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Abstract  9 

The community's resilience in the face of natural hazards relies heavily on the rapid and efficient 10 

restoration of electric power networks, which plays a critical role in emergency response, 11 

economic recovery, and the functionality of essential lifeline and social infrastructure systems. 12 

Leveraging the recent data revolution, the digital twin (DT) concept emerges as a promising tool 13 

to enhance the effectiveness of post-disaster recovery efforts. This paper introduces a novel 14 

framework for post-hurricane electric power restoration using a hybrid DT approach that combines 15 

physics-based and data-driven models by utilizing a dynamic Bayesian network. By capturing the 16 

complexities of power system dynamics and incorporating the road network's influence, the 17 

framework offers a comprehensive methodology to guide real-time power restoration efforts in 18 

post-disaster scenarios. A discrete event simulation is conducted to demonstrate the proposed 19 

framework's efficacy. The study showcases how the electric power restoration DT can be 20 

monitored and updated in real-time, reflecting changing conditions and facilitating adaptive 21 

decision-making. Furthermore, it demonstrates the framework's flexibility to allow decision-22 

makers to prioritize essential, residential, and business facilities and compare different restoration 23 

plans and their potential effect on the community.  24 

Keywords: Community resilience, digital twin, disaster recovery strategies, electric power 25 

restoration, hurricanes, road network.  26 

Abbreviations: AI: artificial intelligence; BN: Bayesian network; DBN: dynamic Bayesian 27 

network; DES: discrete event simulation; DT: digital twin; EPN: electric power network; IoT: 28 

internet of things; RN: road network; RW: repair worth. 29 

1. Introduction 30 

1.1. Motivation and problem statement 31 
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Post-hazard recovery has gained significant attention in recent years, highlighting the critical 32 

role of community resilience in effective disaster management, as it contributes to reducing losses, 33 

expediting recovery, and mitigating social and economic disruptions [1]. One key aspect of 34 

community resilience is the fast and efficient restoration of electric power, which holds immense 35 

importance for emergency response, economic recovery, and the proper functioning of essential 36 

lifeline and social infrastructure systems [2]. While the interest in community response to 37 

hurricanes dates back at least half a century [3], and despite the extensive research dedicated to 38 

enhancing the resilience of the community in general and the electric power network (EPN) in 39 

particular, the restoration and recovery of the EPN after hurricanes still face significant challenges 40 

[4]. This is mainly due to the size and complexity of the EPN, coupled with its vulnerability to 41 

natural hazards, and is further exacerbated by the deregulated nature of the profit-oriented 42 

electricity market, which provides a minimal incentive for investing in community resilience 43 

through preparedness and preplanning ([5]; [6]). 44 

The main objective of post-disaster EPN recovery is to restore electricity to the maximum 45 

number of customers as fast as possible, considering their significance in maintaining community 46 

resilience [7]. Over the past decade, the reliability, hardening, and risk assessment of the EPN in 47 

the face of strong-wind hazards have been extensively studied (e.g., [8]; [9]; [10]; [11]; [12]; [13]; 48 

[14]; [15]; [16]; [17]; [18]; [19]). Moreover, many studies analyzed the post-hurricane 49 

performance and recovery of the EPN and its spatial and socio-economic distribution (e.g., [20]; 50 

[21]; [22]; [23]). Other studies proposed various methods to perform predictions and model the 51 

response and restoration of the EPN in the face of hurricanes. These methods can broadly be 52 

classified into two categories: (i) physics-based approaches, where hazard and fragility analysis 53 

are coupled with network analysis (e.g., [24]; [25]; [26]; [27]; [28]; [29]; [30]) , and (ii) data-driven 54 
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approaches, which involve utilizing statistical models and machine learning (e.g., [31]; [32]; [33]; 55 

[34]; [35]).  56 

Physics-based methods play a crucial role in pre-hazard mitigation and preparedness, where 57 

sophisticated hazard and structural damage models are developed using numerical and finite 58 

element techniques. These methods offer strengths such as a solid physical foundation, 59 

interpretability, scenario testing capabilities, and the ability to model probabilistic and uncertainty 60 

factors. However, their static probabilistic outputs may be limited in post-disaster scenarios due to 61 

significant epistemic and aleatory uncertainties inherent in natural hazards and their interactions 62 

with structures. Furthermore, these methods often lack the capability to update prior estimates 63 

during the restoration process. On the other hand, data-driven methods rely on post-disaster reports 64 

and surveys, offering advantages in adaptability, efficiency, and handling complexities. However, 65 

they encounter challenges during immediate emergency response phases due to the time required 66 

for data collection and analysis. Moreover, the large volume of data needed is often unavailable 67 

shortly after the disaster. Therefore, an integrated framework that combines the strengths of both 68 

physics-based and data-driven methods is essential to extend the applicability of the risk 69 

assessment framework to post-disaster emergency response. This integration can facilitate 70 

adaptive decision-making and guide the restoration process effectively. 71 

Amid the data revolution and the enormous advancements in artificial intelligence (AI) and the 72 

Internet of Things (IoT), data-driven methods have advanced significantly, motivating researchers 73 

to expand their use to collect and analyze real-time data to generate insights into current events 74 

during and after the hazard occurrence. Therefore, the capabilities of the models can extend 75 

beyond offline (pre-disaster) predictions toward online (post-disaster) learning. This can be 76 

achieved through a digital twin (DT), which provides a virtual model integrated with the real 77 
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system through real-time data transfer. Hence, researchers have recently proposed visions to 78 

integrate DT in disaster management (e.g., [2]; [36]; [37]; [38]). When applied at the community 79 

level, the DT has the potential to enhance disaster management and significantly improve its 80 

resilience. By utilizing high-fidelity models and dynamic simulations that are updated in real-time, 81 

decision-makers can make informed choices based on the actual conditions and take proactive 82 

measures to mitigate the impact of disasters.  83 

A DT is considered as an essential step toward smart cities [39]. A smart city DT relies on 84 

physical and other types of sensors driven by the enormous advancements in the IoT and the fifth 85 

generation of wireless systems [40]. Therefore, various studies have proposed DT frameworks for 86 

the management and operation of the EPN (e.g., [41]; [42] [43]; [44]). These methods combine 87 

the technologies of cyber-physical systems, smart grids, and the IoT to provide continuous real-88 

time data that is used to update the initial state estimates of the network. However, these methods 89 

rely on the availability of large amounts of data and hence are suited for scenarios with limited 90 

disruptions and the availability of almost complete information. Consequently, their direct 91 

applicability in disaster management, where extensive damage is widespread across multiple 92 

lifelines and social infrastructure systems including the physical sensors, and immediate 93 

knowledge is often limited, may be constrained. 94 

Therefore, a fundamental difference exists between a DT in normal conditions and the aftermath 95 

of hazards. Integrating the concept of the DT at the community level and in the face of natural 96 

hazards still faces significant challenges [45]. Since physical sensors are susceptible to damage, 97 

and the traditional data gathering methods such as customer calls and site investigations are slow 98 

and inefficient, virtual data sensing using smart technologies such as image recognition and social 99 

sensing is an alternative method that is getting traction lately ([2]; [37]). While data-driven 100 
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methods are essential parts of any DT as they provide the connection between the actual system 101 

and its digital replica, they require a large amount of data that is usually not readily available after 102 

the disaster. They also lack the generalization and interpretability of physics-based methods. 103 

Hence, the DT must also incorporate physics-based methods [38]. Still, most proposed DT 104 

frameworks for disaster management have mainly focused on data sensing in smart cities using 105 

social sensors (e.g., [46]; [47]; [48];  [49]; [36]). Another challenge is that the DT requires a model 106 

that is both highly detailed and computationally efficient. These are often two conflicting goals, 107 

and the DT must balance between them. 108 

Recently, Braik and Koliou [45] proposed a framework for a DT of the EPN subjected to 109 

hurricanes. In their framework, a Bayesian network (BN) is utilized to generate a highly detailed 110 

network model that captures the dependencies between the various elements of the EPN. The 111 

Bayesian Network (BN) is initially constructed as a physics-based model, based on hazard and 112 

fragility analysis. It is then extended to a Dynamic Bayesian Network (DBN) over the time domain 113 

to facilitate updating with data evidence. This approach allows for the incorporation of new 114 

information as it becomes available, enhancing the model's accuracy and reliability in real-time 115 

scenarios. The proposed DBN is a hybrid physics-based and data-driven model that is both highly 116 

detailed and computationally efficient, and therefore, extends the capabilities of predictive models 117 

from offline learning to online learning where estimates are updated using real-time data. Still, 118 

applying the DT in post-disaster recovery to guide the EPN restoration remains largely unexplored.  119 

The road network (RN) plays a significant role in post-disaster power restoration [50] and must 120 

be considered in the DT. The coupling of the EPN and RN was considered in a few previous EPN 121 

restoration studies mainly through methods such as optimization (e.g., [51]) and reinforcement 122 

learning (e.g., [52]). However, these methods are better suited for normal operation scenarios 123 
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where large amounts of data are available. On the other hand, the physics-based methods following 124 

the risk-assesment framework rarely consider the interdependency between the EPN and the RN.  125 

Hence, a significant gap is highlighted in previous studies, as there is a lack of a DT framework 126 

to guide the post-disaster restoration and repair process. Addressing this gap, this paper proposes 127 

a DT framework for EPN restoration. The DT enables adaptive decision-making, considering 128 

interdependencies between the EPN and RN. It utilizes detailed network analysis and physics-129 

based estimates for pre-hazard preparedness, extending to post-disaster recovery by updating 130 

estimates with real-time data via DBN. The framework automates repair prioritization, accounting 131 

for uncertainties, repair times, and essential facility importance, allowing for efficient restoration 132 

and resilient recovery. 133 

1.2. Background on digital twins and their capabilities 134 

The DT is a dynamic and interactive digital replica of a physical system, providing continuous 135 

bidirectional synchronization of real-time data. Depending on the depth of integration between the 136 

physical and digital twins, three primary modeling levels can be identified: digital model, digital 137 

shadow, and DT. A digital model serves as a static snapshot of the real system at a specific 138 

moment, lacking any further data transfer. In contrast, the digital shadow involves unidirectional 139 

data flow, transmitting information from the real system to its digital counterpart. At the highest 140 

level of integration, we find the DT, where continuous data transfer occurs in both directions. The 141 

digital replica remains continuously updated through real-time data received from the physical 142 

system, enabling it to offer feedback and simulate scenarios to support adaptive decision-making. 143 

Ultimately, the DT can fully control the physical system [53].  144 

DTs can be classified based on their capabilities. The supervision and operational DT represents 145 

the lowest level, providing basic visualization and monitoring features. The simulation and 146 
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prediction DT surpasses this level by optimizing system performance and making predictions 147 

using algorithms and optimization techniques. Moving up, the intelligent DT incorporates machine 148 

learning techniques to learn from data in addition to the previous capabilities. Finally, the 149 

supervisory and control DT expands on all previous capabilities and encompasses decision-150 

making. In its simplest form, human involvement is required to implement the decisions, while in 151 

its most advanced form, a fully autonomous DT is capable of making and executing decisions [54].  152 

2. Scope 153 

This paper proposes a DT framework for post-disaster restoration of the EPN, considering its 154 

interdependency with the RN. The scope encompasses the entirety of the DT's development 155 

process, integrating physics-based and data-driven modeling to enhance the efficiency of disaster 156 

recovery strategies. First, disaster impact assessment is addressed, incorporating data, hazard, and 157 

fragility analysis of the elements of the EPN and the RN. Then, network analysis is discussed, 158 

where the EPN is modeled utilizing the BN framework proposed by Braik and Koliou [45], while 159 

the RN is represented through an undirected graph network. A significant aspect of the restoration 160 

process is establishing a repair hierarchy sequence, where elements are prioritized based on their 161 

contribution to community resilience. Subsequently, the restoration process is analyzed, 162 

considering the interdependencies between the EPN and RN. To demonstrate the applicability and 163 

efficacy of the framework, the paper concludes with a discrete event simulation (DES) of the 164 

restoration of Galveston Island’s EPN following Hurricane Ike, showcasing its practical 165 

application in guiding resilient post-disaster recovery. 166 

3. Methodology  167 

Figure 1 shows a flowchart of the proposed framework. Then, the methodology’s details are 168 

discussed in the following sections. 169 
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 170 
Figure 1: Flowchart showing key steps of the proposed DT framework of electric power restoration. 171 

3.1. Disaster impact assessment 172 

3.1.1. Data analysis 173 

To effectively build the power restoration DT, detailed data from both the EPN and RN is 174 

required. This dataset encompasses comprehensive information about the various components 175 

within the EPN, such as substations, transmission towers, utility poles, and customers, as well as 176 

the road segments and intersections within the RN. This includes details regarding the connectivity 177 

of these elements, geographical coordinates (longitude and latitude), and essential properties 178 

necessary for fragility analysis, such as the height, diameter, age, and elevation. Then, the EPN 179 

can be modeled as a directed BN graph, while the RN can be modeled as an undirected network 180 

graph as explained in section 3.2. 181 

3.1.2. Hazard analysis 182 

To perform accurate fragility analysis within the DT framework, a detailed hurricane model is 183 

needed with multiple simulations performed for various hurricane return periods to capture the 184 

stochastic nature of the hazard ([55]; [56]). In this paper, the Advanced Circulation (ADCIRC) 185 

and Simulating Waves Nearshore (SWAN) hurricane models generated by Darestani et al. [56] 186 

and obtained from Incore [57] are used to provide detailed wind, wave, and surge maximum loads 187 

for all locations within the system. However, for simplicity, a single hazard model is used per case 188 
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study, representing either the historical Hurricane Ike or synthetic hurricanes of various return 189 

periods. Hence, the hazard loads are modeled as deterministic, while the uncertainty in the damage 190 

analysis employed within the DES stems from the fragility functions, as discussed in the next 191 

section. Future research could focus on comprehensive hurricane probabilistic analysis to enhance 192 

the prior load estimates. 193 

3.1.3. Fragility analysis 194 

A fragility function is a mathematical model that quantifies the probability that a system or 195 

component will reach or exceed a specified damage state given a certain level of demand. Given 196 

hazard intensity measures, fragility functions can be used to calculate the conditional failure 197 

probabilities of various EPN and RN elements. In this paper, the fragility functions obtained from 198 

Darestani et al. [58]; Darestani et al. [14]; Sánchez-Muñoz et al. [59]; and Darestani et al. [56] are 199 

utilized to calculate the probabilities of failure of wood utility poles, transmission towers, 200 

substations, and RN segments respectively, as shown in Equations 1-4, where σ(y) is the standard 201 

logistic function. 𝑉𝑉𝑊𝑊  is the wind speed (m/s), 𝜃𝜃𝑊𝑊  is the wind direction (radians), 𝑉𝑉𝐹𝐹 is the water 202 

velocity (m/s), 𝐻𝐻𝑆𝑆  is the surge height (m), 𝐻𝐻𝑊𝑊  is the significant wave height (m), 𝐻𝐻𝑝𝑝  is the pole 203 

height (m), 𝑡𝑡𝑃𝑃  is the pole age (years), 𝐴𝐴𝐶𝐶  is the conductor's effective area (m2), 𝐹𝐹 is the flood 204 

height (m), 𝐷𝐷𝑠𝑠 is the distance from shore (m), and 𝐼𝐼𝐹𝐹 is the flood duration (hours). The coefficients 205 

(𝑎𝑎0:𝑎𝑎7,𝛼𝛼0:𝛼𝛼3, 𝛾𝛾0: 𝛾𝛾1,𝛽𝛽0:𝛽𝛽2) can be obtained from existing literature adopted in this study (see 206 

references above). 207 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �1208 

+ exp �−�𝑎𝑎0 + 𝑎𝑎1𝑉𝑉𝑊𝑊 + 𝑎𝑎2�𝐻𝐻𝑝𝑝 − 𝐻𝐻𝑆𝑆 − 𝐻𝐻𝑊𝑊� + 𝑎𝑎3𝑉𝑉𝐹𝐹𝐻𝐻𝑆𝑆 + 𝑎𝑎4𝑉𝑉𝑊𝑊 sin(𝜃𝜃𝑊𝑊)209 

+ 𝑎𝑎5𝑉𝑉𝑊𝑊𝐴𝐴𝐶𝐶 + 𝑎𝑎6𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑃𝑃, 25) + 𝑎𝑎7𝐻𝐻𝑊𝑊���
−1

                                              (1) 210 
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𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1 − [1 − 𝜎𝜎(𝛼𝛼0 + 𝛼𝛼1𝑉𝑉𝑊𝑊 sin(𝜃𝜃𝑊𝑊))][1 − 𝜎𝜎(𝛼𝛼2 + 𝛼𝛼3𝑉𝑉𝑊𝑊 cos(𝜃𝜃𝑊𝑊))]      (2) 211 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝛷𝛷�(𝑙𝑙𝑙𝑙(𝐹𝐹) − 𝛾𝛾0)/𝛾𝛾1�                                                                             (3) 212 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �1 + exp�𝛽𝛽0 + 𝛽𝛽1𝑙𝑙𝑙𝑙(𝐷𝐷𝑠𝑠) + 𝛽𝛽2𝑙𝑙𝑙𝑙(𝐼𝐼𝐹𝐹)��−1                                                 (4) 213 

The EPN incorporates isolator elements, positioned upstream of each line, to enable isolation in 214 

response to disruptions [60]. This has been utilized by previous studies to aggregate EPN elements 215 

into lines (e.g., [10]; [13]). Therefore, this allows aggregating elements within a line into nodes in 216 

the BN proposed herein. For a line of 𝑚𝑚 poles or towers, each having a probability of failure 𝑞𝑞i, 217 

the line’s probability of failure 𝑃𝑃𝐿𝐿 can be calculated using Equation 5 [45]. 218 

𝑃𝑃𝐿𝐿 = 1 −∏ (1 − 𝑞𝑞i)𝑚𝑚
𝑖𝑖=1                                                                                                                            (5)  219 

3.2. Network analysis 220 

3.2.1. EPN analysis 221 

The DBN DT framework proposed by Braik and Koliou [45] is adopted in this study. The EPN 222 

network is modeled using a BN, where each element is assigned two nodes: a physical node 223 

representing the physical state of the element (failed or not failed) obtained from the fragility 224 

analysis, and a performance node representing the operational state of the element (outage or 225 

restored). Figure 2 shows a sample DBN, where 𝐹𝐹 and 𝑃𝑃 stand for physical and performance nodes 226 

respectively, while 𝑆𝑆,𝑇𝑇,𝐷𝐷, and 𝐶𝐶 stand for substation, transmission line, distribution line, and 227 

customers. When evidence is received about the physical state (failure or survival) of transmission 228 

tower 𝑇𝑇1, the probabilities of downstream nodes at time 𝑡𝑡0 (BN0) are updated. The updated physical 229 

node probabilities are then passed to the Bayesian Network at the next time step 𝑡𝑡1 (BN1). 230 

Similarly, if evidence is received regarding the performance state of customer 𝐶𝐶3, the probabilities 231 
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of the entire BN1 are updated and subsequently passed to the next BN at time step 𝑡𝑡2 (BN2). This 232 

process continues, with the DBN being updated at each subsequent time step 𝑡𝑡𝑥𝑥. 233 

The BN’s ability to update prior estimates using data evidence distinguishes it from approaches 234 

such as fault-tree analysis, where node states are sampled using Monte Carlo Simulation (MCS) 235 

[61], and hence allows for extending the applicability of the risk assessment framework from pre-236 

hazard mitigation and preparedness toward post-disaster emergency response. The first step to 237 

constructing the BN is to estimate the failure probabilities via fragility analysis. These represent 238 

the marginal probabilities of the upstream physical nodes. Then, logical dependency rules between 239 

nodes are established using conditional probability tables. Thus, the consideration of power flow 240 

is based on the connectivity of EPN nodes, given the direct link between system failure and 241 

physical damage to EPN components. For example, in Figure 2, the performance state of upstream 242 

nodes like 𝑃𝑃𝑆𝑆1 depends solely on the state of the physical node of the same element 𝐹𝐹𝑆𝑆1. On the 243 

other hand, the performance state of intermediate nodes like 𝑃𝑃𝑇𝑇1 depends on both the state of the 244 

physical node 𝐹𝐹𝑇𝑇1 and that of the upstream performance node 𝑃𝑃𝑆𝑆1. Once the BN is constructed, 245 

forward propagation can be used to calculate the probability of power outage for every 246 

performance node in the network. Then, the BN can be updated in real-time using data by 247 

extending the BN toward a DBN [45]. This data can be obtained via various data sensing methods 248 

(discussed in Section 1). The algorithm for building the EPN BN and then updating the DBN with 249 

data evidence is summarized in Table 1. Details on performing forward propagation for the BN 250 

and updating the conditional distributions can be found in Darwiche [62]. 251 
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 252 
Figure 2: Sample EPN DBN 253 

Table 1: Algorithm for building the BN and updating the DBN 254 

 255 
3.2.2. RN analysis 256 

The RN can be modeled using a non-directed weighted graph network, where segments of the 257 

graph represent the edges connecting the nodes, while the time of travel between two adjacent 258 

nodes, which can be calculated as the length of the segment divided by the average travel speed, 259 

is the weight of the edge within the graph. Ertugay et al. [63] suggested reducing the estimated 260 

travel speed in proportion to the probability of road closure, and hence, the travel time (weight of 261 

the edge within the graph) in this paper is divided by (1 − 𝑃𝑃𝑓𝑓−𝑟𝑟) to consider the effect of road 262 

closure following hurricanes, where 𝑃𝑃𝑓𝑓−𝑟𝑟 is the probability of failure of the road segment estimated 263 

using the fragility functions. Moreover, as long as the road segment is flooded, the travel time is 264 

assumed to be infinity. Hence, the travel time through any road segment, which represents the 265 

weight of the segment’s graph edge, depends on its probability of failure 𝑃𝑃𝑓𝑓−𝑟𝑟 and the flood 266 
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duration. This allows for estimating the minimum travel time between any two nodes within the 267 

RN [64]. Therefore, based on these assumptions and by constructing the graph network, the 268 

minimum travel time can be calculated for various states of flooding and damage to the RN 269 

segments. Then, real-time data obtained about the actual states of the segments and travel times 270 

can be used to update the physics-based estimates.  271 

It is important to acknowledge that, in this framework, the initial physics-based estimates of the 272 

RN post-disaster conditions only consider the damage and flooding states. Therefore, the RN 273 

model focuses mainly on connectivity and accessibility to estimate the repair unit’s ability to reach 274 

failed elements. On the other hand, the effect of the traffic flow is not considered. Up to date, most 275 

post-hazard RN proposed models use pre-hazard traffic demand (e.g., [65]; [66]). Therefore, the 276 

high computational cost of these models won’t necessarily enhance the accuracy of the 277 

estimations. Recently, some studies have been proposing methods to estimate the traffic demand 278 

resulting from the evacuation process (e.g., [67]). Such models can be further enhanced if coupled 279 

with agent-based modeling (e.g., [68]; [69]; [70]). Hence, a more comprehensive RN analysis that 280 

considers both the topology and the traffic flow could be incorporated within the proposed DT 281 

framework in future studies. 282 

3.2.3. Interdependencies between the EPN and RN 283 

The interdependencies between the EPN and RN are considered by connecting each node within 284 

the EPN to its closest RN node. Consequently, when an EPN repair crew unit completes repairs in 285 

one element and needs to move to another, the travel time between these two is modeled based on 286 

the distance between the nearest pair of RN nodes. This is explained using Figure 3, where the 287 

travel time between EPN nodes E1 and E2 will be calculated using the travel time between RN 288 

nodes R1 and R2, while the travel time between E1 and E3 will be calculated using R1 and R3. 289 
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However, it is important to note that this paper does not account for other interdependencies, such 290 

as the impact of damaged utility poles on the RN or the consequences of traffic signal outages and 291 

it is acknowledged as a potential limitation. 292 

 293 
Figure 3: Interdependencies between the EPN and RN nodes 294 

3.3. Restoration modeling and repair prioritization 295 

To maximize the efficiency of the restoration process, the repair and restoration of the EPN 296 

elements during post-disaster outages follow a hierarchical process. This is consistent with the 297 

principles outlined in the literature and industry practices for power restoration in utility networks, 298 

where the priority sequence starts with repairing damaged substations and transmission towers and 299 

then distribution lines serving essential facilities. After that, repairing the remaining utility poles 300 

is based on restoring power to the largest number of customers as fast as possible ([71]; [72]; [73]; 301 

[74]).  302 

During post-hurricane scenarios, the assessment of utility poles becomes challenging due to their 303 

large numbers within the EPN compared to substations and transmission towers, making it harder 304 

to evaluate their significance and monitor their conditions with limited information available.  305 

Ouyang and Dueñas-Osorio [72] proposed a formula to estimate the repair worth (RW) for 306 

distribution lines in the EPN as the ratio of the number of customers served by the line to the repair 307 

time required. However, this formula doesn’t consider the uncertainties in the physical and 308 

performance states of the lines, and hence requires a near-complete knowledge of each line's 309 
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condition, which is rarely attainable in post-hurricane scenarios. Moreover, it doesn’t allow for 310 

giving different weights to customers based on their importance for community resilience and 311 

recovery. It also does not incorporate factors such as travel time to reach the line or the accessibility 312 

of the road segments, which are important considerations in prioritizing repair efforts and 313 

optimizing the restoration process in post-disaster scenarios. Therefore, in this paper, a modified 314 

RW formula is proposed, building upon the formula proposed by Ouyang and Dueñas-Osorio [72] 315 

per equation (6), where 𝑅𝑅𝑅𝑅𝑗𝑗 is the RW of distribution line 𝑗𝑗, 𝑛𝑛 is the total number of customers in 316 

the system, and 𝑇𝑇𝑗𝑗 is the total time for repair of line 𝑗𝑗, including both the repair time and the travel 317 

time. Moreover, 𝑞𝑞𝑖𝑖 is the probability of power restoration of customer 𝑖𝑖 before the repair, and 𝑞𝑞𝑖𝑖𝑖𝑖′ 318 

is the probability of power restoration of the same customer if line 𝑗𝑗 is repaired. 𝑞𝑞𝑖𝑖 and 𝑞𝑞𝑖𝑖𝑖𝑖′ can be 319 

calculated using the BN via the forward propagation variable elimination algorithm [45]. 320 

Therefore, 𝑞𝑞𝑖𝑖 represents the marginal probability of restoration, while 𝑞𝑞𝑖𝑖𝑖𝑖′ represents the 321 

conditional probability of restoration conditioned on updating the physical node of element 𝑗𝑗 to be 322 

repaired. Finally, 𝑤𝑤𝑖𝑖 is the weight assigned to the customer 𝑖𝑖 based on its importance for 323 

community resilience.  324 

𝑅𝑅𝑅𝑅𝑗𝑗 =
�∑ 𝑞𝑞𝑖𝑖𝑖𝑖′𝑤𝑤𝑖𝑖𝑛𝑛 − ∑ 𝑞𝑞𝑖𝑖𝑤𝑤𝑖𝑖𝑛𝑛 �

�𝑇𝑇𝑗𝑗 ∑ 𝑞𝑞𝑖𝑖𝑤𝑤𝑖𝑖𝑛𝑛 �
                                                                                                                 (6) 325 

While a single forward propagation run of the BN is computationally efficient as demonstrated 326 

by  Braik and Koliou [45], equation (6) requires running the algorithm to compare hundreds of 327 

elements, and hence, it can become computationally expensive. Therefore, it is important to utilize 328 

conditional independence within the BN [62] to prune the network and hence reduce its complexity 329 

without affecting the mathematical accuracy of the results. This can be explained using Figure 2, 330 

where repairing distribution line 2 (updating the state of 𝐹𝐹𝐷𝐷2 to “repaired”) only affects the state 331 
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of customers 𝑃𝑃𝑃𝑃3 and 𝑃𝑃𝑃𝑃4, while the states of the remaining customers are conditionally 332 

independent of 𝐹𝐹𝐷𝐷2. Hence, when applying equation (6) to 𝐹𝐹𝐷𝐷2, the BN can be pruned to include 333 

only 𝐹𝐹𝐷𝐷2 → 𝑃𝑃𝐷𝐷2 → (𝑃𝑃𝐶𝐶3,𝑃𝑃𝐶𝐶4), while 𝑞𝑞𝑖𝑖𝑖𝑖′ for the other customers will be equal to 𝑞𝑞𝑖𝑖. As the 334 

computational cost of the BN is proportional to its size [75], this will considerably reduce the run 335 

time while resulting in equivalent mathematical results. 336 

Therefore, once substations and transmission towers are checked and repaired, a weight of 1.0 is 337 

given to the essential facilities (such as fire stations, police stations, hospitals, and major water 338 

structures including water pumps and elevated tanks) and zero to the remaining customers. Then, 339 

the lines feeding the essential facilities are prioritized for check and repair based on equation (6). 340 

This can be utilized to further reduce the computational costs, as in this stage, only lines serving 341 

customers with non-zero weights need to be compared, while the remaining lines and the 342 

customers they feed can be pruned from the BN, as their computed RW using equation (6) will be 343 

zero. Table 2 summarizes the algorithm for pruning the BN and prioritizing element for repair 344 

using equation (6). 345 

Table 2: Algorithm for BN pruning and prioritizing EPN elements for repair  346 

 347 
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Once all essential facilities are restored, the remaining customers are given weights according to 348 

their importance per stakeholder priorities, and the lines feeding them are checked and repaired in 349 

order based on equation (6). The assignment of weights to customers is a crucial task that falls 350 

upon decision-makers, and therefore, simulation analysis using techniques like DES is employed 351 

in this paper to estimate the impact of different weights that can assist decision-makers in 352 

understanding their effects. A formal definition and details of applying the DES to model the 353 

restoration of the EPN are provided in Section 4 below. While some decision-makers may 354 

prioritize residential customers, considering the significant role of prompt power restoration in 355 

individuals and families' recovery, it is important to recognize that neglecting business and 356 

industrial customers can have detrimental effects on them ([76]; [77]; [78]), resulting in long-term 357 

consequences on the overall recovery and resilience of the community. 358 

3.4. DT for disaster management 359 

The electric power restoration framework proposed in this study allows for combining and 360 

leveraging the advantages of both physics-based and data-driven modeling approaches. The 361 

physics-based damage analysis and network modeling allow for a highly detailed model capable 362 

of making predictions before the hazard occurrence. This enables decision-makers to test various 363 

restoration scenarios to help in preplanning and preparedness and provides a basis to immediately 364 

guide post-disaster investigation and repair. Then, the proposed framework allows for real-time 365 

updating of the initial physics-based estimations with data. By utilizing a DBN, receiving data on 366 

the state (physical or performance) of any element within the network can be used to update the 367 

prior belief of the entire network while remaining within the true physical nature of the system. 368 

Hence, the restoration process can be monitored and updated in real-time, reflecting changing 369 

conditions and facilitating adaptive decision-making. Thus, the framework in this paper is 370 
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proposed as a DT, with the digital model being continuously updated using real-time data sensing 371 

and can influence the real system through adaptive decision-making.  372 

The proposed DT possesses a range of capabilities, starting with supervision based on the 373 

visualizations and models it generates. It also performs simulations and makes predictions utilizing 374 

DES . Additionally, it incorporates the intelligence of the DT by updating the DBN and learning 375 

from collected data. Furthermore, it is capable of controlling the real system through adaptive 376 

decision-making and directing the restoration processes. However, it is essential to acknowledge 377 

that in disaster management, achieving a fully autonomous DT is unlikely in the near future. Some 378 

level of human involvement will still be necessary to apply and implement the decisions made by 379 

the DT. For instance, repair crews would be responsible for executing repair decisions suggested 380 

by the DT. 381 

4. Application study using discrete event simulation 382 

To showcase the practicality of the proposed framework, an illustrative application study 383 

utilizing DES is conducted.  384 

4.1. Galveston testbed 385 

In this application study, the Galveston Island testbed in conjunction with the Hurricane Ike 386 

model is utilized. A comprehensive dataset compiled from various sources, including Darestani 387 

and Padgett [79], SPDCPB [80], Incore [57], and GalvestonGIS [81], provides the location, type, 388 

properties, and connectivity of EPN components such as poles, towers, and substations. 389 

Additionally, it provides details regarding the location and type of electricity receiving customers, 390 

as well as the spatial distribution and connectivity of road segments and intersections within the 391 

RN. This compiled dataset is used to build a high-fidelity model of the EPN and RN, as 392 
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summarized in Table 3. The EPN elements, RN elements, buildings, and essential facilities of 393 

Galveston are shown in Figure 4. To reduce the size of the BN as recommended by Braik and 394 

Koliou [45], the poles are aggregated into 2,718 distribution lines, while the transmission towers 395 

are aggregated into 1 transmission line. Moreover, the residential, commercial, and industrial 396 

buildings are clustered into 2,102, 1,108, and 248 building clusters, respectively where the 397 

buildings in each are assumed to share a common electricity feeder. Furthermore, this dataset 398 

includes the results of Hurricane Ike simulations needed for fragility analysis, providing spatial 399 

variations of wind speed and direction, wave speed, direction, and height, highest flood depth, and 400 

flood duration across the island. 401 

Table 3: Summary of EPN, RN, customer, and essential facilities quantities 402 

Component Utility pole Transmission 
tower 

Substation Residential 
building 

Commercial 
building 

Industrial 
building 

Count 13,207 52 9 24,756 2,681 357 
Component Fire station Police station Hospital Water facility Road segment  
Count 7 1 21 22 5,035  
Hence, by using the infrastructure data and the hazard analysis, fragility analysis is performed 403 

for both the EPN and RN, which concludes step 1 of the methodology through disaster impact 404 

assessment. Further discussion on the results of the fragility analysis is presented in Section 4.3. 405 

Subsequently, utilizing the connectivity data, network analysis is performed in accordance with 406 

step 2 of the methodology, facilitating the establishment of interdependencies between the EPN 407 

and RN. The progression to step 3 of the methodology, restoration modeling and repair 408 

prioritization, is demonstrated through the application of DES. The physics-based predictions 409 

derived from hazard and fragility analysis serve as the prior estimates and initial conditions of the 410 

DES. Subsequently, stochastic simulation is employed to model the entire restoration process. The 411 

assumptions of the DES are explained in Section 4.2, while the results are elaborated upon in 412 

Sections 4.3 and 4.4. 413 



20 

 414 

Figure 4: Graphic view of Galveston Island’s: (a) Building and essential facilities map (b) EPN map (c) RN map 415 



21 

4.2. Discrete event simulation assumptions 416 

DES is a computational method that models the behavior of complex systems as a discrete 417 

sequence of events [82]. In this study, the events triggering a change in the state of the system are 418 

the occurrence of hazards, leading to damages, outages, and flooding, as well as the subsequent 419 

repair and drainage of the EPN and RN elements. The repair activities are conducted by repair 420 

crew units, while the drainage is assumed to naturally occur following the estimations of the hazard 421 

analysis. It is assumed that a fixed number of repair crew units is available for both the EPN and 422 

RN and that these units possess equivalent capacities, with each capable of handling one task at a 423 

time. Furthermore, the crew members within the unit will operate in shifts to ensure continuous 424 

work throughout the simulation. 425 

Assumptions of the repair times of the EPN and RN elements are based on average times 426 

obtained from the literature. An average repair time 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 of 72 hours is assumed for a single 427 

substation or transmission tower, while the repair of a damaged utility pole takes an average of 5 428 

hours [24]. Therefore, a line consisting of 𝑚𝑚 poles or towers each having a predicted probability 429 

of failure 𝑞𝑞𝑖𝑖 will have an expected number of failed elements of 𝑚𝑚′ = ∑ 𝑞𝑞𝑖𝑖𝑚𝑚
𝑖𝑖=1 . Hence, the expected 430 

repair time will be 𝑚𝑚′ times the average time of repair of a single element within the line. On the 431 

other hand, the average time to repair a 1-km length road segment is assumed to be 1 day, if the 432 

probability of damage to the road segment is less than 0.2, 7 days if it is more than 0.8, and 2 days 433 

for all other cases [83]. However, it should be noted that the reliance on deterministic average 434 

repair times might result in underestimating the uncertainties in the restoration process. 435 

While the method proposed in this paper allows for updating the estimations based on various 436 

types of evidence data as demonstrated by Braik and Koliou [45], it is assumed in the DES that 437 

the only source of evidence is the feedback of repair crews. Therefore, once a repair crew reaches 438 
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the selected line, the state of its elements is stochastically sampled based on their probabilities of 439 

failure to give either failed or not failed, and the simulated time of repair is the number of damaged 440 

elements times the average time of repair of a single element. Therefore, if a line contains 𝑚𝑚 poles 441 

or towers, the simulated number of damaged elements 𝑚𝑚′′ is stochastically sampled following 𝑚𝑚 442 

independent non-identical Bernoulli (INB) trials [84], where the probability for each trial is equal 443 

to the probability of failure of the element estimated through the fragility analysis. Even if no 444 

element is failed, it is assumed that the minimum checking time 𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒 is 0.5 hours for distribution 445 

lines and 5 hours for substations and transmission lines. Therefore, 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑗𝑗, the time of repair of 446 

a line 𝑗𝑗, is sampled using equation (7), where 𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎, and 𝑚𝑚′′ are the minimum checking time, 447 

average repair time, and simulated number of damaged elements, respectively, as defined above, 448 

and 𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑚𝑚 are the failure probabilities of poles or towers within the line 𝑗𝑗.  449 

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑗𝑗 = max�𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚′′. 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎� ,𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚′′~ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑚𝑚)                                            (7) 450 

The EPN units are assumed to start working 4 hours after the hurricane [85], while the RN units 451 

are assumed to start working only after all roads are drained. Both EPN and RN units start from 452 

the road node in the mainland before the Galveston bridge. An average travel speed of 25 mph 453 

(11.2 m/s) is assumed through an undamaged and drained road segment. This speed is reduced 454 

based on the probability of failure of the road as elaborated in Section 3.2.2. This reduction in 455 

travel speed is capped at a minimum of 2.5 mph (1.12 m/s), ensuring that even in the presence of 456 

substantial damage, travel remains possible but significantly slowed. In the case of flooded 457 

roadways, repair units are expected to face impassable conditions, except for access to substations, 458 

where it is expected that given the high value and significance of the substations, access will be 459 

made possible even in the event of flooding.  460 
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The repair prioritization follows the criteria discussed earlier, with substations and transmission 461 

lines taking precedence for repair. Subsequently, distribution lines are prioritized based on their 462 

RW, where Equation (6) is used to assign each EPN crew unit an element to repair. Since any 463 

downstream line cannot operate unless all its upstream lines are repaired, the upstream lines are 464 

compared for prioritization at each step. Initially, priority is given to restoring essential facilities, 465 

indicated by assigning them a weight of one, while assigning a weight of zero to the rest of the 466 

customers. Subsequently, attention shifts to the remaining customers, who are then assigned non-467 

zero weights. The road segment with the highest probability of damage is given the highest repair 468 

priority. 469 

4.3. Supervisory and control DT 470 

In Figure 5, a dynamic dashboard is presented, tracking the progress of electric power 471 

restoration. In this application study, equal importance is assigned to the restoration of residential, 472 

commercial, and industrial buildings. Additionally, allocation has been made for 8 repair units for 473 

the EPN and 5 units for the RN. Figure 5 (a) displays the initial state of the EPN immediately after 474 

the hurricane's impact. As no data has yet been collected, the estimates are primarily based on the 475 

prior physics-based analysis and show a significant failure of EPN components, resulting in a 476 

nearly complete power outage across the island. Furthermore, most RN segments are flooded, with 477 

damage concentrated near the shoreline. 478 

Figure 5 (b) portrays the intermediate state of the EPN on the sixth day following the hazard 479 

occurrence. At this stage, the restoration of essential facilities and a substantial portion of the 480 

remaining customers has been achieved. Additionally, the RN has been drained, and repairs are 481 

being undertaken for damaged segments. Notably, significant recovery has been experienced in 482 

the upper half of the island, while the other half still faces a widespread outage. This underscores 483 
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the importance of visualizing spatial variations, allowing for the identification of overlooked areas. 484 

Finally, in Figure 5 (c), the fully repaired and restored state of the EPN on day 16 is shown. 485 

As discussed in Section 3.4, the proposed DT exhibits a versatile range of capabilities, from 486 

supervision to intelligent decision-making. The DT provides dynamic and detailed visualizations 487 

that allow decision-makers to assess the damage and performance of the EPN components and 488 

their effect on customers, in addition to the state of the RN segments and their effect on the 489 

mobility of repair units. It extends its capabilities further through simulation and prediction, as 490 

demonstrated by the DES application study and the resulting estimates. One of its standout features 491 

is its intelligent capability, achieved through the BN updates. By collecting data on specific nodes 492 

within the EPN, the entire network can be updated. Therefore, predictions for other nodes that 493 

share upstream connections with the nodes we have monitored can be enhanced. This adaptive 494 

learning ensures the DT's ability to provide more accurate predictions following real-time data 495 

sensing. Moreover, by prioritizing elements for repair through the RW calculations, the DT can be 496 

used in adaptive decision-making and to direct and control the restoration process. Furthermore, it 497 

allows decision-makers to intervene at any point in time and redirect the restoration strategies and 498 

the distribution of resources. Hence, the proposed DT possesses the full capabilities of a 499 

supervisory and control DT. 500 

4.4. Case studies 501 

In this section, an analysis of different case studies is conducted, with a focus on the modification 502 

of prioritization strategies, the adjustment of weights, and the reallocation of resources. These are 503 

compared to the benchmark case presented in Section 4.3. 504 
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4.4.1. Sensitivity analysis 505 

To enable a comparison between the results of stochastic simulations, MCS is utilized. 506 

Therefore, the convergence of the cumulative mean of the samples is examined, and it is 507 

subsequently used to compare different cases. Figure 6 shows the convergence of the cumulative 508 

mean of the restoration percentage for the benchmark case for days 1 to 16 after the occurrence of 509 

the hazard. Similar checks were performed in other cases and for various types of customers and 510 

essential facilities. Convergence for all cases was achieved after 40 runs, hence, the restoration 511 

plots of the mean of the 40 runs are used. 512 
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Figure 5: DT dashboard for: (a) Day 0 (immediately after the hurricane), (b) Day 6, and (c) Day 16 (end of EPN 514 
repair and restoration) 515 

 516 
Figure 6: Convergence of the MCS cumulative mean for the benchmark case 517 

4.4.2. Comparison studies 518 

In Figure 7 (a), a comparison is made between the restoration of the benchmark case described 519 

above and the actual restoration of Galveston Island following Hurricane Ike, as retrieved from 520 

historical records [29]. The almost linear shape of the actual restoration plot, when compared to 521 

the S-shaped curve of the simulation plot, suggests that a more efficient restoration could have 522 

been attained if a more informed prioritization of elements for repair had been followed, as 523 

proposed in this paper. Figure 7 (b) compares the restoration curves of synthetic hurricanes based 524 

on Hurricane Ike of various return periods; T=50, 100, and 500 years. The return period events 525 

were determined by water level exceedance probabilities at Stewart Beach, near the eastern end of 526 

Galveston Island [56]. The results of the hurricane models were obtained from [57, 86]. The time 527 

to restoration of the 500-year return period hurricane is significantly larger than the other 528 

hurricanes, which shows the considerable effect of the hazard intensity on the restoration process. 529 

Figure 7 (c) shows the impact of resource allocation on the restoration process. As anticipated, an 530 

increase in the number of repair crew units results in an acceleration of the restoration rate. This 531 

graphical representation serves as a tool for evaluating the incremental advantages of adding 532 

resources. The transition from 5 to 8 repair units yields significantly more benefit compared to 533 

increasing the numbers from 8 to 10 units.  534 
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Figure 8 displays the restoration plots for residential, commercial, and industrial customers for 535 

different prioritization strategies. In Figure 8 (a), the benchmark case is shown where equal 536 

weights are assigned to all customers, resulting in similar restoration plots with small variations 537 

influenced by spatial distributions. In contrast, Figure 8 (b) reveals the restoration plots when 538 

prioritization is centered around residential customers. In this scenario, the residential restoration 539 

plot is shifted slightly to the right, with a more noticeable effect on the delay of restoration for 540 

commercial and industrial plots. Then, in Figure 8 (c), the restoration plots are shown when 541 

prioritization factors are determined by the expected monetary loss per hour of outage, following 542 

the ratios of 1:325:1200 for residential, commercial, and industrial customers, respectively [87]. 543 

Therefore, in this case, business recovery takes precedence, and rapid restoration is observed for 544 

industrial and commercial buildings compared to the benchmark case, while the restoration of 545 

residential buildings is slightly delayed. 546 

Figure 9 demonstrates the impact of prioritizing essential facilities for restoration. Figure 9 (a) 547 

shows that when not given priority, the restoration of water facilities takes nearly three times the 548 

duration. Similarly, in Figure 9 (b), a significant delay in hospital power restoration is seen when 549 

considered as regular customers.  550 

These figures include confidence bands showing one standard deviation above and below the 551 

average MCS restoration plots. It is noted that the variability becomes more pronounced when 552 

focusing on the restoration of a smaller subset of customers, such as industrial facilities, compared 553 

to the total restoration, since the aggregated effect tends to reduce variability in larger systems. 554 

This highlights the importance of considering spatial and categorical variability. However, some 555 

assumptions made, such as the deterministic hazard model and the use of average repair times, 556 
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contribute to underestimating the total uncertainty. This motivates a more comprehensive 557 

uncertainty quantification in future studies. 558 

  559 
Figure 7: Comparison studies of: (a) the benchmark case restoration against the actual restoration obtained from 560 

historical records (b) the restoration plots of various hurricane return periods (c) the effect of allocated resources 561 

 562 
Figure 8: Restoration plots for residential, commercial, and industrial buildings for: (a) equal weights (benchmark 563 

case) (b) residential buildings given priority (c) business facilities given priority 564 

 565 

Figure 9: Effect of prioritizing: (a) water facilities (b) hospitals 566 

4.4.3. Updating prior estimations with data evidence via backward propagation 567 

To demonstrate the capability of the DT in updating prior estimates using belief propagation, a 568 

case study is considered in which the outage and restoration state of 10 customers have been 569 

observed. When data evidence about the outage or restoration status of any customer is obtained, 570 

it can be used to update the prior outage probabilities for the entire island. This method influences 571 
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the estimations for customers connected to the same upstream line as those for whom data has 572 

been received, even if there is no direct data available for them. As shown in Figure 10 (a), 5 573 

customers in the middle of the island were observed to have power restored, while another 5 574 

customers in the lower part of the island experienced power outages at the same time. The updated 575 

outage map, displayed in Figure 10 (b), shows a significant portion of the island having power 576 

restored using only these 10 data points. It is noteworthy that the upper right portion of the island 577 

was not significantly updated using the observed data. This is because the observed restored 578 

customers receive electricity directly from the mainland substation via an underground electricity 579 

cable, as illustrated in Figure 4. 580 

 581 

Figure 10: DT outage map for (a) prior estimations (b) posterior estimations using observed data 582 

5. Conclusions and future work 583 

This paper has introduced a novel framework for post-hurricane electric power restoration, 584 

leveraging the concept of the DT. As demonstrated in this study, the DT provides dynamic 585 

visualizations that offer a holistic evaluation of the EPN performance, while also assessing the 586 

condition of the RN and its influence on the mobility of repair units. By employing a DBN that 587 

integrates physics-based and data-driven models, the framework expands its capabilities from 588 

offline to online learning, enabling real-time updates to continuously enhance the accuracy of the 589 
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estimations. These capabilities are further extended through simulation and prediction, as 590 

showcased by the DES application study. Additionally, the ability to guide and prioritize repair 591 

and restoration efforts allows for adaptive decision-making, extending the framework toward a 592 

supervisory and control DT. 593 

Despite the promising results, the proposed framework still has limitations in its current form. 594 

The case studies rely on scenarios of single hazards rather than comprehensive hazard analysis. 595 

Moreover, several assumptions regarding restoration times are treated as deterministic average 596 

values rather than probabilistic random variables, potentially underestimating the uncertainty in 597 

the results. Additionally, the RN is modeled as a graph network and does not incorporate traffic 598 

and flow analysis, nor does it account for debris that might disrupt traffic. Finally, the cascading 599 

effect of power outages on the RN is not considered. The water network is only considered by 600 

including main water facilities, such as water pumps, instead of modeling a comprehensive water 601 

network. 602 

Future research can focus on the RN by conducting comprehensive traffic and flow analyses that 603 

account for evacuation, return, the impact of debris, and other important factors that might affect 604 

the mobility of repair units. Furthermore, there is a need for a more comprehensive hazard analysis 605 

considering the stochastic nature of hurricane loads. Additionally, there exists potential for in-606 

depth analysis of the restoration of the water network and its impact on community functionality 607 

and resilience. Future research can also explore the synergy between the disaster management DT 608 

of the EPN and the normal operation DT. By integrating these two, where power flow is based on 609 

connectivity during disasters and on DC flow analysis during normal operations, researchers can 610 

combine the concepts of smart and resilient infrastructure systems.  611 
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Moreover, the proposed framework can be utilized to analyze restoration efforts focusing on 612 

socially vulnerable communities. The simulation analysis offered can further evolve through the 613 

application of agent-based modeling, taking into consideration various social systems in 614 

conjunction with critical infrastructure systems, ultimately developing a full community DT. Since 615 

the proposed DT framework utilizes data to update prior estimates, future research could focus on 616 

innovative data collection and analysis approaches to enhance the efficiency of the restoration 617 

process. Therefore, this paper establishes the groundwork for a paradigm shift in disaster recovery 618 

strategies through more efficient, adaptable, and data-informed methods that enhance post-619 

hurricane electric power restoration, ultimately contributing to more resilient communities. 620 

Relevance to resilience  621 

This paper presents a framework for post-hurricane electric power restoration using a DT 622 

approach, focusing on the restoration of the EPN and RN. By prioritizing repairs and optimizing 623 

resource allocation, the framework enhances infrastructure resilience, ensuring efficient 624 

restoration of essential services crucial for maintaining community functionality and well-being 625 

after a disaster. Through adaptive decision-making and data-driven methodologies, the framework 626 

contributes to building more resilient communities and enabling real-time updates based on 627 

accurate information. Overall, the study underscores the importance of leveraging DT technology 628 

to enhance post-disaster recovery efforts, ultimately contributing to community resilience. 629 
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