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Estimating exposure to information on a social network is a problem with important consequences for our
society. The exposure estimation problem involves finding the fraction of people on the network who have
been exposed to a piece of information (e.g., a URL of a news article on Facebook, a hashtag on Twitter).
The exact value of exposure to a piece of information is determined by two features: the structure of the
underlying social network and the set of people who shared the piece of information. Often, both features
are not publicly available (i.e., access to the two features is limited only to the internal administrators of
the platform) and are difficult to estimate from data. As a solution, we propose two methods to estimate
the exposure to a piece of information in an unbiased manner: a vanilla method that is based on sampling
the network uniformly and a method that non-uniformly samples the network motivated by the Friendship
Paradox. We provide theoretical results that characterize the conditions (in terms of properties of the network
and the piece of information) under which one method outperforms the other. Further, we outline extensions
of the proposed methods to dynamic information cascades (where the exposure needs to be tracked in real
time). We demonstrate the practical feasibility of the proposed methods via experiments on multiple synthetic
and real-world datasets.
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1 Introduction

Online social networks are an important mechanism through which people are exposed to infor-
mation. Estimating the total number of people who are exposed by their friends to a piece of
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information! on an online social network (e.g., the URL of an article on Facebook, a hashtag on
Twitter, etc.) is an important problem with key societal implications. Such estimates of exposure
can, for example, help researchers and the public track the prevalence and reach of election misin-
formation [4, 10] or improve the public health response to the Coronavirus [37, 39].

To measure the exposure to a piece of information on a network, one needs access to two fea-
tures: the set of people who shared the piece of information, and the structure of the underlying
social network. Of these two features, the structure of the underlying social network is often not
publicly available, and fully or partially estimating it from data is not a practically feasible task
due to the networks’ massive size (e.g., billions of nodes and edges in Facebook), constantly evolv-
ing nature [26, 27] and limits placed by corporations on data collection. Similarly, the set of people
who shared the piece of information is often also not publicly known and difficult to estimate from
data, since it evolves as the piece of information spreads through the social network in the form
of an information cascade, e.g., a URL of a news article that is being shared on Facebook. As a
result, calculating exposure to a piece of information on a social network in a data-driven manner
remains a challenging task.

This state of affairs is unfortunate as efficient (in terms of computation and resources) and ac-
curate (in terms of statistical properties) estimates of exposure to information can provide two
important benefits:

(i) from an analytic perspective, to identify widely consumed pieces of information and bet-
ter understand their effect on the outcomes of various high-stake events such as elections,
COVID vaccine acceptance, and so on [4, 39], and

(ii) from an intervention perspective, to prioritize various pieces of information in the content
moderation and fact checking process of a social media platform to prevent large numbers
of users from being exposed to harmful or misleading information.

Surprisingly, the problem of estimating exposure to information has received relatively little
attention in the literature despite its importance. Formally, this problem can be stated as follows
(in the context of an undirected social network such as Facebook).

Problem of estimating exposure to information: Consider an undirected social network
G = (V,E), and let s(v) = 1 if the node v € V shared (with the set of their neighbors N(v) c V)
a piece of information and s(v) = 0, otherwise. Assuming the graph G and the sharing function
s : V. — {0, 1} are unknown, estimate the fraction of nodes exposed to the piece of information,

eV f@ =1
f= T M

where f(v) = 1if the node v € V has been exposed to the piece of information by one of their
neighbors and f(v) = 0 otherwise, i.e., f(0) = 1{34 e N(o) such that s(w)=1}(V)-

In the above formulation, the value s(v) € {0, 1} indicates whether the user (i.e., node) v € V
shared the piece of information in concern and f(v) € {0, 1} indicates whether the user v € V
has been exposed to it by one of their neighbours. Thus, the parameter of interest f denotes the
average exposure to the piece of information in the social network, i.e., f = E{f(X)} where X
denotes a uniformly sampled node from the set of all nodes V. In this setting, we are tasked with
devising a method to estimate the average exposure f. Observe that the average exposure f defined

A “piece of information” refers to any uniquely identifiable message, such as a URL or a hashtag, that is shared by the
users on a social network with their contacts. Depending on the application and context, one can even define the “piece
of information” to be a collection of such uniquely identifiable messages of similar nature (e.g., a set of URLs and hashtags
about a particular incident or a cause).
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in Equation (1) depends explicitly on the exposure f(v) of each node v € V in the graph. Since
the sharing function s : V.— {0, 1} and the network G = (V, E) are both unknown, the exposure
function f : V — {0, 1} is also unknown (as it depends on both s : V.— {0,1} and G = (V, E)).
Hence, computing the exact average exposure f is not practically feasible. However, the exposure
f(v;) € {0,1} of a small number of sampled nodes v;,i = 1,2,...,n (where n < |V|) can often be
found by looking at whether at least one neighbor of v; (for each i = 1,2, ..., n) shared the piece
of information.

Main results:

(1) We propose two intuitive and practically feasible methods for estimating the exposure to a
piece of information on an undirected social network: a vanilla method based on uniform
sampling and a friendship paradox-based method. The vanilla method is a naive solution to
the problem based on the well-known uniform sampling, and hence we treat it as a baseline.
In contrast, the friendship paradox-based method utilizes a non-uniform sampling approach
that is suitable for most practical settings. Both methods produce unbiased estimates of the
average exposure to information f.

(2) Via theoretical analysis and numerical experiments, we characterize the conditions under
which the friendship paradox-based method outperforms the vanilla method and vice-versa.
These conditions depend only on network properties that are typically known a priori based
on the context, such as assortativity of the network and whether the sharers are more likely
to be highly popular nodes or less popular fringe nodes. Hence, the characterizing conditions
help choose the most accurate method for estimating exposure to information depending on
the context of the problem.

(3) We extend the two proposed methods to the setting of a dynamic information cascade (where
the time-varying exposure needs to be tracked in real time) as well as to the context of
directed networks (e.g., Twitter).

(4) We provide detailed numerical simulations (based on synthetic data) as well as empirical
experiments (based on real-world data) to illustrate the usefulness and feasibility of the pro-
posed methods under various practical settings.

2 Related Work and Preliminaries

Our problem definition and methods are motivated by recent literature and events, which we
expand on below. We then present background preliminaries on the main approach that we use in
this work, the friendship paradox.

2.1 Motivation

The need for a principled method for estimating exposure to information in social media has in-
tensified recently.

One reason for this increased interest in exposure estimation is the role that exposure to infor-
mation on social networks can play in affecting the outcomes of high-stake events that define the
course of our society. In particular, the question of reach of “fake news” on Facebook has become a
major public concern following the 2016 U.S. presidential election [4, 10]. Similarly, large-scale ex-
posure to false information on social media has complicated the public health response to the Coro-
navirus [37, 39]. Both examples highlight the need for tracking and quantifying exposure, for exam-
ple, to prioritize fact-checking of trending coronavirus and election-related information content.

It has also become clear that the platforms cannot be trusted to reliably provide this informa-
tion, in real time or retroactively [11, 16]. For example, Facebook recently acknowledged serious
problems in the data provided to academic researchers in 2020 [1, 40] and reportedly shelved
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“most-viewed pages” reports when those conflicted with the company’s publicity goals [2]. Such
incidents have given rise to the need of methods that can accurately estimate the exposure to var-
ious pieces of information independently without the involvement of the social media companies.

Researchers looking to estimate exposure to information in social networks are largely limited
to survey-based offline methods. In such methods, a question is presented to a set of respondents
to gather information on the frequency and pattern of their social media usage [17]. For example,
researchers had used a post-election online survey to assess how exposure to fake news affected
the 2016 U.S. election [4]. Survey-based methods have several limitations. First, they cannot be
implemented in real time, and they are implemented after an event has occurred (e.g., an election).
Consequently, survey-based methods can only be used for post-event type studies to collect retro-
spective data and are not suitable for real-time tasks such as identifying trending information for
independent fact-checking, and so on. Second, as respondents self-report their usage frequencies
and patterns, the outcomes of surveys are prone to over- and under- reporting errors as well as
human cognitive biases [22]. As a result, the estimates of exposure to information based on sur-
veys alone may not have rigorous theoretical guarantees on the accuracy. Other research had used
panels of users who provided access to their web traffic to assess such exposure [19]. Closer to our
baseline method here, researchers had used a panel of Twitter users to track their exposure to spe-
cific “fake news” URLs and domains shared by people they follow, but did not offer network-wide
measures [18].

In this context, our definition of exposure to information fills the lack of a formal definition in
literature and also assists in the development of rigorous algorithmic estimation methods. Further,
as opposed to the post-event survey-based approach, the social network sampling-based methods
proposed in this work can be implemented in real time (to track the progression of exposure as a
piece of information spreads over time). These methods yield unbiased estimates of the exposure
to information across the entire social network. In addition, these techniques can be implemented
in a practically feasible manner without the full knowledge of the network (e.g., via a random
walk) as well as the set of people who shared the piece of information.

2.2 Friendship Paradox

Our work here is motivated by the graph theoretic consequence named friendship paradox, which
states, “On average, the number of friends of a random friend is always greater than or equal to
the number of friends of a random individual” Formally:

THEOREM 1 (FRIENDSHIP PARADOX [14]). Consider an undirected graph G = (V,E). Let X be a
node sampled uniformly from V and Y be a uniformly sampled end-node from a uniformly sampled
edgee € E. Then,

E{d(Y)} = E{d(X)}, @)
where d(X) and d(Y) denote the degrees of X and Y, respectively.

In Theorem 1, the random variable Y is called a random friend. This is because it is a random
person from a uniformly sampled pair of friends.? The intuition behind the friendship paradox
(Theorem 1) is that individuals with large number of friends (i.e., high-degree nodes) appear as
the friends of many others. Therefore, a random end of a random link (i.e., the random variable Y)
is more likely to yield a high degree node than a uniformly sampled node (i.e., the random vari-
able X). Consequently, sampling random friends (i.e., Y) allows us to reach high-degree nodes in
the network without the full knowledge of the network.

2A random friend Y on an undirected graph G = (V, E) has the distribution P{Y = v} « d(v) for all v € V. In other
words, a random friend is a node sampled with a probability proportional to their degrees.
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Previous work that rely on the friendship paradox for statistical inference: The friend-
ship paradox has been exploited in many statistical inference methods [23, 29], e.g., to reduce the
variance in survey-based polling methods [30], to efficiently estimate power-law degree distribu-
tions [13, 31], and to quickly detect the outbreak of a disease [15]. Such work in literature aim
to exploit the friendship paradox to sample individuals with larger number of friends on average,
similar to one of the methods discussed in our work (i.e., the friendship paradox-based estima-
tor). However, while relying on the friendship paradox for estimation remains a common feature
between our work and previous works, the quantity being estimated is different. For example,
Reference [31] exploits the friendship paradox to estimate the exponent of a power-law degree
distribution by sampling the tail of the distribution more efficiently, and Reference [15] exploits
the fact that random-friends are better sensors to be monitored for detecting disease outbreaks as
they are likely to catch the disease earlier due to their larger social circles. Similarly, in polling [29],
the quantity of interest is the fraction of nodes in the graph with a certain attribute (e.g., the frac-
tion of nodes who will vote for a certain political candidate), and the friendship paradox-based
methods exploit the fact that random friends can be more useful for this purpose by summarizing
the voting intentions of their larger social circles. Unlike such problems and methods in References
[15, 29, 31], the quantity we are interested in estimating is the exposure to information defined in
Equation (1), which is the union of the social circles (neighborhoods) of all individuals that have
shared the piece of information. Although the friendship paradox is still exploited in the proposed
method, the quantity being estimated, the form of the estimator as well as its statistical properties
are different from the previous works.

Besides its applications in statistical inference tasks, other implications (e.g., perception bias [3,
21, 24, 25], information diffusion [32]) and generalizations of the friendship paradox (e.g., Refer-
ences [7, 12, 20]) have been widely studied in the context of social networks.

3 Algorithmic Approach

In this section, we present two methods for estimating the average exposure to information: a
vanilla method based on uniform sampling and a friendship paradox-based method. The conditions
under which each method yields more accurate results than the other are derived subsequently.

3.1 Vanilla Method Based on Uniform Sampling

The vanilla approach for estimating the average exposure f works by obtaining a set of random
nodes and checking whether these nodes have been exposed to the piece of information via their
contacts.

Vanilla method for estimating exposure to information

Step 1: Sample n random nodes Xj,...,X, uniformly and independently from the set of all
nodes V.
Step 2: Use
n
. L X
fn = —’_1:( ) €)

as the estimate of the average exposure f.

The vanilla estimator fv1 given in Equation (3) is unbiased, i.e., B{ fvl} = f. However, the vanilla
estimator fw would intuitively yield a larger variance, since random nodes are not likely exposed
to the piece of information when s(-) is a very sparse function (i.e., only very few people shared
the information).
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3.2 Friendship Paradox-based Method

To reduce the variance in the estimate of average exposure, we can exploit the friendship paradox-
based sampling (instead of vanilla uniform sampling) as follows:

Friendship paradox-based method for estimating exposure to information
Step 1: Sample n random friends Yi,. .., Y, from the network independently (a random friend Y;
is a random end of a random link, i.e., a link is sampled uniformly from the network and one
end of that link is taken with an unbiased coin flip).
Step 2: Use
; f¥h)
4
fiv = Z ial @
as the estimate of average exposure f, Where d(v) denotes the degree of v € V and k the
average degree of the graph G = (V, E).

The friendship paradox-based estimator pr can be viewed as an application of importance sam-
pling in social networks where the samples are generated from a different distribution (i.e., ran-
dom friends Y) than the distribution that is directly related to the parameter of interest f =
E{f(X)} (i.e., random nodes X). In particular, random friends are more popular than random nodes
in expectation (according to Theorem 1) and thus, sampling random friends will lower the variance
by accessing individuals who are more likely to be exposed to the piece of information due to their
large popularity (even when the sharing function s(-) is sparse). The additional terms d(Y;), k that
appear in fpp (compared to fw) correct for the bias resulting from sampling the more popular ran-
dom friends Y; instead of random nodes X;. Further, the average degree k in Equation (4) is a known
parameter for most social networks such as Facebook [41], which makes the implementation of
the friendship paradox-based estimator ﬁ:p practically feasible. Section 5.3 discusses alternative
implementations for situations where the edges cannot be sampled uniformly from the network.

To summarize, Section 3 presented two methods to estimate the average exposure to information
based on uniform (vanilla) and friendship paradox-based sampling. Extensions of the two proposed
methods will be discussed in Section 5.

4 Comparison of Statistical Properties of the Two Methods

In this section, we analyze and compare the statistical properties of the two proposed estimators
(the vanilla estimator fv1 given in Equation (3) and the friendship paradox-based estimator ﬁ:p
given in Equation (4)). The aim of this analysis is to identify the conditions under which one esti-
mator may be more accurate than the other for estimating the average exposure to information f.

The following result (see Appendix A.1 for proof) characterizes the bias and variance of the two
exposure estimators.

THEOREM 2. Consider the vanilla estimator fw given in Equation (3) and the friendship paradox-
based estimator pr given in Equation (4).
(1) Both the vanilla estlmatorfw and the friendship paradox-based estzmatorfpp are unbiased esti-
mators of the fraction of people exposed to a piece of information f (defined in Equation (1)), i.e.,

E {fw} =E {fFP} =f. ®)
(2) The variances of vanilla estimator fw and the friendship paradox-based estimator fpp are
A 1 - _ X _
Var {fu} = =7 (1= 7). Var {fir} = (k {ngi} fz), ©)

where k is the average degree of the graph.
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As stated in the first part of Theorem 2, both the vanilla estimator fw and the friendship paradox-
based estimator pr are unbiased estimators of the average exposure f. Therefore, the method that
has the smaller variance in the given setting should be used for estimating the average exposure
f. To do this, the rest of this section aims to identify the conditions under which one method
outperforms the other in terms of the variance.

To theoretically compare the variances, we consider the class of undirected Markovian random
networks that are completely characterized by their degree distribution P(k) (which gives the
probability that a uniformly sampled node from the network has degree k) and the conditional
degree distribution P(k’|k) (which gives the conditional probability that an edge from a degree k
node connects to a degree k” node). The term “Markovian” here refers to the fact that all higher-
order correlations can be expressed only in terms of the two functions P(k) and P(k’|k). We can
derive a joint degree distribution using P(k) and P(k’|k) as

POk = TP W), )
which gives the probability that a uniformly sampled link connects two nodes with degrees k
and k’. The correlation coefficient corresponding to this joint degree distribution P (k, k’) is called
the assortativity coefficient, and we denote it with r € [-1, 1]. Networks for which r > 0 are called
assortative networks, since high-degree nodes are more likely to be connected to other high-degree
nodes and low-degree nodes are more likely to be connected to other low-degree nodes. However,
networks for which r < 0 are called disassortative networks, since high-degree nodes and low-
degree nodes are more likely to be connected with each other. A detailed description of Markovian
random networks and assortativity can be found in References [5, 6].

In addition to P(k) and P (k’|k), which characterize the Markovian random network, we also
define Ps(1]k), which is the conditional probability that a node with degree k shares the piece
of information. Consequently, Ps(0]k) = 1 — P(1|k) is the probability that a node with degree k
does not share the piece of information. Intuitively, if the Ps (1|k) is closer to 1 for larger (respec-
tively, smaller) values of k, then high-degree (respectively, low-degree) nodes are more likely to
share the piece of information. In particular, if the sharing happens independently of the node
popularity (i.e., high-degree and low-degree nodes are equally likely to share the piece of informa-
tion), then Py(1|k) would be a constant that does not depend on degree k. Such relations (between
sharing and degree) can be captured using the correlation coefficient between the sharing and the
degree, which we refer to as the degree-sharing correlation coefficient and denote by p € [-1,1].

The following result (see Appendix A.2 for proof) compares the variances of the two estima-
tors pr, fvl (given in Equations (3) and (4), respectively) in terms of the degree distribution P(k),
the conditional degree distribution P (k’|k) and the conditional sharing probability Ps(1|k) in the
context of Markovian random networks.

THEOREM 3. The variance of the friendship paradox-based estimator fpp given in Equation (4) is
less than or equal to the variance of the vanilla estimator fy; given in Equation (3) (i.e., Var{ fpp} <

Var{fw1}) if and only if
Ek~p(r) {(1 - %) P{f(X) =1]d(X) = k}} > 0, (8)

where X is a uniformly sampled node from the network, Ex_p(x) denotes the expectation with respect
to the degree distribution P(k), and

k
P{f(X)=1]d(X) =k} =1- (ZP(k’Ik) P (0|k'>) : )
k/

ACM Trans. Soc. Comput., Vol. 7, No. 1-4, Article 8. Publication date: September 2024.



8:8 B. Nettasinghe et al.

Discussion of Theorem 3: Theorem 3 yields insights that help identify the settings where one
method is more accurate (in terms of variance) compared to the other for estimating the average
exposure to information f. In particular, these insights relate the variance of the methods to im-
portant network parameters such as the degree distribution P(k), assortativity coefficient r and
the degree-sharing correlation coefficient p, as we discuss in detail below.

1. Choosing the best method based on assortativity coefficient r and degree-sharing correlation
coefficient p: Due to the term (1 — k/k), the condition Equation (8) is more likely to be satisfied
when the value P { f(X) = 1|d(X) = k} is closer to 1 for larger values of the degree k and the value
P{f(X) = 1|d(X) = k} is closer to 0 for smaller values of the degree k. According to Equation (9),
this happens when

(i) P (k’|k) is closer to 1 for k" > k > k and Ps (1]k’) is closer to 0 for k" > k, or
(ii) P (k’|k) is closer to 1 for k, k” < k and P, (1|k’) is closer to 0 for k' < k.

Consequently, friendship paradox-based estimator ﬁ:p has a smaller variance compared to the
vanilla estimator fy; whenr, p > 0 (i.e., the network is assortative and the high-degree individuals
are more likely to share the piece of information) or r, p < 0 (i.e., the network is disassortative
and the low-degree individuals are more likely to share the piece of information). The arithmetic
signs of the assortativity coefficient r and the degree-sharing correlation coefficient p are typically
known based on the context. For example, it is known that r > 0 for most social networks whereas
r < 0 for most technological networks [33]. Similarly, for pieces of information that tend to origi-
nate from highly influential individuals (e.g., social media influencers, celebrities, politicians), p is
typically positive [43, 44]. Hence, the first insight helps us choose the best estimator for the given
context based only on arithmetic signs of r and p.

2. When the sharing is independent from the popularity: If the node degree and the sharing
are statistically independent, then Equation (9) yields that P { f(X) = 1|d(X)} = 1 — Ps(0)¥, where
P(0) = 1 — Ps(1) is the probability that any node (independent of the degree k) does not share
the piece of information. Consequently, when the node degree and the sharing are statistically
independent, the friendship paradox-based estimator fi:‘P has a smaller variance compared to the
vanilla estimator fw if and only if

Ex-p(k) {(1 — %) (1 - PS(O)k)} >0, (10)

according to Equation (8). We numerically evaluated the expected value in the left-hand side of
Equation (10) for two types of degree distributions: a power-law distribution P(k) oc k™% (where
a > 2 is the power-law exponent) and an exponential distribution P(k) = Ak (where A > 0 is
a constant parameter). Our results suggest that the condition Equation (10) is not satisfied for all
values of the power-law exponent a > 2, the exponential parameter A > 0, and the probability
P¢(0) € [0, 1]. Therefore, the vanilla estimator fvl produces the theoretically better estimate when
the node degree and the sharing are statistically independent (implying that p = 0) and the network
has either a power-law or an exponential degree distribution.

3. A widely shared piece of information versus a less widely shared piece of information: According
to Equation (10), smaller values of P (O) lead to a bigger disparity in the performance between the
friendship paradox-based estimator pr and the vanilla estimator fv1 This implies that choosing
the right method is of particular importance when the fraction of people who share a piece of
information is small (compared to the size of the network). An important example for this situation
is the starting phase of an information cascade where a piece of information has been less widely
shared. Since identifying the correct exposure at this beginning stage is crucial for purposes such as
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fact-checking before many people are exposed, this further highlights the importance of choosing
the right method by using the insight (1) discussed earlier.

In summary, Section 4 theoretically analyzed the bias and variance of the two estimators pre-
sented in Section 3 (vanilla estimator fv1 and the friendship paradox-based estimator pr) in terms
of properties of the underlying network and the piece of information. Next, we present some ex-
tensions of the proposed methods (in Section 5), and then verify and complement the theoretical
insights using numerical experiments (in Section 6).

5 Extensions of Proposed Methods and Practical Considerations

In this section, we extend the vanilla estimator fv1 in Equation (3) and the friendship paradox-
based estimator fpp Equation (4) to directed networks (Section 5.1) and dynamic information cas-
cades (Section 5.2). We also discuss details related to the implementation of the proposed methods
in various practical settings.

5.1 Directed Networks

In a directed network G = (V,E) (e.g., Twitter), a link u — v (pointing from a node u € V to
v € V) indicates that the node v follows the node u, i.e., u is the friend and v is the follower. Hence,
the out-degree d,(v) and in-degree d;(v) of a node v € V denote the number of followers and
friends of v, respectively. We say that a node v € V in a directed network is exposed to a piece
of information (i.e., f(v) = 1) if at least one friend of v shared it. In this context, our aim is to
estimate the average exposure to the piece of information that is denoted by f.

To estimate the average exposure f, a directed network can be sampled in three different ways:
a random node X (sampled uniformly from V), a random friend Y/, which is the tail end of a
uniformly sampled link (i.e., P(Y = v) « d,(v)), a random follower Z, which is the source end of a
uniformly sampled link (i.e., P(Z = v) o« d;(v)). Consequently, we can construct three estimators
of the average exposure f as follows:

o = Zia S0 o) £z
L Zd@/) Zcuz, v

where k corresponds to the average in-degree E{d;(X)} (which is also same as the average out-
degree E{d,(X)}) and indices i = 1,. .., n denote iid samples of each sampling method. The three
estimators given in Equation (11) are motivated by the four versions of the friendship paradox that
can exist on directed networks [3, 20]. In particular, one version says that a random follower on
average has more friends than a random node (i.e., E{d;(Z)} > E{d;(X)}), implying that random
followers (Z;) are more likely to be exposed to a piece of information. Hence, fFO in Equation (11)
can reduce the variance by incorporating more exposed individuals into the sample.

5.2 Dynamic Information Cascades

The vanilla estimator fvl in Equation (3) and the friendship paradox-based estimator pr in Equa-
tion (4) assume that the function s(-) indicating the set of people who have shared the piece of
information is static. However, the set of people who have shared a piece of information typically
grows over time as it gets reshared and reposted by the users who were exposed it, leading to an
information cascades. This subsection extends the vanilla estimator f\/l and the friendship paradox-
based estimator ﬁ:p to track the increasing average exposure to such information cascades in real
time. The key idea is to use a stochastic approximation algorithm with a constant step-size.

To simplify the notation, let us assume that only one sample can be collected at each time instant
and there are no samples at time 0, allowing us to use the same variable n for discrete time and
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the number of samples available. Further, let the vanilla and friendship paradox-based estimators
at time n be denoted by f. A" and f: pm) respectively. Then, note that

FP
= R (o - 7).
(12)
~n n-— Y n—
F(P) = F(P V= (kgéy)) F(P l)),

where X,,, Y, denote a random node and a random friend at time n, respectively. The recursions
in Equation (12) are obtained under the assumption that the average exposure f is time-invariant
and, therefore, the update term decays with time (due to the decreasing step-size 1/n) and
converges to zero. Intuitively, this means that one new sample would not make a significant
difference to an estimate (of a time-invariant parameter) derived with a relatively large number of
samples (i.e., n > 1). In particular, it can be shown that the recursions in Equation (12) converge
to the average exposure f with probability 1 under mild conditions.

However, the decreasing step-size 1/n in Equation (12) is not suitable when the average
exposure is evolving over time (denoted by (). This is because the decreasing step-size 1/n
will stop updating eventually even though the average exposure f will keep changing. As a
solution, the decreasing step-size in Equation (12) can be replaced with a constant step-size € > 0
for the case of time-evolving average exposure f(™. Then, the new recursive methods for tracking
the time-evolving average exposure f(") using the vanilla and friendship paradox-based methods
will be as follows:

= A ee(F e - AY). (13)
n n— ( n) n—
e = fie ”+e( pra Ry ”)- (19

The above two methods can track the progression of average exposure £ when it is evolving
on a slower timescale compared to the collection of samples. In other words, f™ is assumed to
remain approximately constant for every ¢ > 1 samples being collected; if ¢ ~ 1 (respectively, ¢ >
1), we say the piece of information is spreading rapidly (respectively, slowly). The value of the step-
size parameter € > 0 in Equations (13) and (14) determines the effect of the update at each time.
In particular, the value of € should be relatively large (respectively, small) to track the average
exposure to a piece of information that is spreading rapidly (respectively, slowly) through the
social network.

5.3 Details on Practical Implementation

In this subsection, we discuss how several assumptions used for deriving the estimators proposed
in Section 3 can be relaxed to increase the practical feasibility.

1. Implementing the friendship paradox-based estimator fpp when the average degree k is unknown:
The expression for the friendship paradox-based estimate pr given in Equation (4) involves the
average degree k of the underlying graph. Although average degree k is a known parameter for
most widely used social networks such as Facebook and Twitter, there may be other real-world
social networks where it is unknown, such as Tiktok and Mastodon [45]. Even mature social net-
works, such as Twitter and Facebook, may need to have the average degree estimated again after
sudden changes in usage patterns and structure following disruptive events such as COVID pan-
demic [36]. To implement the friendship paradox-based estimate fpp (given in Equation (4)) in such
settings, the average degree k can be estimated in a statistically efficient manner using the same
set of randomly sampled friends Yi, Y, . .., Y, assuming that the underlying degree distribution
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has a specific parametric form. In particular, when the underlying degree distribution is assumed
to have a power-law (heavy-tailed) degree distribution of the form P(k) oc k™% (where a > 2 is the
power-law exponent), Reference [31] shows that the maximum-likelihood estimator of « given by

(15)

n

d=———— +2
d Yi
", In(920)

has a mean-squared error less than 0.01 for most synthetic and real-world networks. Then & can be
used to compute an estimate of the average degree. Reference [30] shows that a similar method can
be used for exponential degree distributions as well. Therefore, when the underlying network is
assumed to have a power-law or an exponential degree distribution, the unknown average degree
k can be estimated without using any additional samples.

2. Implementing the friendship paradox-based estimator fpp when the edges cannot be sampled
uniformly: The implementation of the friendship paradox-based estimate pr given in Equation (4)
requires the uniform sampling of links from the underlying social network to obtain random
friends Y3, Ys, ..., Y,. This sampling approach is feasible in situations where links have unique
IDs from a range of integers and the link corresponding to a given integer can be accessed. In set-
tings where such uniform edge sampling is not possible (e.g., a fully unknown social network), the
friendship paradox-based estimate fpp can be implemented via the use of random walks, since a
stationary distribution of a random walk on an undirected, connected, non-bipartite graph samples
nodes with probabilities proportional to their degrees (Reference [9], p. 298). Hence, the random
variables Y1, Yz, . .., Y, could be replaced with samples from a sufficiently long random walk. Alter-
natively, one can also use a second version of the friendship paradox, which states that “uniformly
sampled friend of a uniformly sampled node has more friends than a uniformly sampled node,
on average” [8]. Hence, taking n uniformly sampled nodes and then taking one random friend
of each of them would also be an alternative approach for friendship paradox-based sampling in
undirected networks.

3. When the set of sharers is known: The set of sharers S = {v € V : s(v) = 1} maybe publicly
known in some contexts (e.g., Twitter users who shared a particular hashtag). In such cases, several
improvements can be made to the proposed methods. First, S is typically an array that can be
ordered (e.g., a set of unique Twitter handles, a set of integer node IDs, etc.). Thus, for each sampled
node v € V, calculating f(v) € {0,1} becomes equivalent to the problem of finding out whether
two ordered arrays (the node v’s neighbors N(v) and the set of sharers S) intersect or not. Hence,
it is computationally easier to calculate f(v) when the set of sharers S c V is known. Second,
when S C V is known, the average degree of the sharers E{d(X)|s(X) = 1} = % (which
is typically hard to estimate if the set S is small compared to V) can be calculated. Further, the
average degree of the people who have not shared (i.e., E{d(X)|s(X) = 0}) can be estimated by
sampling. Then, comparing the two values can be used as a heuristic estimate of the sign of the
degree-sharing correlation coefficient p.

In summary, Section 5 extended the vanilla and friendship paradox-based estimators proposed in
Section 3 to two settings: directed networks and dynamic information cascades. These extensions
are numerically and empirically evaluated in the subsequent sections. We also discussed how some
of the assumptions used for deriving the proposed estimators can be relaxed to increase practical
feasibility.

6 Numerical Experiments

In this section, we numerically compare the vanilla estimator fw given in Equation (3) and
the friendship paradox-based estimator frp given in Equation (4) using detailed simulation
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experiments. The aim is to verify and complement the theoretical analysis in Section 4 and obtain
additional insight into the performance of the two methods in various different settings.

Simulation setup: The configuration model [34] is used to synthetically generate 10,000 node
power-law networks with exponents o = 2.5 and & = 2.2.3 The assortativity coefficient of each
network is then changed to three values (r < 0,r = 0,r > 0) using the attribute swapping method
proposed in Reference [42]. Next, the sharing function values {s(v),v € V} are assigned as iid
Bernoulli random variables and are then swapped using the method used in Reference [25] to
generate three degree-label correlation coefficient values (p < 0, p = 0 and p > 0). The abso-
lute error values for various sample sizes were then estimated using a Monte Carlo average of
5,000 iterations. The results obtained using this simulation setup are shown in Figure 1. To com-
pare the recursive algorithms (given in Equations (13) and (14), respectively), we use two well-
known information diffusion models: the Independent Cascade model (ICM) and the Linear
Threshold Model (LTM). The results for the ICM are shown in Figure 2 and the results for the
LTM are given in Appendix B. A more detailed description of the simulation setup is given in
Appendix B.

Discussion of the Numerical Results (Figures 1 and 2): The numerical results verify the
theoretical conclusions (from Section 4) and yield additional insight as we discuss below.

1. Choosing the method that is best for the context: Figure 1(a) shows that the friendship paradox-
based estimate pr is more accurate (compared to the vanilla estimate fvl) when the assortativity
coefficient r and the degree-sharing correlation coefficient p have the same signs (i.e., Fig-
ures 1(a)(i) and 1(a)(ix)). When the assortativity coefficient r and the degree-sharing correlation
coeflicient p have different signs (i.e., Figures 1(a)(iii) and 1(a)(vii)), the vanilla estimate fvl is more
accurate compared to the friendship paradox-based estimate fpp. In addition, the vanilla estimate
fm has a smaller error when the degree and sharing are uncorrelated (i.e., p = 0 corresponding
to middle column of Figures 1(a) and 1(b)) for when the sharing probability is not too small (so
that both methods yield absolute errors smaller than 100% of the true parameter f). Further, each
subfigure of Figures 1(a) and 1(b) shows that the difference in the accuracy of the two estimates is
larger when the unconditional sharing probability ps (i.e., ps = > x Ps (1]k) P (k)) is smaller, high-
lighting that choosing the best method is crucial when the piece of information has been shared by
only a smaller fraction of people. These numerical observations verify the theoretical expectations
captured in the first and second points in the discussion related to Theorem 3 in Section 4, and
emphasizes the importance of the choice for less widely shared pieces of information, per the third
point.

2. Implications of the heavy-tails: Comparing Figure 1(a) with Figure 1(b) indicates that the
difference in the accuracy of the two methods is larger when the tail of the degree distribution is
heavier (i.e., the power-law exponent « is smaller). For example, Figure 1(b)(vi) corresponding to
a = 2.2 shows that all red lines are above all green lines, indicating that the worst observed empir-
ical accuracy of the friendship paradox-based estimator fpp is still better than the best observed
empirical accuracy of the vanilla estimator fw (for the same sample size). However, Figure 1(a)(vi)
corresponding to & = 2.5 does not show such a clear separation between the two estimators.

3Previous empirical studies related to real-world networks have found that the power-law exponent a of real-world net-
works is in the interval (2, 3) [34, 35]. Due to this empirical finding, we choose to use two different values from within this
range to explore the implication of the value of & on the performance of the proposed estimators of exposure to information.
A larger exponent corresponds to a heavier tail in power-law distributions.

4For power-law graphs with smaller & (i.e., heavier tails), obtaining high-assortative graphs is theoretically impossible as
explained in Reference [42]. As a consequence, the attribute swapping method does not converge when r > 0 and o = 2.2.
Therefore, we only consider the cases 7 > 0 and r = 0 for o = 2.2.
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Fig. 1. Absolute error values of the vanilla estimate fVI (given in Equation (3)) and the friendship paradox-
based estimate fpp (given in Equation (4)) for two synthetically generated power-law networks (with expo-
nents & = 2.5 and «a = 2.5) with various values of the assortativity coefficient r, degree-sharing correlation
coefficient p, and the unconditional sharing probability ps (i.e., ps is the fraction of nodes that shared the
piece of information). The plots show that the numerical results agree with the conclusions of the statisti-
cal analysis in Section 4. In particular, pr is the better choice when both r and p have the same sign and
heavy-tails increase the disparity between the performances of the two estimators.
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Fig. 2. Performance of the vanilla and friendship paradox-based stochastic approximation algorithms (given
in Equations (13) and (14), respectively) for tracking the exposure to an information cascade (in real-time)
under the Independent Cascade model (ICM) on power-law networks with exponent a = 2.5. In each sub-
figure: the top-row shows the two estimates together with the true parameter f, the middle-row shows the
absolute errors corresponding to the two estimates at each time instant and the average error over all time
instants, and the third row shows the variation of the degree-sharing correlation coefficient p. The friendship
paradox-based algorithm works better for the assortative network (Figure 2(a)) while the vanilla algorithm
works better for the disassortative network (Figure 2(b)). This observation agrees with the theoretical con-

clusions reached in Section 4.
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Since real-world social networks have been empirically shown to have heavy-tails [34, 35], this
observation highlights the importance of utilizing the theoretical insight to pick the best method
for the social network using the insights discussed in the previous point.

3. Tracking the exposure to an information cascade in real time: Figure 2 shows the performance of
the vanilla and the friendship paradox-based stochastic approximation algorithms (Equations (13)
and (14), respectively) for tracking the exposure to an information cascade simulated from the
ICM. In Figure 2(a), it can be clearly seen that the friendship paradox-based stochastic approxi-
mation Equation (14) outperforms the vanilla stochastic approximation Equation (13), especially
after the time-step 40 where the diffusion process speeds up and the degree-sharing correlation
coefficient starts increasing rapidly. In particular, the friendship paradox-based method closely de-
tects the sudden phase transition of the diffusion process approximately at time-step 55 where the
exposure suddenly jumps to a larger value. This result aligns with the theoretical conclusions in
Section 4, since both assortativity coefficient r and the degree-sharing correlation coefficient p are
both positive, leading to the friendship paradox-based method to outperform the vanilla method.
However, the Figure 2(b) corresponds to the disassortative networks. Since the assortativity coef-
ficient r and the degree-sharing correlation coefficient p have opposite signs, the vanilla method
outperforms the friendship paradox-based method.

4. Implications of assortativity r and degree-sharing correlation p on the overall accuracy: It can be
seen from Figure 1 that both estimates ( fvl and pr) tend to be less accurate when the degree and
sharing are negatively correlated (i.e., p < 0 in first column of Figure 1). Although the friendship
paradox-based estimator performs better in Figure 1(a)(i), its accuracy decreases when moving to
Figure 1(a)(iv,vii). This result is due to the fact that when p < 0, the nodes who share the piece
of information are the less popular nodes, which makes the average exposure f smaller and more
difficult to estimate. If r < 0 in addition to p < 0 (e.g., a star graph where outer nodes are sharing),
then the friendship paradox-based estimator fpp can easily reach the core nodes that are more likely
to be exposed due to their popularity, and thus reduce the variance as in Figure 1(a)(i). However,
when r > 0 and p < 0 (i.e., Figure 1(a)(vii)), the less popular fringe nodes who share the piece of
information are more likely to be separated from the core of the network so that the friendship
paradox-based estimator cannot reach them. As such, both estimators tend to be the least accurate
when p < 0,7 > 0. An important example of this is the case where a piece of information originates
with the less visible (i.e., fringe) nodes of the network. As such, special attention should be paid to
choosing the best method when p < 0 to get the best possible accuracy.

In summary, Section 6 numerically compared the absolute errors of the estimates obtained using
the two estimators presented in Section 3 (vanilla estimator fVl and the friendship paradox-based
estimator fi:‘P). The numerical results agree with the theoretical conclusions provided in Section 4
and shed more light on the conditions under which one method outperforms the other.

7 Results on Real-world Networks

Evaluating the accuracy of the two estimators fvl, ﬁ:p (proposed in Section 3) requires the true ex-
posure f (i.e., the ground truth). However, as we stressed in Section 1, the exact value of the ground
truth f depends on two features (the full network and the set of sharers), which are highly diffi-
cult to obtain, and our study was motivated by this difficulty in the first place. As such, comparing
the estimates with the ground truth f in most real-world networks (e.g., Twitter, Facebook) is not
feasible from a resource and computation viewpoint. Therefore, in this section, we first use real-
world undirected networks with the sharing function generated synthetically (Section 7.1). We
then evaluate our estimators on a real-world network with actual sharing data, using the directed
ACM citation network (Section 7.2).
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7.1 Undirected Networks

We tested the vanilla and friendship paradox-based estimators ( fVI, ﬁ:p) on four publicly available
real-world network datasets in the SNAP database [28]. These networks include: a collaboration
network between authors of papers submitted to Astrophysics and General Relativity in the Arxiv
website, a network of Facebook pages of athletes, and a Facebook page network of different com-
panies. For these four networks, the sharing function s : V. — {0, 1} was synthetically generated
using the methods in Section 6. The results obtained using these five real-world networks are
shown in Figure 3.

For the network datasets corresponding to Figures 3(a)-3(c) (where r > 0), the friendship
paradox-based estimator ﬁ:p outperforms the vanilla estimator fw when p > 0 while both methods
have relatively large error values (above 100%) when p < 0. This result is as we expected, since pr
works better when r, p > 0 (as per the first point in the discussion related to Theorem 3) and both
fvl, ﬁ:p tend to be less accurate when p < 0,7 > 0 (as per the fourth point in the discussion of nu-
merical results). For the network dataset corresponding to Figure 3(d), pr (respectively, fvl) works
better when p < 0 (respectively, p > 0), since the network has r < 0 (as we theoretically expected).
Therefore, the empirical findings align with both the theoretical and numerical results (Sections 4
and 6, respectively).

7.2 ACM Citation Network

In this analysis, we provide a full real-world network (i.e., without subsampling the network) as
well as actual sharing data from that network. Specifically, we create a citation network of 217,335
academic papers using the data in Reference [38]. Any paper that contains a specific phrase in
its title is then considered as a “sharer” of that phrase and all papers that cite that paper as the
“exposed.” The three estimators given in Equation (11) are then evaluated (via the same Monte
Carlo averaging approach used in Section 6) for 25 popular phrases, 25 average phrases, and 25
unpopular phrases. Additional details on the experiments are given in Appendix B.

Figure 4 shows the average absolute errors of the vanilla estimate fw, friend-based estimate fpr, and
follower-based estimate ﬁ:o for: (a) popular phrases, (b) average phrases, and (c) unpopular phrases.
In each case, the follower-based estimate fFO outperforms the other two as we expected from the
directed versions of the friendship paradox mentioned in Section 5.1. In particular, Figure 4 shows
that the absolute error of all three estimates increase as the popularity of the phrases decrease.
However, the follower-based estimate ﬁ:o is more accurate compared to the other two estimates,
especially for unpopular phrases (Figure 4(c)). This is because random followers are more likely to
be exposed even to an unpopular piece of information due to their larger friend count (according
to the directed versions of the friendship paradox as discussed in Section 5.1) and hence, sampling
random friends lowers the variance of the estimate.

8 Discussion and Conclusion

Summary: Knowing the exposure to various pieces of information in online social networks is
crucial for understanding the impact of various types of content such as misinformation and news
articles as well as for effective fact checking and content moderation. However exactly computing
the exposure to a piece of information is practically difficult, since it requires the structure of the
social network as well as the individuals who have shared the piece of information to be known. As
a solution, we presented a practically feasible framework for estimating the fraction of people who
have been exposed to a piece of information by their contacts (i.e., average exposure) in a social net-
work. In particular, we proposed two methods to estimate the average exposure: a vanilla method
that is based on uniform sampling and a method that samples random friends (random ends of
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Fig. 3. Absolute error values of the vanilla estimate fVl (given in Equation (3)) and the friendship paradox-
based estimate fpp (given in Equation (4)) for four real-world network datasets. These results validate the
theoretical insights (Section 4) and complement the numerical experiments (Section 6).
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Fig. 4. Absolute error values of the vanilla estimate fVl, the friend-based estimate fFr and the follower-based
estimate fFo given in Equation (11) on a real-world, directed network. It can be seen that estimate fFO is
more accurate compared to the other two estimates as we expected based on the directed versions of the
friendship paradox (discussed in Section 5.1).

random links). The latter method can be thought of as a variance reduction method motivated by
the friendship paradox, which incorporates more high-degree individuals (who are more likely to
be exposed to the piece of information due to their large popularity) into the sample. Both meth-
ods are unbiased, and we provided theoretical results, which characterize the conditions where
one method outperforms the other in terms of the variance. Specifically, the friendship paradox-
based estimator has a smaller variance compared to the vanilla (uniform sampling-based) method
when both the assortativity coefficient of the network and the correlation coefficient between the
degree and information sharing have the same arithmetic sign. We also presented extensions of
the proposed methods to directed networks and dynamic information cascades (where the average
exposure needs to be tracked in real time). The proposed methods and the theoretical conclusions
were verified numerically (via simulations) as well as via experiments on several real-world net-
work datasets.

Ethical considerations: While the methods proposed in this article offer practical approaches to
estimate exposure to information, attention must be paid to ethical aspects and potential misuses
when implementing such approaches. For example, the individual level exposure to various pieces
of information should be unidentifiable via the obtained estimates of population level exposure to
protect the privacy of the users of the social network platform. Coupling machine learning frame-
works such as differential privacy with the proposed methods could a important future research
direction in this regard. Further, implementing the algorithms on online social networks should ad-
here to the rules and restrictions of the platform and should not constitute a privacy infringement.

Limitations and future research directions: While the proposed methods can be utilized to
estimate the exposure to information, they are not without limitations. For instance, the definition
of exposure to information that we utilize would consider an individual to be exposed if at least one
of their social contacts has shared the piece of information. Instead, one can extend the proposed
methods based on a definition that considers various degrees of exposure (e.g., highly exposed,
moderately exposed, not exposed) determined by the fraction of contacts who have shared the
piece of information. Another key limitation is the fact that the proposed algorithms need to look
at all neighbors of each sampled individual to find the whether that person has been exposed. This
is difficult when dealing with either incomplete data or settings where all neighbors of certain
nodes cannot be identified. Extending the proposed methods to work with only a random subset
of neighbors could be a useful future direction to avoid this limitation. Further, the insights on the
performance of the two methods (vanilla method and friendship paradox-based method) relied

ACM Trans. Soc. Comput., Vol. 7, No. 1-4, Article 8. Publication date: September 2024.



Estimating Exposure to Information on Social Networks 8:19

largely on the assumption that the network structure is dependent only on the assortativity and the
degree distribution. Relaxing this assumption, analyzing the implications of real-world network
properties such as community structure, clustering, and smaller diameters, and exploiting these
to increase the accuracy of the proposed methods remain important future steps. Generalizing
the proposed methods to simultaneously estimate the exposure to multiple pieces of information
would also be useful. Similarly, generalizing the proposed methods to estimate the exposure to a
piece of information to various groups of nodes instead of all nodes (e.g., fraction of conservatives
and the fraction of liberals exposed to a specific piece information) would be highly useful in
obtaining a deeper understanding of the information exposure patterns. Finally, incorporating the
effects of recommendation systems and other such features of social media platforms into the pro-
cess of estimation of exposure to information would make the proposed methods practically more
useful.

Appendices
A Proofs of Theorems
A.1 Proof of Theorem 2

Part 1: For the vanilla estimate fw, it follows that E{ fw} = f, since it is the average of n iid
Bernoulli random variables (with parameter f). For the friendship paradox-based estimate fp,

} (- Yi,...,Y, are iid samples.)

- fo) Ao d)
k;vd@) Soevdo) PN =D =5

Zf(v) Zf(v) 7

veV veV

Therefore, both fw, fpp are unbiased estimates of f.

Part 2: Consider the variance of the vanilla estimate fw. Since the estimate is the average of n
iid Bernoulli random variables (with parameter f), their variance is given by f(1 — f)/n. For the
friendship paradox-based estimate pr,

Var {ﬁ:p} = Var{g i %}

1 ‘}(Yl) .

= ;Var {k d(Yl)} (oY, Y, are iid samples.)
1 SOV ) nfal g

! E{(kd(yl)) }—f) (& {fin} =

S|

ey PO, _do)
- ( 270 T )

ACM Trans. Soc. Comput., Vol. 7, No. 1-4, Article 8. Publication date: September 2024.



8:20 B. Nettasinghe et al.

('.'P(lev)z d(o) )

Zvevd(v)
1L fE) S\ (e [f0O) -
‘Z(zzd@ 2)‘5(" \70) ")
A.2 Proof of Theorem 3

Note that P (k’|k) Ps (0lk”) is the probability that a degree k node connects to a degree k’ node
that has not shared the piece of information. Therefore, averaging this term over the value k’
(i.e., X i P(K’|k) Ps (0]k”)) yields the probability that a degree k node having a neighbor that
has not shared the piece of information. For a degree k node to not be exposed to the infor-
mation, all k neighbors of that node must not have shared the piece of information. Hence,
(X P (K'|k) Ps (0]k"))¥ is the probability that a node with degree k has not been exposed to the
piece of information, i.e.,

k
P{f(X) = 0ld(X) =k} = (ZP(k’Ik)Ps (Olk')) ; (16)
-

which yields Equation (9). )
Next, using the expressions for the variance in Equation (6) and the fact that f = E{f(X)}
(where X is a uniformly sampled node), we get

Varlfun) > Varljm) =+ (k2 {20 - 7] > 21 7)

40X
o fX)
— f—kE{m} >0

k _
— E{f(X) (l - FX))} >0 (E{f(X)} = f from Equation (5))

— Ekwp{ {f(X)(l— %) ‘d(X) =k}} >0

(by conditioning on d(X) = k and then averaging over k)
— Ej.p {(1 - %) P{f(X)=1dX) = k}} >0

B Additional Numerical Results and Details for Reproducibility

Below, we provide additional details related to the simulation setup used to generate the numerical
results in Section 6.

Detailed Simulation setup for comparing the estimators fw, fpp (Figure 1): To generate the power-law
networks, a sequence of 10K random variables from a power-law distribution with the required
power-law exponent a were generated and rounded up to the nearest integer. Then, the first num-
ber in the sequence was altered by a value of 1 if needed to make sure that the sum of the numbers
is even (to be valid sequence of degrees). Then, the configuration model (configuration_model func-
tion in the networkx package) was used to generate the networks with the given degree sequence.

To change the assortativity of the generated power-law networks, we first sample two edges
from the network uniformly (without replacement) and rewire them to increase or decrease the
assortativity coefficient r from the initial value. Lemma 1 of Reference [42], which orders the three
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Fig. 5. Performance of stochastic approximation algorithms based on the vanilla and friendship paradox-
based estimates (given in Equations (13) and (14), respectively) for tracking the exposure to an information
cascade under the Linear Threshold Model (LTM) on power-law networks with the exponent a = 2.5. This
result complements the result shown in Figure 2 for the Independent Cascade Model (ICM) and show that the
conclusions reached using the ICM hold for the LTM as well. Thus, the proposed stochastic approximation
algorithms can be used to track the exposure to information cascades with various dynamical properties.
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possible ways to rewire the two selected edges based on the resulting assortativity coefficient val-
ues, is used to get the maximum increase or decrease in the assortativity coefficient when rewiring.
This process is repeated until the required assortativity coefficient values (r € {-0.2,0,0.2}) are
reached or the maximum number of iterations (100K) is reached.

To change the degree-sharing correlation coefficient p, we follow the attribute swapping pro-
cedure used in Reference [25] as follows. First, the value s(v) € {0,1} for each node v € V is
first assigned as an iid Bernoulli random variable whose parameter determines the fraction of
the people that share the piece of information. Then, we uniformly pick a node u from the set
of nodes who shared the piece of information (i.e., s(u) = 1) and another node v from the set
of the people who has not shared the piece of information uniformly (i.e., s(v) = 0). Next, to in-
crease (respectively, decrease) degree-sharing correlation coefficient p, we swap s(v) and s(u) if
d(u) < d(v) (respectively, d(u) > d(v)). This process is repeated until the required degree-sharing
correlation coefficient values (p € {—0.2, 0, 0.2}) are reached or the maximum number of iterations
(100K) is reached.

Simulation setup for comparing the vanilla and the friendship paradox-based stochastic approxima-
tions (given in Equations (13) and (14)): Under the ICM used to generate Figure 2, each neighbor
of a node who shared a piece of information at a previous time instant shares in the current time
instant with a pre-specified probability named the infection probability. For Figure 2, the diffusion
was initialized with 10 uniformly chosen nodes and the infection probability is set to 0.05. Ad-
ditionally, the step size € of the stochastic approximations Equations (13) and (14) is set to 0.01.
Further, it is assumed that the stochastic approximations Equations (13) and (14) are updated 100
times for each step of the diffusion process, i.e., the samples are collected 100 times faster than the
evolution of the diffusion process.

Figure 5 shows analogous results obtained using LTM, where a node shares a piece of informa-
tion at the current time instant if the fraction of its neighbors that have already shared it by the
previous time instant exceeds a certain threshold. We choose the threshold value to be 5% for the
Figure 5. The step-size of both stochastic approximations Equations (13) and (14) as well as the
number of samples collected at each time instant are the same as the case for the ICM.

Filtering the ACM Citation Network: We obtained a dataset of 629,814 papers from DBLP, ACM, and
MAG (Microsoft Academic Group) [38]. We filtered out papers that did not have references within
the original dataset or were not referenced by another paper in the original dataset to create a final
dataset of 217,335 papers. Afterward, we determined phrases of varying popularity. We first filter
the papers’ titles for stopwords and determine the frequency of each word to create a numerically
sorted dictionary with word frequency pairs. Then, we use NLTK’s bigram association measures
to create word pairs (i.e., phrases) using a subset of words from the dictionary’s beginning. We
defined popular phrases as having more than 400 sharers (e.g., data mining, information systems),
average phrases with between 200 and 400 sharers (e.g., computer graphics, embedded systems), and
unpopular phrases with 100 to 200 sharers (e.g., network design, optimization problems).

Code and Data Availability: All codes and datasets used in this article are publicly available at:
https://github.com/ComplexInfo/Estimating_Info_Exposure.
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