considered the same as the

state space, and the cost function which accounts for the

misclassification of an HSP is given by,

c(x, u) = 1(x ̸= 0)[1(u = 0)+ |x − u|], (32)

The first time accounts for the misclassification of a hateful

user, and the second term accounts for the difference

in intensity. We use the measuring hate speech dataset

from [54], which contains 40, 000 annotated comments from

Twitter, Reddit, and Gab. The annotations are performed by

crowdsourcing and indicate if the comments contain hate

speech and the intensity of the toxicity exhibited on a scale

of 1 to 5, measured using a Rasch measurement scale [54].

Since the data is anonymized, we consider a synthetic

user construction. In a span of T textual comments, a hate

speech peddler (HSP) contains hate speech text from one

of the intensity levels. Hence, there are 6 types of users:

non-HSP and HSP with intensity from 1 to 5, each with

T = 100 comments of the corresponding intensity.

2) PRODUCT QUALITY IDENTIFICATION

Motivation: Identifying products that are of poor quality

early on is important in many e-commerce applications.

While the current state-of-the-art relies on a complaint-driven

interface that involves a human service agent to identify a bad

product, there has been some preliminary work that suggests

using existing reviews from the customers to determine the

quality of the product [91]. Product reviews are already used

to provide a summary of the product on major e-retailers

like Amazon and even influence customer decisions [91].

Therefore, we propose using a sequence of LLMAs and our

stopping time formulation to identify bad products.

In the case of an e-commerce platform, the restriction

on the sharing of the private observation is motivated by

the computational constraints that the LLMAs will have

when performing Bayesian inference on millions of products

and billions of reviews. The public belief can be efficiently

computed based on the output (action) of each of the LLMA.

We use the Amazon Review dataset, which has 233.1 mil-

lion [56] text reviews for products from 29 categories. Each

review also has a rating from 1 to 5. We discuss more

details about the dataset in Appendix XII-B1. We consider

the state as the quality of the product, with the state space

given by X = {0 = ‘‘bad-quality’’, 1 = ‘‘high-quality’’}.

We consider the Beauty and Electronics categories and

sample 5000 reviews from each. Each review has a text and

a rating associated with it. We consider the quality of the

product as described above.

We now detail on what we mean by quality and the

definition of the states. Since we do not have access to any

additional dataset other than ratings, we consider products

with at least 1000 ratings and compute the quality state

ex-ante using these ratings. Therefore, the quality here is

more representative of the perceived value for money [92].

We consider the following ranges [0, 3.3), [3.3, 5] of the

average review of all the ratings to assign a product quality

as bad, medium, and good, respectively. To clarify, we just

use all 1000 ratings to compute the state; the observations are

sampled one at a time and analyzed by the LLMA.

The low-dimensional observation obtained using the LLM

of the LLMA belongs to an observation space of cardinality

|Y| = 16. We obtain the low-dimensional observation by

asking the following questions of the text review:
1) Does the review mention any specific problems or

defects with the product? (defects)

2) Does the review mention any positive attributes regard-

ing the product’s durability or reliability? (durability)

3) Does the review indicate that the product meets or

exceeds the user’s expectations? (expectations)

4) Would the reviewer recommend this product to others?

(recommend)

These questions were designed by us by qualitatively

analyzing what could predict the perception of quality of

a product [91], [92]. These features for the different states

are plotted in Figure 12. It can be seen that for the good

product, the overall decrease in defects is more rapid, and

even when in reviews with overall ratings 2 and 3, there are

substantially more reviews that mention durability positively,

than the bad product. However, an analyst could consider an

alternate design of the observations depending on the need.

We consider the misclassification cost as follows,

c(x, u) = 1(x = 0)1(u ̸= 0)+ 1(x ̸= 0)|x − u|. (33)

C. NUMERICAL EVIDENCE SHOWING LLMAs ARE RIBUM

We perform the max-margin-based utility reconstruction

using Algorithm 2 when the agent optimizes a utility in order

to achieve product quality identification and illustrate the

reconstructed utilities in Figure 13.

For illustration purposes, we consider recommend, dura-

bility and expectations as the actions, hence making the

action space |U | = 8. To show our methods can be used

25492 VOLUME 13, 2025



A. Jain, V. Krishnamurthy: Interacting LLMA. Bayesian Social Learning Based Interpretable Models

FIGURE 12. Interpretability of the outputs of an LLM Sensor for Product
Quality Identification. There are 4 different features that the LLM of the
LLMA extracts. The left subplot corresponds to reviews from a good
product, and the right subplot corresponds to reviews from a bad product
(defined in the text). We analyze text reviews with ratings from 1 to 5 for
4 different attributes and plot the proportion of samples where the
attribute is true. It can be seen that the features, indeed, are consistent
with the overall rating provided by the reviewer for the two different
kinds of products and can be used for a more fine-grained interpretable
analysis.

with blackbox LLMs, we use ChatGPT-4o-mini for this

experiment. The state space is X = {0 = bad product, 1 =

good product}. We consider the different environments to

have different ratings; i.e., the people who rate products at

1 are considered as part of a single environment. The utilities

can be used to interpret the behavior of the LLM and can be

used in lieu of explicit utilities of the form (33).

D. HERDING IN LLMAs

We report our results with the initial public belief (specifically

the prior probability of state 0). Due to Theorem 2, the initial

public belief is sufficient to identify intermediate public belief

regions where the information cascades are observed.

We first study the freezing of public belief when an

information cascade (Definition 1) happens in a sequence

of LLMAs performing Bayesian inference for hate-speech

classification. We consider 80 timepoints, and the results

average over 10 runs. The result is illustrated in Figure 14

for different values of initial public belief. In each subplot,

the different lines correspond to the different true underlying

states. It can be seen that the public belief for state

0 converges to higher values as the initial prior for state 0 is

increased. Hence, the initial prior decides what the prior will

freeze.

We show, for a sample path realization, how LLMAs

herd in the actions that they take in Figure 15. Each of the

subplots corresponds to a different initial public belief, and

the lines within each subplot are for a different underlying

true state. The reason why it is more resilient to herding when

in state 4 is that there is a stronger observation likelihood.

All the other states, for a strong enough prior (0.52), herd

to an incorrect state (0). Hence classifying an HSP as a

non-HSP.

Figure 16 illustrates the regions of herding a case with

3 states. The true underlying state in this simulation is

0, and therefore, it can be seen that most of the initial

FIGURE 13. Reconstructed max-margin utility of the LLM of an LLMA
performing Bayesian inference for product quality identification using
text reviews. The reconstructed utilities offer an interpretable way to
analyze the behavior of the LLM. Here, the states represent the true
quality of the product (0 = bad, 1 = good). The actions are the
low-dimensional output of the LLM corresponding to different features in
the input text reviews. We observe that for environment 1, when reviews
with a rating 1 are considered, the difference between utilities for both
states is negligible. However, the contrast increases as the ratings
considered in the environment are increased.

public belief corresponds to predicting state 0. We assume an

observation matrix with 3 observations, with an observation

matrix B = [0.7, 0.2, 0.1; 0.1, 0.7, 0.2; 0.2, 0.1, 0.7] and
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FIGURE 14. Public prior freezes in finite time when LLMAs learn using
social learning protocol of Algorithm 4 for detecting hate-speech
peddlers. The time taken (average over 10 runs) to form an information
cascade is different for different values of the initial public belief
π0(x = 0) and different true underlying states. Note that for a public prior
π0(x = 0) ≥ 0.41 only a few observations are enough for the LLMAs to
herd to a strong belief on the wrong state (state 0) regardless of the true
underlying state.

FIGURE 15. Sample path for the actions taken by LLMAs under different
initial priors π0(x = 0) and true underlying state x . Observation 4 has a
stronger observation likelihood and hence is more robust under an
increasing prior on state 0.

assume an identity utility function for the LLMAs. However,

the top-left and bottom-left corners of the triangle show that

herding to the wrong state can happen if the public belief is

too strong.

FIGURE 16. Regions in belief space where LLMAs herd during Bayesian
social learning with |X | = 3 states. Even though the underlying state is
x = 0, in the bottom-left and top-left regions, the actions are 2 and 1,
respectively, because of a strong public belief.

FIGURE 17. The cost function (top-left) corresponds to different values of
the threshold parameter (top-right) of the policy of (34). Each policy leads
to a different stopping time (bottom-left) and corresponding accuracy
(bottom-right). For this experiment, it can be seen that increasing the
stopping time decreases the cost. The sudden jumps in the cost (and
stopping time) are due to the transition in the resulting policy parameter
from a region of learning to herding.

FIGURE 18. Incentivized stochastic control of autonomous LLMAs. The
public belief (left) converges slower as a result of incentivization. Also
note that the incentive (right) is a supermartingale (as proved in
Theorem 5). This is for a policy of the form (35) threshold parameter of
θ = 0.4.

E. OPTIMAL STOPPING FOR DELAYING HERDING IN

LLMAs

Next, we study the optimal stopping of LLMAs first when

these agents are centrally controlled and next when these

agents are autonomous.
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For both experiments, we consider the product quality

identification task. To make sure the actions and the observa-

tions are of the same dimensions, we assume that the observa-

tion space is also two-dimensional |Y| = 2. The observation

matrix was taken to be B = [[0.7, 0.3], [0.3, 0.7]]. Note this

is necessary since here we ask the LLMAs to either reveal the

private observation or to take action using Eq. 14, and update

in Eq. 15 needs to be consistent.

For the case when the LLMAs are centrally controlled, and

the simplified system model, policies that have a switching

threshold curve (Eq. 21) with respect to the belief space can

be represented as

µ(Ã ) =

{

2 (continue) if Ã (0) f ¹

1 (stop) if Ã(0) > ¹
, (34)

where ¹ is the threshold parameter. The true state is uniformly

sampled from {0, 1}. The delay cost is taken as d = 10, and

the misclassification cost is taken as ϒ = 50. The discount

factor is taken as Ä = 0.99, and the infinite horizon is

approximated by a horizon of length 100. The cost for each

indiviual LLMAs, c(x, u) = 1(x ̸= u).

In Figure 17, we perform a parameter sweep over ¹ ∈ [0, 1]

with a grid cardinality of 100, and evaluate three different

aspects. The results are averaged over 100 independent runs.

In the top-left corner, we evaluate the cost function as a

function of the threshold parameter. We observe that the

cost is minimum for a higher parameter value. And a higher

parameter corresponds to a smaller stop time. The accuracy

is computed as the proportion of times the correct state is

predicted. The sudden jumps in the cost are due to the fact

that a small change in the policy parameter is enough to shift

the public belief shifts from a region of learning to herding.

Next, we look at LLMAs which are incentivized and

autonomous. Here, the incentivization policy is of the form,

µ(Ã ) =

{

0 (stop incentivizing) if Ã (0) f ¹

Ç (Ã, y) (incentivize) if Ã (0) > ¹
, (35)

where ¹ and Ç is of the form (27).We consider the parameters

³2 = 1.3, ³1 = 0.8, 12 = 0.5, 11 = 0.1, É2 = 0.5 and

É2 = 0.2. The cost function c is the same as the previous

part, and the composite cost function is given by (23).

We first illustrate our result of Theorem 5 in Figure 18,

where it can be seen that the sequence of incentives is

a submartingale sequence. We fix the threshold parameter

of (35) to ¹ = 0.4. The public belief converges much slower

due to the modified cost function (the additional incentive

term in 23); hence, using our stopping time formulation,

we can extract more private observations, which can be later

used to get more accurate estimates.

Figure 19 shows the value of the cost for the different

values of the policy threshold ¹ .Wemaintain the same system

parameters as the previous two experiments. It can be seen

that both the classification rate and the cumulative incentive

go up as the policy threshold increases in this example. The

sudden jump in the incentive is again due to the sudden switch

FIGURE 19. The cumulative incentive spent (bottom) and the achieved
classification rate (top) for different values of threshold parameter θ . The
policy threshold of around 0.7 achieves a tradeoff between the
classification rate and the cumulative incentive expenditure. The
incentives are constant after a particular parameter because of herding.

between the prior region from learning to herding. However,

also note that the threshold around 0.6 has an incentive in

the range [5,10], and the classification rate is still decent

(0.9-1), therefore showing how there is an optimal threshold

that optimally achieves a tradeoff between the cumulative

incentive expenditure and classification performance.

F. ILLUSTRATION OF STOCHASTIC GRADIENT ALGORITHM

Finally, we show how the proposed policy gradient algorithm

(summarized in Algorithm 7) can be used to optimally

estimate the policy parameters for optimal stopping in

incentivized LLMAs with system parameters from the

previous section. We run 100 iterations, each of which uses a

cost function averaged over 100 independent runs. We set a

linearly decreasing step size from ´ = 0.05 to 0.005 and set

the parameter perturbation as ¶ = 1 and the approximation

factor for the sigmoidal policy of (29) as ε = 0.3. The

discount factor is Ä = 0.99.

Figure 20 presents how the cumulative incentive expen-

diture changes with each policy parameter update. It can

be seen that after a few iterations, the iterates converge to

parameter value such that the incentive expenditure is in the

range [5,15], which is close to the optimal incentive from

Figure 19.

XII. DISCUSSION AND FUTURE WORK

With the rapid adoption of LLMs across science and

engineering and the emergence of LLM-based agents

for automating diverse workflows [87], it is crucial to

systematically study their behavior and interactions. This
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FIGURE 20. The approximate cumulative incentives corresponding to
parameters of a policy gradient for estimating the optimal threshold
parameters of (26). The incentive of the final iterate is much smaller than
the incentive expenditure of a too-small or too-large parameter from
Figure 19.

work addresses this need by proposing interpretable models

and stochastic control algorithms to engineer systems of

LLMAs that perform Bayesian inference across a range of

applications. Our study highlights the versatility of LLMAs

across various fields, aiming to inspire practitioners from

diverse disciplines to explore and integrate these tools into

their workflows.

In this conclusion section, we summarize how the two

layers of abstraction explored in this paper using Bayesian

revealed preferences and Bayesian social learning provide

a sound basis for driving research in understanding and

controlling the behavior of LLM agents. We discuss the

implications of our methods and their potential applications

in studying interacting LLMAs. We close with promising

research directions at the intersection of signal processing,

network science, and machine learning to enhance the

capabilities of LLMAs.

A. SUMMARY

We first presented a Bayesian sensor model for constructing

a large language model agent (LLMA). This model was a

composition of a) an LLM,whichwas used as an interpretable

and configurable sensor for high-dimensional data, and b)

a Bayesian engine to represent and update the belief of

the underlying state. Second, we put forth the necessary

and sufficient conditions for a LLMA to be a rationally

inattentive Bayesian utility maximizer (RIBUM). We present

algorithms for estimating the utility function of a LLMA

which is RIBUM. The reconstructed utility naturally leads

to the interpretability of the actions of the LLMA. These

methods are applicable to both the Bayesian sensor model

of LLMA we propose and off-the-shelf LLMAs and LLMs.

Thirdly we look at Bayesian social learning in a sequence

of LLMAs. We show that this sequence of agents herd in

their actions even if they share their private observations.

Then, we formulate optimal stopping problems for failure

state detection, which optimally delays herding and improves

estimation by allowing the private observations to be shared.

The optimal stopping problem is formulated both for a case

when the LLMAs are centrally controlled and when they are

autonomous. We show that under relatively mild conditions

on the observation matrix and the cost function of the

LLMA the optimal policy for the optimal stopping problem

has a threshold structure. A policy gradient algorithm is

proposed to estimate the optimal policy efficiently without

the knowledge of system parameters. Finally, we show

numerical experiments demonstrating the various claims and

frameworks proposed in the study.

B. INSIGHTS

We conclude the paper with the following key takeaways:
1) The Bayesian sensor construction of a LLMA lends

to a lot more interpretability when performing sequen-

tial estimation using a large language model, more

than if Bayesian inference was performed with just

embeddings (which might be more accurate but not

interpretable).

2) The Bayesian revealed preferences framework is a

systematic way to obtain utility (or cost) functions for

blackbox LLMAs. It’s especially useful when the state

and action space are small, but the LLMA operates in

tens of different environments.

3) For a practitioner, Bayesian social learning might

seem simplistic, however the important point is that

even a simplistic sequence of LLMAs, herding is an

undesirable and inevitable phenomena. Therefore, care

needs to be taken when creating networks of LLMAs

that use each other’s knowledge to avoid data incest.

4) The stopping time formulation is especially useful

when deploying LLMAs to detect a failure state. The

quickest change detection discussed briefly can be

practically used to switch optimally between a large

(more accurate but more expensive) and a small (less

accurate and less expensive) LLM.

5) Finally, our numerical experiments are conducted on

real-world datasets but are limited to public textual

data. Using vision-language models, the framework

proposed in this paper can be used for more sophis-

ticated bio-medical data (composed of images, audio,

etc.).

C. LIMITATIONS

The Bayesian sensor model developed for a LLMA requires

domain knowledge to design the prompts (features) that

are input into the LLM, producing a low-dimensional

output; this knowledge can be obtained from a larger

LLM. However, the Bayesian revealed preference framework

becomes computationally infeasible in scenarios with large

state and action spaces. Our formulation of stopping time

and the structural results presented are focused solely on

detecting a single state, specifically for identifying a failure

state. While our framework is Bayesian inference centric,

LLMAs in practice can undertake more complex tasks,

indicating a need to extend this work to more general
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settings. In the Bayesian revealed preferences framework

considered in this paper, access to the true action posterior

is assumed; however, in practice, only empirical estimates

may be available. Additionally, the applications discussed in

this work—finance, online content moderation, and product

analysis—may limit the generalizability of the framework to

other domains.

D. RESEARCH DIRECTIONS AND FUTURE WORK

With technological innovation in LLMs, many players in

the market have launched their own LLM agents. Such

agents often have more functionality than those modeled

in this paper, and hence, controlling the behavior of these

agents would be more challenging. Further, these agents will

inevitably interact with each other through the content they

generate or on online platforms. Such interaction would lead

to a Bayesian update in their beliefs either explicitly by design

as modeled in the paper or implicitly as these agents improve.

It is therefore important to consider the models presented

in this study in future and related research. Given the rise

of LLMAs, we find the following four research directions

particularly exciting.

1) APPLICABILITY IN OTHER PARADIGMS

Exploring the methods presented in this work within different

LLM paradigms—such as retrieval-augmented generation

(RAG), planning, and fine-tuned agents—would be a com-

pelling area of study. RAG involves retrieving relevant

information from a database to provide context for an LLM,

enhancing the accuracy and relevance of its responses.

The models of LLMAs discussed in this paper could be

effectively applied in scenarios where multiple agents operate

over a knowledge graph to collaboratively retrieve pertinent

information [24], particularly when there is a prior defined

over the knowledge graph. Additionally, in the context of

fine-tuned agents, where agents continuously learn from

a private dataset, the framework outlined in this paper

can be adapted to accommodate evolving LLMAs and

heterogeneous agents.

2) APPLICATION IN EDUCATION AND HEALTHCARE

The framework proposed in this paper has broader applica-

bility than content moderation, finance, and opinion mining.

We briefly discuss the applications of social learning of

LLMAs in education and healthcare. In education, there are

many potential use cases of LLMs, including customized

evaluation, interactive tutorials, and LLM-assisted group

discussions [23]. Therefore, a sequence of LLMAs can be

used to analyze different contents, and studying the control of

LLMAs is important to reduce the bias, for e.g., while grading

students. In healthcare, LLMAs are already used for patient

interaction to provide instructions for self-care, and to route

the patient to the appropriate healthcare provider. However,

multiple LLMAs can be used to analyze a patient’s medical

history and provide useful feedback to the doctor. Recently,

authors in [93] have further discussed various opportunities

for LLMAs in the healthcare domain.

3) SEARCH FOR A UNIFIED INTERPRETABLE MODELS

The interpretable models presented in this paper serve

as blackbox models for the LLMAs. However, significant

research has focused on glassbox (or transparent) models that

leverage mechanistic interpretability or utilize explainable

features for transformers, the neural architecture underlying

LLMs. Integrating these two approaches into a unified model

would be advantageous, allowing for explanations of both the

LLMA interactions with their external environment and the

reasoning behind their behavior. Such a framework could be

a valuable tool for analyzing various challenges related to the

real-world deployment of LLMAs, including reliability and

safety.

4) NETWORK OF LLMAs AND DATA FUSION

The LLMAs in this study are static, homogeneous, and

arranged in a line graph. We have considered a homogenous

society of LLM agents for notational convenience and

for ease of analysis. Our framework allows for differ-

ent LLM agents can have different observation matrices,

this can model LLM agents who have different LLMs,

prompts or pre-training data. Additionally, LLMAs could

possess asymmetric private observations and be fine-tuned

on individualized datasets, creating a network akin to a

distributed mixture of millions of experts [94]. Another direct

extension of our framework accommodates LLM agents with

different observation and action spaces, provided that each

agent is aware of the observation and action spaces of the

preceding agent. A generalized network of LLM agents

could also be utilized as Bayesian sensors for distributed

state estimation. Furthermore, societies of heterogeneous

LLM agents communicating with one another warrant further

investigation. These LLMA sensors could then perform data

fusion using standard techniques, with careful measures to

prevent data incest. This paper has looked at stochastic

control methods for controlling herding in a sequence of

interacting LLMAs. We have formulated two non-standard

POMDPs for the centrally controlled and incentivized case.

Further to derive structural results, we have looked at the

extreme case where there are only two possible actions. These

structural results naturally lead to an efficient distributed

policy gradient algorithm for searching the optimal policy.

It would be interesting to see if newer results from sociology

can be used to analyze and control more sophisticated

behavior of LLMAs when interacting with each other in

heterogeneous societies.

5) HUMAN IN THE LOOP WITH LLMAs

In applications such as finance, healthcare, and content

moderation, LLMAs frequently interact with humans to

receive feedback that can greatly enhance task perfor-

mance [95]. This necessitates advanced models that account
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for human-agent interactions to better align cost func-

tions, communication protocols, and sensing mechanisms.

As these LLMAs become more widely deployed across

various applications, they will form natural networks with

humans. Investigating how these LLMAs can share private

information both reliably and securely to enhance usability

and efficiency presents a compelling and open research

challenge.

APPENDIX

PROOFS

A. PROOF OF THEOREM 1

Proof of the necessity of NIAS and NIAC: The proof follows

closely from proof of [46], and is reproduced for reader’s aid.

Similar proofs can also be found in [1], [5].

1) NIAS (8): For environment m ∈M, define the subset

Yu ¦ Y so that for any observation y ∈ Yu, given

posterior probability mass function (pmf) Pm(x|y), the

choice of action is u (5) is maximum. Define the

revealed posterior pmf given action u as Pm(x|u).

The revealed posterior pmf is a stochastically garbled

version of the actual posterior pmf Pm(x|y), that is,

P(x|u) =
∑

y∈Y

pm(x, y, u)

pm(u)
=
∑

y∈Y

pm(y|u)pm(x|y).

(36)

Since the optimal action is a for all y ∈ Yu, (5) implies:

H⇒
∑

y∈Yu

pm(y|u)
∑

x∈X

pm(x|y)(rm(x, ũ)− rm) f 0

H⇒
∑

y∈Y

pm(y|u)
∑

x∈X

pm(x|y)(rm(x, ũ)− rm) f 0

(since pm(y|u) = 0, ∀y ∈ Y\Yu)

H⇒
∑

x∈X

pm(x|u)(rm(x, ũ)− rm) f 0 (from (36)).

The last equation is the NIAS inequality (8).

2) NIAC (9): Let cm = Z (B(m)) > 0, where Z (·) denotes

the information acquisition cost of the collection of

agents M. Also, let J (B(m), rm) denote the expected

utility of the RIBUM in environment m given attention

strategy B(m) (first term in RHS of (3)). Here, the

expectation is takenwrt both the state x and observation

y. It can be verified that J (·, rm) is convex in the first

argument. Finally, for the environment m, we define

the revealed attention strategy B(m)′ over the set of

actions U as B(m)′(u|x) = Pm(u|x), ∀u ∈ U ,

where the variable Pm(u|x) is obtained from the

dataset D. Clearly, the revealed attention strategy is

a stochastically garbled version of the true attention

strategy since

B(m)′(u|x) = Pm(u|x) =
∑

y∈Y

pm(u|y)B(m)(y|x). (37)

From Blackwell dominance [96] and the convexity of

the expected utility functional J (·, rm), it follows that:

J (B′m, rl) f J (Bm, rl), (38)

when Bm Blackwell dominates B′m. The above rela-

tionship holds with equality if m = l (this is due to

NIAS (8)).

We now turn to condition (3) for optimality of attention

strategy.

The following inequalities hold for any pair of agents

l ̸= m:

J (B′m, rm)− cm
(38)
= J (B(m), rm)− cm

(3)
g J (B(l), rm)− cl

(38)
g J (B(l)′, rm)− cl . (39)

This is precisely the NIAC inequality (9).

Proof for sufficiency of NIAS and NIAC: Let {rm, cm}
M
m=1

denote a feasible solution to the NIAS and NIAC inequalities

of Theorem 1. To prove sufficiency, we construct an RIBUM

tuple as a function of dataset D and the feasible solution that

satisfies the optimality conditions (5),(3) for RIBUM (6).

Consider the following RIBUM tuple:

(M,X ,Y = U,U, Ã,Z , {Pm(u|x), rm,m ∈M}), where

Z (P(u|x)) = max
m∈M

cm + J (P(u|x), rm)− J (Pm(u|x), rm).

(40)

In (40), C(·) is a convex cost since it is a point-wise

maximum of monotone convex functions. Further, since

NIAC is satisfied, (40) implies Z (B(m)) = cm. It only remains

to show that inequalities (5) and (3) are satisfied for all

environments inM.

1) NIAS implies (5) holds. This is straightforward to show

since the observation and action sets are identical. From

NIAS (8), we know that for any environment m ∈M,

actions u, ũ ∈ U, u ̸= ũ, the following inequalities

hold.
∑

x

Pm(x|u)(rm(x, ũ)− rm) f 0

H⇒
∑

x

Pm(x|y = u)(rm(x, ũ)− rm) f 0

H⇒ u ∈ argmax
ũ∈U

∑

x

pm(x|y)rm(x, ũ) H⇒ (5).

2) Information Acquisition Cost (40) implies (3) holds.

Fix environment l ∈ M. Then, for any attention

strategy P(u|x), the following inequalities hold.

Z (P(u|x))

= max
m∈M

cm + J (P(u|x), rm)− J (Pm(u|x), rm)

H⇒ J (Pl(u|x))−cl g J (P(u|x))−C(P(u|x)), ∀ P(u|x)

H⇒ Pm(u|x) ∈ arg max
P(u|x)

J (P(u|x), rm)− Z (P(u|x))

= (3).
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B. DERIVATION OF SOCIAL LEARNING FILTER

Let the posterior as ¸k (i) = P(xk = i|u1, . . . , uk ). Let

Ã (¸k−1, uk ) =
∑

i

∑

y

P(uk |yk = y, ¸k−1)P(yk |xk =

i)
∑

j

Pi,j¸k−1(j) be the normalization factor.

¸k (i)

=
1

Ã (¸k−1, uk )
P(uk |xk = i, u1, . . . , uk−1)

∑

j

Pi,jP(xk−1 = j|u1, . . . , uk−1)

=
1

Ã (¸k−1, uk )

∑

y

P(uk |yk = y, ¸k−1)P(yk = y|xk = i)

∑

j

Pi,j¸k−1(j).

which completes the derivation.

C. PROOF FOR THEOREM 2

Proof: Define 3k (i, j) = log(Ã (i)/Ã (j)), i, j ∈ X .

From (15) we have, 3k+1(i, j) = 3k (i, j) + 0k (i, j) where

0k (i, j) = log(P(uk |x = i, Ãk )/P(uk |x = j, Ãk ).

The probability of the actions given the state and prior can

be written as,

P(u|x, Ã) =
∑

y∈Y

∏

ũ∈U\u

1(c′uByÃ f c
′
ũByÃ )By,x .

Let Ỹk ¦ Y be a subset of the observation space for which the

action uk is suboptimal with respect to all other actions, i.e.,
∏

ũ∈U\uk

1(c′ukByÃ > c′ũByÃ ) = 1 ∀y ∈ Y . When information

cascade (Def. 1) occurs, this set should be empty since no

matter what the observation, the action k should be optimal

according to (14). Also, rewriting 0k (i, j),

0k (i, j) = log

(

1−
∑

y∈Ỹk
By,i

1−
∑

y∈Ỹk
By,j

)

.

Therefore when an information cascade occurs, 0k (i, j) =

0, ∀i, j ∈ X (Due to Ỹk being an empty set). Also if Ỹk is

nonempty, then 0k (i, j) > » , where » is a positive constant.

Let Gk = {Ã (u1, u2, . . . , uk )} denote the natural filtration,

where Ã is the operator which generates the corresponding

sigma field.

Ãk (i) = P(x = i|u1, . . . , uk ) = E[1(x = i)|Gk ] is a

martingale adapted to Gk for all i ∈ X . This follows by the

application of smoothing property of conditional expectation,

E[Ãk+1(i) | Gk ] = E [E[1(x = i) | Gk+1]] = E[1(x = i) |

Gk ].

Therefore, by the martingale convergence theorem, there

exists a random variable Ã∞ such that, Ãk → Ã∞ w.p.1.

Therefore 3k (i, j) → 3∞(i, j) w.p. 1., which implies there

exists k̃ such that ∀k g k̃ , |3∞(i, j)−3k (i, j)| f »/3 and so,

|3k+1(i, j)−3k (i, j)| f 2»/3,∀k g k̃. (41)

We now prove the theorem by contradiction. Suppose a

cascade does not occur, then for at least one pair i ̸= j, i, j ∈

X , P(u|x = i, Ã) is different than P(u|x = j, Ã). This would

imply that the set Ỹk is nonempty and therefore,

|3k (i, j)| = |3k+1(i, j)−3k (i, j)| g ». (42)

(41) and (42) contradict each other. Therefore P(u|x = i, Ã)

is same for all i ∈ X and hence according to (15) information

cascade occurs at time k̃ . □

D. PROOF FOR THEOREM 3

Proof: We prove the Theorem by showing that it satisfies

the conditions of Theorem 12.3.4 of [5]. Amore general proof

can be found in [4], [5].

In order to verify the assumptions of Theorem 12.3.4 of [5],

we need to define first-order stochastic dominance (FOSD)

and a submodular function. We first define a Monotone

Likelihood Ratio (MLR) ordering on a line and then define

a submodular function with respect to this MLR ordering.

We only need to consider the following lines,

L(ei, Ã̄ ) = {Ã ∈ P(X ) : Ã = (1− ϵ)Ã̄ + ϵei, 0 f ϵ f 1}

, Ã̄ ∈ Hi,

where the state index is only between the extreme states, i ∈

{1,X} and,

Hi = {Ã ∈ P(X ) : µ(i) = 0}.

To define theMLRordering on a line, we first define theMLR

ratio with respect to belief space,

Definition 3 (Monotone Likelihood Ratio (MLR) Order):

Let Ã1,Ã2 ∈ P(X ), then Ã1 dominates Ã2 with respect to the

MLR order (Ã1 gr Ã2) if,

Ã1(i)Ã2(j) f Ã1(j)Ã2(i), i < j, i, j ∈ {1, . . . ,X}.

The following definition is for the MLR ordering the lines

Lei , i ∈ {1,X}

Definition 4 (MLR Ordering on Line gLi ): µ1 is greater

than µ2 with respect to the MLR ordering on the line

L(ei, Ã), i ∈ {1,X} (Ã1 gLi Ã2), if Ã1, Ã2 ∈ L(ei, Ã̄ ) for

some Ã̄ and Ã1 gr Ã2.

Finally, we are ready to define a submodular function on a

line,

Definition 5 (Submodular Function on Line): For i ∈

{1,X}, a function Æ : L(ei, Ã̄ ) × D → R is submodular

if Æ(Ã, a)−Æ(Ã, ā) f Æ(Ã̄ , a)−Æ(Ã̄ , ā), for ā f a, Ã̄ fLi Ã .

The following is used extensively to compare two beliefs

and is a weaker condition than MLR ordering,

Definition 6 (First Order Stochastic Dominance (FOSD)):

Let Ã1,Ã2 ∈ P(X ), then Ã1 first order stochastically

dominates Ã2 (Ã1 gs Ã2) if

X
∑

i=j

Ã1(i) g

X
∑

i=j

Ã2(i) ∀ j ∈ X .

The stopping time problem with the social welfare cost

of (19) can be decomposed into two cost terms, each

corresponding to the cost terms of the stopping time problem
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for partially observedMarkov decision processes of Theorem

12.3.4 of [5].

C(Ã, 1) =
1

1− Ä
min
u
c′uÃ,

C(Ã, 2) =
∑

y∈Y

c′yByÃ + (d + (1− Ä)ϒ)e1Ã − (1− Ä)ϒ.

(43)

C(Ã, 1) is the expected cost after the decision to herd has

been made. Similarly, the first term in C(Ã, 2) is the expected

cost when revealing private observations. The rest of the

terms come from transforming the value function by the delay

penalty costs [4].

We now state the main assumptions of Theorem 12.3.4 of

[5], which are required for this to hold for the structural result

of (21),
1) (C) Ã1 gs Ã2 implies C(Ã1, u) f C(Ã2, u).

2) (F1) B is totally positive of order 2 (TP2).

3) (F2) P is totally positive of order 2 (TP2).

4) (S) C(Ã, a) is submodular on [L(eX , Ã̄ ),gLX ] and

[L(e1, Ã̄ ),gL1 ].
F1 follows from S4, and F2 follows from the fact that we only

consider an identity transition matrix P. And since the costs

are linear, (C) follows by applying the definition of FOSD on

equation (43) and using assumption (S1). (S) follows from

the definition of MLR ordering on the line, using the fact that

B is TP2 in the first term of C(Ã, 2) and using (S2) and (S3).

Hence, the assumptions are verified, and the structural result

is proved. □

E. PROOF OF OPTIMAL STOPPING THEOREM 4

This proof follows closely from the proof in [2]. FromLemma

1 of [2], the value function can be expressed as,

V (Ã ) = min{0, Ç(y)− g+ ÄEV (Ã )}.

Further, Lemma 2 of [2] shows that the incentive function is

decreasing. Denote Vm to be the m−th iterate of the value

iteration algorithm [5] which iteratively converges to the

value function V (Ã ). The iterates are given by,

Vm+1 = min{0, Ç(y)− g+ ÄEV (Ã )}.

From the definition of first order stochastic dominance and

Proposition 1 of [2] EVm(Ã ) is decreasing in Ã .

Therefore Vm(Ã ) is decreasing which implies V (Ã ) is

decreasing. Let V (0) and V (1) be the value at Ã = [1, 0]

and Ã = [0, 1] respectively which makes EV (0) = V (0) and

EV (1) = V (1).

1) For V = Ç (y) − g + ÄEV (Ã), V (0) =
Ç (e1)− g

1− Ä
>

0 and V (1) =
Ç (e2)− g

1− Ä
< 0.

2) For V = 0, V (0) = V (1) = 0
Therefore, the value function decreases with a positive value

of [1, 0] and a negative value of [0, 1]. Therefore it must be

0 at some time. Since V (Ã ) is monotone in Ã , the set E =

{Ã (2)|V (Ã ) = Ç (y)− g+ ÄEV (Ã )} is convex. We choose a

policy Ã̄∗(2) = { ˆ̄Ã (2)| ˆ̄Ã (2) > Ã(2)∀ Ã (2) ∈ E}.

F. PROOF OF SUBMARTINGALE RESULT THEOREM 5

Consider the suboptimal policy where ϵ > 0,

¿̂(Ã ) =

{

Ç (Ã )− ϵ if Ã (2) f Ã̄∗(2)

Ç (Ã ) if Ã (2) > Ã̄∗(2)
.

From Lemma 3 of [2] Ç (Ã ) is convex in Ã . We know that the

public belief Ãk is a martingale from the proof of Theorem 2.

Let Wk = ¿̂(Ãk−1). By Jensen’s inequality for ϵ → 0,

E[Wk+1|Fk ] = E[Ç (Ãk+1)|Fk ] g Ç (E[Ãk+1|Fk ])

g Ç (Ãk ) g Wk .

Therefore Wk is a submartingale. Consider Hk as the

following sequence,

Hk =

{

0 if Ãk−1(2) f Ã̄∗(2)

1 if Ãk−1(2) g Ã̄∗(2)
.

Now, by properties of submartingales, (HW )k is a submartin-

gale. This is exactly the incentive sequence, which is indeed

a submartingale.

To show the second statement, we use Doob’s martingale

inequality on the submartingale sequence pk ,

P

[

max
1fkfT

pk g C

]

f
E[max(pT , 0)]

C
=

E[pT ]

C
.

Also note that

T
∑

1

pk f T max
1fkfT

pk . Therefore the event

{

T
∑

1

pk g CT } ¦ {T max
1fkfT

pk g CT }.

Hence P(

T
∑

1

pk g CT ) f P(T max
1fkfT

pk g CT ) which

along with the first inequality proves the statement.

APPENDIX

BRIEF EXPERIMENTAL DETAILS

A. HYPERPARAMETERS OF LLM AT INFERENCE TIME

As described in the main text, we use different LLMs.

Large Language models uses default parameters for

inference to control the output. Temperature (default 1)

influences randomness, with lower values producing more

focused responses. Max tokens (default 2048) limits response

length. Top p (default 1) controls diversity, with lower values

making the output more focused by considering only the most

likely words.

1) MIXTRAL-8× 7B-v0.1

We consider the maximum response tokens as 100, a temper-

ature of 0.7, a top-p of 0.7, a top-k of 50, and a repetition

penalty as 50.

2) LLaMA-3-70b

We consider the maximum response tokens as 200, a temper-

ature of 0.7, a top-p of 0.7, a top-k of 50, and a repetition

penalty as 80.
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We use the TogetherAI API to send the prompt to the LLM

and receive the response for LLama3 and Mixtral.

3) ChatGPT-4o

Default parameters were used when inferencing ChatGPT

using their API.

B. DATASET DESCRIPTION

1) AMAZON REVIEW DATASET

Amazon review data [56], including 233.1 million reviews

spanning various product categories. It features detailed

information such as ratings, review text, helpfulness votes,

product descriptions, category information, prices, brands,

and image features. It also has additional transactionmetadata

such as product color, size, and user-submitted images,

as well as more detailed product landing page information

like bullet-point descriptions and technical specifications.

2) MEASURING HATESPEECH DATASET

The Measuring Hate Speech corpus is a comprehensive

dataset designed to evaluate hate speech while accounting for

annotators’ perspectives [54]. It includes 50,070 social media

comments from platforms like YouTube, Reddit, and Twitter,

labeled by 11,143 annotators fromAmazonMechanical Turk.

Each comment is assessed on 10 ordinal labels such as

sentiment, disrespect, and violence, which are aggregated

into a continuous score using Rasch measurement theory.

This approach allows for the statistical summarization of

annotator disagreement and adjusts for labeling strictness,

providing a nuanced measure of hate speech. The dataset also

includes information on the identity group targets of each

comment and annotator demographics, enabling detailed

analyses of identity-related perspectives.

3) JigsawAI UNINTENDED BIAS DATASET

This dataset was used to train the likelihood network since

we assume the actual dataset is not available during real-time

inferencing.

The Civil Comments dataset, comprising approximately

2 million public comments from the now-defunct Civil

Comments platform, provides a valuable resource for inves-

tigating online toxicity. Jigsaw, the sponsor of this effort,

facilitated human annotation of these comments for various

toxic conversational attributes, including ‘‘toxicity,’’ ‘‘severe-

toxicity,’’ ‘‘obscene,’’ ‘‘threat,’’ ‘‘insult,’’ ‘‘identityattack,’’

and ‘‘sexualexplicit.’’ Each comment’s toxicity was assessed

by up to 10 annotators who rated it on a scale ranging

from ‘‘Not Toxic’’ to ‘‘Very Toxic,’’ with the final toxicity

label representing the fraction of annotators who deemed

it toxic. Furthermore, a subset of comments were labeled

for identity mentions, such as gender, sexual orientation,

religion, and race, to analyze the relationship between online

toxicity and identity. This dataset offers significant potential

for developing and evaluating models aimed at identifying

and mitigating harmful online interactions. The dataset can

be accessed here kaggle.com/c/jigsaw-unintended-bias-in-

toxicity-classification/data.

4) FNSPID

FNSPID (Financial News and Stock Price Integration

Dataset) is a large-scale dataset designed for financial

market prediction. It integrates both numerical and textual

data, comprising 29.7 million stock prices and 15.7 mil-

lion financial news articles for 4,775 S&P500 companies

from 1999 to 2023 [78]. Sourced from four major stock

market news websites, FNSPID includes sentiment scores

derived from the news articles, offering a unique resource for

researchers to investigate the impact of news sentiment on

market trends. The metric used in Figure 5 is given by,

Ck+1

Ck
−

Ck

Ck−1
,

where Ck is the close price at time k . The close price is the

stock price at the end of the trading day.

C. SYSTEM PROMPTS

1) FINANCIAL ANALYSIS TASK

For the Financial Analysis Task of Example 2.

‘‘Analyze the article and answer the following questions

based on the content:

Are there indications that recent or upcoming policy

decisions could support market growth? (Yes/No)

Do statements from central banks suggest optimism about

the economic outlook? (Yes/No)

Are there emerging trends or patterns that suggest a shift

in market sentiment? (Yes/No)

Is there evidence of key technical levels acting as support

for major indices? (Yes/No)

Are certain sectors or industries showing stronger perfor-

mance compared to others? (Yes/No)

Do shifts in investor interest suggest a move toward

specific sectors, such as technology or energy? (Yes/No)

Do recent economic data releases (e.g., employment, infla-

tion, consumer sentiment) point toward growth? (Yes/No)

Are any indicators flashing signals that typically correlate

with significant market moves (e.g., yield curves, commodity

prices)? (Yes/No)

Is there evidence of a ‘‘risk-on’’ approach among

investors? (Yes/No)

Do recent market movements suggest increased interest in

safe-haven assets like gold or bonds? (Yes/No)

Are there global or geopolitical events mentioned that

could influence market volatility? (Yes/No)

Could changes in international markets or currencies

impact domestic market trends? (Yes/No)

Are recent corporate earnings or business announcements

likely to influence market sentiment? (Yes/No)

Do specific companies or sectors appear to be driving

recent market gains? (Yes/No) article’’

where article contains the HTML page of the online news

article.
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2) HATE SPEECH CLASSIFICATION TASK

For the Hate speech Classification Task:

‘‘[INST]

Return a JSON with the following format for the given text:

{‘is_insulting’: Bool,

‘is_dehumanizing’:Bool,

‘is_humiliating’:Bool,

‘promotes_violence’:Bool,

‘promotes_genocide’:Bool,

‘is_respectful’:Bool}

Text: {comment}[/INST]’’

where ‘‘comment’’ contains the comment observation

which needs to be analyzed.

3) PRODUCT QUALITY IDENTIFICATION TASK

For the Product Quality Identification Task:

‘‘Analyze the following product review and provide a

summary of the key points:

- Does the reviewmention any specific problems or defects

with the product?

- Does the reviewmention any positive attributes regarding

the product’s durability or reliability?

- Does the review indicate that the productmeets or exceeds

the user’s expectations?

- Would the reviewer recommend this product to others?

review ’’

where review contains the review which is being analyzed.

4) RESPONSE

The responses of the LLM includes the JSON response at

the start and an explanation for the corresponding mapping.

We truncated the output to include the JSON and got

a discrete low-dimensional observation from the textual

comment.

D. OBSERVATION SPACE

1) REDUCING THE OBSERVATION SPACE

We reduce the observation space for the hate-speech classifi-

cation task:

Although the LLM output for text observation is of

cardinality 26 = 64, we reduce by considering the following

order: respectful < insulting < dehumanizing < humiliating <

violence < genocide [54]. The binary map È(z) : {0, 1}6 →

6 = max{j : s.t. z[j] = 1} takes the observation as the highest

severity present in the binary observation.

2) LIKELIHOOD NEURAL NETWORK (RESTRICTED

BOLTZMANN MACHINE)

We use a subset of the labeled dataset to obtain a likelihood

distribution. We use restricted Boltzmann Machines (RBMs)

to approximate the likelihood function P(y|x); we train a

conditional RBM on observations obtained from different

states (as defined in the main text). Each RBM has |Y| visible

units and 4 hidden units. We train the RBM using contrastive

divergence for 100 epochs and generate 1000 samples

using Gibbs sampling with 1000 iterations. We obtain

the approximate probabilities by empirically counting the

samples.
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