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ABSTRACT This paper discusses the theory and algorithms for interacting large language model agents
(LLMAs) using methods from statistical signal processing and microeconomics. While both fields are
mature, their application to decision-making involving interacting LLMAS remains unexplored. Motivated
by Bayesian sentiment analysis on online platforms, we construct interpretable models and stochastic control
algorithms that enable LLMA s to interact and perform Bayesian inference. Because interacting LLMAs learn
from both prior decisions and external inputs, they can exhibit bias and herding behavior. Thus, developing
interpretable models and stochastic control algorithms is essential to understand and mitigate these behaviors.
This paper has three main results. First, we show using Bayesian revealed preferences from microeconomics
that an individual LLMA satisfies the necessary and sufficient conditions for rationally inattentive (bounded
rationality) Bayesian utility maximization and, given an observation, the LLMA chooses an action that
maximizes a regularized utility. Second, we utilize Bayesian social learning to construct interpretable models
for LLMAs that interact sequentially with each other and the environment while performing Bayesian
inference. Our proposed models capture the herding behavior exhibited by interacting LLMAs. Third,
we propose a stochastic control framework to delay herding and improve state estimation accuracy under
two settings: 1) centrally controlled LLMAs and 2) autonomous LLMAs with incentives. Throughout
the paper, we numerically demonstrate the effectiveness of our methods on real datasets for hate speech
classification and product quality assessment, using open-source models like LLaMA and Mistral and
closed-source models like ChatGPT. The main takeaway of this paper, based on substantial empirical analysis
and mathematical formalism, is that LLMAs act as rationally bounded Bayesian agents that exhibit social
learning when interacting. Traditionally, such models are used in economics to study interacting human
decision-makers.

INDEX TERMS Bayesian social learning, large language models, Bayesian revealed preferences, structural
results, optimal stopping POMDPs, self-attention, rational inattention, model collapse.

I. INTRODUCTION

This paper discusses the theory and algorithms for interacting
Large Language Model Agents (LLMAs) by leveraging
techniques from Bayesian inference, stochastic control,
and microeconomics. Specifically, we focus on developing
interpretable models and stochastic control algorithms for
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LLMAs, enabling them to interact sequentially for Bayesian
inference.

We construct interpretable models of LLMAs at two levels
of abstraction, as outlined in Figure 1. First, we model an
individual LLMA as a rationally inattentive Bayesian utility
maximizer, capturing the agent’s decision-making process
under limited attention. Second, we extend this approach to a
sequence of LLMAs engaging in Bayesian social learning or
groupthink, where each agent is a Bayesian utility maximizer.
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Our models are inspired by the self-attention mechanism in
large language models (LLMs) and observed challenges, such
as model collapse, that arise during LLM training.

Furthermore, motivated by the observed bias in the
behavior of interacting LLMAs, we demonstrate that a
sequence of LLMAs engaging in Bayesian social learning
end up making identical decisions, or “‘herd”. To address
this phenomenon, we propose a stochastic control approach,
formulating an optimal stopping problem to balance the
trade-off between privacy and herding, to detect the failure
state. Our approach is designed for two scenarios: (a) when
the LLMAs are centrally controlled, and (b) when they
operate autonomously.

The overarching goal of this paper is to demonstrate
that concepts from controlled sensing and microeconomics,
traditionally applied to human decision-making, can be used
to both understand and synthesize the behavior of interacting
LLMAs [1], [2], [3], [4], [5]. We support our theoretical
findings with numerical experiments using advanced LLMs
for Bayesian inference [6] on real-world data. This paper is
written to engage a broad readership, highlighting applica-
tions of Bayesian agents in diverse fields, including financial
news analysis, e-commerce review evaluation, and online
toxicity detection. These examples underscore the flexibility
of our methodologies for cross-disciplinary applications. The
reproducible code for our experiments is publicly accessible
at github.com/aditj/sociallearningllm.

A. MOTIVATION

LLM agents (LLMAs) are being rapidly deployed for
different applications [7], and to quote Sam Altman, CEO
of OpenAl (creators of ChatGPT, a popular LLM which has
200 million weekly active users): “in 2025, we may see the
first Al agents join the workforce” [8].

LLMAs use a large language model (LLM) to parse the
input and have additional functionality to perform tasks.
LLMs (such as ChatGPT and LLaMA) are neural networks
with billions of parameters trained on trillions of tokens of
textual data to parse long texts for summarizing, compiling
key facts, and generating new text. The key technical
improvement that leads to the efficient deployment of LLMs
is the transformer architecture [9]. The effectiveness of LLMs
on textual texts has made their deployment and adoption
widespread [10]. Many applications have been proposed in
healthcare, online platform moderation, and finance, where
these LLMs are used to parse the textual observations and
suggest decisions based on their outputs [11]. In many tasks,
the outputs of the LLMs are often part of a more extensive
pipeline; for example, the output of the LLMs, either in a
specified format or as embeddings, is frequently used as
inputs to other Bayesian entities, including classifiers [12].
The Bayesian framework also becomes essential in appli-
cations where the LLMs have to output decisions and need
to provide confidence in the decision output. Thus, it is of
interest to study a single Bayesian agent that uses the LLM to

25466

parse text observations, update its Bayesian belief, and take
action. This paper studies such entities and refers to them
as Large Language Models Agents (LLMAs). Constructing
interpretable models for LLMAs is crucial to understanding
and controlling their interaction.

1) INTERACTING LARGE LANGUAGE MODEL AGENTS

It is predicted that by 2030, 90% of web content will be
generated by large language models (LLMs) [13]. In recent
practical implementations, individual LLMs are part of a
bigger system, referred to as LLMAs, and interact with
the content generated by other LLMAs and the external
environment [14]. Furthermore, recent research has shown
how generative models are trained on the data generated
by other generative models can collapse [15]. Therefore,
naturally, LLMAs interact with each other either implicitly
or explicitly.

Hence, controlling the dynamics of interacting LLMAs
is essential to improve the accuracy and trustworthiness
of decisions by LLMAs. To the best of our knowledge,
only a few recent works systematically study the behaviors
of LLMAs using tools from microeconomics and signal
processing [16]. This study aims to bridge this gap by
systematically reviewing LLMAs and the different mathe-
matical frameworks by studying Bayesian social learning in
a sequence of LLMAs to achieve Bayesian inference.

2) INTERPRETABLE ENGINEERING OF LLMAs
Many different third-party services have already started
providing various kinds of LLMAs as a service, including
Agentforce by Salesforce and IBM Al agents [17]. The
underlying intelligence engine of these third-party agents is
an LLM or a vision language model (VLM). The LLMAs
are used in personal applications for coding, shopping,
and scraping data and in enterprise applications for getting
insights on user activity and automating industrial workflows.
Therefore, it becomes imperative to study interpretable
models for these agents since many of the proposed
applications for these agents involve sensitive information
(like personal records, financial information, bio-medical
data, and personal preferences). By interpretable, we refer to
models that facilitate a transparent understanding of complex
models through clear and explainable representations of
their decision-making processes. The workflows of the Al
agents also include making decisions, and the interpretability
and reliability of these agents become vital for them to
be trustworthy. Therefore, mathematical models are needed
to aid in engineering and deploying LLMAs. To this end,
we propose a LLMA composed of an LLM and a Bayesian
engine, which by construction is interpretable. Further,
we use Bayesian revealed preferences1 to reconstruct a
Bayesian utility function for both our constructed LLMA and
for off-the-shelf LLMAs.

'The framework of Bayesian revealed preferences is also referred to as
inverse optimization or inverse reinforcement learning.
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FIGURE 1. Summary of the proposed contributions: We discuss the different blackbox models for LLMA and how LLMAs
can be used as a sensing mechanism to perform Bayesian inference. Part 1 models the LLMAs as a rationally inattentive
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hate speech classification. Part 2 discusses how Bayesian social learning in a sequence of LLMAs can be used for
sequential state estimation. However, in Part 3, we show that the agents can perform the same incorrect action due to
herding. We then discuss a stochastic control approach to delay herding when LLMAs are centrally controlled and when

they are autonomous but are incentivized.
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FIGURE 2. Engineering with large language model agents (LLMAs): We propose engineering with LLMs
on three different levels: a) First, we construct LLMAs with an LLM attached to the Bayesian engine.
The LLM acts as a sensor for the text input and outputs interpretable low-dimensional outputs, which
are used by the Bayesian engine to produce a state estimate. b) Second, we formulate necessary and
sufficient conditions for a LLMAs to be a rationally inattentive Bayesian utility maximizer (RIBUM).
We also present algorithms to reconstruct feasible utilities and rational inattention costs if the LLMA
is indeed a RIBUM, attributing the LLMA with an interpretable microeconomic model. c) Finally,

we demonstrate how a sequence of LLMAs can efficiently perform sequential Bayesian social learning
by controlling their outputs to delay herding optimally. Our Bayesian social learning models can be
extended to study Bayesian social learning in a network of LLMAs.

3) BAYESIAN INFERENCE FROM MULTI-MODAL DATA
STREAM

In various applications, like online e-commerce platforms,
video streaming platforms, and social networks, there is
a rich stream of multimodal data available using text,
images, and videos. Different inference tasks involve fusing
information from various data streams to get actionable
insights. With the recent progress in deep learning, many
of the traditional signal processing methods are being
replaced with contemporary methods that use LLMs and
VLMs. However, just using static models is not sufficient
to model the dynamics of real-life settings, e.g. on online
platforms, and underlying dynamics are better modeled in
a Bayesian framework. Therefore, motivated by practical
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applications, we propose the construction of LLMAs which
can perform Bayesian inference sequentially on a data stream.
This complements continual learning, which deals with
continually learning new tasks without forgetting what was
learned previously [18].

B. MAIN RESULTS

This paper builds on Bayesian revealed preferences from
microeconomics (inverse reinforcement learning), sequential
Bayesian estimation (from signal processing), and structured
stochastic control to construct interpretable models and
synthesize interaction of LLMAs. The impact of our results
on more efficient, systematic, and interpretable engineering
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FIGURE 3. Organization of the paper: The paper is divided into three parts. Part 1 deals with interpretable models for an individual LLM agent.
Part 2 extends the models to a social learning setting where LLM agents interact with each other to perform Bayesian inference. Part 3 proposes

stochastic control methods to delay herding in a sequence of LLM agents.

of LLMAs is summarized in Figure 2. The main contributions
of this paper are:

1) We propose constructing a LLMA as a composition
of a large language model (LLM) sensor,” which acts
as a low-dimensional map from the text space, and a
Bayesian engine, which uses the measurement from
the LLM to update the posterior and act optimally.
We show how this model is useful for interpretable
Bayesian inference with applications in sequential data
on online platforms.

2) To obtain an interpretable utility function for a LLMA,
we provide necessary and sufficient conditions in
Theorem 1 for a LLMA to be a rationally inat-
tentive Bayesian utility maximizer (RIBUM). For a
LLMA who is a RIBUM, we propose Algorithm 2
and Algorithm 3 to reconstruct the max-margin and
sparsest utility estimate, respectively. Our methods
are applicable to both our LLMA and off-the-shelf
LLMA:s.

3) We study Bayesian social learning in a LLMAs,
sequentially estimating a state given text observations
and in Theorem 2 show that such a sequence of LLMAs
form an information cascade and herd in their actions.
We show that this is true for both when no private
observations are shared and when a finite number of
private observations are shared. Further, we provide a
detailed analysis of the effect of the quality of results
from LLM of the LLMA and the number of private
observations.

4) To delay herding in a sequence of LLMAs, we formu-
late an optimal stopping problem for two regimes:

a) when the LLMAs are centrally controlled by an
entity b) when the LLMASs are autonomous but are
incentivized by an entity. We show in Theorem 3

2We consider LLMs as social sensors and not physical sensors since they
do not sense physical quantities like temperature but virtually analyze text
and multimodal data to provide observations.
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5)

and Theorem 4 that under certain assumptions on the
observation matrix and cost functions, the optimal
policy for the partially observed Markov decision
process of both the optimal stopping problems has a
threshold structure. We then propose a policy gradient
algorithm in Algorithm 7, which exploits the structural
results to estimate the optimal policy parameters.
The algorithm does not need access to the system
parameters, is computationally efficient, and can track
changes in the system.

We finally present several numerical experiments to
demonstrate the efficacy of our proposed methods.
We show how our constructed LLMA can be used
for interpretable Bayesian inference for analyzing
financial data. We show how the Bayesian revealed
preferences framework can estimate the utility of
an off-the-shelf LLM when used for hate-speech
detection. Finally, we show numerical studies on two
examples of sequential Bayesian inference: hate speech
peddler identification and product quality analysis,
to demonstrate herding of LLMAs, and the applicabil-
ity of our structural results.

To summarize, this paper attempts to answer the following
questions with respect to interacting LLM Agents,

1y

2)

3)

4)

How can LLMAs be constructed so that they can be
used for sequential Bayesian inference such that the
observation and outputs are interpretable?

What is a principled approach to analyze whether
a LLMA is a Bayesian utility maximizer and also
reconstructs its utility function given only blackbox
access?

How does one systematically study Bayesian social
learning in multiple interacting LLMAs to explain
observed behaviors such as herding and model col-
lapse?

How can herding in (centrally controlled or autono-
mous) LLMAs be optimally delayed so that the agents
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optimally switch between preserving privacy and
improving estimation to achieve sequential detection?

C. ORGANIZATION

This paper is organized into three parts, and the schematic of
the organization is given in Figure 3. Part I discusses the inter-
pretable model for a single LLMA and attempts to answer
questions 1 and 2 above. Section II discusses the related work
in large language models, agents using LLMs, and current
interpretable models for Bayesian inference. Section III
discusses the mathematical model used for modeling LLMAs
in this paper and motivates the different components involved.
Section IV gives the necessary and sufficient conditions
for the LLMAs to be rationally inattentive Bayesian utility
maximizers (RIBUM). It further proposes algorithms to
estimate the utility function for a LLMA which is a RIBUM.

Part II discusses interpretable models for interacting
LLMAs and attempts to answer question 3. Section V
discusses the mathematical framework of Bayesian social
learning in LLMAs and proves that a sequence of LLMASs
form an information cascade in finite time. Section VIII
discusses a stochastic control problem for the optimal
stopping time problem to achieve quickest time herding with
minimal loss to the privacy of LLMAs. Section VI discusses
interpretable models to explain model collapse and data incest
in LLMAs using word-of-mouth and asynchronous social
learning.

To decrease the bias when a sequence of LLMAs perform
Bayesian inference, Part III deals with stochastic control for
delaying herding in interacting LLMAs performing Bayesian
sequential learning proves structural results, and proposes a
policy gradient approach. Section IX considers the problem
of a central controller optimally optimizing a sequence
of autonomous LLMAs to achieve the state estimation by
optimally controlling herding. Section X proposes a policy
gradient based approach to approximate the optimal policy,
which has a threshold switching curve. Numerical results on
real-life text classification tasks and related applications are
discussed in Section XI. Section XII concludes the paper with
discussions on future works, open problems, and research
opportunities. The appendix contains the proofs and details
about the numerical experiments.

We emphasize that the paper is built around a coherent
framework with the unifying theme of building interpretable
models for interacting LLMAs using Bayesian social learning
and powerful generative models from behavioral economics.
For the ease of the reader, we have included a motiva-
tion and a discussion subsection in each section, which
grounds the different aspects of LLMAs to a real-life
application and different microeconomics and statistical
signal processing tools presented in the section. We also
provide different block diagrams and illustrative examples
to further aid the reader. All the results reported in this
paper are fully reproducible with code downloadable from
github.com/aditj/sociallearningllm.
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Il. BRIEF LITERATURE REVIEW AND RELATED WORK

In this section, we review related work on LLMs,3 LLMAs
and social learning using LLMs. We first provide a brief
background on LLMs and discuss the different applications
and models for LLMAs. We provide motivation for the
interpretability of the LLM agents. Finally, we review
literature in sequential state estimation setup studied in
this paper and provide motivation for using a sequence
of contemporary LLMAs in a classical Bayesian inference
setting. We also review applications of sequential Bayesian
inference using LLMAs. Table 1 summarizes some of the
related work.

TABLE 1. Summary of Related Literature studying LLMAs and their
interaction: There has been work in engineering, sciences, and
economics, which motivates a careful study.

Area Topic Papers

) Survey (191, [20]
Large Language Models Applications [21]-[24]
Survey [25]-128]

LLM Agents (LLMAs) Applications [14], [29]-[31]
Networks [32]-(38]

General [21-{4], [39]

Bayesian Social Learning LLMs [21], [40]-{42]
Incentivization [17], [19]
Mechanistic [43], [44]

Interpretability Glass Box Models [45]

blackbox Models [46], [47]

Sociological Fairness [48]-[51]

TS ) Product Quality Identification  [52], [53]

. sipﬂléﬁil;?g:;i Iﬁ%ﬁfn‘z;on Hate Speech Classification [16]. [54]
q Recommendation [55], [56]

A. BACKGROUND ON LLMs

Large language models (LLMs) have become omnipresent in
various industry applications, given the drastic improvement
in compute availability and rapid development of open
and closed-sourced models [20]. They are being rapidly
deployed for various applications, including education,
information retrieval, gaming, recommendation systems, and
understanding graphs [21], [22], [23], [24].

The primary reason for the proliferation of LLMs is that
they can take a high-dimensional multi-modal (text, images,
audio etc.) data input and provide useful inferences about
them. This is possible because they are deep learning net-
works (transformer architecture) with billions of parameters
trained on massive amounts (in the order of petabytes)
of data (CommonCrawl, etc.) using extremely fast GPUs
that can parallelize computations efficiently. There are two
different classes of LLMs: a) open source LLMs like LLaMA
and Mistral [57], [58] and b) closed source LLMs like
ChatGPT and Claude. Open source LLMs make available
the underlying deep learning architecture that they use, some
even share the data that the LLM is trained on; closed-
source LLMs on the other hand only provide an inferencing
interface, where the LLM can be asked different questions,

3In this paper, LLMs also refer to the various transformer architectures
that process multi-modal data, including images, audio, and documents.
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the answer to which is provided by the LLM. The methods
and framework of our paper only require blackbox access to
these LLMs and are generally applicable to both classes.
Although the adaption of LLMs is rapidly increasing, from
a safety and reliability perspective, their deployment in sen-
sitive applications like healthcare, finance, and defense still
poses challenges [20]. Even in general-purpose applications,
LLM-based chatbots provide spurious information, a phe-
nomenon referred to as hallucination [20]. There have been
different approaches to ensure that the outputs of the LLMs
are reliable and interpretable, and many of the challenges
specific to the new paradigm require revisiting traditional
interpretability literature [59]. As reviewed in [60], one of the
approaches is to improve the reasoning capabilities of LLMs
so that the LL.Ms provide a descriptive reason for the output.
Another school of thought is to mechanistically understand
the transformer architecture and training procedure that is
the backbone of an LLM [43], [44] to better understand the
working and eliminate the sources of bias, if possible.

B. LLM AGENTS

Standalone LLMs are powerful tools for many applications,
but there is strong motivation to consider networked LLMs
as part of complex systems and integrate them into existing
workflows. These networked LLMs are often given function-
ality to interact with the virtual environment and are referred
to as LLM agents (LLMAs) [25]. There are two distinct
features that LLMAs have that make them different from
LLMs:

1) Decisions: In the workflows that the LLMAs are
used in, they are provided functionality (agency) using
different mechanisms, including function calls

2) Communication: The LLMASs are allowed to commu-
nicate with other LLMAs, to exchange information.
Often, tasks are also broken into smaller sub-tasks and
are performed parallelly and sequentially by different
LLMAs leading to different topologies of LLMAs [26].

1) APPLICATIONS OF LLM AGENTS

An important application LLMAs are used for is program-
ming, primarily because of LLMs ability to generate code
given a text prompt. LLMAs are used to automate different
parts of the software lifecycle, including development,
deployment, testing, and fixing bugs [26]. Other applications
propose using LLMAs in healthcare for counselling [28],
financial trading [27], automating customer service [17] and
shopping assistants [31].

2) MODELS FOR LLM AGENTS

The different components used in the standard model of
a LLMA include a memory, retrieval mechanism, action
sets, and an environment. [32] studies different cognitive
architectures using these components for LLMAs. There
has been a lot of work to improve the capabilities of these
components in LLMAs, using a dynamic context [42] and
using self notes to perform continual learning [61]. However,
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we propose augmenting the LLM with a Bayesian engine to
perform sequential Bayesian inference on a stream of data.
The Bayesian engine model proposed in this paper can also be
used for more general tasks, as we discuss in the conclusion.

3) NETWORKS OF AGENTS

Since many of the LLM agents interact with other agents
directly or through content generated by them, there is a
need for more systematic and mathematically rich blackbox
models for LLMs and LLM agents (LLMAs). Such models
help understand their behavior and eventually control it to
ensure reliability. Often, the collaboration of LLMAs are
modeled as a directed graph [25], [36], [37], which [34]
proposes dynamically adapting depending on the task. There
are various different programmatic frameworks where the
LLMAs can be abstractly programmed to perform different
tasks [35], [62]. Some of these frameworks even allow
making these agents autonomous [14]. The methods in this
paper deal with a line graph topology of LLMAs, which
perform sequential Bayesian estimation. The setup studied in
this paper can be extended to more general graph structures,
and different issues such as data incest can be studied.

C. BAYESIAN SOCIAL LEARNING IN A SEQUENCE OF LLM
AGENTS

1) MULTIPLE BAYESIAN AGENTS SEQUENTIALLY
ESTIMATING A STATE

The interaction of multiple such Bayesian agents, each
receiving a private observation, is motivated by privacy,
improved detection, and finite context length. If the same pri-
vate observation (even the low-dimensional representation) is
used, the LLM can be fine-trained on this data, which might
contain sensitive information [39]. Also, different LLMs can
be given a diverse set of contexts, which enables reducing the
bias involved with their decisions [19]. Also, practically due
to the finite context length, the observations can be considered
private with respect to consecutive LLMAs evaluations.

2) FRAMEWORK OF BAYESIAN SOCIAL LEARNING

Recent work has looked at social learning in LLMs using
a teacher-student framework [40], but this work was in
a static setting where the LLMs do not have a belief
that they adaptively update. In general, sequential social
learning in Bayesian agents has been studied extensively [3],
and our work formalizes the problem of Bayesian social
learning in LLMAs. The theoretical results presented in
this paper have been studied before in the context of
distributed Bayesian sensors in [2] and [4]. Compared
to [2], [4], we view the LLMAs as interpretable Bayesian
sensors and provide a more comprehensive outlook. We also
consider multiple observations being shared and provide a
concentration inequality (Theorem 5) for overspending the
incentive with respect to a budget constraint. Recently [63],
looked at detecting information cascades using deep learning.
Although in this paper we focus on delaying an information
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cascade to improve estimation accuracy, methods similar
to [63] can be integrated with our approach.

3) INCENTIVIZATION OF THE LLMAs BY A CENTRAL
CONTROLLER

Recent research has studied modeling LLMs as autonomous
agents and making LLM part of bigger autonomous agents,
including robots, self-driving cars, and programming co-
pilots [30], [64]. Such autonomous agents can be leased
from third-party services at a unit cost. The incentive can
also be looked at from the following perspective: providing
more context to the same LLM can lead to a more accurate
output [19] but increases the cost of processing the query.
Third-party LLMAs often offer a tiered pricing structure,
where higher pricing provides access to more accurate LLMs.

D. INTERPRETABILITY AND SOCIAL FAIRNESS

There has been recent work in augmenting the LLM with
an explainable artificial intelligence (xAI [50]) system to
provide more interpretable outputs as in [45]. This work is
more aligned with the latter, in which we propose using the
LLM as a sensor that provides interpretable low-dimensional
outputs, used by a Bayesian engine to estimate the state.

However, we use an interpretable Bayesian model to
perform sequential Bayesian inference from text observations
of an underlying state, whereas [45] create an XAl model
with decision trees and n-grams models using outputs from an
LLM. Another such work is [65], where the authors propose
training a separate concept neural network that uses the
output of an LLM to interpretably classify text embeddings.
This approach can complement the work in this paper when
the setting is dynamic. Our work uses tools from revealed
preferences and social learning to analyze the behavior of
individuals and interacting LLMAs from a microeconomic
lens.

Further, our focus is also on designing LLMAs, which
are safe, reliable, and fair, goals which are aligned with
operationalizing responsible Al [51]. This becomes challeng-
ing to do since LLMAs have been known to show biases
which are inherent to human beings like conformity [66]
and bias towards different attributes [67]. These effects will
be more prominent when the LLMAs interact with each
other in different scenarios like a Mindstorm [33] or a
language model cascades [68]. Finally, the need to study
interpretable models for LLMAs is motivated by the rise of
unified agents [69], which are a representation of a trend in
artificial intelligence that the different models are converging
to a single efficient model [70]. This paper therefore tries
to systematically understand Bayesian social learning in
LLMAs, to help prevent undesirable phenomena like model
collapse [15], [38].

There has been substantial work in the fairness of
the machine learning models [48], and even evaluating
large language models for different measures of social
fairness [71]. However, [49] recently highlighted how it is

VOLUME 13, 2025

extremely difficult to benchmark LLMs on existing fairness
metrics because of the way LLMs are used. This becomes
even more challenging for LLMAs, where the agents further
have functionality and can also communicate with other
LLMAs. Therefore, the focus of our study is to construct
interpretable models for LLMAs, which can be used to
understand the decisions of LLMAs. This understanding can
help construct more suitable societal fairness metrics. Our
work additionally has relatively mild assumptions on the
utility/cost function of the LLMAs, and hence can be adapted
for different sociological costs.

E. APPLICATIONS OF SEQUENTIAL STATE ESTIMATION
USING BAYESIAN SOCIAL LEARNING IN LLMAs

We detail examples of real-life problems where textual obser-
vations of the state are available and sequential Bayesian
learning in LLMAs is used to perform state estimation.

1) HATE SPEECH PEDDLER IDENTIFICATION ON SOCIAL
NETWORKS

Identifying hate speech4 and toxic content has been studied in
various contexts, e.g., in reducing unintended bias, detecting
covert hate speech, and mitigating hate speech on online
platforms [73]. [54] have looked at how to quantify the
intensity of hate speech and created labeled datasets. In [74],
the authors looked at controlling federated learning for hate
speech classification. In this paper, we look at the problem
of Bayesian agents identifying hate speech peddlers by
sequentially parsing comments from users using an LLM.

2) FINANCIAL NETWORKS

In financial networks, LLMs can be used as sensors to parse
textual information, including news articles, opinions on
social networks, and financial reports. This can be especially
useful for making decisions based on the low-dimensional
observations from the LLMs. This process can be automated
using LLMAs, based on algorithmic rules [27]. But, since the
actions of LLMAs of a single entity affect the environment
(market), such a sequence of agents can herd in their
decisions, leading to a financial bubble. This has been studied
classically in human traders [3] and makes the study of
sequential Bayesian learning in LLMASs interesting.

3) PRODUCT QUALITY IDENTIFICATION

One of the issues on e-commerce platforms is to identify
poor quality products early on; however, just using numerical
ratings can be uninformative, especially when the number
of ratings is less. However, there is a lot of information
contained in the descriptive reviews of the product, which one
can efficiently extract using LLMs. Therefore, a sequence of

4There is an active debate on the definition of hate speech and the
tradeoff between free speech and hate speech [72]. Hence, to circumvent this
discussion, we use hate speech as an exemplary case study of our methods,
and the definition of hate speech is implicit from the source of the dataset
in the experiments. Our techniques can be applied to different definitions of
hate speech and other applications as is described later.
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LLMAs can efficiently analyze the reviews of a product to
identify if the product is of good quality or not. This is an
extended and sophisticated version of opinion mining, which
has shown to be effective in sentiment analysis on online
platforms [53].

4) PERSONALIZED RECOMMENDATION SYSTEMS

Another primary application of LLMs is in recommendation
systems [55], where the LLMs act as a natural language
interface between the user and the item (e.g., movies,
products) database. LLMAs can be further used to enhance
the recommendation quality by analyzing the past activity
of the user and of the user’s social network. However, using
LLMAs directly raises privacy concerns since the users
information is sensitive. This paper proposes one way to deal
with this, by ensuring that each LLMAs has a different private
observation.

F. COMPARISION TO PRIOR WORK
The primary focus of this paper is to employ ideas from
statistical signal processing and microeconomic theory to
model and analyze interacting LLMAs. However, given the
domain-specific constraints that are inherent to LLMAs,
we claim the following modeling and theoretical innovation
over prior work in Bayesian social learning and interpretable
utility reconstruction: a) There is a hierarchical observation
structure inherent to the Bayesian sensor model of an LLMA
considered here, whereas the Bayesian revealed preference
framework only has a single observation likelihood [1]
b) There has been limited research on interpretable models
for LLMAs. However, in contrast to the other interpretable
machine learning literature, including glassbox models,
we reconstruct a utility function and an information acquisi-
tion cost given only blackbox access to the LLMA and is more
closely aligned to [46]. c) We study the effect of sharing more
private observations and a better observation likelihood on
herding in a classical Bayesian social learning setting [3], [75]
d) The social learning framework considered here allows for
LLMAs with different LLMs and is presented for the specific
application of Bayesian inference in contrast to [40].

Part I: Analyzing a Single LLM Agent

In Part I of this paper, we consider a single LLMA in
isolation, where we first construct a Bayesian sensor model
for a LLMA which comprises an LLM and a Bayesian
engine. Then, we look at the LLMA as a rationally inattentive
Bayesian utility maximizer and propose methods to recon-
struct utilities for both our constructed Bayesian LLMA and
more general LLMA. The motivation for this modeling from
this perspective from the self-attention mechanism inherent
to LLMs. Part I of this paper comprises of Section III and
Section I'V.

lll. LLM AGENT AS A SOCIAL SENSOR

Motivated by interpretable Bayesian inference on online
platforms using LLMAs this section discusses the Bayesian

25472

sensor model we consider for a single large language
model agent. We propose the model of LLMs as a sensing
mechanism as a map from a high dimensional space (e.g., text
prompt) to a low dimensional space (e.g., structured outputs).
The LLMs are equipped with a Bayesian engine and are
referred to as an LLM agent (LLMA), which updates the prior
regarding the state to be estimated using the text observations.
This proposed model is depicted in Figure 4.

The different aspects of the mathematical model for
the LLMAs are discussed, and the utility of a LLMA is
introduced, which can be reconstructed for a blackbox LLMA
using the Bayesian revealed preference framework discussed
later. We discuss how the framework and the results of the
paper can be extended to contemporary models like vision
language models (VLMs). In essence, this section, therefore,
shows how LLMA acts as a social sensor, which can be
applied to sophisticated settings such as online platforms
where physical sensors do not work to sense the underlying
state from observation obtained by the interaction of humans.

A. MOTIVATION. LLM AGENT FOR INTERPRETABLE
SENTIMENT ANALYSIS

Since in many contemporary applications, LLMs are used
for inferring the underlying state given a text observation;
we construct an LLM (which acts as a likelihood function)
equipped with a Bayesian engine, both of which act as a
LLMA to perform Bayesian inference on textual data with
applications in sentiment analysis on online platforms [53].

We further motivate the construction of such a Bayesian
sensor model for an LLM from the point of view of
interpretability, reliability, and controllability. There has
been a lot of work done to improve the interpretability
of the output of a standard LLM [59]. In the blackbox
setting, the approach proposes asking the LLMs to provide
a reason in addition to the output [60]. This works well in
practice for simple applications, however when sequential
Bayesian inference needs to be performed on millions of
text observations interpreting the reason itself becomes a
tedious task. Therefore, we propose using the LLMs as a
low-dimensional map from the high-dimensional text space
by designing prompts that are useful in analyzing. The LLMs
can either be explicitly controlled using the system prompt or
their outputs can be restricted to a certain state.

A Bayesian engine then uses these low-dimensional
variates to update the belief, which is an easier task to do
than on the high-dimensional text data due to the curse of
dimensionality. This helps in using the LLMA in a reliable
way since the LLMASs can provide confidence in the actions
they would take given the observations. Such a model of
LLMA is also controllable with respect to the cost function
associated with the Bayesian engine, as we illustrate below.

Notation: x' denotes the transpose of vector x. diag(x’)
denotes a diagonal matrix with x as diagonal entries. Capital
letters (e.g. B) denote matrices and By, denotes yth row of the
matrix.
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FIGURE 4. Brief schematic of a large language model agent as a sensing mechanism for Bayesian Inference: LLM Input is
composed of the system instruction prompt, which is also the control; the user prompt, which is a private observation;
and the in-context examples generated from the previous LLM agents are the past actions. Based on the input, the LLM
outputs an intermediate textual output. The Bayesian engine uses a likelihood function and past actions to select an
action maximizing the expected utility. If utility function is not explicitly given, Bayesian revealed preference is used to
obtain a set-valued estimate using an input-output dataset. The paper discusses variations of this model with application

in Bayesian sentiment analysis.

B. BAYESIAN UTILITY MAXIMIZATION MODEL FOR LLMA
We consider a LLMA composed of a large language model
(LLM) and a Bayesian Engine.

1) ABSTRACTING A LARGE LANGUAGE MODEL (LLM) AS A
SENSOR

First, we give a mathematical model for a general-purpose
LLM. For this paper, we consider blackbox access to the
LLM and hence both open-source LLMs like LLaMA3 [58]
and closed-source LLMs like ChatGPT. One of the ways to
model a blackbox LLM is as an input-output block. The input
to an LLM is a single text prompt, which we decompose
into three things: the system prompt, which we refer to as
control, the context, and the user prompt, which we refer to
as observation.

Assume that the dictionary of all words of the LLM
(tokens®) is given by D, and this dictionary also includes
the blank word. The time index is given by k = 1,2,....
A blackbox LLM can be viewed as an input-output block.

The control or the system prompt is an input to the LLM,
often prepended before the in-context examples and the user
prompt, which is used to give instructions to the LLMs on
how exactly to respond. This is used to control the behavior
of the LLM and ensure that the LLM behaves (outputs) as
required. We assume a control of length mconyor and at time
k denote the control by ¢y € D"'eonrol,

Following the system prompt, the next input is a context
to the LLM. This context could contain external information
and examples that are time-dependent and may depend on
previous interactions, which is dynamic and can not be put as
a part of the system prompt. We consider a context of length
Meontext and at time k denote it by i« € Deonext,

Finally, the user prompt, which we also refer to as the
private observation, is the text sequence to which the LLM
is supposed to give a response conditioned on the control c
and the context k. The private observation at time index k is

5 Although the input of the LLM is text, in most of the architectures, the
text (or more generally multi-modal data) input is first decomposed into
different tokens and the tokens are processed, but since we consider the
LLM as a blackbox, our interpretable models abstract these implementation
details.
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given by z;x € V. Where )’ is the text observation space and
for a maximum length of myger, )’ = D™ser,

We consider an LLM, which is pre-trained on trillions of
tokens of text to autoregressively generate the next-token.°
For developing a token of length 1, the output of the LLM is
given by a conditional probability distribution,

d(ck, ki, zk) = P(lek, ki, zk)s

where z € )’ is the user prompt, ¢y is the system prompt and
Ky is the context. Therefore the function ¢,

¢ : ’Dmcomml e Dmconlexl e Dmuser — P(D)’

outputs a probability distribution over the dictionary D. For
generating an output of an LLM with length > 1, we consider
a function g which takes in the function ¢ and outputs tokens
from the space D"ur | where Moutput 1S the maximum length
of the output. The output of the LLM, denoted by y is obtained
asy = g(¢, ck, k., z). Therefore, we can represent a black
box LLM with the following tuple,

L = (D, meontrol, Meontext> Muser Moutput ?, 8. (D

Bayesian inference involves estimating an unknown state
x € X where X is the state space using observations of
the state. If we are performing Bayesian inference using
text observations, LLM can be a powerful tool, as illustrated
below in Example 1 and Example 2. The LLM can be directly
used to infer an underlying state. In fact, it is already used
to do so, as highlighted before in the motivation section.
However, we now remark on the challenges with directly
using an LLM using the formalism described above:

1) Current Large Language Models (LLMs) in production
lack the ability to explicitly express confidence in their
generated outputs. This limitation significantly hinders
their deployment in critical domains like finance and
healthcare, where system safety and reliability are
paramount.

2) Furthermore, the absence of explicit confidence scores
presents a significant challenge for human-in-the-loop

OThere are other techniques of generating the token, but they can be
accommodated by a suitable augmentation in the mathematical formulation
presented here.
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systems. These systems rely on the ability to seamlessly
integrate human expertise when an LLM’s confidence
in its response falls below a certain threshold. Without
this crucial feedback mechanism, it becomes difficult
to effectively leverage human oversight. Finally, exclu-
sive reliance on a single LLM for critical tasks is
inherently risky. LLMs are vulnerable to adversarial
prompting, where carefully crafted inputs can induce
them to generate incorrect or misleading outputs.
This vulnerability underscores the need for robust
mechanisms to assess and mitigate the risks associated
with LLM-based systems.

3) For a task where the LLMs are being used to infer the
state given a sequential stream of text observations, the
LLMs alone do not explicitly make use of the temporal
nature of the observations and can not characterize how
many of such observations are enough to be sufficiently
confident in the estimate of the underlying state.

Therefore, we propose using the LLM as part of a
mechanism (LLMA) where, in addition to the LLM, there
is a Bayesian engine that tackles the challenges enlisted
above. This ensures that the LLMA acts not just based on
the Bayesian estimate of the underlying state, making the
decisions of the LLMA more interpretable.

To this end, we propose using the LLM as a map from
the high-dimensional space YV’ to a low-dimensional space
Y which takes value from whose cardinality ¥ < D"user,
We construct a Bayesian engine composed of two probability
distributions, the prior of the state, # € P(X) and the
likelihood of a low-dimensional observation O : X — P()))
and is a conditional probability distribution. We use B and O
to denote the observation matrices in the rest of the paper.

From an implementation standpoint, there are different
ways we can take to ensure that the output of the LLM is
from a low-dimensional space. The low-dimensional output
could be a structured output like JSON or a Python dictionary.
One way is provide the LLMs with a few examples of the
type of outputs we want, for instruction-tuned LLMs this
technique has been shown to be very useful [10]. Next we
can restrict the dictionary space of the output and reject
text tokens not in the restricted dictionary, this is refered to
as restrictive or constrained decoding and has been shown
to be very effective [76]. Additionally, a lot of LLMs,
including ChatGPT, give explicit access to structured outputs
(platform.openai.com/docs/guides/structured-outputs).

The following example illustrates how LLMs can be used
to map the text space to a low-dimensional space. We discuss
how this low-dimensional space can be constructed by an
analyst or engineer so that the posterior computed by the
Bayesian engine is interpretable.

Example 1: Consider the text dataset of interactions
between a customer-service agent and a customer (either a
transcript of a call or a chat interface). A service quality
engineer is interested in analyzing whether or not the problem
of the customer was resolved. The engineer could use an
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LLM directly and design a prompt to assess if the issue
was resolved. However, there is no interpretability, and if the
engineer asks the LLM to give the reason for its answer, then
it becomes more difficult for the engineer to analyze. The
engineer could, however, design a system prompt so that the
LLM answers a specific set of binary (yes-or-no) questions.
For example, the engineer could ask the following set of
questions:
1) What part of the product was the user concerned about?
2) Did the user understand the solution being provided?
3) How satisfied did the last three messages of the
customer seem? (attaches last three messages)
4) Is the solution the best possible solution for the
problem?
Note that even if we assume the dictionary has [D| =
100 words, and the conversation has length myser = 500, the
dimension reduction is substantial from 500'% to 2%,

2) CONSTRUCTION OF BAYESIAN ENGINE
Owing to dimensionality reduction because of an LLM
sensor, we discuss next how a Bayesian engine uses the
low-dimensional output to provide an interpretable model
based on which an optimal action can be taken. Note that in
general, LLMA need not just be used for Bayesian inference
but for more general tasks like coding, shopping assistants,
research writing, etc., we construct the Bayesian engine to
be more general purpose and detail on how a particular cost
function leads to Bayesian inference. Also, note that each of
the general tasks involves multiple Bayesian inference steps.
For a state x € X, the LLMA receives a text observation
y' € ) which the LLM of the LLMA parses and provides
a low-dimensional output y € ). The LLMA has a
Bayesian engine which has a prior on the state space given
by 7 and an observation likelihood O. The LLMA uses
the low-dimensional output from the LLM to compute the
posterior using Bayes’ rule,

Oy,xn(x)
Zx Oy,xﬂ(x) ’

Let U denote the finite action space of the LLMA. Let r :
X x U — R be the utility that the Bayesian agent receives
from taking action # € ¢/ when the underlying state x. Then,
the Bayesian agent performs the action, which maximizes the
expected utility under the posterior distribution.

T(mw,y) =Por(xly) =

u = arg max Z r(x, w)Po 7 (x]y).
ueld xeX

Therefore, our LLMA can be described as the following tuple,
LLMA(L, , O, 1), (2)

where £ is an LLM of the form (1), 7 is the prior over the
state, O. We make the following remarks on our interpretable
sensor model construction of a LLMA.

Remark 1: We described the operation of Bayesian infer-
ence on a single observation when there is a stream of
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FIGURE 5. LLMAs can be used to detect and analyze the change in financial indicators (difference of close prices) by
parsing financial news to extract 16 interpretable features in Example 2. We analyze the news articles from 03/2020 to
08/2020 corresponding to the ~AApPL stock. We query the LLM for 16 binary with different features, including whether the
news article indicates optimism about the market and whether there is investor interest in the stock. The interpretable
features can be used to analyze the stock (and subsequently for Bayesian inference), as illustrated by the difference in the

ratio of the stock prices across days.

observations yi, ..., yx then the prior is updated after every
step with the computed posterior wg+1 = 7 (7g, y).

Remark 2: In Section V, when we describe Bayesian
social learning in a sequence of LLMAs, we will note that
the equations of the social learning protocol are the same as
the above equation. However, the prior of all the subsequent
agents is updated based on the actions of agents subsequent to
them (even when the rest of the agents do not observe a private
observation at any given point), which leads to herding.

Remark 3: For the case of Bayesian inference of the states,
the action space is taken to be i/ = X', and one of the possible
utility functions is the indicator function r(u, x) = 1(u = x).

Remark 4: The framework presented in this section can
be extended to multi-modal models like the vision language
models (VLMs [77]) for more general tasks by accordingly
modifying dictionary D and output generation mechanism g.

Remark 5: The likelihood O can be computed by using the
LLM on a set of synthetic or public offline data where we
simulate the state and use the text observations to obtain the
low-dimensional observations from the LLM.

3) ILLUSTRATIVE EXAMPLE FOR INTERPRETABLE FEATURE
EXTRACTION USING LLMAs

In example 1, we discussed how the low-dimensional
representation can be constructed to reduce the observation
space. The example can be extended to illustrate Bayesian
inference, for example, by analyzing the performance of
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a particular customer service agent given its interactions
with different customers. We next present an example for a
different application, financial news analysis using LLMAs.

Example 2: Consider a financial analyst who receives a
stream of financial news and public opinion data from social
media. The state in which the financial analyst wishes to
estimate if the market is in an upturn or downturn. Similar to
example 1, the analyst can design questions using her domain
knowledge, which extracts relevant information from the text.
Since the stream of data is temporal in nature, the analyst can
use our model of a LLMA, to adaptively update the belief of
the underlying state, and any point interpet the interminent
outputs y to identify trading opportunities. We consider
FNSPID, a financial news dataset [78], where we analyze
news pertaining to the AAPL stock. We use LLaMA-3, and
for each news article, ask 16 binary questions. The questions
are provided in the appendix, and we plot the distribution
of the difference of the ratio of close prices (a performance
metric used to gauge the performance of a stock across days)
in Figure 5. It is clear how LLM can be used as a sensor to
parse textual observations and extract interpretable features.
The illustrative example using the financial news dataset
focuses on the AAPL stock to demonstrate the applicability of
the study to readers who may be less familiar with the subject
or come from a different disciplinary background, such as
finance. We note that the period that we consider was during
COVID-19, and therefore was an exception to the standard
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stock market behaviour. However we again highlight that the
purpose of our methods is to enable analysis by providing an
interpretable toolbox and not to analyse any specific event.

C. SUMMARY

In order to construct an interpretable model of a LLMA
performing Bayesian inference, we use the LLM as a
sensor attached to a Bayesian engine. This section gave a
mathematical model for the LLMA, which is modeled as
Bayesian sensors. The LLMA we consider in this paper is
composed of an LLM and a Bayesian engine. We assumed
that the entity interested in using the LLMA has access to
the observation matrix described in this section, O. However,
this might not be the case where the LLMA is used by a
third party, and the Bayesian engine might not be explicit,
but still, the entity might be interested in controlling and
understanding the actions (decision) of the LLMA. We,
therefore, discuss in the next section under what conditions
we can reconstruct the utilities of the LLMA by probing
the LLMA given blackbox access. This extends the work
done in explainable machine learning, where the deep neural
network is modeled as a rationally inattentive Bayesian
utility maximizer, and the post-training classifications are
explained using the utilities obtained from the Bayesian
revealed preferences framework [46], [47].

IV. LLM AGENT AS A RATIONALLY INATTENTIVE
BAYESIAN UTILITY MAXIMIZER

There are intriguing parallels between self-attention in LLMs
and rational inattention in microeconomics. Self-attention is
a special type of rational inattention mechanism. Therefore,
we use Bayesian revealed preferences from microeconomics
to estimate the utilities of a LLMA, which can then be used
to understand and control its behavior.

Motivated by the inherent self-attention mechanism of an
LLM, this section discusses how an interpretable model for
a single LLMA is to model to them as Rationally Inattentive
Bayesian Utility Maximizers. First, we state the protocol that
a Bayesian agent who is rationally inattentive follows. Then,
we consider the problem of the viewpoint of an analyst who
only observes the states of nature and the actions of a LLMA
and wishes to analyze if the LLMA is a Rationally Inattentive
Bayesian Utility Maximizer. For this, we state the necessary
and sufficient conditions for LLMAs to act as Rationally
Inattentive Bayesian Utility Maximizers. Finally, we discuss
algorithms that can be used to get a max-margin estimate and
a sparse estimate of the utility function. A few illustrative
examples are presented on real-life datasets to explain how
the framework can be practically used to systematically
obtain utilities of a LLMA and also a standalone LLM.

A. MOTIVATION. SELF-ATTENTION MECHANISM OF LLM

The LLM of the LLMA is driven by a transformer neural net-
work. The key innovation of the transformer neural network
is the self-attention mechanism. Self-attention allows a model
to focus on different input parts when processing each token.
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In NLP tasks, for example, it helps a model understand which
tokens in a sentence are important in relation to a given token.
This relation is then to autoregressively generate texts [9].

In microeconomics, on the other hand, rational inattention
is used to model the behavior of individuals managing
cognitive resources by prioritizing certain information while
ignoring less relevant details due to the inherent ““cost” of
processing. This is akin to how self-attention mechanisms
in machine learning assign weights to different parts of an
input sequence, prioritizing relevant segments to optimize
understanding or prediction. Both processes are fundamen-
tally about efficient allocation: rational inattention models
decisions based on the economic trade-off of information pro-
cessing costs, while self-attention models adaptively weigh
parts of data to capture context, streamlining processing.

Motivated by the inherent self-attention mechanism central
to the LLM transformer architecture [20], the LLMA can
be modeled as a rationally inattentive Bayesian utility maxi-
mizer using the microeconomics model of Bayesian revealed
preferences. Rational inattention is about constrained human
decision-making due to limited attention, while self-attention
is about LLMs assigning attention weights to different parts
of input data to optimize understanding or predictions.

Another motivation for studying LLMAs from Bayesian
revealed preferences [1] is to model the cost-accuracy
tradeoff that is inherent in analyzing large amounts of data
done by the LLM of an LLMA. Namely, a LLMASs can
output more accurate outputs by increasing the attention
effort expended (by a better observation matrix using an
LLM with a larger number of parameters or a larger context
window). Such a rationally inattentive model for Bayesian
agents was first proposed by Nobel laureate Christopher A.
Sims. We present the theoretical framework of Bayesian
revealed preferences and present experiments on real-life
datasets using LLMAs.

B. RATIONALLY INATTENTIVE BAYESIAN UTILITY
MAXIMIZING AGENT
In the last section, we discussed a Bayesian Sensor model
of a single LLMA. If the LLMA is designed by the entity
that is deploying them, then the utility function of the LLMA
can be set manually by the cost of the function r of the
Bayesian engine. However, if these LLMAs are used off
the shelf with or without an explicit Bayesian mechanism,
then the utility function is unknown to the entity using
them. Although heuristics like confusion matrices or domain
knowledge-based cost functions can be used, we need a more
systematic approach to estimate the utility functions of a
LLMA.

We now present the model of an agent who is a rationally
inattentive Bayesian utility maximizer (RIBUM) [46], [47].

Consider a state x belonging to a finite state space X
which is sampled from a prior denoted by 79 € P(X).
A RIBUM operates in M environments indexed by m
and performs an action (denoted by u#) from the finite
set . The utility functions of the RIBUM are given by
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P = [rmu(l ), ..., rmu(X, )] for each action u €
U and each environment m € {1,...,M}. The RIBUM
observes the states x through observations y from a finite
observation space ). For a given observation matrix (which
is a stochastic matrix) B = (By, = p(y|x),x € X,y € ),
the RIBUM has an information acquisition cost Z(B, ).
Let By = diag(Byy,...,Bxy),y € )Y denote the different
probabilities for observing a particular y € ). Let A denote
the set of all X x Y stochastic kernels B.

Then the RIBUM follows the following protocol:

1) (Step 1) The RIBUM first optimizes for the observation
matrix by maximizing the expected utility regularized
by the information acquisition cost. This optimization
is given by,

B(m) € argmax U(ry, Y, m0) — Z(B, m0)
BeA

U(rm. V. 0) = E{max E{r,(x, u)|y}}
ueld

=> max 1y uByT00. 3)
yey

2) (Step 2) A state of nature x% € X is drawn from prior
7° and is not known to the RIBUM.

3) (Step 3) The RIBUM draws an observation y from
optimized observation likelihood ony(D).

4) (Step 4) Given an observation y the RIBUM computes
its posterior using Bayesian update step:

B,(m)m
n=T(no,y,m)éw, )
1'By(m)mg
where 1 is a row vector [1, ..., 1]’

5) (Step 5) Finally, the RIBUM performs the action
maximizing the expected utility where the expectation
is taken with respect to the posterior computed in
Step 4,

u € argmax I {r,(x, u")|y} = argmaxr;, By (m)mo.
u weld

&)

Therefore, given the above protocol a RIBUM agent can be
parameterized by the following tuple [5],

WM, X, Y, U, o, Z,{B(m), 1y, m € M}). (6)

We now make several remarks on the above protocol.

Remark 6: The information acquisition cost Z(B, () of
Step 1 can be considered as the sensing cost that RIBUM
incurs in acquiring the information to make the decision on
which action u to perform. The information acquisition cost
can also be interpreted as,

Z(B, 7o) = D E(T (w0, y, m), o)1 By(m)mo,
y
where £ is an entropic regularizer (e.g., mutual information
or Renyi Entropy) [47]. Intuitively, a higher information cost
is incurred for a more accurate attention strategy since we
obtain a more accurate estimate of the state [46].
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Remark 7: Using the above interpretation of the informa-
tion acquisition cost, the optimization of (3) can be seen as the
RIBUM agent optimally choosing the observation sampling
strategy. This strategy is chosen to maximize the expected
utility regularized by a rational inattention cost.

Remark 8: We now remark on the correspondence
between the model of the LLMA from (2) and the RIBUM
tuple of (6). First note that even a single LLM L of the form 6
can be considered as a RIBUM where the £ optimizes its
self-attention matrix to optimize for picking the tokens that
best predict the next token using the conditional probability
distribution ¢. Further the LLMA can be considered as a
product of three observation matrices: 1) from the state to
the text observations 2) from the £ (as described above) and
3) from the Bayesian engine, O. 1) is not in control of the
LLMA; however, it is known to the analyst who simulates
the text observations for a given state x. 2) comes from
the pretraining of the LLM, which involves minimizing an
entropic loss with respect to the self-attention mechanism. 3)
comes from the LLMA which has a pre-trained likelihood
function on a suitable dataset.

C. VIEWPOINT OF ANALYST

An analyst who observes the actions (behavior) of the LLMA
under different states aims to ascertain if the LLMA behaves
as a RIBUM. In particular, the analyst the following dataset,

D = {mo, pu(ulx),x € X,u e U, m € M}. @)

where my denotes the prior distribution of the state and
pm(ulx) denotes the conditional probability of performing
the action u given the state x and environment m. The
joint probability of the state-action pair (x,u) is given by
Pm(u, x) = mo(x)pm(u|x) and the probability of state x given
action u by,

Pty = LX)
2z Pm(u, X)

Remark 9: In practice, given the state-action pairs, the

analyst empirically estimates the action posterior p,(u|x),
and by Kolmogorov’s law of large numbers, the empirical
estimate converges to the true distribution w.p. 1 as the
number of the state-action pairs goes to infinity.
Given the dataset D, the analyst aims to a) check if the
LLMA is a RIBUM and b) if LLMA is indeed a RIBUM then
obtain the reconstructed utility (reward) function 7 which
rationalizes the behavior of the LLMA.

We next state the necessary and sufficient conditions for a)
from Bayesian Revealed Preferences [1] and then discuss two
algorithms describing how b) can be performed.

1) NECESSARY AND SUFFICIENT CONDITIONS FOR
RATIONALLY INATTENTIVE BAYESIAN UTILITY MAXIMIZING
BEHAVIOUR

As proved in the seminal work of [1], there are two
inequalities, the No Improving Action Switches (NIAS)
and the No Improving Action Cycles (NIAC), which are
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necessary and sufficient for an agent (in our case LLMA) to
be a RIBUM.

We now state the NIAS and NIAC conditions and provide
intuition for both of them,

No Improving Action Switches (NIAS)

me(xlu)(?m(x, ) — Fp(x,u)) <OVu, i e U, m e M.
X

®

Remark 10: The NIAS condition enforces that for any
environment m, the agent chooses the optimal action with
respect to the posterior probability mass function.

No Improving Action Cycles (NIAC)

E max E pi(x, wim(x, i) — z
u
u X

- (Z me(-xa u);‘m(xs M) - Zm) S OVZ, m e M

€))

Remark 11: The NIAC inequality operates on pairs of
environments and ensures that the agent has an attention
strategy that is optimal for all M environments. The above
inequality is a pairwise version from [47] of the original
combinatorial inequality of [1]. The combinatorial inequality
gives a more intuitive explanation for the same, wherein the
agent takes actions that are consistent across all possible
subsets of the environments. Here, consistency is with
respect to the action posterior. Intuitively, NIAC ensures that
every agent chooses the best attention strategy in a given
environment.

We now state the main results, which show that for a
LLMA to be a RIBUM, it is sufficient to check if the
dataset DD obtained from the RIBUM satisfies the NIAS and
NIAC conditions. We summarize this feasibility check in
Algorithm 1, where the input is the dataset D of the form (7),
obtained from the LLMA and ascertains if the LLMA is a
RIBUM or not.

Theorem 1 (Necessary and Sufficient Conditions for
LIMA to be a RIBUM): Let D be the dataset that the analyst
has, as described in (7) for a LLMA performing protocol
(Step 1 to 5 of Sec.IlV) in M > 2 environments. Then
the LLMA is a RIBUM iff there exists a feasible solution
{Fi(x, 1), Zm(x, w)x € X, u € U}fn/[:l to the NIAS inequality
of (8) and the NIAC inequality of (9).

The result was first derived in [1] and has been used
extensively to verify if different engineering systems,
including RADARSs and Deep Learners, are RIBUM or not
[46], [47].

Remark 12: The above theorem gives an if and only if
condition for a LLMA to be a RIBUM. If the inequalities
have a feasible solution, then there exists a reconstructable set
of utilities and information acquisition costs that rationalize
. The necessity implies that for a RIBUM, the true utilities
satisfy the NIAC and NIAS conditions; hence, Theorem 1
yields consistent estimates of the utilities.
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Algorithm 1 Bayesian Revealed Preferences Feasibility
(BRP)
Input: Dataset D of the form (7) from LLMA.
Ascertain: If 3 7, and z,,Vm € M satisfying the NIAS
inequality from (8) and NIAC inequality from (9)

Remark 13: The feasibility check is summarized in
Algorithm 1 which is derived from Theorem 1. Any utility
that satisfies the NIAS and NIAC inequalities with respect
to the dataset D is a feasible utility. Hence, the Bayesian
revealed preference returns a set-valued estimate (rather than
point estimates) of the true utility. This set-valued estimate is
given by 7 and the reconstructed information cost Z can be
derived as [5],

Z2(D) = max (zm + ;r;leag{( ;pm(x, W) (x, i)

- Z me(x, w)rm(x, u)). (10)

Although Theorem 1 is an extremely powerful result,
for practical applications, we often need a single utility
estimate rather than a set-valued estimate. We next discuss
two different methods to obtain a point estimate for the utility:
the max-margin method and the sparsest utility estimation.

D. ESTIMATING SET-VALUED AND POINT ESTIMATES FOR
THE UTILITIES

Estimating the utility function of the LLMAs is an inverse
optimization or inverse reinforcement learning problem,
which is, in general, ill-posed. Hence, instead of reconstruct-
ing point-valued utility estimates, we describe how the BRP
test can be used to reconstruct set-valued utility estimates.
Each of the utilities in the set-valued estimate is a feasible
utility. We provide two algorithms that return a point-valued
estimate from the set, which satisfy certain other structural
properties.

Firstly, we describe the max-margin approach to recon-
struct the utility function. Since trivial utilities can satisfy
the NIAS and NIAC conditions, we maximize the margin
with which each condition is satisfied, denoted by decision
variables €] and €3, respectively. Specifically, we consider the
following convex program summarized in Algorithm 2,

arg min (€1 + €)

{;‘lll(xsu)»ztrz(xsu)}%=]aelsGZ
NIAS(:) < —e1, NIAC(:) < —e3,
€1,€2 > 0. (11)

The max-margin formulation is especially useful when the
analyst wishes to estimate the utilities of LLMA which pass
the NIAC and NIAS tests maximally. There is no guarantee
that this will be close to the true utility because of the bias in
the observed data. Still, this estimate is a useful reconstruction
that has shown to work well in practice [46], [47].

Next, we describe the utility reconstruction method, which
minimizes the ¢i-norm of the reconstructed utility so as
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FIGURE 6. Reconstructed Max-Margin Utility of a LLMA for Illustrative Example 3. The
utilities near the diagonal are comparatively higher than off-diagonal entries, showing that
LLMA correctly classifies the states. Along the diagonal, utility is highest for the state 5 which
is the most toxic, hence the LLMA gives the highest utility to classifying the most toxic state.

Algorithm 2 Max-Margin Utility Reconstruction for LLMA

Algorithm 3 Sparsest Utility Reconstruction for LLMA

Input: Dataset D of the form (7) from LLMA.
Output: Reconstructed utilities 7, and information
acquisition cost 7 of the LLMA inm € M environments;
Margins for NIAS €1 and NIAC ¢5.
if BRP(D) is True then
solve: Optimization (11) for 7y, 7,,Ym € M, €1, €2
Obtain Z from equation (10)
else
return: Feasibility Error: LLMA is not a RIBUM.
end if

Input: Dataset D of the form (7) from LLMA, Margins
for NIAS €7 and NIAC ¢;.
Output: Reconstructed utilities 7, and information
acquisition costs 7 of the LLMA inm € M environments;
if BRP(D) is True then

solve: Optimization (12) for 7, z,,Vm € M

Obtain Z from equation (10)
else

return: Feasibility Error: LLMA is not a RIBUM.
end if

to obtain a sparse representation. Here, we manually set
tolerances €; € R™ and €5 € R™ for the margins with which
each condition is satisfied. Ideally, the margin should be as
high as possible such that the linear inequalities still have a
feasible solution. Therefore, some trial and error is required to
select a suitable €] and ;. However, this is possible since the
Bayesian revealed preference step is offline. We minimize the
following convex program, and we summarize the procedure
in Algorithm 3,

arg min Z

{?m(x,u),zm(x,u)}le meM,ueld , xeX

NIAS()) < —e, NIAC(-) < —e65.

|7m(x, )]
(12)

The sparsest utility reconstruction is especially useful when
the analyst is interested in understanding the key state-action
pairs that the LLMA finds especially useful. This sparse
utility can be informative in focussingdg the design of the
environment and the system prompt that the LLMA uses.

Remark 14: Note that the above Bayesian revealed prefer-
ences framework can be used even if the LLMA does not have
an explicit Bayesian engine. This is because, as remarked
above, even a standalone LLM has an observation matrix
from its pertaining, and the Algorithm 1 only requires access
to the state-action pairs from interacting with the LLMA.
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Remark 15: Algorithm 1 is a feasibility test with
M(U||X| + 1) free variables and M? + M(U|* — U] —
1) linear inequalities. The number of free variables and
inequalities in the feasibility test of Algorithm 1 scale
linearly and quadratically, respectively, with the number of
environments, M.

Remark 16: During pre-training, LLMs are trained on
massive datasets like the CommonCrawl, which are of the
order of hundreds of terabytes, and therefore, they can
produce outputs for different contexts. Therefore there is no
sample size restriction on the dataset for applying Bayesian
revealed preferences to LLMAs. It is important to emphasize
the Bayesian revealed preferences provide a necessary
and sufficient condition for Bayesian utility maximization,
thereby providing a rigorous data analysis tool for real-world
data. The primary requirement of both algorithms is that the
dataset must be collected in at least two environments, with
the action posterior properly defined. There are no additional
prerequisites for reconstructing the set-valued utilities from
the action posteriors. However, in practice, when the action
posterior is estimated empirically, errors are introduced due
to finite sample approximations. Characterizing the exact
convergence of empirical action posterior probabilities to
their true values would be an intriguing direction for future
research.
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The feasibility condition of Theorem 1 provides a
set-valued estimate for the utilities since any utility that
satisfies the NIAS and NIAC conditions is a valid util-
ity function. However, for many applications, a single
utility function is desired. Therefore, we now describe
two algorithms that use the Bayesian revealed preference
framework along with Theorem 1 to obtain the reconstructed
utility of the LLMA along with information acquisition
cost.

E. NUMERICAL EXPERIMENT WITH LLAMA LLM-BASED
AGENT

We illustrate the Bayesian revealed preferences for LLMAs
in the toy example for hate-speech classification.

Example 3: We consider the example of analyzing a
LLMA which classifies a text into six levels of hate speech.
Therefore for this task the action space I/ is same as the state
space X = {0, 1, ..., 5}. The levels indicate the intensity of
hate speech. The details of the different levels and the exact
construction of the LLMA are given in Section XI. We then
obtain 200 pairs of state and actions from the LLMA, which
forms our dataset ). We run the Algorithm 2 and provide the
reconstructed max-margin estimates of the utility in Figure 6.
It can be seen that the utilities quantify the observed behavior
of the LLMA.

F. SUMMARY
The LLM of a LLMA uses a entropic regularization method
to provide its output, this motivates looking at the LLMA
from the lens of rationally inattentive Bayesian utility
maximization, which is a form of entropic regularized utility
maximization. This section discussed the necessary and
sufficient conditions for a LLMA to be a rationally inattentive
Bayesian utility maximizer (RIBUM). We proposed two
algorithms to reconstruct a point-valued estimate of the utility
of the LLMA if it is a (RIBUM). We illustrate how the
reconstructed utility is useful in analyzing the behavior of a
blackbox LLMA.

Part I1: Interacting LLM Agents

We now move on to Part II of the paper. Having studied
a single LLMA in isolation in Part I, we next study social
learning in an interacting network of LLMAs. There is
a lot of work done in studying different topologies of
LLMAs [32]. However, we restrict ourselves to the three
topologies described in Figure 7. We motivate studying
the different topologies to understand, analyze, and explain
some of the observed phenomena in LLMs. We study
Bayesian social learning in a sequence of LLMAs to analyze
information cascade to an incorrect action. Motivated by
model collapse observed while training LLMs from their
generated dataset, we briefly study a different protocol for
social learning in LLMAs: word-of-mouth social learning.
Finally, we illustrate how data-incest can arise if LLMAs
perform Bayesian inference in an asynchronous fashion. Part
IT comprises Section V and Section VI.
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V. BAYESIAN SOCIAL LEARNING IN A SEQUENCE OF LLM
AGENTS

LLMs are already trained on synthetically generated data
by other models [15] and also often use the output of
other LLMs to output based on the current context [29].
Motivated by studying interacting LL.Ms, each of which has
computational and privacy constraints, this section introduces
a second layer of abstraction, wherein we study Bayesian
social learning in a sequence of large language model agents.
We first motivate the setting where a sequence of LLMAs
sequentially estimate a state from their private observations
and take a public action, which is used to update the public
belief. We discuss the Bayesian social learning protocol in
a sequence of LLMAs, which aim to detect an underlying
state by sequentially analyzing text observations of the
text. The optimal update equation for the public belief is
derived. We consider two scenarios, one where no private
observations are shared and one where private observations
are shared to the next L LLMAs. Finally, we show that
under both scenarios, an information cascade takes place,
and the agents take the same action irrespective of their
private observation. To show this, we use the martingale
convergence theorem [79]. We illustrate the effect of the
number of private observations revealed and the resolution
of the probe on the convergence in herding. We also present
the mathematical model for incentivized autonomous LLM
agents used later in Section IX, which is motivated by
different entities employing such agents to perform Bayesian
state estimation using textual data.

A. MOTIVATION. INTERACTING LLMS, FINITE CONTEXT
LENGTH AND PRIVACY IN LLM AGENTS
Even if a single LLMA is used in an application, it can be
treated as a sequence of different LLMAs since the context
of the previous LLMA evaluation might not be available
due to privacy of the content and finite-context length [25].
We consider two scenarios, one where no private observation
is shared between the LLMAs and the second where each
LLMAs can observe previous L agents. This is motivated by
practical constraints from the perspective of privacy, context
length, and cost incurred inherent in using LLMAs.

We motivate studying LLMAs using a Bayesian social
learning perspective with the following constraints:

1) PRIVACY

Since the text observations often contain sensitive informa-
tion, the text observations can be used to train the LLM of the
LLMA [80]; hence, to prevent this often, systems involving
LLMs often treat the private observation in a one-shot
setting where the private observation is not stored. Even the
low-dimensional representation of the text observation might
contain information that can be used to identify attributes
of the person the text observation comes from, and in a
social network application, this can lead to unfair decisions
by LLMAs [48]. Therefore to preserve privacy of users,
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FIGURE 7. The three topologies considered for a network of interacting LLMAs, to interpretably understand and mitigate undesirable phenomena
observed in LLMs. We look at sequential Bayesian learning, word-of-mouth learning, and asynchronous Bayesian inference and motivate these
topologies using information cascade, model collapse, and potential data incest.

the LLMAs we consider either do not share the private
observation or only share a limited sequence of private
observations.

2) LIMITED CONTEXT LENGTH AND STORAGE CONSTRAINTS
Another constraint is the limited context length (length of
text that the LLM can process at a time) that is inherent to
the LLM used in the LLMA. Note that there are methods
which allow for infinite context window or a very large
(1 million) context window, however these take a lot of time
to work which is often not feasible in a real-time Bayesian
inference setting. Also, the quality of the responses decreases
with increasing context [19]. There are storage constraints
that won’t allow storage of an arbitrary amount of private
observations, especially if there are methods (like those
presented in this paper) that do not require storage of the
private observations.

3) COMPUTATIONAL RESOURCES AND COST
Computational resources (involving GPUs) are often limited,
especially if the same LLM deployment is used for different
applications. Also, the attention mechanism is such that the
computational complexity grows quadratically (linear for
state space LLMs) in the input length. Therefore, it is often
required to limit the size of the context being provided.
More importantly, the LLM service providers often bill
on a per-token basis. Hence the costs scale linearly with
increasing the size of the private observations, however the
value of information of including a previous observation is
concave.
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4) SINGLE LLMA CAN BE MODELED AS A SEQUENCE OF
LLMAs

Finally, we remark that a single LLMA can be modeled
as a sequence of LLMAs, especially given the above three
constraints. This is because when a single LLMA is used
to sequentially perform Bayesian inference, the constraints
from above enforce that no more than L observations can
be considered at any given time. We consider updating the
prior based on the action of the L + 1-th previous LLMA.
This might seem counterintuitive assumption, however in
practical applications often the observations are processed in
batches.

B. SOCIAL LEARNING PROTOCOL WHEN NO PRIVATE
OBSERVATION IS SHARED

A sequence of large language model agents (LLMA) wishes
to estimate an underlying state x € A&, where X is finite
dimension discrete space. At time k agent k receives a
private observation zz € )’ from the state x, where )’
is a high-dimensional discrete space (text). Agent k uses
a large language model (LLM) as a sensor to obtain a
feature vector y € ) where ) is a low-dimensional discrete
space. The text observation is sampled according to the
probability distribution P(z|x). For a given text observation
z, the feature vector is sampled according to the probability
P(y|z), P represents the suitably defined probability measure.
Therefore for a given state, the feature vector is sampled
with probability By, = ZIP(z|x)IP(y|z), where B €

ze)’
RYIXIXT genotes the observation matrix. Let I be a discrete
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action space and c¢ X xU — R' be the cost
function.’
In classical Bayesian social learning, the agent kK computes

a posterior belief on the state according to Bayes’ rule,
By, x70k ()

Zx’eX Byk,x/nk (x") '

where mi(x) denotes the public belief belief over the state

space /. The agent k takes an action u € U/ minimizing the
expected cost with respect to the posterior,8

up = arg minz (e, WPx|yp). (14)

ueld

P(xlyx) = (13)

We make the following assumption which is standard in

classical Bayesian social learning [3],

(B1) The observations z,, and y,, are private, i.e., are only
available to LLMA m, but the actions are public, i.e.,
visible to all subsequent LLMA (k = m+1, m+2,...).

We relax this assumption in the next subsection by allowing

the private observations to be shared with the next L agents,

which allows us to model more realistic Bayesian social

learning in LLMAs. Based on the action u; of the agent k,

the public belief belief 7y is updated using the following

filtering equation, which follows from the filtering equation

of a hidden Markov model derived in Appendix XII-B,

T+t = T (7w, ug), (15)
where 7 is given by the following equation,
R ’
Tor ) = — T (16)
1xR(w, u)w

where R(w, u) = diag([P(u|lx = 1, 7), ..., P(ulx = X, n)])
is the probability of actions for different states given the prior.
Foru € U, P(u|x = i, ) is given by,

Plulx =i, m) = > Pluly, H)POx =i, ),

yey
1, if "Byt < B ueld
Puly, 7) = QBT = Gy 1 . (17)
0, otherwise

where By, = diag([P(ylx = 1),...,P@ylx = X)) and ¢, =
[c(1, w),...,cX,w)].

C. SOCIAL LEARNING PROTOCOL WHEN THE LAST L
PRIVATE OBSERVATIONS ARE SHARED
We now consider a modification of the Bayesian social
learning described in the previous subsection. We let the
agents use the observations from the last L LLMAs to update
their posterior. We weaken assumption (B1) to the following,
(B2) The observations z;,, and y, are visible to agent m
and the next L agents, i.e., to LLMAs k = m,m +
1,...,m+L.

7To be consistent with standard Bayesian social learning, we consider cost
minimization in Part 2, however, utility is simply the negative of cost for most
nonpathological cost functions.

8A tie-breaking rule such as uniform sampling can be used if two actions
have the same cost.
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Algorithm 4 Social Learning Protocol for LLMAs
1: Agents aim to estimate state x
2: forkel,2,... do
3: Agent k observes zx ~ P(zx|x)
4: Agent k uses LLM to obtain yx ~ PP(yx|zx)
5 Agent k computes posterior using (13) or (18)
depending on availability of previous observations.
6: Agent k takes optimal action according to (14)
7: Agents k+L+1, ... update public belief using (15)
8: end for

To ensure the privacy of the text zx, only the feature outputs by
the LLMs y can also be shared, with the implicit assumption
that the likelihood for the different LLMs used by the
previous agents is approximately the same.

Agent k creates a vectors using the L + 1 observations
Yk = [k—r, ..., yx]. Since each of the observations of yj
of the state x are sampled independently. The augmented
observation space is Vi The joint likelihood can be computed

L

as P(yk|x) = H By, _,, x- Then the Bayesian update of (13)

m=0
can be augmented as follows,

IP(yi [x)7s (x)
> vex POyklome(x)’
The LLMA £k takes the action u; corresponding to

the action which maximizes the expected cost using (14).

We make the following assumption related to the agents

discarding actions of the previous agents if the observation

is available,

(B3) In lieu of observations y,—r,...,Yk—1, LLMA m
disregards observed actions uy,_r, ..., u,—1 of the
previous L agents.

Hence as a consequence of (B3), the action of agent & is used

by agents k + L,k + L + 1, ... to update their public belief

Tm,m=k+L,k+L+1,... using (15).

P(x|yk) =

(18)

D. EMERGENCE OF HERDS AND INFORMATION
CASCADES

This section proves that the LLMAs described in the previous
section form an information cascade and herd in their actions
when the public belief gets strong.

We first define an information cascade occurring at time k
for the LLMAs in the following definition.

Definition I (Information Cascade): An information cas-

cade is said to occur at time K if the public belief of all agents
after time K are identical. That is, my(x) = ng(x) for all
states ¥ x € X for all time k > K.
Information cascade implies that the public belief freezes
after time K, and since the public belief freezes, the optimal
action taken using (14) under any the posterior of (13). Since
the information cascade implies the optimal action remains
the same, the following definition naturally describes herding
at time K for LLMAs where the actions remain the same.
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Definition 2 (Herding): Herding in the LLMAs agents
takes place at time K if the action of all agents after K are
identical, i.e. uy = ug for all time k > K.

Herding Learning Herding
(u=10) u=1)
e I I I
0 ﬁ1 fg 1

FIGURE 8. Herding and Learning Regions for state space with 2 states.
The scalar = € [0, 1] denotes the prior of state 1. If the prior is in the
region n ¢ [, 7], learning happens; otherwise, the LLMAs form an
information cascade and herd in their actions.

It is straightforward to show that an information cascade
(Def. 1) occurring at time k implies that herding also takes
place at time k (Def. 2). We now state the main result
on herding in LLMAs, which shows that the protocol of
Algorithm 4 leads to the agents herding in finite time [5].

Theorem 2 (Herding in Bayesian Social Learning of
LIMAs): The social learning protocol of the LLMAs
described in Algorithm 4, under either assumption (Bl) or
assumptions (B2,B3) leads to an information cascade (Def. 1)
and agents herd (Def. 2) in finite time K < 00 with
probability 1.

Proof: Proof in Appendix. U
Theorem 2 shows that herding happens in finite time, and
therefore, the agents take the same action regardless of
their private observation. Discarding the private observation,
which provides valuable information about the current state,
makes their state estimation incorrect and inefficient.

Remark 17: From a purely statistical perspective, Theo-
rem 2 can be seen as the following: when the priors are
updated without seeing the observation but rather using the
correlated actions, the posterior becomes inconsistent and
need not necessarily converge to the true value asymptoti-
cally.

E. EFFECT OF THE NUMBER OF PRIVATE OBSERVATIONS
REVEALED AND RESOLUTION OF THE PROBE ON
HERDING CONVERGENCE

We next discuss the effect of the resolution of the LLM
probe and the number of private observations in changing
the threshold at which the convergence takes place. For the
purpose of this section, assume that the state space is such
that |[X| = 2 and the action space is such that || =
2 and consider the case of the Bayesian agents performing
inference.

We first mathematically describe the different regions with
respect to the public belief. Then, we derive the relation
between the threshold of the public belief and the observation
matrix for the different observations. Such a derivation can be
used to see the effect of more accurate observations either by
considering a higher resolution probe or by considering more
number of observations.

We can derive the following for the different regions with
respect to the public belief w where herding happens and
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where it does not, i.e., where learning happens.

Region 1 (Herding u = 1),
MNyey [ Z(C()ﬁ 1) — c(x, 2)P(x|y) < ()]

xeX
Region 2 (Learning u = y),

Uyey | D (elx, 1) = c(x, 2)P(xly) > 0}
R(m) = xeX
(Yyey [ D (e, 2) = clx, DP(x]y) > 0}
xeX

Region 3 (Herding u = 2),
Oyey [ Z(c(x, 2) — c(x, D)P(x]y) < 0}

xeX

Remark 18: The above equation can be derived by equa-
tions (15) and (14) by setting the action to be constant for the
herding regions. The regions are also illustrated in Figure 8
for 2 states and are numerically shown for 3 states of a
real-world dataset in Figure 16.

Note that learning (region 2) only happens when the action
taken by the LLMA corresponds to the observation.

Letw = [p, 1 —p]  and c(x, u) = |u—x|. We first derive the
expression of the region of herding for a specific observation
Ys

_ pBy,1 (1 —p)By»

pBy1+ (1 —=p)By>  pBy1+(1—p)Bys ~
(1 _p)By,Z _pBy,l < By,Z

<0 = p>—",
pBy,l +(1 _p)By,Z By,2 + By,l

and then take the intersection to obtain,

By
p > max —————.
yey By,Z + By,l

We can prove a similar argument for state 2 and obtain the
following result,

. By,l
p < min ————.
yeYy Byo + By |

This discussion shows us that even for a simplistic setup,
improving the probe accuracy of the LLM helps reduce the
herding threshold. However, more accurate LLMs are often
larger and have a higher unit cost, clearly highlighting the
tradeoff between herding and the cost incurred. A similar
result can be derived when the number of shared observations
L increases, as the observation space grows with L.

Example 4: We show empirically how interacting LLMs
can be used to identify a hate speech peddler (HSP) from
a large corpus of data (tweets, blogs, pictures, essays,
opinions). Since LLMs charge per token and have latency
constraints, we consider multiple LLMs that collaborate to
process the large corpus of information. We now experimen-
tally illustrate how information cascades emerge when LLM
agents inter- act to identify an HSP. We used the Mixtral-
8 x 7B-v0.1 LLM. The state x € 1 = (not HSP), 2 = (HSP)
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is the ground truth. The observations {z;} are the content
generated by users. When LLM agent k receives zi, it parses
the content to generate a low dimensional observation y; €
{1, 2}, designed to detect hate speech. This observation yy
is processed by the Bayesian engine, which computes the
posterior of the state. Based on the posterior, the LLM agent
selects action u € {1 = not HSP, 2 = HSP} by minimizing
the Type-1 error cost P(x = HSP)|uy, ..., ux—1, yx). This
action uy is broadcast to subsequent LLM agents that parse
the remaining content, but the private observation yj is kept
confidential to preserve privacy. We empirically computed
B11 = B = 0.8 from training data. Figure 9 displays
two sample paths of actions generated by the LLM agents
for different initial priors. Both sample paths emerge into
information cascades.

2
Initial Public Prior

s ! iy T 71'()()6: 1>=0.]7
'-g - 71'0()( = 1) =0.34
[}
<

1

0 5 10 15 20 25 30

Time
FIGURE 9. Emergence of information cascade in LLM Agents for Bayesian
Inference of Hate Speech Peddler in Example 4. Even though the
underlying state is 2 (not an HSP), the cascade is in the wrong direction
when my(x = 1) = 0.34.

F. SUMMARY

Given the privacy, computational, and cost constraints,
multiple LLMAs need to interact with each other to perform
sequential Bayesian inference on online platforms. This
section studied Bayesian social learning in a sequence of
LLMAs to analyze multiple LLMAs performing sequen-
tial state estimation on online platforms. We discuss the
relaxation of the standard Bayesian social learning protocol,
in which the agents are allowed to share their private
observations. We illustrate the effect on the herding threshold
of the public belief when LLMAs are allowed to share private
observations and use more accurate LLMs as sensors.

VI. ASYMMETRIC INFORMATION STRUCTURES OF LARGE
LANGUAGE MODEL AGENTS

Motivated by the observed model collapse while training
LLMs in a sequential manner and data incest in asynchronous
Bayesian sensors, this section studies word-of-mouth and
asynchronous social learning. Word-of-mouth social learning
is a hierarchical social learning paradigm characterized by
asymmetric information flow, where lower-level agents pro-
cess and communicate observations, and top-down influence,
where top-level agents dictate public belief. We provide
protocols for both kinds of social learning and a corollary that
shows that information cascades happen in word-of-mouth
learning as well. Techniques to perform stochastic control to
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prevent model collapse and data incest are not in the scope of
this paper and can be considered in future work.

A. MOTIVATION. MIODEL COLLAPSE IN LLMs

Several recent studies [15] have shown that when LLMs
are repeatedly trained on data generated by other LLMs,
a phenomenon known as ‘“model collapse” can occur.
In model collapse, the output probability distribution of the
model collapses to a degenerate distribution as the model
is trained iteratively on data generated by the previously
trained model [81]. Similar results have been shown on
model distillation, where a smaller LLM is trained using
data generated from a larger LLM [82]. We use the Bayesian
social learning model to show how an information cascade
in LLMAs is similar to the model collapse observed while
training LLMs.

Model collapse observed while training LLMs can be seen
as a special case of sequential Bayesian social learning.
In the case of training LLMs using data generated from
the previous LLM, it can be considered as estimating the
underlying state x, which is the true probability distribution of
the data. However at each time &, instead of receiving a private
observation from the state x LLMA k receives observation
yx from the previous LLMA k — 1. The LLMA k then
minimizes a cost function, which is an entropic regularizer
(maximum likelihood, KL-divergence, or cross-entropy loss)
to obtain an estimate of the state x (represented by x) from
the observations y;. The LLMA, then uses the estimate X to
sample observations yx1 which it provides to agent at k + 1.

If the underlying true probability distribution was a
Gaussian, then it can be shown that such a protocol leads to a
slowdown of learning [83]. However, in the case of discrete
distributions in which the LLMs learn such a protocol, it leads
to collapsing on one of the support points [15]; therefore,
model collapse in the training of LLMs can be studied using
the framework of Bayesian social learning.

Asynchronous social learning in LLMAs is motivated by
real-time settings like online platforms where there is a stream
of data of the order of a hundred thousand every second [34],
[84], [85]. Since LLLM functionality within an LLMA often
requires several milliseconds to a few seconds, especially if
these are third-party services, sequential Bayesian learning
is often not possible. This is true particularly when the
LLMAs are used for tasks that are more sophisticated than
just Bayesian inference [26].

B. WORD OF MOUTH BAYESIAN SOCIAL LEARNING IN
LLM AGENTS

We now describe the word-of-mouth social learning protocols
in L LLMAs. The protocol is summarized as a pseudo-code
in Algorithm 5. The protocol can be considered to run on
two timescales. On the slower time scale, the first LLMA
receives a new text observation zz;, ~ IPP(z|x) of the state
x, where P(z|x) is the observation likelihood of text z given
the state x. The LLMA does not explicitly have knowledge

VOLUME 13, 2025



A. Jain, V. Krishnamurthy: Interacting LLMA. Bayesian Social Learning Based Interpretable Models

IEEE Access

of IP(z|x) but only receives a text observation z from it. On
the faster time scale, the LLMAs communicate with each
other in a sequential fashion by generating text observations
corresponding to the low-dimensional features from the
received text observation. That is, agent m first receives a text
observation z,,, and uses an LLM to obtain a low dimensional
observation y,,. The agent m then takes an action to update
the public belief using (14). Then, the LLMA uses the LLM
to generate a synthetic text observation z,,+| used by the next
agent.

Algorithm 5 Word Of Mouth Protocol for LLMAs
1: forke0,1,2,... do
2 LLMA-(kL) receives a observation zzz ~ P(z|x).
3: forme kL, kL +1,kL +2,...(k+ 1)L —1do
4: LLMA-m obtains low-dimensional features
Ym ~ P(y|z) using LLM
LLMA takes optimal action u,, using (14).
Public prior is updated, 7wy = 7 (7wk, Up).
7 LLMA-m generates synthetic text observation
Zm+1 ~ P(z|ym, um) using an LLM
8: end for
9: end for

>

Hence, the main difference is that each agent does not
receive a new private observation. Note that there are different
versions of the word-of-mouth, for example, one where the
prior update is done at the end of the inner loop once. All
of them are interesting to study. However, we focus on the
one presented because we can derive the following result as a
corollary of Th. 2 showing herding of LLMAs in Algorithm 5.

Corollary 1: The word-of-mouth social learning protocol

of the LLMAs described in Algorithm 5 leads to an
information cascade (Def. 1) and therefore herd (Def. 2) in
their actions with probability 1.
The above result can be proved using Theorem 2, where
each agent has a different observation likelihood based on
the previous agent, each of which is a concatenation of
two observation likelihoods: the LLM as a low-dimensional
sensor map and the LLM sampling a text observation from the
text observation. Corollary 1 shows that even in the modified
protocol of Algorithm 5, where synthetic data is used to aid
the decision-making of LLMAs, cascades are inevitable.

Algorithm 6 Naive Asynchronous Data Fusion in LLMAs
1: Initialize prior 7o
2: while LLMA £k receives new observation z; and a
broadcasted prior x_1 do

3: LLMA k uses LLM to obtain y; ~ P(y|zx)
4: Broadcast the posterior wy = 7 (mx—1, Yr)
5: k=k+1

6: end while

7: Return Estimate using 7y and Eq. (14)

Asynchronous Social Learning in LLM Agents: We finally
consider the asynchronous social learning setting in LLMAs.
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Here, the main difference between the previous two topolo-
gies is that the agents do not necessarily act in a predefined
sequential manner and do not necessarily coordinate.

The protocol is summarized as a pseudo-code in
Algorithm 6. The public belief 7y is updated asynchronously
when a LLMA receives a new private observation gz,
which it parses using the LLM to obtain a low-dimensional
observation y;. This observation is used to compute the
posterior at time 17 using a previous prior 7rx_1. The posterior
is then broadcasted.

It is immediate to see how this protocol can lead to data
incest. For example, consider a case where the LLMA k uses
the prior mx_1 and updates the prior. The prior m;_1 was,
in turn, updated based on an LLMA m, where m < k — 1.
However, LLMA m at time k + 1 sees a new prior and uses
the previous one to compute its estimate without accounting
for the fact that its previous observation was already used to
compute this updated prior. This leads to double counting the
observation and, therefore, to data incest [5].

VIl. SUMMARY
We discuss how the phenomenon of model collapse observed
in LLMs is a form of Bayesian social learning. We present
models of asymmetric information structures of LLMAS
including word-of-mouth social learning and asynchronous
social learning protocols. We state a corollary showing how
information cascade occurs with probability 1 even in word-
of-mouth social learning and motivate the careful design of
asynchronous data fusion in LLMAs.

Part III: Stochastic Control for Bayesian Social Learn-
ing in LLM Agents

In Part I, we studied interpretable Bayesian social learning
in LLMAs and proved that information cascade is inevitable;
we would like to at least delay herding. This is especially
important when the LLMAs are prone to cascading to
the wrong prior, which is critical in different practical
applications, including hate-speech peddler identification.

Part III, therefore, looks at stochastic control for LLMAs.
For both regimes of LLMAs, when they are collaborative
and autonomous, the paper formulates optimal stopping
time problems to control herding by balancing the tradeoff
between privacy and estimation. Structural assumptions on
the optimal policy of the stopping time problems are proved
by making structural assumptions on the cost and observation
probabilities. The proposed solutions are extensions to our
work in quickest change detection and quickest time herd-
ing [4], [16], [86]. A policy gradient algorithm is proposed
to estimate the optimal policy without the knowledge of the
transition probabilities.

VIIl. OPTIMAL STOPPING TIME CONTROL IN CENTRALLY
CONTROLLED LLMAs

When LLMAs are deployed in real-life settings, they often
exhibit bias in their actions, especially when there are
multiple such agents [67]. The previous section showed that
such bias could be explained by the herding behavior of
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LLMAs. This section formulates an optimal stopping time
problem for quickest time herding in a sequence of LLMAs,
which ensures that the herding is optimally delayed by letting
the LLMAs share private observations. The delay in herding
helps improve the state estimate. We discuss a stochastic
control approach to solve the optimal stopping time problem
and state assumptions that ensure that the optimal policy
for the stopping time problem has a switching threshold
curve with respect to the public belief. This structural
result is exploited in Section X to efficiently approximate
the optimal policy. Finally, we discuss extensions of the
problem framework to the optimal switching between models
of different sizes in sequential state estimation tasks is
discussed. The schematic of the system model considered is
illustrated in Figure 10.

A. MOTIVATION. CONTROLLING FOR BIAS IN DECISIONS
OF INTERACTING LLMAs

Since LLMAs exhibit herding behavior, there is a need to
control them to ensure that the estimation is more accurate.
In order to do this, we propose optimally switching between
sharing the private observation and herding. Our setup is
further motivated by the fact that the publicly available LLMs
are available in different sizes, and with increasing size, the
accuracy of the LLM improves, but so does the unit cost of
using the LLM. As we explained in Section V-E, the herding
can be delayed by using a more accurate LLM. Therefore, the
optimal switching can be considered an optimally stopping
problem for using a larger LLM and switching to a smaller
one so that the cost is minimized and the herding is
optimal. However, solving for the optimal policy of the
stopping time problem is a computationally intensive task.
Since solving the optimal policy for the optimal switching
can be computationally challenging, we look at structural
assumptions on the system parameters such that the optimal
policy has a threshold structure that can be more efficiently
searched for. Note that the POMDP considered in this and
the next section is non-standard and, therefore, allows for
structural results that can be exploited for efficient policy
estimation techniques.

B. SOCIAL WELFARE OBJECTIVE FOR OPTIMAL STOPPING
This subsection formulates an optimal stopping time
problem to delay herding by making the agents opti-
mally switch between two modes, acting benevolently
by sharing their private observations or herding by per-
forming the action from (14). Let 4 € {0 =
share private observation,l = herd} denote
the decision at k for the chosen mode. Let u© : P(X) —
{0 = share private observation,l = herd}
denotes the stationary policy which maps the public belief
to the decision rule. u is a sufficient statistic for optimally
delaying herding since the information cascade depends on
only the public belief [S].For this section, we assume that
X = U = ), that is, in the sequential detection task, the
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FIGURE 10. Schematic of a stochastic control approach for optimally
delaying herding in a sequence of centrally controlled large language
model agents. Such a setting is motivated by a central entity hosting the
LLMAs.

observation y is the noisy observation of the underlying state
x and u is the maximum a-priori estimate of the state.

Further, we formulate the stopping time problem such
that one of the states is of special interest (denoted by
e1), and a decision to herd is taken once this state is
estimated. To formulate the objective for the optimal stopping
time problem, we consider the following natural filtration,
Fir of the actions and decisions till time k, F; =
o({uy, ..., ug—1,ai,...,ar}).

The optimal stopping time problem is to decide when to
stop sharing private observations (a; = 0) and announce state
e1 (ar = 1). Let t denote the stopping time with respect to
the filtrations 7, k =1, ....

We now state the social welfare objective that each LLMA
optimizes to solve the optimal stopping time problem and
achieve quickest time herding,

T—1
J(w) =T, [Zpk—lm{cu, W)l Fie—1}
k=1
T—1
+ > p* B, (1(x = e)|Fi1)
k=1
+ 07 TE, {1(x # e))

T—1

i 4

IL—p

Here p € (0, 1) is the economic discount factor and can be set

to a lower value if the central controller only wants the first
few actions to determine the policy.

Justification for social welfare cost: In (19), the first part
corresponds to the discounted cost incurred if the first ©
agents perform sensing, and the last term corresponds to the
cost incurred for the agents after the stopping time T (which
herd and take the same opportunistic action). The second
term is the delay cost with delay parameter d in announcing
if the underlying state is e; and the third term is the error
cost for misclassification with Y as the parameter. The
social welfare cost incentivizes revealing private observations

minE{c(x,u)|ft1}] . (19)
ueld
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to delay herding so that enough private observations are
available for estimation of the state. The reason we consider
estimation with respect to a single state is that many practical
applications focus on the identification of a critical state (
hateful user, bad product, etc.). The same social welfare cost
function of (19) is optimized to obtain a policy with respect
to the belief which decides when to stop herding.

Remark 19: In a centrally controlled setting, the central
controller is the human operator who manages the platform
the LLMAs are deployed on. The action space of the agents
consists of either performing the optimal action or revealing
their private observation. The decision to ‘stop’ corresponds
to taking the optimal action, as this would result in herding.
Consequently, the optimal stopping formulation inherently
leads to agents sharing their private observations until the
decision to stop is made.

We consider the decision rule such that depending on the
prior, the learners either share the private observation y; or
they output the action which minimizes the expected cost
of (14) under the public belief, i.e., the action uy is of the
form,

Yk if wimg—1) =2

U (-1, Yk, L) = [ argminc,mig—1 if p(re—1) = 1.
u

(20)

The motivation for this decision rule is two-fold: a) the herd-
ing can be delayed by ensuring enough private observations
are shared, and b) the agents can reduce cost by outputting the
opportunistic action once the public belief is strong enough.

Next, we show that under certain assumptions, the optimal
policy ©* minimizing the expected cost (19),

p* = infJ(w), 2D
nw

indeed has a nice threshold structure that optimally delays
herding and improves the detection of state ej.

C. STRUCTURAL RESULTS ON OPTIMAL POLICY

We make the following assumptions on the cost function ¢
and the observation matrix.

(S1) c(ej, u) — clejir1,u)>0Vi=1,...,X — 1 Vu

(82) clex.u) — cleiu) = (1 = p) D (clex,wBx,y —

y
clei,B;y)Vi=1,...,X.

(S3) (1 — p) Z(C(em)Bl,y — c(ej, w)Bjy) > cler,u) —

c(e;, u) Viyz 1,...,X.
(S4) B is totally positive of order 2 (TP2).°
Discussion of Assumptions: (S1) ensures that the states can
be ordered such that taking action in some states is costlier.
(82) and (S3) ensure that the cost function is submodular
in the belief. This makes the cost differential between
continuing and stopping (herding) the highest for state e; and

9 A matrix A is TP2 if all second order minors of the matrix A are positive.
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gives incentive to the agents to herd when approaching the
state ej.

The TP-2 condition on the observation matrix in (S4)
ensures consistency of the observations [2], i.e., there is some
order to the observations. For example, for a2 x 2 observation
matrix, TP-2 implies that By; > Bjj and Byy > Bj;. If one
of the observations is more likely for a particular state, then
the other observation must be more likely for the other state.
In our experimental results we consider a standard type-
1 error based misclassification cost, however more general
costs can be considered which satisfy submodularity.

We now state the main structural result on the threshold
structure of the optimal policy (21).

Theorem 3: Consider the sequential decision problem of
LLMAs for detecting state e1 with the social welfare cost
comprising (19) and the constrained decision rule of (20).
Then, under Assumption (S1-S4), the constrained decision
rule of (20) is a threshold in the belief space with respect to
a threshold switching curve that partitions the belief space
‘P(X). The optimal policy can be given by,

u*(m) = ; (22)

2 (continue) if 1 € Sy
1 (stop) if Tt € S;

where S| and Sy are individual connected regions of P(X).
The above theorem proves that under certain conditions
on the cost function and observation matrix (S1-4), the
optimal policy for solving the discounted social welfare cost
optimal stopping time problem has a switching threshold
curve. Such a switching threshold can be approximated by
set of lines which can be searched for efficiently using
a policy gradient based approach [5]. S and S, are
not known to the LLMA and to the central controller,
and the structural result only shows the existence of such
disjoint regions. These regions are unknown, and we show
in Section X that for |X| = 2, one can efficiently search
for these regions using a policy gradient algorithm. Although
standard reinforcement learning algorithms can be used,
we study the extreme case to derive an efficient algorithm.
This is computationally tractable, unlike optimizing for a
non-structured policy where a finite approximation is used for
a general infinite-dimensional policy. This is computationally
tractable, in contrast to optimizing for a non-structured
policy since it’s a finite approximation of a general infinite-
dimensional policy.

Remark 20: The LLM agents share their current private
observations, and the stopping-time policy determines when
the sequence of agents ceases sharing private information.
This approach can delay herding while ensuring that not
all private information is disclosed. The privacy loss can be
quantified using an information-theoretic metric that captures
the exact loss of private information. Investigating this in
practical scenarios would be an intriguing direction for future
research.

25487



IEEE Access

A. Jain, V. Krishnamurthy: Interacting LLMA. Bayesian Social Learning Based Interpretable Models

D. OPTIMAL SWITCHING BETWEEN DIFFERENT LLMs

The formulation that we proposed in this section can also be
used by the LLMAs to switch between LLMs of different
sizes. LLMs with a higher number of parameters can process
more tokens and give more accurate responses; however, they
are more expensive and use more computational resources.
Therefore we can use an action space U = {1l =
Lsmall, Llarge}, Where Liaee is an LLM with significantly
(10x) more parameters than Lgmai-

Since the LLM with more number of parameters (Ljarge)
can give a more accurate observation, by the arguments of
Section V-E, we can use it to delay herding. However, the
cost of using Liaree is higher, and accounts for the privacy
cost ¢ considered in this section. And then, once we have
sufficiently many good responses, the LLMAs can switch
to a smaller LLM, which will lead to a quicker information
cascade but can still provide low-dimensional readings useful
for analytical purposes at a lower cost. Such a problem is
often referred to as a quickest change detection problem [5].

E. SUMMARY

When a central entity is designing and deploying LLMAs
for sequential Bayesian inference on online platforms, the
entity needs to ensure such LLMAs do not have a bias due
to herding. In this section, we solved the problem of LLMAs
optimally herding in Bayesian social learning framework
to announce a particular state, such that their opportunistic
cost and cost of obtaining and sharing the observation is
balanced. The Bayesian agents considered in this section
were cooperative and shared the same socialistically optimal
policy. We also briefly discussed how such a scheme can be
used to optimally switch between different sizes of LLMs
to achieve an optimal tradeoff between cost and accuracy of
estimation. In the next section we consider the problem in
a different setting, where a central controller can incentivize
autonomous LLMAs, and needs to control the incentives for
improved state estimation.

IX. OPTIMAL STOPPING TIME CONTROL FOR
AUTONOMOUS LLMAs

The LLMAs used for Bayesian inference can often be from
different third-party services, each of which requires an
incentive to perform the task. Motivated by controlling bias in
such LLMAs, this section considers the problem of the central
learner optimally incentivizing a sequence of autonomous
LLMAs to delay their herding and obtain more accurate
estimates. We first formulate the optimization problem of
the central controller as a discounted cost POMDP and
then show that under structural assumptions on the cost
and observation matrix, the optimal policy has a threshold
structure with respect to the public belief. This structure
is exploited in Algorithm 7 to approximate the optimal
incentivization policy of the central controller. The schematic
of the setup considered in this section is illustrated in
Figure 11.
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FIGURE 11. Schematic of stochastic control approach for optimally
delaying herding in a sequence of incentivized autonomous LLMAs. This
is motivated by a central entity deploying third-party LLMAs for Bayesian
inference.

A. MOTIVATION. OPTIMAL INCENTIVIZATION OF THIRD
PARTY LLMAs

There are already several third-party services that offer LLM
agents as a service [17], and such agents can be used for
the task of performing Bayesian inference on an online
platform. Each of these agents has a cost of processing a
query associated with it, and each agent can be asked to give
more accurate responses (by performing more computations
or by using a larger model). Therefore, we can incentivize
the LLMASs to share more accurate private information (low-
dimensional outputs). However as shown in Section V,
LLMAs are still prone to herding, therefore we propose an
optimal stopping time formulation for optimally herding and
at the same time minimize the cost incurred by the central
entity.

B. OPTIMIZATION PROBLEM OF THE CENTRAL
CONTROLLER WITH INCENTIVIZED LLMAs

We now consider a case where the LLMA are incentivized by
a central controller, and the cost function is now dependent
on the incentive p as well. Specifically, we consider a cost
function c as,

cx,u,p) = a, 1(x # u) + Ay + wyp, (23)

here, o, > 0, A, > Oand w, < 0, u € U are the
coefficient for the misclassification cost, the cost incurred in
performing the action and the coefficient for the incentive,
respectively. The cost accounts for the cumulative cost that
the autonomous LLMA incurs while classifying the textual
input and the incentive received for the same.

The cost incurred by the central controller for performing
information fusion and incentivization is assumed to be linear
in the incentive and is taken to be,

Sk, k) = pr — g(k)L(ug = yi|me—1), (24)

where g(k) is the function that determines the coefficient
of the reward associated with the LLMA revealing the
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observation (and not herding). Generally, g is decreasing in k
since the benefit of a new observation has diminishing returns
as more observations are made available.

We now discuss our stochastic control approach to
optimally incentivize the LLMAs, such that the fusion cost of
the central controller is minimized. We consider the following
natural filtration, which contains all information known to the
central controller at time k, namely, the initial prior, actions
of the LLMAs and the incentives by the central controller,

Hi = o({mo, uo, ..., uk, p1, ..., Pk—1})-

With the estimates of the cost of the individual LLMAs
and observation matrices, the central controller can use Hjy
to compute the public belief using (15). If the cost and
observation matrices are not available, the central control
can learn the optimal policy using policy gradient algorithm,
as discussed in the next section. Similar to the previous
subsection, mx can be shown to be a sufficient statistic for
the filtration Hj and therefore the incentivization policy v :
P(X) — R* U {0} of the central controller determines the
incentives as,

DPi+1 = V().

Therefore, the discounted cumulative cost of the central
controller with a discount factor of p can be written as,

Jo() =B oM fulprs o). (25)

k=0

The expectation is with respect to the observations and the
randomized incentive policy. The optimal incentive policy v*
is then the policy which achieves the minimum cost,

Jyx(mr) = inf J, (7). (26)
vell

Although classical methods like value iteration can be used
to solve the continuous-valued optimization problem of (26),
for the simple case of || = |X| = 2, we show in the next
subsection that the optimal policy has a threshold structure
which can be searched much more efficiently using a policy
gradient algorithm. Note that this reduction is still practical
for failure state detection e.g. bad product identification using
product reviews on online platforms.

C. STRUCTURAL RESULTS

To show structural results, in this section, we consider the

simplification that |I{/| = |X| = 2. To show the structural

results, we make the following assumption on the augmented

cost function of the LLMA given in (23).

(S5) The cost function is submodular in (x,u«) for all
incentives p, i.e., for [U| = 2, |X| = 2, ¢(1,1,p) +
c(2,2,p) <c(1,2,p) +c(2, 1, p).

We consider the following incentive function,

Ay — Ay
W) — o)

2 —ay Byw

o
X, w) =

(27)
wy — wy 1By
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The above incentive function comes naturally when the cost
function of the individual LLMAs ((23)). The derivation
is also there in the appendix. We next state results on the
structure of the optimal incentivization policy of (26).

Theorem 4: Under (S4) and (S5), the optimal incentive
policy v¥ : P(X) — R U {0} of (26) is a threshold with
respect to the public belief and can be computed as,

* _ 0,
V= I X0, ),

where x is the incentive function of the central controller
from (27) and 7 is the threshold value.

Similar to the result of Theorem 3, this theorem shows that
the optimal incentivization policy of the central controller
is threshold in the public belief. Since the state space has
cardinality 2, the threshold switching curve becomes a single
threshold point 77, and can be efficiently searched.

Theorem 4 informs that to minimize the discounted cost
of (25), the central controller should incentivize (using the
scheme of (27)) only when the public belief is not too strong
in favor of state 1. This supports the intuition that more
incentive would be required for a stronger public belief ((27)).

Further, the incentivization function of (27) and an optimal
policy with a threshold structure of (28) implies that the
incentive sequence by the central controller is a sub-
martingale. This result and a concentration inequality type
bound on the cumulative incentive spent are formalized in the
next result.

Theorem 5: Considered the controlled incentivized fusion
of information from LLMAs where the cost function is (25)
and the optimal incentive policy, v* satisfies (26) with the
incentive function of (27). Under (Al) the optimal incentive
sequence py = V*(mp_1) is a sub-martigale, i.e., pp >
E{pr—1}. Further, the cumulative incentive spent is such that

ifr(2) € [0, 7]

. _ , (28)
ifr(2) e [x, 1]

T
in a sample path is such that, P( Z pk = B) < s where

1<k<T
B can be considered as a budget constraint.

The above theorem characterizes the nature of a sample path
of incentivization and secondly provides a bound on the
probability that the cumulative incentive exceeds the budget
B. This helps analyze the deviation of the total expenditure
from the budget B, which is a constraint of the central
controller.

D. SUMMARY

Autonomous LLMAs are already offered by third-party enti-
ties as a service [7], [17], [87]. They have a unit monetary cost
associated with using them for any application. Motivated by
such LLMAs, we studied stochastic control of autonomous
LLMAs who are incentivized by a central controller to
perform Bayesian inference. We showed structural results on
the optimal incentive policy and a concentration inequality,
which characterized the probability that the central controller
would exceed their budget. The next section proposes a
policy gradient algorithm that exploits the structural results
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of Theorem 3 and Theorem 4 to search for the corresponding
threshold policy of the social welfare LLMA and the central
controller, respectively.

X. POLICY GRADIENT FOR ESTIMATING THE OPTIMAL
POLICY TO CONTROL HERDING IN LLMAs

We propose a policy gradient algorithm that searches for the
optimal policy for the stochastic control of the social welfare
LLMAs (21) and the central controller (26), which have the
threshold structure of (22) and (28), respectively.

A. MOTIVATION. EFFICIENTLY ESTIMATING THE OPTIMAL
STOPPING TIME POLICY

When LLMAs are deployed on online platforms to perform
Bayesian inference for various purposes, one needs to
control for the herding the LLMAs exhibit. For this purpose,
we proposed two optimal stopping formulations for centrally
controlled and autonomous LLMAs. The efficiency of
estimation of the optimal policy parameters is especially
important in real-life applications where the time to update
the policy parameters is limited. Another constraint is that
in real-life systems, access to the observation matrices is
limited; therefore, the estimation has to be done without
the knowledge of the system parameters. Therefore, we use
structural results on the optimal policies for the stopping time
formulations and use policy gradients to estimate the optimal
policy.

B. POLICY GRADIENT ALGORITHM

Searching for a hard threshold of the form (22) and (28) can
be formulated as a discrete stochastic optimization problem.
However, in this section, we relax the problem to a continuous
stochastic optimization by approximating the hard threshold
policy by a sigmoidal of the form,

1

s 0) = ———,
1+ exp(Z=9)

(29)
where © is the policy parameter representing the threshold,
and ¢ € (0, 1] is the approximation parameter, and the policy
converges to a hard threshold policy at ® as e — 0. To restrict
the policy parameter to be in the range [0, 1], we can
reparameterize it as sin?(9). The approximate parameterized
policy of (29) can be used to obtain an approximate value
of the cumulative value function (of either (25) or (19)) by
interacting with the system using the policy for T interactions.

For the social welfare cost of (19), we can compute the
approximate cost with respect to a policy by

J((, ©p))

T
= > itk ©) (0 e ) + pF N1 = 1)
k=1

+ pT =Xkt 105+, 00 [Tﬂ(x £ ey) +mlnuiz,: cx, u)} ,
(30)
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T
where ZLO.S + (g, )] just computes the empirical

k=1
stopping time in place of the stopping time t in (19). Note

that in the above equation, the filtration and the expectations
have been replaced with the realized cost, and hence, this is a
noisy estimate of the true expected cost of (31).

For fusion cost of (25), the approximate cost is given by,

T
J(U©) = D f (P k). 31

k=1
We now describe our simultaneous pertubation based pol-
icy gradient algorithm, which is summarized in Algorithm 7.
We perform H learning episodes, each of which is initialized
with the same conditions, and we adaptively update the
policy parameter ®,, across these episodes. For each episode
m, we perturb the policy parameter by +§ and obtain
two policy parameters ®, and ®, . We then approximate
the cost function for both the parameters using (31) by
performing T interactions each. We approximate the gradient
by finite-difference method (step 6 of Algorithm 7). Finally,
the policy parameter uses a gradient descent step with a step
size ®,,. If the parameters of the system are known to be
more or less constant, the step size is decreasing to ensure
asymptotic convergence [88], else a constant step-size can be

used to track changes in the true threshold parameter.

Algorithm 7 Stochastic Gradient Algorithm for Estimating
Optimal Policy

1: Input: Initial Parameter ®g, Perturbation §, Time
Horizon H, Step Sizes (B,,), Episode Length T
: Output: Terminal Parameter Oy
:forminl,..., Hdo
Perturb parameters O « @, + .
Approximate cost with (31) using 7 interactions with
O, and O, J((©;)) and J ((®;)).
6: Approximate gradient vJ <«
Ju©) - J@uep)
28 ' .
7: Update parameter using ©,,4+1 = 0,;, — Bin(VJ)p.
8: end for

Remark 21: Apart from the parameters of the algorithm,
the algorithm only requires the approximate reward with a
particular policy. If the cost function is not known to the
controller (which is the case when they are incentivized),
then the framework from Section IV can be used to estimate
the utility of the individual LLMAs using Algorithm 2 or
Algorithm 3. The negative of the utility can be used as the
reward function. This can account for the misclassification
cost. Different incentive regimes can be considered as
different environments to exactly obtain the cost function for
an incentivized autonomous LLMA.

Remark 22: The above algorithm does not need access to
the probability distributions B, which is expensive to obtain,
especially in the incentivized case. Also, if the underlying
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parameters of the setup are evolving on a slower timescale,
the above algorithm can be run with a constant step size to
make the policy parameters track the changes in the system.
These are the key advantages of using Algorithm 7 compared
to the value iteration or other sub-optimal methods for solving
our proposed non-standard POMDPs. The computational
complexity of Algorithm 7 for each iteration is O(T).

Remark 23: For the centrally controlled case, only a single
parameter needs to be communicated across the LLMAs
to learn the optimal stopping time policy. Further, since
the LLMAs act in a sequential fashion, such a parameter
can be communicated either by the central controller or
by the previous LLMA, making this a scalable approach.
For the incentivization policy too, a single parameter
needs to be estimated by the central entity employing the
autonomous LLMAs, which makes the policy estimation
protocol independent of the number of agents, and therefore
scalable.

C. SUMMARY

This section proposed a computationally efficient policy
gradient algorithm to estimate the optimal policy of the
stopping time problems for LLMAs of Section VIII and
Section IX. This algorithm does not need the underlying
parameters of LLMAs and is adaptive to changes to the
underlying parameters. The next section presents numerical
studies that illustrate how these models can be used to control
LLMAs.

XI. NUMERICAL RESULTS: SEQUENTIAL BAYESIAN
SENTIMENT ANALYSIS USING LLMAs

Our numerical studies demonstrate how the Bayesian social
learning framework and the stochastic control approach
can be used to perform more accurate and -efficient
state estimation in the described applications. We present
numerical studies on applications related to two real-
life datasets: a hate-speech dataset and a product review
dataset. These numerical experiments build on our past
work to build robust hate speech classification using
covert federated learning [74], [89]. The reproducible
code, appendix with proofs, and the dataset link are on
github.com/aditj/sociallearningllm.

A. MOTIVATION

LLMs are already used in different real-world applications,
including on e-commerce platforms, to provide an overview
of the reviews and on social media platforms to flag malicious
content; therefore, motivated by the real world, we present
numerical experiments where LLMAs are used to perform
Bayesian inference on different real-world datasets.

We first describe the two main real-world tasks and
datasets on which the numerical results are presented. Then,
we show how our construction of a single LLMA leads
to interpretability. We extend the exemplary study from
Section IV and conduct more extensive experiments. Next,
we show numerical results on herding phenomena in a
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sequence of LLMAs. Finally, we show how the optimal
policy for optimal stopping has a threshold structure. We also
show the efficacy of policy gradient algorithm in a simulated
setting.

B. TASK DESCRIPTION

For both tasks, the LLMA is an online detection mechanism
equipped with a large language model (LLM) sensor that
analyses comments and flags the state sequentially. The LLM
is used to parse the text and obtain a list of appropriate
features from the finite-dimensional feature space )/, which
the platform could design. The features contain information
about the text and comparisons of the text with a given
context. In our setup, the Bayesian engine of the LLMA
consists of a likelihood parameterized by a neural network.
For a discrete distribution, the likelihood neural network
uses restricted Boltzmann machine (RBM) to generate
samples from the likelihood with 1000 samples of annotated
comments (paragraphs). The experiment results are averaged
over Nyc independent runs mentioned along with each
experiment. The posterior can be updated using (13) using the
likelihood and the closed form prior of (15) from the previous
step. The LLMA takes an action according to (14). The action
is classifying whether the user has hateful intent, and the cost
accounts for the misclassification of the state. We use Mixtral
7B, an open-source mixture of experts LLM with 7 billion
parameters [57], LLaMA-3 [58] with 70b parameters, and
ChatGPT-40 which is a closed source LLM. The details of
which LLM was used for this experiment is in the Appendix.
We query using the TogetherAl API for the open-source
LLMs (Mixtral and LLaMA) and OpenAl API for ChatGPT.

1) HATE SPEECH CLASSIFICATION

Motivation: Flagging users who spread toxic content online
is a significant challenge. The state x; represents the category
of peddlers classified based on the intensity and type of
content they are propagating. For example, the state could
be 3-dimensional, indicating the hate-intent of the user
(hateful or not), the hate speech intensity scale [90], and
the particular group the hate speech is directed towards.
The noisy observations are the text comments from the user
that inform about the state and are from a high-dimensional
observation space.

In a social network, there may be multiple LLMASs
deployed to flag malicious users and decrease the propagation
of hate speech. The flags by the previous LLMA are visible,
but the private observations are not due to computation and
privacy restrictions (so that the LLM can not be fine-trained
on the text or the feature mappings). Since the observations
are generated sequentially, the LLMA may use the same
LLM but with a different context and for a different text
observation. Therefore, a single LLMA can be viewed as a
sequence of LLMAs learning from their private observations
and the past actions of previous LLMAs.
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The state space models the state of the user, X =
{0 = non-hateful, 1 = hateful} x {I1,2, 3,4, 5}, where
the first dimension corresponds to whether a user is a hate
speech peddler (HSP) or not, and the second dimension
to the intensity of the toxicity of the speech (evaluated by
crowdsourcing [54]). For the numerical result, we consider
an augmented state space with 6-states, X = {0 =
non-hateful, 1, 2, 3, 4, 5}, where the last 5 entries denote an
HSP of different intensities as described later.

The high-dimensional observations of the state are in the
form of text comments posted on online platforms. An LLM
is used to parse the text observations by prompting the
LLM with the text and a system prompt to return an output
belonging to an observation space ), which contains the
following binary variables: a) targetted towards someone and
b) contains explicit words c) indicate violence d) has bias
e) is dehumanizing f) is genocidal. We augment the output
of the LLM to an observation space of cardinality || =
6. The details of this augmentation, along with additional
experimental details, are in the appendix.

The action space U is considered the same as the
state space, and the cost function which accounts for the
misclassification of an HSP is given by,

ctx,u) =1(x #0)[1(u =0) + |x — ul], (32)

The first time accounts for the misclassification of a hateful
user, and the second term accounts for the difference
in intensity. We use the measuring hate speech dataset
from [54], which contains 40, 000 annotated comments from
Twitter, Reddit, and Gab. The annotations are performed by
crowdsourcing and indicate if the comments contain hate
speech and the intensity of the toxicity exhibited on a scale
of 1 to 5, measured using a Rasch measurement scale [54].

Since the data is anonymized, we consider a synthetic
user construction. In a span of T textual comments, a hate
speech peddler (HSP) contains hate speech text from one
of the intensity levels. Hence, there are 6 types of users:
non-HSP and HSP with intensity from 1 to 5, each with
T = 100 comments of the corresponding intensity.

2) PRODUCT QUALITY IDENTIFICATION

Motivation: Identifying products that are of poor quality
early on is important in many e-commerce applications.
While the current state-of-the-art relies on a complaint-driven
interface that involves a human service agent to identify a bad
product, there has been some preliminary work that suggests
using existing reviews from the customers to determine the
quality of the product [91]. Product reviews are already used
to provide a summary of the product on major e-retailers
like Amazon and even influence customer decisions [91].
Therefore, we propose using a sequence of LLMAs and our
stopping time formulation to identify bad products.

In the case of an e-commerce platform, the restriction
on the sharing of the private observation is motivated by
the computational constraints that the LLMAs will have
when performing Bayesian inference on millions of products
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and billions of reviews. The public belief can be efficiently
computed based on the output (action) of each of the LLMA.

We use the Amazon Review dataset, which has 233.1 mil-
lion [56] text reviews for products from 29 categories. Each
review also has a rating from 1 to 5. We discuss more
details about the dataset in Appendix XII-B1. We consider
the state as the quality of the product, with the state space
given by X = {0 = “bad-quality”, 1 = “high-quality™}.
We consider the Beauty and Electronics categories and
sample 5000 reviews from each. Each review has a text and
a rating associated with it. We consider the quality of the
product as described above.

We now detail on what we mean by quality and the
definition of the states. Since we do not have access to any
additional dataset other than ratings, we consider products
with at least 1000 ratings and compute the quality state
ex-ante using these ratings. Therefore, the quality here is
more representative of the perceived value for money [92].
We consider the following ranges [0, 3.3), [3.3, 5] of the
average review of all the ratings to assign a product quality
as bad, medium, and good, respectively. To clarify, we just
use all 1000 ratings to compute the state; the observations are
sampled one at a time and analyzed by the LLMA.

The low-dimensional observation obtained using the LLM
of the LLMA belongs to an observation space of cardinality
|Y| = 16. We obtain the low-dimensional observation by
asking the following questions of the text review:

1) Does the review mention any specific problems or

defects with the product? (defects)

2) Does the review mention any positive attributes regard-

ing the product’s durability or reliability? (durability)

3) Does the review indicate that the product meets or

exceeds the user’s expectations? (expectations)

4) Would the reviewer recommend this product to others?

(recommend)

These questions were designed by us by qualitatively
analyzing what could predict the perception of quality of
a product [91], [92]. These features for the different states
are plotted in Figure 12. It can be seen that for the good
product, the overall decrease in defects is more rapid, and
even when in reviews with overall ratings 2 and 3, there are
substantially more reviews that mention durability positively,
than the bad product. However, an analyst could consider an
alternate design of the observations depending on the need.

We consider the misclassification cost as follows,

cx,u)=1x =0)1(u # 0) 4+ L(x # 0)|x — ul. (33)

C. NUMERICAL EVIDENCE SHOWING LLMAs ARE RIBUM
We perform the max-margin-based utility reconstruction
using Algorithm 2 when the agent optimizes a utility in order
to achieve product quality identification and illustrate the
reconstructed utilities in Figure 13.

For illustration purposes, we consider recommend, dura-
bility and expectations as the actions, hence making the
action space |{U{| = 8. To show our methods can be used
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FIGURE 12. Interpretability of the outputs of an LLM Sensor for Product
Quality Identification. There are 4 different features that the LLM of the
LLMA extracts. The left subplot corresponds to reviews from a good
product, and the right subplot corresponds to reviews from a bad product
(defined in the text). We analyze text reviews with ratings from 1 to 5 for
4 different attributes and plot the proportion of samples where the
attribute is true. It can be seen that the features, indeed, are consistent
with the overall rating provided by the reviewer for the two different
kinds of products and can be used for a more fine-grained interpretable
analysis.

with blackbox LLMs, we use ChatGPT-4o0-mini for this
experiment. The state space is X = {0 = bad product, 1 =
good product}. We consider the different environments to
have different ratings; i.e., the people who rate products at
1 are considered as part of a single environment. The utilities
can be used to interpret the behavior of the LLM and can be
used in lieu of explicit utilities of the form (33).

D. HERDING IN LLMAs

We report our results with the initial public belief (specifically
the prior probability of state 0). Due to Theorem 2, the initial
public belief is sufficient to identify intermediate public belief
regions where the information cascades are observed.

We first study the freezing of public belief when an
information cascade (Definition 1) happens in a sequence
of LLMAs performing Bayesian inference for hate-speech
classification. We consider 80 timepoints, and the results
average over 10 runs. The result is illustrated in Figure 14
for different values of initial public belief. In each subplot,
the different lines correspond to the different true underlying
states. It can be seen that the public belief for state
0 converges to higher values as the initial prior for state O is
increased. Hence, the initial prior decides what the prior will
freeze.

We show, for a sample path realization, how LLMAs
herd in the actions that they take in Figure 15. Each of the
subplots corresponds to a different initial public belief, and
the lines within each subplot are for a different underlying
true state. The reason why it is more resilient to herding when
in state 4 is that there is a stronger observation likelihood.
All the other states, for a strong enough prior (0.52), herd
to an incorrect state (0). Hence classifying an HSP as a
non-HSP.

Figure 16 illustrates the regions of herding a case with
3 states. The true underlying state in this simulation is
0, and therefore, it can be seen that most of the initial
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FIGURE 13. Reconstructed max-margin utility of the LLM of an LLMA
performing Bayesian inference for product quality identification using
text reviews. The reconstructed utilities offer an interpretable way to
analyze the behavior of the LLM. Here, the states represent the true
quality of the product (0 = bad, 1 = good). The actions are the
low-dimensional output of the LLM corresponding to different features in
the input text reviews. We observe that for environment 1, when reviews
with a rating 1 are considered, the difference between utilities for both
states is negligible. However, the contrast increases as the ratings
considered in the environment are increased.

public belief corresponds to predicting state 0. We assume an
observation matrix with 3 observations, with an observation
matrix B = [0.7,0.2,0.1;0.1,0.7,0.2; 0.2,0.1, 0.7] and
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FIGURE 14. Public prior freezes in finite time when LLMAs learn using
social learning protocol of Algorithm 4 for detecting hate-speech
peddlers. The time taken (average over 10 runs) to form an information
cascade is different for different values of the initial public belief
wo(x = 0) and different true underlying states. Note that for a public prior
o(x = 0) > 0.41 only a few observations are enough for the LLMAs to
herd to a strong belief on the wrong state (state 0) regardless of the true
underlying state.
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FIGURE 15. Sample path for the actions taken by LLMAs under different
initial priors =g (x = 0) and true underlying state x. Observation 4 has a
stronger observation likelihood and hence is more robust under an
increasing prior on state 0.

assume an identity utility function for the LLMAs. However,
the top-left and bottom-left corners of the triangle show that
herding to the wrong state can happen if the public belief is
too strong.

25494

L0 Predicted State
e 00
e 10
0.8 2.0
—
—
=
& 06
N
.9
<
[a W
L 04
He}
=
o
0.2
§§§§=.
0.0 ggggggggggis.

0.0 0.2 0.4 0.6 0.8 1.0

Public Prior o(0)

FIGURE 16. Regions in belief space where LLMAs herd during Bayesian
social learning with | X'| = 3 states. Even though the underlying state is
x = 0, in the bottom-left and top-left regions, the actions are 2 and 1,
respectively, because of a strong public belief.
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FIGURE 17. The cost function (top-left) corresponds to different values of
the threshold parameter (top-right) of the policy of (34). Each policy leads
to a different stopping time (bottom-left) and corresponding accuracy
(bottom-right). For this experiment, it can be seen that increasing the
stopping time decreases the cost. The sudden jumps in the cost (and
stopping time) are due to the transition in the resulting policy parameter
from a region of learning to herding.
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FIGURE 18. Incentivized stochastic control of autonomous LLMAs. The
public belief (left) converges slower as a result of incentivization. Also
note that the incentive (right) is a supermartingale (as proved in
Theorem 5). This is for a policy of the form (35) threshold parameter of
6 =0.4.

E. OPTIMAL STOPPING FOR DELAYING HERDING IN
LLMAs

Next, we study the optimal stopping of LLMAs first when
these agents are centrally controlled and next when these
agents are autonomous.
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For both experiments, we consider the product quality
identification task. To make sure the actions and the observa-
tions are of the same dimensions, we assume that the observa-
tion space is also two-dimensional || = 2. The observation
matrix was taken to be B = [[0.7, 0.3], [0.3, 0.7]]. Note this
is necessary since here we ask the LLMAS to either reveal the
private observation or to take action using Eq. 14, and update
in Eq. 15 needs to be consistent.

For the case when the LLMAs are centrally controlled, and
the simplified system model, policies that have a switching
threshold curve (Eq. 21) with respect to the belief space can
be represented as

u(or) = iZ(continue) if r(0) <6 7 (34)

| 1 stop)if 7 (0) > 6

where 6 is the threshold parameter. The true state is uniformly
sampled from {0, 1}. The delay cost is taken as d = 10, and
the misclassification cost is taken as T = 50. The discount
factor is taken as p = 0.99, and the infinite horizon is
approximated by a horizon of length 100. The cost for each
indiviual LLMAs, c(x, u) = 1(x # u).

In Figure 17, we perform a parameter sweep over 6 € [0, 1]
with a grid cardinality of 100, and evaluate three different
aspects. The results are averaged over 100 independent runs.
In the top-left corner, we evaluate the cost function as a
function of the threshold parameter. We observe that the
cost is minimum for a higher parameter value. And a higher
parameter corresponds to a smaller stop time. The accuracy
is computed as the proportion of times the correct state is
predicted. The sudden jumps in the cost are due to the fact
that a small change in the policy parameter is enough to shift
the public belief shifts from a region of learning to herding.

Next, we look at LLMAs which are incentivized and
autonomous. Here, the incentivization policy is of the form,

. 39

(7) = 0 (stop incentivizing) if 7 (0) < 6
H x (m, y) (incentivize) if 7(0) > 0

where 6 and y is of the form (27). We consider the parameters
ar = 1.3, 1 =08, Ay =05, A1 = 0.1, wp = 0.5 and
wy = 0.2. The cost function c is the same as the previous
part, and the composite cost function is given by (23).

We first illustrate our result of Theorem 5 in Figure 18,
where it can be seen that the sequence of incentives is
a submartingale sequence. We fix the threshold parameter
of (35) to & = 0.4. The public belief converges much slower
due to the modified cost function (the additional incentive
term in 23); hence, using our stopping time formulation,
we can extract more private observations, which can be later
used to get more accurate estimates.

Figure 19 shows the value of the cost for the different
values of the policy threshold 6. We maintain the same system
parameters as the previous two experiments. It can be seen
that both the classification rate and the cumulative incentive
go up as the policy threshold increases in this example. The
sudden jump in the incentive is again due to the sudden switch
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FIGURE 19. The cumulative incentive spent (bottom) and the achieved
classification rate (top) for different values of threshold parameter 6. The
policy threshold of around 0.7 achieves a tradeoff between the
classification rate and the cumulative incentive expenditure. The
incentives are constant after a particular parameter because of herding.

between the prior region from learning to herding. However,
also note that the threshold around 0.6 has an incentive in
the range [5,10], and the classification rate is still decent
(0.9-1), therefore showing how there is an optimal threshold
that optimally achieves a tradeoff between the cumulative
incentive expenditure and classification performance.

F. ILLUSTRATION OF STOCHASTIC GRADIENT ALGORITHM
Finally, we show how the proposed policy gradient algorithm
(summarized in Algorithm 7) can be used to optimally
estimate the policy parameters for optimal stopping in
incentivized LLMAs with system parameters from the
previous section. We run 100 iterations, each of which uses a
cost function averaged over 100 independent runs. We set a
linearly decreasing step size from g = 0.05 to 0.005 and set
the parameter perturbation as § = 1 and the approximation
factor for the sigmoidal policy of (29) as ¢ = 0.3. The
discount factor is p = 0.99.

Figure 20 presents how the cumulative incentive expen-
diture changes with each policy parameter update. It can
be seen that after a few iterations, the iterates converge to
parameter value such that the incentive expenditure is in the
range [5,15], which is close to the optimal incentive from
Figure 19.

XIl. DISCUSSION AND FUTURE WORK

With the rapid adoption of LLMs across science and
engineering and the emergence of LLM-based agents
for automating diverse workflows [87], it is crucial to
systematically study their behavior and interactions. This
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FIGURE 20. The approximate cumulative incentives corresponding to

parameters of a policy gradient for estimating the optimal threshold

parameters of (26). The incentive of the final iterate is much smaller than

the incentive expenditure of a too-small or too-large parameter from

Figure 19.

work addresses this need by proposing interpretable models
and stochastic control algorithms to engineer systems of
LLMAs that perform Bayesian inference across a range of
applications. Our study highlights the versatility of LLMAs
across various fields, aiming to inspire practitioners from
diverse disciplines to explore and integrate these tools into
their workflows.

In this conclusion section, we summarize how the two
layers of abstraction explored in this paper using Bayesian
revealed preferences and Bayesian social learning provide
a sound basis for driving research in understanding and
controlling the behavior of LLM agents. We discuss the
implications of our methods and their potential applications
in studying interacting LLMAs. We close with promising
research directions at the intersection of signal processing,
network science, and machine learning to enhance the
capabilities of LLMAs.

A. SUMMARY

We first presented a Bayesian sensor model for constructing
a large language model agent (LLMA). This model was a
composition of a) an LLM, which was used as an interpretable
and configurable sensor for high-dimensional data, and b)
a Bayesian engine to represent and update the belief of
the underlying state. Second, we put forth the necessary
and sufficient conditions for a LLMA to be a rationally
inattentive Bayesian utility maximizer (RIBUM). We present
algorithms for estimating the utility function of a LLMA
which is RIBUM. The reconstructed utility naturally leads
to the interpretability of the actions of the LLMA. These
methods are applicable to both the Bayesian sensor model
of LLMA we propose and off-the-shelf LLMAs and LLMs.
Thirdly we look at Bayesian social learning in a sequence
of LLMAs. We show that this sequence of agents herd in
their actions even if they share their private observations.
Then, we formulate optimal stopping problems for failure
state detection, which optimally delays herding and improves
estimation by allowing the private observations to be shared.
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The optimal stopping problem is formulated both for a case
when the LLMAs are centrally controlled and when they are
autonomous. We show that under relatively mild conditions
on the observation matrix and the cost function of the
LLMA the optimal policy for the optimal stopping problem
has a threshold structure. A policy gradient algorithm is
proposed to estimate the optimal policy efficiently without
the knowledge of system parameters. Finally, we show
numerical experiments demonstrating the various claims and
frameworks proposed in the study.

B. INSIGHTS
We conclude the paper with the following key takeaways:

1) The Bayesian sensor construction of a LLMA lends
to a lot more interpretability when performing sequen-
tial estimation using a large language model, more
than if Bayesian inference was performed with just
embeddings (which might be more accurate but not
interpretable).

2) The Bayesian revealed preferences framework is a
systematic way to obtain utility (or cost) functions for
blackbox LLMAs. It’s especially useful when the state
and action space are small, but the LLMA operates in
tens of different environments.

3) For a practitioner, Bayesian social learning might
seem simplistic, however the important point is that
even a simplistic sequence of LLMAs, herding is an
undesirable and inevitable phenomena. Therefore, care
needs to be taken when creating networks of LLMAs
that use each other’s knowledge to avoid data incest.

4) The stopping time formulation is especially useful
when deploying LLMAs to detect a failure state. The
quickest change detection discussed briefly can be
practically used to switch optimally between a large
(more accurate but more expensive) and a small (less
accurate and less expensive) LLM.

5) Finally, our numerical experiments are conducted on
real-world datasets but are limited to public textual
data. Using vision-language models, the framework
proposed in this paper can be used for more sophis-
ticated bio-medical data (composed of images, audio,
etc.).

C. LIMITATIONS

The Bayesian sensor model developed for a LLMA requires
domain knowledge to design the prompts (features) that
are input into the LLM, producing a low-dimensional
output; this knowledge can be obtained from a larger
LLM. However, the Bayesian revealed preference framework
becomes computationally infeasible in scenarios with large
state and action spaces. Our formulation of stopping time
and the structural results presented are focused solely on
detecting a single state, specifically for identifying a failure
state. While our framework is Bayesian inference centric,
LLMAs in practice can undertake more complex tasks,
indicating a need to extend this work to more general
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settings. In the Bayesian revealed preferences framework
considered in this paper, access to the true action posterior
is assumed; however, in practice, only empirical estimates
may be available. Additionally, the applications discussed in
this work—finance, online content moderation, and product
analysis—may limit the generalizability of the framework to
other domains.

D. RESEARCH DIRECTIONS AND FUTURE WORK

With technological innovation in LLMs, many players in
the market have launched their own LLM agents. Such
agents often have more functionality than those modeled
in this paper, and hence, controlling the behavior of these
agents would be more challenging. Further, these agents will
inevitably interact with each other through the content they
generate or on online platforms. Such interaction would lead
to a Bayesian update in their beliefs either explicitly by design
as modeled in the paper or implicitly as these agents improve.
It is therefore important to consider the models presented
in this study in future and related research. Given the rise
of LLMAs, we find the following four research directions
particularly exciting.

1) APPLICABILITY IN OTHER PARADIGMS

Exploring the methods presented in this work within different
LLM paradigms—such as retrieval-augmented generation
(RAG), planning, and fine-tuned agents—would be a com-
pelling area of study. RAG involves retrieving relevant
information from a database to provide context for an LLM,
enhancing the accuracy and relevance of its responses.
The models of LLMAs discussed in this paper could be
effectively applied in scenarios where multiple agents operate
over a knowledge graph to collaboratively retrieve pertinent
information [24], particularly when there is a prior defined
over the knowledge graph. Additionally, in the context of
fine-tuned agents, where agents continuously learn from
a private dataset, the framework outlined in this paper
can be adapted to accommodate evolving LLMAs and
heterogeneous agents.

2) APPLICATION IN EDUCATION AND HEALTHCARE

The framework proposed in this paper has broader applica-
bility than content moderation, finance, and opinion mining.
We briefly discuss the applications of social learning of
LLMAs in education and healthcare. In education, there are
many potential use cases of LLMs, including customized
evaluation, interactive tutorials, and LLM-assisted group
discussions [23]. Therefore, a sequence of LLMAs can be
used to analyze different contents, and studying the control of
LLMAs is important to reduce the bias, for e.g., while grading
students. In healthcare, LLMAs are already used for patient
interaction to provide instructions for self-care, and to route
the patient to the appropriate healthcare provider. However,
multiple LLMASs can be used to analyze a patient’s medical
history and provide useful feedback to the doctor. Recently,
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authors in [93] have further discussed various opportunities
for LLMAs in the healthcare domain.

3) SEARCH FOR A UNIFIED INTERPRETABLE MODELS

The interpretable models presented in this paper serve
as blackbox models for the LLMAs. However, significant
research has focused on glassbox (or transparent) models that
leverage mechanistic interpretability or utilize explainable
features for transformers, the neural architecture underlying
LLMs. Integrating these two approaches into a unified model
would be advantageous, allowing for explanations of both the
LLMA interactions with their external environment and the
reasoning behind their behavior. Such a framework could be
a valuable tool for analyzing various challenges related to the
real-world deployment of LLMAs, including reliability and
safety.

4) NETWORK OF LLMAs AND DATA FUSION

The LLMAs in this study are static, homogeneous, and
arranged in a line graph. We have considered a homogenous
society of LLM agents for notational convenience and
for ease of analysis. Our framework allows for differ-
ent LLM agents can have different observation matrices,
this can model LLM agents who have different LLMs,
prompts or pre-training data. Additionally, LLMAs could
possess asymmetric private observations and be fine-tuned
on individualized datasets, creating a network akin to a
distributed mixture of millions of experts [94]. Another direct
extension of our framework accommodates LLM agents with
different observation and action spaces, provided that each
agent is aware of the observation and action spaces of the
preceding agent. A generalized network of LLM agents
could also be utilized as Bayesian sensors for distributed
state estimation. Furthermore, societies of heterogeneous
LLM agents communicating with one another warrant further
investigation. These LLMA sensors could then perform data
fusion using standard techniques, with careful measures to
prevent data incest. This paper has looked at stochastic
control methods for controlling herding in a sequence of
interacting LLMAs. We have formulated two non-standard
POMDPs for the centrally controlled and incentivized case.
Further to derive structural results, we have looked at the
extreme case where there are only two possible actions. These
structural results naturally lead to an efficient distributed
policy gradient algorithm for searching the optimal policy.
It would be interesting to see if newer results from sociology
can be used to analyze and control more sophisticated
behavior of LLMAs when interacting with each other in
heterogeneous societies.

5) HUMAN IN THE LOOP WITH LLMAs

In applications such as finance, healthcare, and content
moderation, LLMAs frequently interact with humans to
receive feedback that can greatly enhance task perfor-
mance [95]. This necessitates advanced models that account
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for human-agent interactions to better align cost func-
tions, communication protocols, and sensing mechanisms.
As these LLMAs become more widely deployed across
various applications, they will form natural networks with
humans. Investigating how these LLMAs can share private
information both reliably and securely to enhance usability
and efficiency presents a compelling and open research
challenge.

APPENDIX

PROOFS

A. PROOF OF THEOREM 1

Proof of the necessity of NIAS and NIAC: The proof follows
closely from proof of [46], and is reproduced for reader’s aid.
Similar proofs can also be found in [1], [5].

1) NIAS (8): For environment m € M, define the subset
Y. € Y so that for any observation y € ), given
posterior probability mass function (pmf) IP,,,(x|y), the
choice of action is u (5) is maximum. Define the
revealed posterior pmf given action u as IP,(x|u).
The revealed posterior pmf is a stochastically garbled
version of the actual posterior pmf IP,,(x|y), that is,

P(x|u) = Z’M(yu’)”) = > PG lpmxly).
vey Pm yey

(36)
Since the optimal actionis a for all y € ), (§) implies:

= D> puOlw) D P, i) = 1) <0

yeVu xeX
= D> pnGl) D P, i) = 1) <0
yey xeX

(since p(ylu) =0, Yy € Y\u)

= > pn(x|w)(rm(x. i) — 1) < 0 (from (36)).
xeX

The last equation is the NIAS inequality (8).

2) NIAC (9): Let ¢;;, = Z(B(m)) > 0, where Z(-) denotes
the information acquisition cost of the collection of
agents M. Also, let J(B(m), ry,) denote the expected
utility of the RIBUM in environment m given attention
strategy B(m) (first term in RHS of (3)). Here, the
expectation is taken wrt both the state x and observation
y. It can be verified that J(-, r,,) is convex in the first
argument. Finally, for the environment m, we define
the revealed attention strategy B(m) over the set of
actions U as B(m) (ulx) = P,ulx), Yu € U,
where the variable P, (u|x) is obtained from the
dataset D. Clearly, the revealed attention strategy is
a stochastically garbled version of the true attention
strategy since

B(m)' (ulx) = P, (ulx) = me(uly)B(m)(VIX)- (37
yey
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From Blackwell dominance [96] and the convexity of
the expected utility functional J(-, r;;,), it follows that:

J(B;n’rl)SJ(BWhrl)’ (38)

when B, Blackwell dominates B,,. The above rela-
tionship holds with equality if m = [ (this is due to
NIAS (8)).

We now turn to condition (3) for optimality of attention
strategy.

The following inequalities hold for any pair of agents

| # m:
(38)

](B;n, Im) —cm = J(B(m), ry) — cim
3 (38) ,
= JBWU), rm) —c = JBUAY, rm) —cr. (39)
This is precisely the NIAC inequality (9).
Proof for sufficiency of NIAS and NIAC: Let {ry, cm}fn/lzl
denote a feasible solution to the NIAS and NIAC inequalities
of Theorem 1. To prove sufficiency, we construct an RIBUM
tuple as a function of dataset D and the feasible solution that
satisfies the optimality conditions (5),(3) for RIBUM (6).
Consider the following RIBUM tuple:

M, X, y=U,U,r,Z,{P,(ulx), r,, me M}), where
Z(Pwu|x)) = max ¢, +JPulx), ) — J(Pp(ulx), r,y).
meM
(40)
In (40), C(-) is a convex cost since it is a point-wise
maximum of monotone convex functions. Further, since
NIAC is satisfied, (40) implies Z(B(m)) = c;,. It only remains
to show that inequalities (5) and (3) are satisfied for all
environments in M.
1) NIAS implies (5) holds. This is straightforward to show
since the observation and action sets are identical. From
NIAS (8), we know that for any environment m € M,

actions u,u € U,u # u, the following inequalities
hold.

D Py(xlu)(rn(x, @) — 1) <0
= D Puly = w)(rn(x, @) — ry) <0
:uemgglezg{(;l?m(xb’)”m(xvﬁ) = ).

2) Information Acquisition Cost (40) implies (3) holds.
Fix environment [ € M. Then, for any attention
strategy IP(u|x), the following inequalities hold.
Z(P(ulx))
= ma/.él cm +J(Plx), ry) — J®p(ulx), rm)

me
= J(Piulx))—c; = J(P(ulx))— CP(ulx)), ¥ P(ulx)
= Pu(ulx) € arg IIPT(IE}X)J(IP(MIX), rm) — Z(P(ulx))

= (3).
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B. DERIVATION OF SOCIAL LEARNING FILTER
Let the posterior as nx(i) = PG = iluy, ..., ux). Let

o1, m) = > > Pl = y,m-DPOxln =

i) Z P; jnk—1(j) be the normalization factor.
j

Nk (i)
1 .
= —PQuglxx =i, u1, ..., up—1)
o (Nk—1, Uk)
> PPt = jlui, .. 1)

J

= —— ZIP(Mk vk =y, mk—DP Ok = ylxx = 0)
o (=1, uk) <

ZPi,jUk—l(i)~
J

which completes the derivation.

C. PROOF FOR THEOREM 2

Proof: Define Ar(i,j) = log(w()/x(j)),i,j € X.
From (15) we have, Ag1+1(i,)) = Ax(i,j) + Tk(i,j) where
Ui (i,)) = log(P(uk |x = i, 7 ) /P (uk|x = j, k).

The probability of the actions given the state and prior can
be written as,

Pulx, ) = Z H 1(c;, By < c,Bym)By x.

yeY ueld\u

Let JN)k C Y be a subset of the observation space for which the

action uy, is suboptimal with respect to all other actions, i.e.,
H 1(c,, By > c;Bym) = 1Vy € Y. When information

ueld \uy

cascade (Def. 1) occurs, this set should be empty since no

matter what the observation, the action k should be optimal

according to (14). Also, rewriting ' (i, j),

- Z, 9 By.i
I'v(i,)) = log(l)—%)
— 2 By

Therefore when an information cascade occurs, 'y (i, ]) =
0, Vi,j € X (Due to Vi being an empty set). Also if YV is
nonempty, then 'k (i, j) > k, where « is a positive constant.

Let G = {o(u1, un, ..., ur)} denote the natural filtration,
where o is the operator which generates the corresponding
sigma field.

() = Px = duy,...,ux) = E[l(x = i)|Gk] is a
martingale adapted to Gi for all i € X'. This follows by the
application of smoothing property of conditional expectation,
Eli+10) | Gkl = E[E[L(x =) | Ge1]] = E[L(x = 1) |
Gkl

Therefore, by the martingale convergence theorem, there
exists a random variable m, such that, my — 7w W.p.l.
Therefore Ag(i,j) = Aoo(i,j) w.p. 1., which implies there
exists k such that Vk > k, |Aso(i, j) — Ak(i, j)| < k/3 and so,

|Akr1G)) = Ak DI < 26c/3,Vk = k. (41)
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We now prove the theorem by contradiction. Suppose a
cascade does not occur, then for at least one pairi # j,i,j €
X, P(ulx = i, ) is different than P(u|x = j, 7). This would
imply that the set Vi is nonempty and therefore,

Ak Pl = [Agy1 (o)) —

(41) and (42) contradict each other. Therefore IP(u|x = i, )
is same for all i € X" and hence according to (15) information
cascade occurs at time k. (]

Ak, )l = k. (42)

D. PROOF FOR THEOREM 3

Proof: We prove the Theorem by showing that it satisfies
the conditions of Theorem 12.3.4 of [5]. A more general proof
can be found in [4], [5].

In order to verify the assumptions of Theorem 12.3.4 of [5],
we need to define first-order stochastic dominance (FOSD)
and a submodular function. We first define a Monotone
Likelihood Ratio (MLR) ordering on a line and then define
a submodular function with respect to this MLR ordering.
We only need to consider the following lines,

Le,m)y={mePX):mn=(1—-¢e)1 +€¢,0<e <1}

,ﬁEH[,

where the state index is only between the extreme states, i €
{1, X} and,

= (7 € P(X) : ui) = 0}.

To define the MLR ordering on a line, we first define the MLR
ratio with respect to belief space,

Definition 3 (Monotone Likelihood Ratio (MLR) Order):
Let my,my € P(X), then w1 dominates 1y with respect to the
MLR order (1 >, m2) if,

m1(@D)m2() < m(Hm2(d),

The following definition is for the MLR ordering the lines
Le;, i €{1,X}

Definition 4 (MLR Ordering on Line >1,): w1 is greater
than @y with respect to the MLR ordering on the line
Lej,m),i € {1,X} (m =1, mo), if i, w2 € L(e;, ) for
some 1w and w1 >, ).

Finally, we are ready to define a submodular function on a
line,

Definition 5 (Submodular Function on Line): For i €
{1, X}, a function ¢ : L(ej,7) x D — R is submodular
fo(r,a)—¢(r,a) < p(w,a)— (7, a), fora <a, 7 <, 7.

The following is used extensively to compare two beliefs
and is a weaker condition than MLR ordering,

Definition 6 (First Order Stochastic Dominance (FOSD)):
Let m,my € PX), then my first order stochastically

¢ ) szm(z) > an(z) VieX.

l—] l—]
The stopping time problem with the social welfare cost
of (19) can be decomposed into two cost terms, each
corresponding to the cost terms of the stopping time problem

i<jije(l,....X]}.

dominates my (71 >
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for partially observed Markov decision processes of Theorem
12.3.4 of [5].

1
C(r, 1) = T, muinc;n,

Cr,2)= > ¢\Byw +(d+ (1 —p)Term — (1= p)Y.
yey
(43)

C(m, 1) is the expected cost after the decision to herd has
been made. Similarly, the first term in C (7, 2) is the expected
cost when revealing private observations. The rest of the
terms come from transforming the value function by the delay
penalty costs [4].

We now state the main assumptions of Theorem 12.3.4 of
[5], which are required for this to hold for the structural result
of (21),

1) (C) my >, mp implies C(rry, u) < C(mo, u).

2) (F1) B is totally positive of order 2 (TP2).

3) (F2) P is totally positive of order 2 (TP2).

4) (S) C(m,a) is submodular on [L(ex, ), >r,] and

[L(er, ), >1,]-
F1 follows from S4, and F2 follows from the fact that we only
consider an identity transition matrix P. And since the costs
are linear, (C) follows by applying the definition of FOSD on
equation (43) and using assumption (S1). (S) follows from
the definition of MLR ordering on the line, using the fact that
B is TP2 in the first term of C (s, 2) and using (S2) and (S3).
Hence, the assumptions are verified, and the structural result
is proved. g

E. PROOF OF OPTIMAL STOPPING THEOREM 4

This proof follows closely from the proof in [2]. From Lemma
1 of [2], the value function can be expressed as,

V(r) = min{0, x(y) — g + pEV(7)}.

Further, Lemma 2 of [2] shows that the incentive function is
decreasing. Denote V,, to be the m—th iterate of the value
iteration algorithm [5] which iteratively converges to the
value function V (;r). The iterates are given by,

Vi1 = min{0, x(y) — g + pEV(7)}.

From the definition of first order stochastic dominance and
Proposition 1 of [2] IEV,,(;r) is decreasing in .

Therefore V,,(r) is decreasing which implies V(i) is
decreasing. Let V(0) and V(1) be the value at 7 = [1, 0]
and m = [0, 1] respectively which makes EV(0) = V(0) and
EV()=VvQ).

1) For V.= x(y) — g + pEV(7), V(0) =

0and V(1) = % <0.

2) ForV =0,V(0) = Vo(l) =0
Therefore, the value function decreases with a positive value
of [1, 0] and a negative value of [0, 1]. Therefore it must be
0 at some time. Since V(;r) is monotone in 7, the set E =
{(r2)|V(r) = x(») — g + pEV ()} is convex. We choose a
policy 7*(2) = (7 (2)|7(2) > 7 (2Q)¥ 7(2) € E}.

x(e1) — g
—1_ >
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F. PROOF OF SUBMARTINGALE RESULT THEOREM 5
Consider the suboptimal policy where € > 0,

. [X(n) —e ifnQ2) <7*Q2)
V() = ) _
x () if7(2) > 7%(2)

From Lemma 3 of [2] x () is convex in 7r. We know that the
public belief 7y is a martingale from the proof of Theorem 2.
Let Wy = D(rx—1). By Jensen’s inequality for € — 0,

E[Wii1|Fi]l = Elx (e DI Fi] = x g1 | FeD
> x(mg) = W.

Therefore Wj is a submartingale. Consider Hy as the
following sequence,

{Oifnk_1(2) 7*(2)

M= 7*(2)

=
lif me—1(2) =
Now, by properties of submartingales, (HW )y, is a submartin-
gale. This is exactly the incentive sequence, which is indeed
a submartingale.

To show the second statement, we use Doob’s martingale
inequality on the submartingale sequence py,

E[max(pr,0)]  Elpr]
C T Cc

IP[maxkaC]f
1<k<T

T
Also note that Z pr < T 1mkax pk- Therefore the event
<k<T

1
T

> CT) C{T > CT}.
(2_px = CT) S (T max_pi = CT)

1
T

H P > CT) < (T > CT) which
ence (Zpk > ) < I( 1I;1ka§prk > ) whic

1
along with the first inequality proves the statement.

APPENDIX

BRIEF EXPERIMENTAL DETAILS

A. HYPERPARAMETERS OF LLM AT INFERENCE TIME
As described in the main text, we use different LLMs.

Large Language models uses default parameters for
inference to control the output. Temperature (default 1)
influences randomness, with lower values producing more
focused responses. Max tokens (default 2048) limits response
length. Top p (default 1) controls diversity, with lower values
making the output more focused by considering only the most
likely words.

1) MIXTRAL-8 x 7B-vO0.1

We consider the maximum response tokens as 100, a temper-
ature of 0.7, a top-p of 0.7, a top-k of 50, and a repetition
penalty as 50.

2) LLaMA-3-70b

We consider the maximum response tokens as 200, a temper-
ature of 0.7, a top-p of 0.7, a top-k of 50, and a repetition
penalty as 80.
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We use the Together Al API to send the prompt to the LLM
and receive the response for LLama3 and Mixtral.

3) ChatGPT-40
Default parameters were used when inferencing ChatGPT
using their APL

B. DATASET DESCRIPTION

1) AMAZON REVIEW DATASET

Amazon review data [56], including 233.1 million reviews
spanning various product categories. It features detailed
information such as ratings, review text, helpfulness votes,
product descriptions, category information, prices, brands,
and image features. It also has additional transaction metadata
such as product color, size, and user-submitted images,
as well as more detailed product landing page information
like bullet-point descriptions and technical specifications.

2) MEASURING HATESPEECH DATASET

The Measuring Hate Speech corpus is a comprehensive
dataset designed to evaluate hate speech while accounting for
annotators’ perspectives [54]. It includes 50,070 social media
comments from platforms like YouTube, Reddit, and Twitter,
labeled by 11,143 annotators from Amazon Mechanical Turk.
Each comment is assessed on 10 ordinal labels such as
sentiment, disrespect, and violence, which are aggregated
into a continuous score using Rasch measurement theory.
This approach allows for the statistical summarization of
annotator disagreement and adjusts for labeling strictness,
providing a nuanced measure of hate speech. The dataset also
includes information on the identity group targets of each
comment and annotator demographics, enabling detailed
analyses of identity-related perspectives.

3) JigsawAl UNINTENDED BIAS DATASET
This dataset was used to train the likelihood network since
we assume the actual dataset is not available during real-time
inferencing.

The Civil Comments dataset, comprising approximately
2 million public comments from the now-defunct Civil
Comments platform, provides a valuable resource for inves-
tigating online toxicity. Jigsaw, the sponsor of this effort,
facilitated human annotation of these comments for various
toxic conversational attributes, including “toxicity,” “severe-
toxicity,” “obscene,” ‘“‘threat,” “insult,” “identityattack,”
and ‘“‘sexualexplicit.” Each comment’s toxicity was assessed
by up to 10 annotators who rated it on a scale ranging
from “Not Toxic” to “Very Toxic,” with the final toxicity
label representing the fraction of annotators who deemed
it toxic. Furthermore, a subset of comments were labeled
for identity mentions, such as gender, sexual orientation,
religion, and race, to analyze the relationship between online
toxicity and identity. This dataset offers significant potential
for developing and evaluating models aimed at identifying
and mitigating harmful online interactions. The dataset can
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be accessed here kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification/data.

4) FNSPID

FNSPID (Financial News and Stock Price Integration
Dataset) is a large-scale dataset designed for financial
market prediction. It integrates both numerical and textual
data, comprising 29.7 million stock prices and 15.7 mil-
lion financial news articles for 4,775 S&P500 companies
from 1999 to 2023 [78]. Sourced from four major stock
market news websites, FNSPID includes sentiment scores
derived from the news articles, offering a unique resource for
researchers to investigate the impact of news sentiment on
market trends. The metric used in Figure 5 is given by,

Ci11 Ci

G Ci1’
where Cy is the close price at time k. The close price is the
stock price at the end of the trading day.

C. SYSTEM PROMPTS
1) FINANCIAL ANALYSIS TASK
For the Financial Analysis Task of Example 2.

“Analyze the article and answer the following questions
based on the content:

Are there indications that recent or upcoming policy
decisions could support market growth? (Yes/No)

Do statements from central banks suggest optimism about
the economic outlook? (Yes/No)

Are there emerging trends or patterns that suggest a shift
in market sentiment? (Yes/No)

Is there evidence of key technical levels acting as support
for major indices? (Yes/No)

Are certain sectors or industries showing stronger perfor-
mance compared to others? (Yes/No)

Do shifts in investor interest suggest a move toward
specific sectors, such as technology or energy? (Yes/No)

Do recent economic data releases (e.g., employment, infla-
tion, consumer sentiment) point toward growth? (Yes/No)

Are any indicators flashing signals that typically correlate
with significant market moves (e.g., yield curves, commodity
prices)? (Yes/No)

Is there evidence of a ‘risk-on” approach among
investors? (Yes/No)

Do recent market movements suggest increased interest in
safe-haven assets like gold or bonds? (Yes/No)

Are there global or geopolitical events mentioned that
could influence market volatility? (Yes/No)

Could changes in international markets or currencies
impact domestic market trends? (Yes/No)

Are recent corporate earnings or business announcements
likely to influence market sentiment? (Yes/No)

Do specific companies or sectors appear to be driving
recent market gains? (Yes/No) article”

where article contains the HTML page of the online news
article.
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2) HATE SPEECH CLASSIFICATION TASK
For the Hate speech Classification Task:
“[INST]
Return a JSON with the following format for the given text:
{ ‘is_insulting’: Bool,
‘is_dehumanizing’:Bool,
‘is_humiliating’:Bool,
‘promotes_violence’:Bool,
‘promotes_genocide’:Bool,
‘is_respectful’:Bool }
Text: {comment }[/INST]”
where ‘“‘comment” contains the comment observation
which needs to be analyzed.

3) PRODUCT QUALITY IDENTIFICATION TASK
For the Product Quality Identification Task:

“Analyze the following product review and provide a
summary of the key points:

- Does the review mention any specific problems or defects
with the product?

- Does the review mention any positive attributes regarding
the product’s durability or reliability?

- Does the review indicate that the product meets or exceeds
the user’s expectations?

- Would the reviewer recommend this product to others?
review ”’

where review contains the review which is being analyzed.

4) RESPONSE

The responses of the LLM includes the JSON response at
the start and an explanation for the corresponding mapping.
We truncated the output to include the JSON and got
a discrete low-dimensional observation from the textual
comment.

D. OBSERVATION SPACE

1) REDUCING THE OBSERVATION SPACE

We reduce the observation space for the hate-speech classifi-
cation task:

Although the LLM output for text observation is of
cardinality 2 = 64, we reduce by considering the following
order: respectful < insulting < dehumanizing < humiliating <
violence < genocide [54]. The binary map ¥ (z) : {0, 1}6 —
6 = max{j : s.t. z[j] = 1} takes the observation as the highest
severity present in the binary observation.

2) LIKELIHOOD NEURAL NETWORK (RESTRICTED
BOLTZMANN MACHINE)

We use a subset of the labeled dataset to obtain a likelihood
distribution. We use restricted Boltzmann Machines (RBMs)
to approximate the likelihood function P(y|x); we train a
conditional RBM on observations obtained from different
states (as defined in the main text). Each RBM has | )| visible
units and 4 hidden units. We train the RBM using contrastive
divergence for 100 epochs and generate 1000 samples
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using Gibbs sampling with 1000 iterations. We obtain
the approximate probabilities by empirically counting the

samples.

REFERENCES

[1] A. Caplin and M. Dean, ‘“Revealed preference, rational inattention,
and costly information acquisition,” Amer. Econ. Rev., vol. 105, no. 7,
pp. 2183-2203, Jul. 2015.

[2] S.Bhatt and V. Krishnamurthy, “Controlled sequential information fusion
with social sensors,” IEEE Trans. Autom. Control, vol. 66, no. 12,
pp. 5893-5908, Dec. 2021.

[3] C. Chamley, Rational Herds: Economic Models of Social Learning.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[4] V. Krishnamurthy, “Quickest detection POMDPs with social learning:
Interaction of local and global decision makers,” IEEE Trans. Inf. Theory,
vol. 58, no. 8, pp. 5563-5587, Aug. 2012.

[5] V. Krishnamurthy, Partially Observed Markov Decision Processes.
Cambridge, U.K.: Cambridge Univ. Press, Mar. 2016.

[6] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and

D. B. Rubin, Bayesian Data Analysis, 3rd ed., London, U.K.: Chapman

& Hall, 2013.

J. Wiesinger, P. Marlow, and V. Vuskovic. (Sep. 2024). Agents.

Google/Kaggle. [Online]. Available: https://www.kaggle.com/whitepaper-

agents

[8] S. Altman. (Jan. 2025). Reflections—Blog. [Online]. Available: https://
blog.samaltman.com/reflections

[9] A. Vaswani, N. Shazeer, N. Parmar, J. UszKoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. 31st
Adv. Neural Inf. Process. Syst., vol. 30, Red Hook, NY, USA, Jun. 2017,
pp. 6000-6010.

[10] B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen, O. Sainz,
E. Agirre, I. Heintz, and D. Roth, “Recent advances in natural language
processing via large pre-trained language models: A survey,” ACM
Comput. Surv., vol. 56, no. 2, pp. 1-40, Sep. 2023.

[11] S.Li, X. Puig, C. Paxton, Y. Du, C. Wang, L. Fan, T. Chen, D.-A. Huang,
E. Akyiirek, A. Anandkumar, J. Andreas, I. Mordatch, A. Torralba, and
Y. Zhu, ““Pre-trained language models for interactive decision-making,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 35, Dec. 2022, pp. 31199-31212.

[12] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu,
and J. Gao, “Deep learning-based text classification: A comprehensive
review,” ACM Comput. Surv., vol. 54, pp. 1-40, Apr. 2021.

[13] Finance. 90% of Online Content Could be Generated by Al by
2025, Expert Says. Accessed: Jan. 15, 2025. [Online]. Available:
https://finance.yahoo.com/news/90-of-online-content-could-be-
generated-by-ai-by-2025-expert-says-201023872.html

[14] W. Zhou, Y. E. Jiang, L. Li, J. Wu, T. Wang, S. Qiu, J. Zhang, J. Chen,
R.Wu, S. Wang, S. Zhu, J. Chen, W. Zhang, X. Tang, N. Zhang,
H. Chen, P. Cui, and M. Sachan, “Agents: An open-source framework for
autonomous language agents,” 2023, arXiv:2309.07870.

[15] 1. Shumailov, Z. Shumaylov, Y. Zhao, N. Papernot, R. Anderson, and
Y. Gal, “Al models collapse when trained on recursively generated data,”
Nature, vol. 631, no. 8022, pp. 755-759, Jul. 2024.

[16] A.Jain and V. Krishnamurthy, “Identifying hate speech peddlers in online
platforms. A Bayesian social learning approach for large language model
driven decision-makers,” 2024, arXiv:2405.07417.

[17] Salesforce. (Sep. 2024). Salesforce Unveils Agentforce—What Al was
Meant to be. [Online]. Available: https://investor.salesforce.com/press-
releases/press-release-details/2024/Salesforce-Unveils-AgentforceWhat-
Al-Was-Meant-to-Be/

[18] L. Wang, X. Zhang, H. Su, and J. Zhu, “A comprehensive survey of
continual learning: Theory, method and application,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 46, no. 8, pp. 5362-5383, Aug. 2024.

[19] J. Kaddour, J. Harris, M. Mozes, H. Bradley, R. Raileanu, and
R. McHardy, “Challenges and applications of large language models,”
2023, arXiv:2307.10169.

[20] M. A. K. Raiaan, M. S. H. Mukta, K. Fatema, N. M. Fahad, S. Sakib,
M. M. J. Mim, J. Ahmad, M. E. Ali, and S. Azam, “A review on large
language models: Architectures, applications, taxonomies, open issues and
challenges,” IEEE Access, vol. 12, pp. 26839-26874, 2024.

[21] B. Jin, G. Liu, C. Han, M. Jiang, H. Ji, and J. Han, “Large language
models on graphs: A comprehensive survey,” IEEE Trans. Knowl. Data
Eng., vol. 36, no. 12, pp. 8622-8642, Dec. 2024.

17

—

VOLUME 13, 2025



A. Jain, V. Krishnamurthy: Interacting LLMA. Bayesian Social Learning Based Interpretable Models

IEEE Access

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

R. Gallotta, G. Todd, M. Zammit, S. Earle, A. Liapis, J. Togelius,
and G. N. Yannakakis, “Large language models and games: A survey
and roadmap,” IEEE Trans. Games, early access, Sep. 13, 2024, doi:
10.1109/TG.2024.3461510.

E. Kasneci et al., “ChatGPT for good? On opportunities and challenges
of large language models for education,” Learn. Individual Differences,
vol. 103, Mar. 2023, Art. no. 102274.

R. Reinanda, E. Meij, and M. de Rijke, “Knowledge graphs: An
information retrieval perspective,” Found. Trends Inf. Retr., vol. 14, no. 4,
pp. 289-444, 2020.

T. Guo, X. Chen, Y. Wang, R. Chang, S. Pei, N. V. Chawla, O. Wiest,
and X. Zhang, “Large language model based multi-agents: A survey of
progress and challenges,” in Proc. 33rd Int. Joint Conf. Artif. Intell.,
Aug. 2024, pp. 8048-8057.

Y. Lietal., “Personal LLM agents: Insights and survey about the capability,
efficiency and security,” 2024, arXiv:2401.05459.

Y. Yu, H. Li, Z. Chen, Y. Jiang, Y. Li, D. Zhang, R. Liu, J. W. Suchow, and
K. Khashanah, “FinMem: A performance-enhanced LLM trading agent
with layered memory and character design,” in Proc. AAAI Symp. Ser.,
vol. 3, May 2024, pp. 595-597.

S.-L. Hsu, R. S. Shah, P. Senthil, Z. Ashktorab, C. Dugan, W. Geyer,
and D. Yang, “Helping the helper: Supporting peer counselors via Al-
empowered practice and feedback,” 2023, arXiv:2305.08982.

Y. Guan, D. Wang, Z. Chu, S. Wang, F. Ni, R. Song, and C. Zhuang,
“Intelligent agents with LLM-based process automation,” in Proc. 30th
ACM SIGKDD Conf. Knowl. Discovery Data Mining, New York, NY,
USA, Aug. 2024, pp. 5018-5027.

S. Suri, S. N. Das, K. Singi, K. Dey, V. S. Sharma, and V. Kaulgud,
“Software engineering using autonomous agents: Are we there yet?”” in
Proc. 38th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Sep. 2023,
pp. 1855-1857.

S. Yao, H. Chen, J. Yang, and K. Narasimhan, “WebShop: Towards
scalable real-world web interaction with grounded language agents,”
in Proc. 36th Adv. Neural Inf. Process. Syst., vol. 35, Apr. 2024,
pp. 20744-20757.

T. R. Sumers, S. Yao, K. Narasimhan, and T. L. Griffiths,
“Cognitive architectures for language agents,” in Proc. Trans.
Mach. Learn. Res., Jan. 2023, pp.1-12. [Online]. Available:

https://openreview.net/forum?id=1i6ZCv{lQJ

M. Zhuge et al., “Mindstorms in natural language-based societies of
mind,” 2023, arXiv:2305.17066.

Z. Liu, Y. Zhang, P. Li, Y. Liu, and D. Yang, “A dynamic LLM-
powered agent network for task-oriented agent collaboration,” in Proc.
Ist Conf. Lang. Model., Jul. 2024, pp.1-14. [Online]. Available:
https://openreview.net/forum?id=XII0Wp1XA9

Z. Wang, S. Cai, A. Liu, Y. Jin, J. Hou, B. Zhang, H. Lin, Z. He,
Z.Zheng, Y. Yang, X. Ma, and Y. Liang, “JARVIS-1: Open-world multi-
task agents with memory-augmented multimodal language models,” 2023,
arXiv:2311.05997.

Y.-S. Chuang, A. Goyal, N. Harlalka, S. Suresh, R. Hawkins, S. Yang,
D. Shah, J. Hu, and T. T. Rogers, ‘““Simulating opinion dynamics with
networks of LLM-based agents,” 2023, arXiv:2311.09618.

Y. Han and Z. Guo, “Regulator-manufacturer AI agents modeling:
Mathematical feedback-driven multi-agent LLM framework,” 2024,
arXiv:2411.15356.

M. Marchi, S. Soatto, P. Chaudhari, and P. Tabuada, ‘“Heat death
of generative models in closed-loop learning,” 2024, arXiv:2404.
02325.

H. Duan, A. Dziedzic, N. Papernot, and F. Boenisch, “Flocks of
stochastic parrots: Differentially private prompt learning for large language
models,” in Proc. 37th Adv. Neural Inf. Process. Syst., May 2024,
pp. 76852-76871.

A. Mohtashami, F. Hartmann, S. Gooding, L. Zilka, M. Sharifi, and B.
A.Y. Arcas, “Social learning: Towards collaborative learning with large
language models,” 2023, arXiv:2312.11441.

Y. Ge, W. Hua, J. Ji, J. Tan, S. Xu, and Y. Zhang, “OpenAGI: When LLM
meets domain experts,” in Proc. Adv. Neural Inf. Process. Syst., vol. 36,
May 2024, pp. 5539-5568.

A. Chevalier, A. Wettig, A. Ajith, and D. Chen, “Adapting language
models to compress contexts,” in Proc. Conf. Empirical Methods
Natural Lang. Process., Oct. 2023, pp. 3829-3846. [Online]. Available:
https://openreview.net/forum?id=kp lU6wBPXq

VOLUME 13, 2025

(43]

(44]

(45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

J. Brinkmann, A. Sheshadri, V. Levoso, P. Swoboda, and C. Bartelt,
“A mechanistic analysis of a transformer trained on a symbolic multi-
step reasoning task,” in Proc. Findings Assoc. Comput. Linguistics (ACL),
Bangkok, Thailand, Aug. 2024, pp. 4082-4102.

N. Nanda, L. Chan, T. Lieberum, J. L. Smith, and J. Steinhardt, ‘“Progress
measures for grokking via mechanistic interpretability,” in Proc. 11th
Int. Conf. Learn. Represent., Feb. 2023, pp. 1-13. [Online]. Available:
https://openreview.net/forum?id=9XFSbDPmdW

C. Singh, A. Askari, R. Caruana, and J. Gao, “Augmenting interpretable
models with large language models during training,” Nature Commun.,
vol. 14, no. 1, p. 7913, Nov. 2023.

K. Pattanayak, V. Krishnamurthy, and A. Jain, “Interpretable deep image
classification using rationally inattentive utility maximization,” IEEE
J. Sel. Topics Signal Process., vol. 18, mno. 2, pp.168-183,
Mar. 2024.

V. Krishnamurthy and K. Pattanayak, ‘“Necessary and sufficient conditions
for inverse reinforcement learning of Bayesian stopping time problems,”
J. Mach. Learn. Res., vol. 24, pp. 1-64, Mar. 2024.

N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan,
“A survey on bias and fairness in machine learning,” ACM Comput.
Surveys, vol. 54, no. 6, pp. 1-35, Jul. 2021.

J. Anthis, K. Lum, M. Ekstrand, A. Feller, A. D’Amour, and C. Tan,
“The impossibility of fair LLMs,” 2024, arXiv:2406.03198.

A. Adadi and M. Berrada, “Peeking inside the black-box: A survey
on explainable artificial intelligence (XAI),” IEEE Access, vol. 6,
pp. 52138-52160, 2018.

L. Zhu, X. Xu, Q. Lu, G. Governatori, and J. Whittle, “AI and
ethics—Operationalizing responsible AL in Humanity Driven Al:
Productivity, Wellbeing, Sustainability and Partnership. Cham,
Switzerland: Springer, Dec. 2021, pp. 15-33.

S. Liu, R. Suresh, and A. Banitalebi-Dehkordi, ‘“Beauty beyond words:
Explainable beauty product recommendations using ingredient-based
product attributes,” 2024, arXiv:2409.13628.

B. Liu, Sentiment Analysis and Opinion Mining. San Rafael, CA, USA:
Morgan & Claypool, 2012.

P. Sachdeva, R. Barreto, G. Bacon, A. Sahn, C. von Vacano, and
C. Kennedy, “The measuring hate speech corpus: Leveraging Rasch
measurement theory for data perspectivism,” in Proc. Ist Workshop
Perspectivist Approaches, Jun. 2022, pp. 83-94.

Z. Zhao, W. Fan, J. Li, Y. Liu, X. Mei, Y. Wang, Z. Wen, F. Wang,
X. Zhao, J. Tang, and Q. Li, “Recommender systems in the era of large
language models (LLMS),” IEEE Trans. Knowl. Data Eng., vol. 36, no. 11,
pp. 6889-6907, Nov. 2024.

J.Ni, J. Li, and J. McAuley, “Justifying recommendations using distantly-
labeled reviews and fine-grained aspects,” in Proc. Conf. Empirical
Methods Natural Lang. Process. 9th Int. Joint Conf. Natural Lang. Process.
(EMNLP-1JCNLP), Hong Kong, K. Inui, J. Jiang, V. Ng, and X. Wan, Eds.,
Nov. 2019, pp. 188-197.

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier,
L. R. Lavaud, M.-A. Lachaux, P. Stock, T. Le Scao, T. Lavril, T. Wang,
T. Lacroix, and W. E. Sayed, “Mistral 7B,” 2023, arXiv:2310.06825.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T.
Lacroix, B. Roziére, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A.
Joulin, E. Grave, and G. Lample, “LLaMA: Open and efficient foundation
language models,” 2023, arXiv:2302.13971.

C. Singh, J. P. Inala, M. Galley, R. Caruana, and J. Gao, ‘‘Rethinking inter-
pretability in the era of large language models,” 2024, arXiv:2402.01761.
Y. Zhang, S. Mao, T. Ge, X. Wang, Y. Xia, W. Wu, T. Song, M. Lan, and
F. Wei, “LLM as a mastermind: A survey of strategic reasoning with large
language models,” in Proc. 1st Conf. Lang. Model., Jul. 2024, pp. 1-14.
[Online]. Available: https://openreview.net/forum?id=iMqJsQ4evS

J. Lanchantin, S. Toshniwal, J. Weston, A. Szlam, and S. Sukhbaatar,
“Learning to reason and memorize with self-notes,” in Proc. 37th Conf.
Neural Inf. Process. Syst., Sep. 2023, pp. 11891-11911.

G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and
A. Anandkumar, “Voyager: An open-ended embodied agent with large
language models,” in Proc. Trans. Mach. Learn. Res., Mar. 2023, pp. 1-12.
[Online]. Available: https://openreview.net/forum?id=ehfRiFOR3a

C. Li, J. Ma, X. Guo, and Q. Mei, “DeepCas: An end-to-end predictor of
information cascades,” in Proc. 26th Int. Conf. World Wide Web, Apr. 2017,
pp. 577-586.

25503



IEEE Access

A. Jain, V. Krishnamurthy: Interacting LLMA. Bayesian Social Learning Based Interpretable Models

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

C. Cui, Y. Ma, X. Cao, W. Ye, and Z. Wang, *“‘Drive as you speak: Enabling
human-like interaction with large language models in autonomous
vehicles,” in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. Workshops
(WACVW), Jan. 2024, pp. 902-909.

C.-E. Sun, T. Oikarinen, and T.-W. Weng, “Crafting large lan-
guage models for enhanced interpretability,” in Proc. ICML Workshop
Mechanistic Interpretability, Jul. 2024, pp. 1-15. [Online]. Available:
https://openreview.net/forum?id=pXx3nDi8hI

R. Baltaji, B. Hemmatian, and L. Varshney, “Conformity, confabulation,
and impersonation: Persona inconstancy in multi-agent LLM collabora-
tion,” in Proc. 2nd Workshop Cross-Cultural Considerations NLP, 2024,
pp. 17-31.

A. Borah and R. Mihalcea, ““Towards implicit bias detection and mitigation
in multi-agent LLM interactions,” 2024, arXiv:2410.02584.

N. Gupta, H. Narasimhan, W. Jitkrittum, A. S. Rawat, A. K. Menon,
and S. Kumar, “Language model cascades: Token-level uncertainty and
beyond,” in Proc. 12th Int. Conf. Learn. Represent., Jan. 2024, pp. 1-12.
[Online]. Available: https://openreview.net/forum?id=KgaBScZ4VI

N. D. Palo, A. Byravan, L. Hasenclever, M. Wulfmeier, N. Heess,
and M. Riedmiller, “Towards a unified agent with foundation mod-
els,” in Proc. Workshop Reincarnating Reinforcement Learn. (ICLR),
Jan. 2023, pp. 1-12. [Online]. Available: https://openreview.net/forum?
id=JK_B1tB6p-

M. Huh, B. Cheung, T. Wang, and P. Isola, “Position: The platonic
representation hypothesis,” in Proc. 41st Int. Conf. Mach. Learn., vol. 235,
Jul. 2024, pp. 20617-20642.

Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi,
C. Wang, Y. Wang, W. Ye, Y. Zhang, Y. Chang, P. S. Yu, Q. Yang, and
X. Xie, “A survey on evaluation of large language models,” ACM Trans.
Intell. Syst. Technol., vol. 15, Mar. 2024, Art. no. 39.

J. W. Howard, “Free speech and hate speech,” Annu. Rev. Political Sci.,
vol. 22, no. 1, pp. 93-109, May 2019.

B. Kennedy, X. Jin, A. M. Davani, M. Dehghani, and X. Ren, “Contex-
tualizing hate speech classifiers with post-hoc explanation,” in Proc. 58th
Annu. Meeting Assoc. Comput. Linguistics, 2020, pp. 5435-5442.

A. Jain and V. Krishnamurthy, “Controlling federated learning for
covertness,” in Proc. Trans. Mach. Learn. Res., Jan. 2024, pp. 1-15.
[Online]. Available: https://openreview.net/forum?id=g010VahtN9

D. Acemoglu and A. Ozdaglar, “Opinion dynamics and learning in social
networks,” Dyn. Games Appl., vol. 1, no. 1, pp. 3-49, Mar. 2011.

H. Zhang, M. Dang, N. Peng, and G. van den Broeck, ‘“Tractable control for
autoregressive language generation,” in Proc. 40th Int. Conf. Mach. Learn.,
Jan. 2023, pp. 40932-40945.

F. Bordes et al., “An introduction to vision-language modeling,” 2024,
arXiv:2405.17247.

Z. Dong, X. Fan, and Z. Peng, “FNSPID: A comprehensive financial
news dataset in time series,” in Proc. 30th ACM SIGKDD Conf. Knowl.
Discovery Data Mining, Aug. 2024, pp. 4918-4927.

V. Krishnamurthy and H. V. Poor, “A tutorial on interactive sensing
in social networks,” IEEE Trans. Computat. Social Syst., vol. 1, no. 1,
pp. 3-21, Mar. 2014.

A. Panda, C. A. Choquette-Choo, Z. Zhang, Y. Yang, and P. Mittal, ““Teach
LLMs to phish: Stealing private information from language models,” in
Proc. 12th Int. Conf. Learn. Represent., Jan. 2024, pp. 1-10. [Online].
Auvailable: https://openreview.net/forum?id=qo21Z1fNu6

J. Kazdan, R. Schaeffer, A. Dey, M. Gerstgrasser, R. Rafailov,
D. L. Donoho, and S. Koyejo, “Collapse or thrive? Perils and promises
of synthetic data in a self-generating world,” 2024, arXiv:2410.16713.

P. Wang, D. Xu, Z. Fan, D. Wang, S. Mohan, F. Iandola, R. Ranjan,
Y. Li, Q. Liu, Z. Wang, and V. Chandra, “Taming mode collapse in score
distillation for text-to-3D generation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2024, pp. 9037-9047.

V. Krishnamurthy and C. Rojas, “Slow convergence of interacting Kalman
filters in word-of-mouth social learning,” 2024, arXiv:2410.08447.

A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause, *‘Stream-
ing submodular maximization: Massive data summarization on the fly,”
in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2014, pp. 671-680.

N. R. Council, Frontiers in Massive Data Analysis. Washington, DC,
USA: National Academy Press, 2013. [Online]. Available: https://nap.
nationalacademies.org/catalog/18374/frontiers-in-massive-data-analysis

25504

(86]

(87]

(88]

(89]

[90]

[91]

(92]

(93]

[94]
[95]

[96]

V. Krishnamurthy, “Quickest change detection of time inconsistent
anticipatory agents. Human-sensor and cyber-physical systems,” IEEE
Trans. Signal Process., vol. 69, pp. 1054-1069, 2021.

G. Wang. (Oct. 2024). OpenAl Fast-Tracks Al Agents. How do we Balance
Benefits With Risks?. Forbes. [Online]. Available: https://www.forbes.
com/sites/geruiwang/2024/10/04/openai-fast-tracks-ai-agents-how-do-we
-balance-benefits-with-risks/

H. Kushner and G. Yin, Stochastic Approximation and Recursive Algo-
rithms and Applications (Stochastic Modelling and Applied Probability).
New York, NY, USA: Springer, 2003.

A. Jain and V. Krishnamurthy, “Structured reinforcement learning for
incentivized stochastic covert optimization,” IEEE Control Syst. Lett.,
vol. 8, pp. 1295-1300, 2024.

B. Bahador. Classifying and Identifying the Intensity
Speech. SSRC. Accessed: Jan. 15, 2025. [Online].

https://items.ssrc.org/disinformation-democracy-and-conflict-
prevention/classifying-and-identifying-the-intensity-of-hate-speech/

J. A. Chevalier and D. Mayzlin, “The effect of word of mouth on sales:
Online book reviews,” J. Marketing Res., vol. 43, no. 3, pp. 345-354,
Aug. 2006.

V. A. Zeithaml, “Consumer perceptions of price, quality, and value:
A means-end model and synthesis of evidence,” J. Marketing, vol. 52,
no. 3, p. 2, Jul. 1988.

J. Qiu, K. Lam, G. Li, A. Acharya, T. Y. Wong, A. Darzi, W. Yuan, and
E. J. Topol, “LLM-based agentic systems in medicine and healthcare,”
Nature Mach. Intell., vol. 6, no. 12, pp. 1418-1420, Dec. 2024.

X. O. He, “Mixture of a million experts,” 2024, arXiv:2407.04153.

M. Sidji, W. Smith, and M. J. Rogerson, ‘“Human-AlI collaboration in
cooperative games: A study of playing codenames with an LLM assistant,”
Proc. ACM Hum.-Comput. Interact., vol. 8, pp. 1-25, Oct. 2024, doi:
10.1145/3677081.

D. Blackwell, “Equivalent comparisons of experiments,” Ann. Math.
Statist., vol. 24, no. 2, pp. 265-272, Jun. 1953.

of Hate
Available:

ADIT JAIN (Student Member, IEEE) received
the B.Tech. degree (Hons.) in electronics and
communication engineering from Indian Institute
of Technology Guwahati, in 2022. He is currently
pursuing the degree with Cornell University.

He has internship experience at Adobe Research
and Goldman Sachs. His research interests include
structural results for episodic reinforcement learn-
ing, online learning, and high-dimensional linear
bandits. His research is focused on applications in

federated learning, large language model agents, and active learning. He was
arecipient of the Data Science Fellowship graciously offered by the Cornell
Center for Social Sciences.

VIKRAM KRISHNAMURTHY (Fellow, IEEE)
received the Ph.D. degree from Australian
National University, in 1992.

From 2002 to 2016, he was a Professor and
the Canada Research Chair at The University
of British Columbia, Canada. He is currently
a Professor with the School of Electrical and
Computer Engineering, Cornell University. He is
the author of two books Partially Observed
Markov Decision Processes and Dynamics of

Engineered Artificial Membranes and Biosensors, published by Cambridge
University Press, in 2016 and 2018, respectively. His research interests
include statistical signal processing and stochastic control in social networks
and adaptive sensing.

Dr. Krishnamurthy was awarded an Honorary Doctorate at the KTH Royal
Institute of Technology, Sweden, in 2013. He served as a Distinguished
Lecturer for the IEEE Signal Processing Society and the Editor-in-Chief of
IEEE JoUuRNAL ON SELECTED TOPICS IN SIGNAL PROCESSING.

VOLUME 13, 2025



