

1 A Digital Twin Framework for Efficient Electric Power Restoration and
2 Resilient Recovery in the Aftermath of Hurricanes Considering the
3 Interdependencies with Road Network and Essential Facilities

4 Abdullah M. Braik^a and Maria Koliou^{b*}

5 ^a Ph.D. Candidate and Graduate Research Assistant, Zachry Department of Civil and Environmental Engineering,
6 Texas A&M University, College Station, TX, 77843, U.S.A., E-mail: abraik3@tamu.edu

7 ^b Associate Professor, Zachry Department of Civil and Environmental Engineering, Texas A&M University,
8 College Station, TX, 77843, U.S.A., E-mail: maria.koliou@tamu.edu (*Corresponding author)

9 **Abstract**

10 The community's resilience in the face of natural hazards relies heavily on the rapid and efficient
11 restoration of electric power networks, which plays a critical role in emergency response,
12 economic recovery, and the functionality of essential lifeline and social infrastructure systems.
13 Leveraging the recent data revolution, the digital twin (DT) concept emerges as a promising tool
14 to enhance the effectiveness of post-disaster recovery efforts. This paper introduces a novel
15 framework for post-hurricane electric power restoration using a hybrid DT approach that combines
16 physics-based and data-driven models by utilizing a dynamic Bayesian network. By capturing the
17 complexities of power system dynamics and incorporating the road network's influence, the
18 framework offers a comprehensive methodology to guide real-time power restoration efforts in
19 post-disaster scenarios. A discrete event simulation is conducted to demonstrate the proposed
20 framework's efficacy. The study showcases how the electric power restoration DT can be
21 monitored and updated in real-time, reflecting changing conditions and facilitating adaptive
22 decision-making. Furthermore, it demonstrates the framework's flexibility to allow decision-
23 makers to prioritize essential, residential, and business facilities and compare different restoration
24 plans and their potential effect on the community.

25 **Keywords:** Community resilience, digital twin, disaster recovery strategies, electric power
26 restoration, hurricanes, road network.

27 **Abbreviations:** AI: artificial intelligence; BN: Bayesian network; DBN: dynamic Bayesian
28 network; DES: discrete event simulation; DT: digital twin; EPN: electric power network; IoT:
29 internet of things; RN: road network; RW: repair worth.

30 **1. Introduction**

31 **1.1. Motivation and problem statement**

32 Post-hazard recovery has gained significant attention in recent years, highlighting the critical
33 role of community resilience in effective disaster management, as it contributes to reducing losses,
34 expediting recovery, and mitigating social and economic disruptions [1]. One key aspect of
35 community resilience is the fast and efficient restoration of electric power, which holds immense
36 importance for emergency response, economic recovery, and the proper functioning of essential
37 lifeline and social infrastructure systems [2]. While the interest in community response to
38 hurricanes dates back at least half a century [3], and despite the extensive research dedicated to
39 enhancing the resilience of the community in general and the electric power network (EPN) in
40 particular, the restoration and recovery of the EPN after hurricanes still face significant challenges
41 [4]. This is mainly due to the size and complexity of the EPN, coupled with its vulnerability to
42 natural hazards, and is further exacerbated by the deregulated nature of the profit-oriented
43 electricity market, which provides a minimal incentive for investing in community resilience
44 through preparedness and preplanning ([5]; [6]).

45 The main objective of post-disaster EPN recovery is to restore electricity to the maximum
46 number of customers as fast as possible, considering their significance in maintaining community
47 resilience [7]. Over the past decade, the reliability, hardening, and risk assessment of the EPN in
48 the face of strong-wind hazards have been extensively studied (e.g., [8]; [9]; [10]; [11]; [12]; [13];
49 [14]; [15]; [16]; [17]; [18]; [19]). Moreover, many studies analyzed the post-hurricane
50 performance and recovery of the EPN and its spatial and socio-economic distribution (e.g., [20];
51 [21]; [22]; [23]). Other studies proposed various methods to perform predictions and model the
52 response and restoration of the EPN in the face of hurricanes. These methods can broadly be
53 classified into two categories: (i) physics-based approaches, where hazard and fragility analysis
54 are coupled with network analysis (e.g., [24]; [25]; [26]; [27]; [28]; [29]; [30]), and (ii) data-driven

55 approaches, which involve utilizing statistical models and machine learning (e.g., [31]; [32]; [33];
56 [34]; [35]).

57 Physics-based methods play a crucial role in pre-hazard mitigation and preparedness, where
58 sophisticated hazard and structural damage models are developed using numerical and finite
59 element techniques. These methods offer strengths such as a solid physical foundation,
60 interpretability, scenario testing capabilities, and the ability to model probabilistic and uncertainty
61 factors. However, their static probabilistic outputs may be limited in post-disaster scenarios due to
62 significant epistemic and aleatory uncertainties inherent in natural hazards and their interactions
63 with structures. Furthermore, these methods often lack the capability to update prior estimates
64 during the restoration process. On the other hand, data-driven methods rely on post-disaster reports
65 and surveys, offering advantages in adaptability, efficiency, and handling complexities. However,
66 they encounter challenges during immediate emergency response phases due to the time required
67 for data collection and analysis. Moreover, the large volume of data needed is often unavailable
68 shortly after the disaster. Therefore, an integrated framework that combines the strengths of both
69 physics-based and data-driven methods is essential to extend the applicability of the risk
70 assessment framework to post-disaster emergency response. This integration can facilitate
71 adaptive decision-making and guide the restoration process effectively.

72 Amid the data revolution and the enormous advancements in artificial intelligence (AI) and the
73 Internet of Things (IoT), data-driven methods have advanced significantly, motivating researchers
74 to expand their use to collect and analyze real-time data to generate insights into current events
75 during and after the hazard occurrence. Therefore, the capabilities of the models can extend
76 beyond offline (pre-disaster) predictions toward online (post-disaster) learning. This can be
77 achieved through a digital twin (DT), which provides a virtual model integrated with the real

78 system through real-time data transfer. Hence, researchers have recently proposed visions to
79 integrate DT in disaster management (e.g., [2]; [36]; [37]; [38]). When applied at the community
80 level, the DT has the potential to enhance disaster management and significantly improve its
81 resilience. By utilizing high-fidelity models and dynamic simulations that are updated in real-time,
82 decision-makers can make informed choices based on the actual conditions and take proactive
83 measures to mitigate the impact of disasters.

84 A DT is considered as an essential step toward smart cities [39]. A smart city DT relies on
85 physical and other types of sensors driven by the enormous advancements in the IoT and the fifth
86 generation of wireless systems [40]. Therefore, various studies have proposed DT frameworks for
87 the management and operation of the EPN (e.g., [41]; [42] [43]; [44]). These methods combine
88 the technologies of cyber-physical systems, smart grids, and the IoT to provide continuous real-
89 time data that is used to update the initial state estimates of the network. However, these methods
90 rely on the availability of large amounts of data and hence are suited for scenarios with limited
91 disruptions and the availability of almost complete information. Consequently, their direct
92 applicability in disaster management, where extensive damage is widespread across multiple
93 lifelines and social infrastructure systems including the physical sensors, and immediate
94 knowledge is often limited, may be constrained.

95 Therefore, a fundamental difference exists between a DT in normal conditions and the aftermath
96 of hazards. Integrating the concept of the DT at the community level and in the face of natural
97 hazards still faces significant challenges [45]. Since physical sensors are susceptible to damage,
98 and the traditional data gathering methods such as customer calls and site investigations are slow
99 and inefficient, virtual data sensing using smart technologies such as image recognition and social
100 sensing is an alternative method that is getting traction lately ([2]; [37]). While data-driven

101 methods are essential parts of any DT as they provide the connection between the actual system
102 and its digital replica, they require a large amount of data that is usually not readily available after
103 the disaster. They also lack the generalization and interpretability of physics-based methods.
104 Hence, the DT must also incorporate physics-based methods [38]. Still, most proposed DT
105 frameworks for disaster management have mainly focused on data sensing in smart cities using
106 social sensors (e.g., [46]; [47]; [48]; [49]; [36]). Another challenge is that the DT requires a model
107 that is both highly detailed and computationally efficient. These are often two conflicting goals,
108 and the DT must balance between them.

109 Recently, Braik and Koliou [45] proposed a framework for a DT of the EPN subjected to
110 hurricanes. In their framework, a Bayesian network (BN) is utilized to generate a highly detailed
111 network model that captures the dependencies between the various elements of the EPN. The
112 Bayesian Network (BN) is initially constructed as a physics-based model, based on hazard and
113 fragility analysis. It is then extended to a Dynamic Bayesian Network (DBN) over the time domain
114 to facilitate updating with data evidence. This approach allows for the incorporation of new
115 information as it becomes available, enhancing the model's accuracy and reliability in real-time
116 scenarios. The proposed DBN is a hybrid physics-based and data-driven model that is both highly
117 detailed and computationally efficient, and therefore, extends the capabilities of predictive models
118 from offline learning to online learning where estimates are updated using real-time data. Still,
119 applying the DT in post-disaster recovery to guide the EPN restoration remains largely unexplored.

120 The road network (RN) plays a significant role in post-disaster power restoration [50] and must
121 be considered in the DT. The coupling of the EPN and RN was considered in a few previous EPN
122 restoration studies mainly through methods such as optimization (e.g., [51]) and reinforcement
123 learning (e.g., [52]). However, these methods are better suited for normal operation scenarios

124 where large amounts of data are available. On the other hand, the physics-based methods following
125 the risk-assesment framework rarely consider the interdependency between the EPN and the RN.

126 Hence, a significant gap is highlighted in previous studies, as there is a lack of a DT framework
127 to guide the post-disaster restoration and repair process. Addressing this gap, this paper proposes
128 a DT framework for EPN restoration. The DT enables adaptive decision-making, considering
129 interdependencies between the EPN and RN. It utilizes detailed network analysis and physics-
130 based estimates for pre-hazard preparedness, extending to post-disaster recovery by updating
131 estimates with real-time data via DBN. The framework automates repair prioritization, accounting
132 for uncertainties, repair times, and essential facility importance, allowing for efficient restoration
133 and resilient recovery.

134 ***1.2. Background on digital twins and their capabilities***

135 The DT is a dynamic and interactive digital replica of a physical system, providing continuous
136 bidirectional synchronization of real-time data. Depending on the depth of integration between the
137 physical and digital twins, three primary modeling levels can be identified: digital model, digital
138 shadow, and DT. A digital model serves as a static snapshot of the real system at a specific
139 moment, lacking any further data transfer. In contrast, the digital shadow involves unidirectional
140 data flow, transmitting information from the real system to its digital counterpart. At the highest
141 level of integration, we find the DT, where continuous data transfer occurs in both directions. The
142 digital replica remains continuously updated through real-time data received from the physical
143 system, enabling it to offer feedback and simulate scenarios to support adaptive decision-making.
144 Ultimately, the DT can fully control the physical system [53].

145 DTs can be classified based on their capabilities. The supervision and operational DT represents
146 the lowest level, providing basic visualization and monitoring features. The simulation and

147 prediction DT surpasses this level by optimizing system performance and making predictions
148 using algorithms and optimization techniques. Moving up, the intelligent DT incorporates machine
149 learning techniques to learn from data in addition to the previous capabilities. Finally, the
150 supervisory and control DT expands on all previous capabilities and encompasses decision-
151 making. In its simplest form, human involvement is required to implement the decisions, while in
152 its most advanced form, a fully autonomous DT is capable of making and executing decisions [54].

153 **2. Scope**

154 This paper proposes a DT framework for post-disaster restoration of the EPN, considering its
155 interdependency with the RN. The scope encompasses the entirety of the DT's development
156 process, integrating physics-based and data-driven modeling to enhance the efficiency of disaster
157 recovery strategies. First, disaster impact assessment is addressed, incorporating data, hazard, and
158 fragility analysis of the elements of the EPN and the RN. Then, network analysis is discussed,
159 where the EPN is modeled utilizing the BN framework proposed by Braik and Koliou [45], while
160 the RN is represented through an undirected graph network. A significant aspect of the restoration
161 process is establishing a repair hierarchy sequence, where elements are prioritized based on their
162 contribution to community resilience. Subsequently, the restoration process is analyzed,
163 considering the interdependencies between the EPN and RN. To demonstrate the applicability and
164 efficacy of the framework, the paper concludes with a discrete event simulation (DES) of the
165 restoration of Galveston Island's EPN following Hurricane Ike, showcasing its practical
166 application in guiding resilient post-disaster recovery.

167 **3. Methodology**

168 Figure 1 shows a flowchart of the proposed framework. Then, the methodology's details are
169 discussed in the following sections.

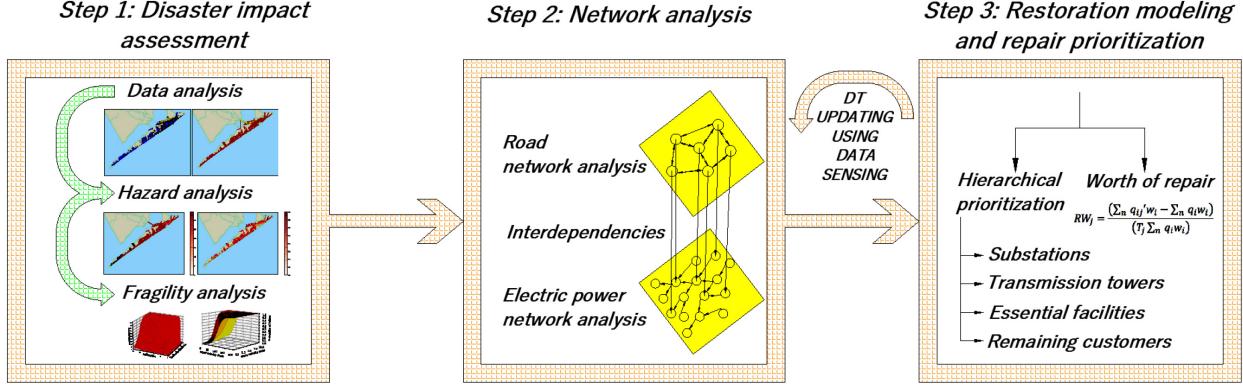


Figure 1: Flowchart showing key steps of the proposed DT framework of electric power restoration.

3.1. Disaster impact assessment

3.1.1. Data analysis

To effectively build the power restoration DT, detailed data from both the EPN and RN is required. This dataset encompasses comprehensive information about the various components within the EPN, such as substations, transmission towers, utility poles, and customers, as well as the road segments and intersections within the RN. This includes details regarding the connectivity of these elements, geographical coordinates (longitude and latitude), and essential properties necessary for fragility analysis, such as the height, diameter, age, and elevation. Then, the EPN can be modeled as a directed BN graph, while the RN can be modeled as an undirected network graph as explained in section 3.2.

3.1.2. Hazard analysis

To perform accurate fragility analysis within the DT framework, a detailed hurricane model is needed with multiple simulations performed for various hurricane return periods to capture the stochastic nature of the hazard ([55]; [56]). In this paper, the Advanced Circulation (ADCIRC) and Simulating Waves Nearshore (SWAN) hurricane models generated by Darestani *et al.* [56] and obtained from Incore [57] are used to provide detailed wind, wave, and surge maximum loads for all locations within the system. However, for simplicity, a single hazard model is used per case

189 study, representing either the historical Hurricane Ike or synthetic hurricanes of various return
 190 periods. Hence, the hazard loads are modeled as deterministic, while the uncertainty in the damage
 191 analysis employed within the DES stems from the fragility functions, as discussed in the next
 192 section. Future research could focus on comprehensive hurricane probabilistic analysis to enhance
 193 the prior load estimates.

194 *3.1.3. Fragility analysis*

195 A fragility function is a mathematical model that quantifies the probability that a system or
 196 component will reach or exceed a specified damage state given a certain level of demand. Given
 197 hazard intensity measures, fragility functions can be used to calculate the conditional failure
 198 probabilities of various EPN and RN elements. In this paper, the fragility functions obtained from
 199 Darestani *et al.* [58]; Darestani *et al.* [14]; Sánchez-Muñoz *et al.* [59]; and Darestani *et al.* [56] are
 200 utilized to calculate the probabilities of failure of wood utility poles, transmission towers,
 201 substations, and RN segments respectively, as shown in Equations 1-4, where $\sigma(y)$ is the standard
 202 logistic function. V_W is the wind speed (m/s), θ_W is the wind direction (radians), V_F is the water
 203 velocity (m/s), H_S is the surge height (m), H_W is the significant wave height (m), H_p is the pole
 204 height (m), t_p is the pole age (years), A_C is the conductor's effective area (m^2), F is the flood
 205 height (m), D_s is the distance from shore (m), and I_F is the flood duration (hours). The coefficients
 206 ($a_0: a_7, a_0: a_3, \gamma_0: \gamma_1, \beta_0: \beta_2$) can be obtained from existing literature adopted in this study (see
 207 references above).

$$208 P_{failure-pole} = \left(1 \right. \\ 209 \left. + \exp \left(- \left(a_0 + a_1 V_W + a_2 (H_p - H_S - H_W) + a_3 V_F H_S + a_4 V_W \sin(\theta_W) \right. \right. \right. \\ \left. \left. \left. + a_5 V_W A_C + a_6 \max(t_p, 25) + a_7 H_W \right) \right) \right)^{-1} \quad (1)$$

211 $P_{failure-tower} = 1 - [1 - \sigma(\alpha_0 + \alpha_1 V_W \sin(\theta_W))][1 - \sigma(\alpha_2 + \alpha_3 V_W \cos(\theta_W))]$ (2)

212 $P_{failure-substation} = \Phi((\ln(F) - \gamma_0)/\gamma_1)$ (3)

213 $P_{failure-road} = (1 + \exp(\beta_0 + \beta_1 \ln(D_s) + \beta_2 \ln(I_F)))^{-1}$ (4)

214 The EPN incorporates isolator elements, positioned upstream of each line, to enable isolation in
 215 response to disruptions [60]. This has been utilized by previous studies to aggregate EPN elements
 216 into lines (e.g., [10]; [13]). Therefore, this allows aggregating elements within a line into nodes in
 217 the BN proposed herein. For a line of m poles or towers, each having a probability of failure q_i ,
 218 the line's probability of failure P_L can be calculated using Equation 5 [45].

219 $P_L = 1 - \prod_{i=1}^m (1 - q_i)$ (5)

220 **3.2. Network analysis**

221 **3.2.1. EPN analysis**

222 The DBN DT framework proposed by Braik and Koliou [45] is adopted in this study. The EPN
 223 network is modeled using a BN, where each element is assigned two nodes: a physical node
 224 representing the physical state of the element (failed or not failed) obtained from the fragility
 225 analysis, and a performance node representing the operational state of the element (outage or
 226 restored). Figure 2 shows a sample DBN, where F and P stand for physical and performance nodes
 227 respectively, while S, T, D , and C stand for substation, transmission line, distribution line, and
 228 customers. When evidence is received about the physical state (failure or survival) of transmission
 229 tower T_1 , the probabilities of downstream nodes at time t_0 (BN_0) are updated. The updated physical
 230 node probabilities are then passed to the Bayesian Network at the next time step t_1 (BN_1).
 231 Similarly, if evidence is received regarding the performance state of customer C_3 , the probabilities

232 of the entire BN_1 are updated and subsequently passed to the next BN at time step t_2 (BN_2). This
233 process continues, with the DBN being updated at each subsequent time step t_x .

234 The BN's ability to update prior estimates using data evidence distinguishes it from approaches
235 such as fault-tree analysis, where node states are sampled using Monte Carlo Simulation (MCS)
236 [61], and hence allows for extending the applicability of the risk assessment framework from pre-
237 hazard mitigation and preparedness toward post-disaster emergency response. The first step to
238 constructing the BN is to estimate the failure probabilities via fragility analysis. These represent
239 the marginal probabilities of the upstream physical nodes. Then, logical dependency rules between
240 nodes are established using conditional probability tables. Thus, the consideration of power flow
241 is based on the connectivity of EPN nodes, given the direct link between system failure and
242 physical damage to EPN components. For example, in Figure 2, the performance state of upstream
243 nodes like PS_1 depends solely on the state of the physical node of the same element FS_1 . On the
244 other hand, the performance state of intermediate nodes like PT_1 depends on both the state of the
245 physical node FT_1 and that of the upstream performance node PS_1 . Once the BN is constructed,
246 forward propagation can be used to calculate the probability of power outage for every
247 performance node in the network. Then, the BN can be updated in real-time using data by
248 extending the BN toward a DBN [45]. This data can be obtained via various data sensing methods
249 (discussed in Section 1). The algorithm for building the EPN BN and then updating the DBN with
250 data evidence is summarized in Table 1. Details on performing forward propagation for the BN
251 and updating the conditional distributions can be found in Darwiche [62].

252

253

254

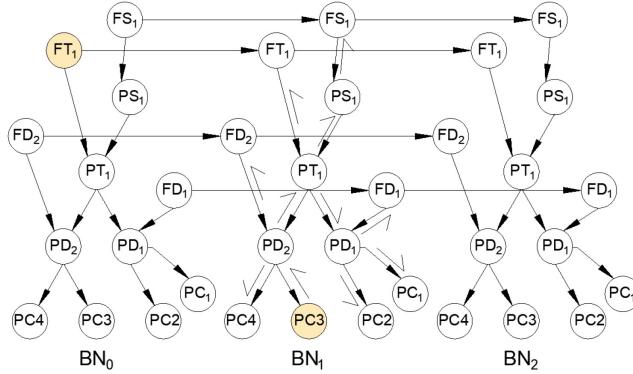


Figure 2: Sample EPN DBN

Table 1: Algorithm for building the BN and updating the DBN

Algorithm for building the BN and updating the DBN:

1. Input: Probabilities of physical damage to EPN elements from hazard and fragility analysis, Connectivity data of the EPN elements, data evidence $[d_1, d_2, \dots, d_T]$ obtained at times $[t_1, t_2, \dots, t_T]$
2. Construct the BN nodes and edges using connectivity data and build the conditional distribution tables based on logical dependencies
3. Populate the prior estimates of the upper (physical) nodes using probabilities obtained from hazard and fragility analysis
4. Perform forward propagation to calculate the outage probabilities of performance nodes conditional on physical nodes and upstream performance nodes. This will generate the prior BN_0 at time t_0
5. Define Function $DBN(BN_i, d_i)$:
6. Update all physical and performance nodes probabilities conditional on d_i to generate BN_{i+1}
7. Return the posterior BN_{i+1}
8. $BN = BN_0$
9. for d in $[d_1, d_2, \dots, d_T]$:
10. $BN = DBN(BN, d)$

255

256

3.2.2. RN analysis

257 The RN can be modeled using a non-directed weighted graph network, where segments of the
 258 graph represent the edges connecting the nodes, while the time of travel between two adjacent
 259 nodes, which can be calculated as the length of the segment divided by the average travel speed,
 260 is the weight of the edge within the graph. Ertugay *et al.* [63] suggested reducing the estimated
 261 travel speed in proportion to the probability of road closure, and hence, the travel time (weight of
 262 the edge within the graph) in this paper is divided by $(1 - P_{f-r})$ to consider the effect of road
 263 closure following hurricanes, where P_{f-r} is the probability of failure of the road segment estimated
 264 using the fragility functions. Moreover, as long as the road segment is flooded, the travel time is
 265 assumed to be infinity. Hence, the travel time through any road segment, which represents the
 266 weight of the segment's graph edge, depends on its probability of failure P_{f-r} and the flood

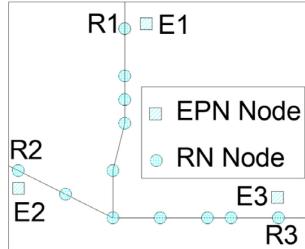
267 duration. This allows for estimating the minimum travel time between any two nodes within the
268 RN [64]. Therefore, based on these assumptions and by constructing the graph network, the
269 minimum travel time can be calculated for various states of flooding and damage to the RN
270 segments. Then, real-time data obtained about the actual states of the segments and travel times
271 can be used to update the physics-based estimates.

272 It is important to acknowledge that, in this framework, the initial physics-based estimates of the
273 RN post-disaster conditions only consider the damage and flooding states. Therefore, the RN
274 model focuses mainly on connectivity and accessibility to estimate the repair unit's ability to reach
275 failed elements. On the other hand, the effect of the traffic flow is not considered. Up to date, most
276 post-hazard RN proposed models use pre-hazard traffic demand (e.g., [65]; [66]). Therefore, the
277 high computational cost of these models won't necessarily enhance the accuracy of the
278 estimations. Recently, some studies have been proposing methods to estimate the traffic demand
279 resulting from the evacuation process (e.g., [67]). Such models can be further enhanced if coupled
280 with agent-based modeling (e.g., [68]; [69]; [70]). Hence, a more comprehensive RN analysis that
281 considers both the topology and the traffic flow could be incorporated within the proposed DT
282 framework in future studies.

283 *3.2.3. Interdependencies between the EPN and RN*

284 The interdependencies between the EPN and RN are considered by connecting each node within
285 the EPN to its closest RN node. Consequently, when an EPN repair crew unit completes repairs in
286 one element and needs to move to another, the travel time between these two is modeled based on
287 the distance between the nearest pair of RN nodes. This is explained using Figure 3, where the
288 travel time between EPN nodes E1 and E2 will be calculated using the travel time between RN
289 nodes R1 and R2, while the travel time between E1 and E3 will be calculated using R1 and R3.

290 However, it is important to note that this paper does not account for other interdependencies, such
291 as the impact of damaged utility poles on the RN or the consequences of traffic signal outages and
292 it is acknowledged as a potential limitation.



293

Figure 3: Interdependencies between the EPN and RN nodes

295 ***3.3. Restoration modeling and repair prioritization***

296 To maximize the efficiency of the restoration process, the repair and restoration of the EPN
297 elements during post-disaster outages follow a hierarchical process. This is consistent with the
298 principles outlined in the literature and industry practices for power restoration in utility networks,
299 where the priority sequence starts with repairing damaged substations and transmission towers and
300 then distribution lines serving essential facilities. After that, repairing the remaining utility poles
301 is based on restoring power to the largest number of customers as fast as possible ([71]; [72]; [73];
302 [74]).

303 During post-hurricane scenarios, the assessment of utility poles becomes challenging due to their
304 large numbers within the EPN compared to substations and transmission towers, making it harder
305 to evaluate their significance and monitor their conditions with limited information available.
306 Ouyang and Dueñas-Osorio [72] proposed a formula to estimate the repair worth (RW) for
307 distribution lines in the EPN as the ratio of the number of customers served by the line to the repair
308 time required. However, this formula doesn't consider the uncertainties in the physical and
309 performance states of the lines, and hence requires a near-complete knowledge of each line's

310 condition, which is rarely attainable in post-hurricane scenarios. Moreover, it doesn't allow for
 311 giving different weights to customers based on their importance for community resilience and
 312 recovery. It also does not incorporate factors such as travel time to reach the line or the accessibility
 313 of the road segments, which are important considerations in prioritizing repair efforts and
 314 optimizing the restoration process in post-disaster scenarios. Therefore, in this paper, a modified
 315 RW formula is proposed, building upon the formula proposed by Ouyang and Dueñas-Osorio [72]
 316 per equation (6), where RW_j is the RW of distribution line j , n is the total number of customers in
 317 the system, and T_j is the total time for repair of line j , including both the repair time and the travel
 318 time. Moreover, q_i is the probability of power restoration of customer i before the repair, and q_{ij}'
 319 is the probability of power restoration of the same customer if line j is repaired. q_i and q_{ij}' can be
 320 calculated using the BN via the forward propagation variable elimination algorithm [45].
 321 Therefore, q_i represents the marginal probability of restoration, while q_{ij}' represents the
 322 conditional probability of restoration conditioned on updating the physical node of element j to be
 323 repaired. Finally, w_i is the weight assigned to the customer i based on its importance for
 324 community resilience.

$$325 \quad RW_j = \frac{(\sum_n q_{ij}' w_i - \sum_n q_i w_i)}{(T_j \sum_n q_i w_i)} \quad (6)$$

326 While a single forward propagation run of the BN is computationally efficient as demonstrated
 327 by Braik and Koliou [45], equation (6) requires running the algorithm to compare hundreds of
 328 elements, and hence, it can become computationally expensive. Therefore, it is important to utilize
 329 conditional independence within the BN [62] to prune the network and hence reduce its complexity
 330 without affecting the mathematical accuracy of the results. This can be explained using Figure 2,
 331 where repairing distribution line 2 (updating the state of FD_2 to “repaired”) only affects the state

332 of customers PC_3 and PC_4 , while the states of the remaining customers are conditionally
 333 independent of FD_2 . Hence, when applying equation (6) to FD_2 , the BN can be pruned to include
 334 only $FD_2 \rightarrow PD_2 \rightarrow (PC_3, PC_4)$, while q_{ij}' for the other customers will be equal to q_i . As the
 335 computational cost of the BN is proportional to its size [75], this will considerably reduce the run
 336 time while resulting in equivalent mathematical results.

337 Therefore, once substations and transmission towers are checked and repaired, a weight of 1.0 is
 338 given to the essential facilities (such as fire stations, police stations, hospitals, and major water
 339 structures including water pumps and elevated tanks) and zero to the remaining customers. Then,
 340 the lines feeding the essential facilities are prioritized for check and repair based on equation (6).
 341 This can be utilized to further reduce the computational costs, as in this stage, only lines serving
 342 customers with non-zero weights need to be compared, while the remaining lines and the
 343 customers they feed can be pruned from the BN, as their computed RW using equation (6) will be
 344 zero. Table 2 summarizes the algorithm for pruning the BN and prioritizing element for repair
 345 using equation (6).

346 Table 2: Algorithm for BN pruning and prioritizing EPN elements for repair

Algorithm for BN pruning and selecting the EPN node with the maximum RW:

1. Input: n : number of customers, w_i : weight of customer i for all i in $[1:n]$, e : number of upstream non-repaired EPN nodes, T_j : total time of repair of line j for all j in $[1:e]$, BN: The full constructed BN
2. Define Function Prioritize_Element_for_Repair_Based_on_RW_{max}(n , list of w_i , e , list of T_j , BN):
3. Calculate the outage probabilities q_i for all i in $[1:n]$ using the full BN
4. for j in $1:e$:
 5. Prune the BN to BN', which includes only customers C' (with size $h \leq n$) downstream of the EPN node j
 6. if $(w_k = 0 \text{ for all } k \text{ in } [1:h]) \text{ or } (T_j = \infty)$:
 7. $RW_j = 0$
 8. else:
 9. Update the probabilities of the pruned BN' conditional on repairing the EPN node of j
 10. for i in $1:n$:
 11. if customer i is in C' :
 12. calculate the outage probability q'_i using the pruned BN'
 13. else:
 14. $q'_i = q_i$
 15. calculate RW_j using Equation (6)
 16. Return the EPN node corresponding to the maximum RW value

348 Once all essential facilities are restored, the remaining customers are given weights according to
349 their importance per stakeholder priorities, and the lines feeding them are checked and repaired in
350 order based on equation (6). The assignment of weights to customers is a crucial task that falls
351 upon decision-makers, and therefore, simulation analysis using techniques like DES is employed
352 in this paper to estimate the impact of different weights that can assist decision-makers in
353 understanding their effects. A formal definition and details of applying the DES to model the
354 restoration of the EPN are provided in Section 4 below. While some decision-makers may
355 prioritize residential customers, considering the significant role of prompt power restoration in
356 individuals and families' recovery, it is important to recognize that neglecting business and
357 industrial customers can have detrimental effects on them ([76]; [77]; [78]), resulting in long-term
358 consequences on the overall recovery and resilience of the community.

359 ***3.4. DT for disaster management***

360 The electric power restoration framework proposed in this study allows for combining and
361 leveraging the advantages of both physics-based and data-driven modeling approaches. The
362 physics-based damage analysis and network modeling allow for a highly detailed model capable
363 of making predictions before the hazard occurrence. This enables decision-makers to test various
364 restoration scenarios to help in preplanning and preparedness and provides a basis to immediately
365 guide post-disaster investigation and repair. Then, the proposed framework allows for real-time
366 updating of the initial physics-based estimations with data. By utilizing a DBN, receiving data on
367 the state (physical or performance) of any element within the network can be used to update the
368 prior belief of the entire network while remaining within the true physical nature of the system.
369 Hence, the restoration process can be monitored and updated in real-time, reflecting changing
370 conditions and facilitating adaptive decision-making. Thus, the framework in this paper is

371 proposed as a DT, with the digital model being continuously updated using real-time data sensing
372 and can influence the real system through adaptive decision-making.

373 The proposed DT possesses a range of capabilities, starting with supervision based on the
374 visualizations and models it generates. It also performs simulations and makes predictions utilizing
375 DES . Additionally, it incorporates the intelligence of the DT by updating the DBN and learning
376 from collected data. Furthermore, it is capable of controlling the real system through adaptive
377 decision-making and directing the restoration processes. However, it is essential to acknowledge
378 that in disaster management, achieving a fully autonomous DT is unlikely in the near future. Some
379 level of human involvement will still be necessary to apply and implement the decisions made by
380 the DT. For instance, repair crews would be responsible for executing repair decisions suggested
381 by the DT.

382 **4. Application study using discrete event simulation**

383 To showcase the practicality of the proposed framework, an illustrative application study
384 utilizing DES is conducted.

385 **4.1. *Galveston testbed***

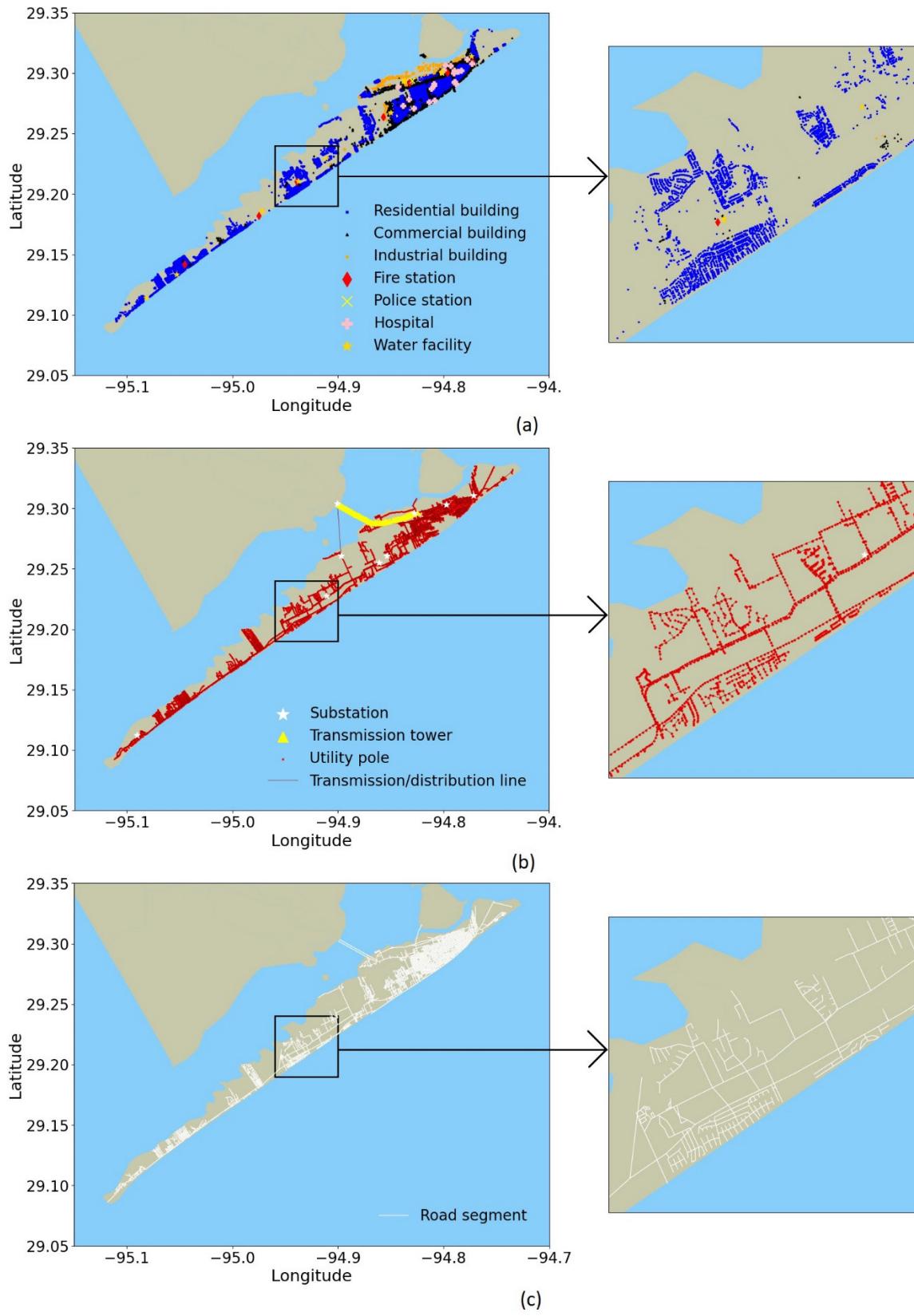
386 In this application study, the Galveston Island testbed in conjunction with the Hurricane Ike
387 model is utilized. A comprehensive dataset compiled from various sources, including Darestani
388 and Padgett [79], SPDCPB [80], Incore [57], and GalvestonGIS [81], provides the location, type,
389 properties, and connectivity of EPN components such as poles, towers, and substations.
390 Additionally, it provides details regarding the location and type of electricity receiving customers,
391 as well as the spatial distribution and connectivity of road segments and intersections within the
392 RN. This compiled dataset is used to build a high-fidelity model of the EPN and RN, as

393 summarized in Table 3. The EPN elements, RN elements, buildings, and essential facilities of
 394 Galveston are shown in Figure 4. To reduce the size of the BN as recommended by Braik and
 395 Koliou [45], the poles are aggregated into 2,718 distribution lines, while the transmission towers
 396 are aggregated into 1 transmission line. Moreover, the residential, commercial, and industrial
 397 buildings are clustered into 2,102, 1,108, and 248 building clusters, respectively where the
 398 buildings in each are assumed to share a common electricity feeder. Furthermore, this dataset
 399 includes the results of Hurricane Ike simulations needed for fragility analysis, providing spatial
 400 variations of wind speed and direction, wave speed, direction, and height, highest flood depth, and
 401 flood duration across the island.

402 Table 3: Summary of EPN, RN, customer, and essential facilities quantities

Component	Utility pole	Transmission tower	Substation	Residential building	Commercial building	Industrial building
Count	13,207	52	9	24,756	2,681	357
Component	Fire station	Police station	Hospital	Water facility	Road segment	
Count	7	1	21	22	5,035	

403 Hence, by using the infrastructure data and the hazard analysis, fragility analysis is performed
 404 for both the EPN and RN, which concludes step 1 of the methodology through disaster impact
 405 assessment. Further discussion on the results of the fragility analysis is presented in Section 4.3.
 406 Subsequently, utilizing the connectivity data, network analysis is performed in accordance with
 407 step 2 of the methodology, facilitating the establishment of interdependencies between the EPN
 408 and RN. The progression to step 3 of the methodology, restoration modeling and repair
 409 prioritization, is demonstrated through the application of DES. The physics-based predictions
 410 derived from hazard and fragility analysis serve as the prior estimates and initial conditions of the
 411 DES. Subsequently, stochastic simulation is employed to model the entire restoration process. The
 412 assumptions of the DES are explained in Section 4.2, while the results are elaborated upon in
 413 Sections 4.3 and 4.4.



414

415 Figure 4: Graphic view of Galveston Island's: (a) Building and essential facilities map (b) EPN map (c) RN map

416 4.2. *Discrete event simulation assumptions*

417 DES is a computational method that models the behavior of complex systems as a discrete
418 sequence of events [82]. In this study, the events triggering a change in the state of the system are
419 the occurrence of hazards, leading to damages, outages, and flooding, as well as the subsequent
420 repair and drainage of the EPN and RN elements. The repair activities are conducted by repair
421 crew units, while the drainage is assumed to naturally occur following the estimations of the hazard
422 analysis. It is assumed that a fixed number of repair crew units is available for both the EPN and
423 RN and that these units possess equivalent capacities, with each capable of handling one task at a
424 time. Furthermore, the crew members within the unit will operate in shifts to ensure continuous
425 work throughout the simulation.

426 Assumptions of the repair times of the EPN and RN elements are based on average times
427 obtained from the literature. An average repair time t_{avg} of 72 hours is assumed for a single
428 substation or transmission tower, while the repair of a damaged utility pole takes an average of 5
429 hours [24]. Therefore, a line consisting of m poles or towers each having a predicted probability
430 of failure q_i will have an expected number of failed elements of $m' = \sum_{i=1}^m q_i$. Hence, the expected
431 repair time will be m' times the average time of repair of a single element within the line. On the
432 other hand, the average time to repair a 1-km length road segment is assumed to be 1 day, if the
433 probability of damage to the road segment is less than 0.2, 7 days if it is more than 0.8, and 2 days
434 for all other cases [83]. However, it should be noted that the reliance on deterministic average
435 repair times might result in underestimating the uncertainties in the restoration process.

436 While the method proposed in this paper allows for updating the estimations based on various
437 types of evidence data as demonstrated by Braik and Koliou [45], it is assumed in the DES that
438 the only source of evidence is the feedback of repair crews. Therefore, once a repair crew reaches

439 the selected line, the state of its elements is stochastically sampled based on their probabilities of
440 failure to give either failed or not failed, and the simulated time of repair is the number of damaged
441 elements times the average time of repair of a single element. Therefore, if a line contains m poles
442 or towers, the simulated number of damaged elements m'' is stochastically sampled following m
443 independent non-identical Bernoulli (INB) trials [84], where the probability for each trial is equal
444 to the probability of failure of the element estimated through the fragility analysis. Even if no
445 element is failed, it is assumed that the minimum checking time t_{check} is 0.5 hours for distribution
446 lines and 5 hours for substations and transmission lines. Therefore, $t_{repair-j}$, the time of repair of
447 a line j , is sampled using equation (7), where t_{check} , t_{avg} , and m'' are the minimum checking time,
448 average repair time, and simulated number of damaged elements, respectively, as defined above,
449 and q_1, q_2, \dots, q_m are the failure probabilities of poles or towers within the line j .

450
$$t_{repair-j} = \max(t_{check}, m''.t_{avg}), \text{Where } m'' \sim INB(q_1, q_2, \dots, q_m) \quad (7)$$

451 The EPN units are assumed to start working 4 hours after the hurricane [85], while the RN units
452 are assumed to start working only after all roads are drained. Both EPN and RN units start from
453 the road node in the mainland before the Galveston bridge. An average travel speed of 25 mph
454 (11.2 m/s) is assumed through an undamaged and drained road segment. This speed is reduced
455 based on the probability of failure of the road as elaborated in Section 3.2.2. This reduction in
456 travel speed is capped at a minimum of 2.5 mph (1.12 m/s), ensuring that even in the presence of
457 substantial damage, travel remains possible but significantly slowed. In the case of flooded
458 roadways, repair units are expected to face impassable conditions, except for access to substations,
459 where it is expected that given the high value and significance of the substations, access will be
460 made possible even in the event of flooding.

461 The repair prioritization follows the criteria discussed earlier, with substations and transmission
462 lines taking precedence for repair. Subsequently, distribution lines are prioritized based on their
463 RW, where Equation (6) is used to assign each EPN crew unit an element to repair. Since any
464 downstream line cannot operate unless all its upstream lines are repaired, the upstream lines are
465 compared for prioritization at each step. Initially, priority is given to restoring essential facilities,
466 indicated by assigning them a weight of one, while assigning a weight of zero to the rest of the
467 customers. Subsequently, attention shifts to the remaining customers, who are then assigned non-
468 zero weights. The road segment with the highest probability of damage is given the highest repair
469 priority.

470 ***4.3. Supervisory and control DT***

471 In Figure 5, a dynamic dashboard is presented, tracking the progress of electric power
472 restoration. In this application study, equal importance is assigned to the restoration of residential,
473 commercial, and industrial buildings. Additionally, allocation has been made for 8 repair units for
474 the EPN and 5 units for the RN. Figure 5 (a) displays the initial state of the EPN immediately after
475 the hurricane's impact. As no data has yet been collected, the estimates are primarily based on the
476 prior physics-based analysis and show a significant failure of EPN components, resulting in a
477 nearly complete power outage across the island. Furthermore, most RN segments are flooded, with
478 damage concentrated near the shoreline.

479 Figure 5 (b) portrays the intermediate state of the EPN on the sixth day following the hazard
480 occurrence. At this stage, the restoration of essential facilities and a substantial portion of the
481 remaining customers has been achieved. Additionally, the RN has been drained, and repairs are
482 being undertaken for damaged segments. Notably, significant recovery has been experienced in
483 the upper half of the island, while the other half still faces a widespread outage. This underscores

484 the importance of visualizing spatial variations, allowing for the identification of overlooked areas.

485 Finally, in Figure 5 (c), the fully repaired and restored state of the EPN on day 16 is shown.

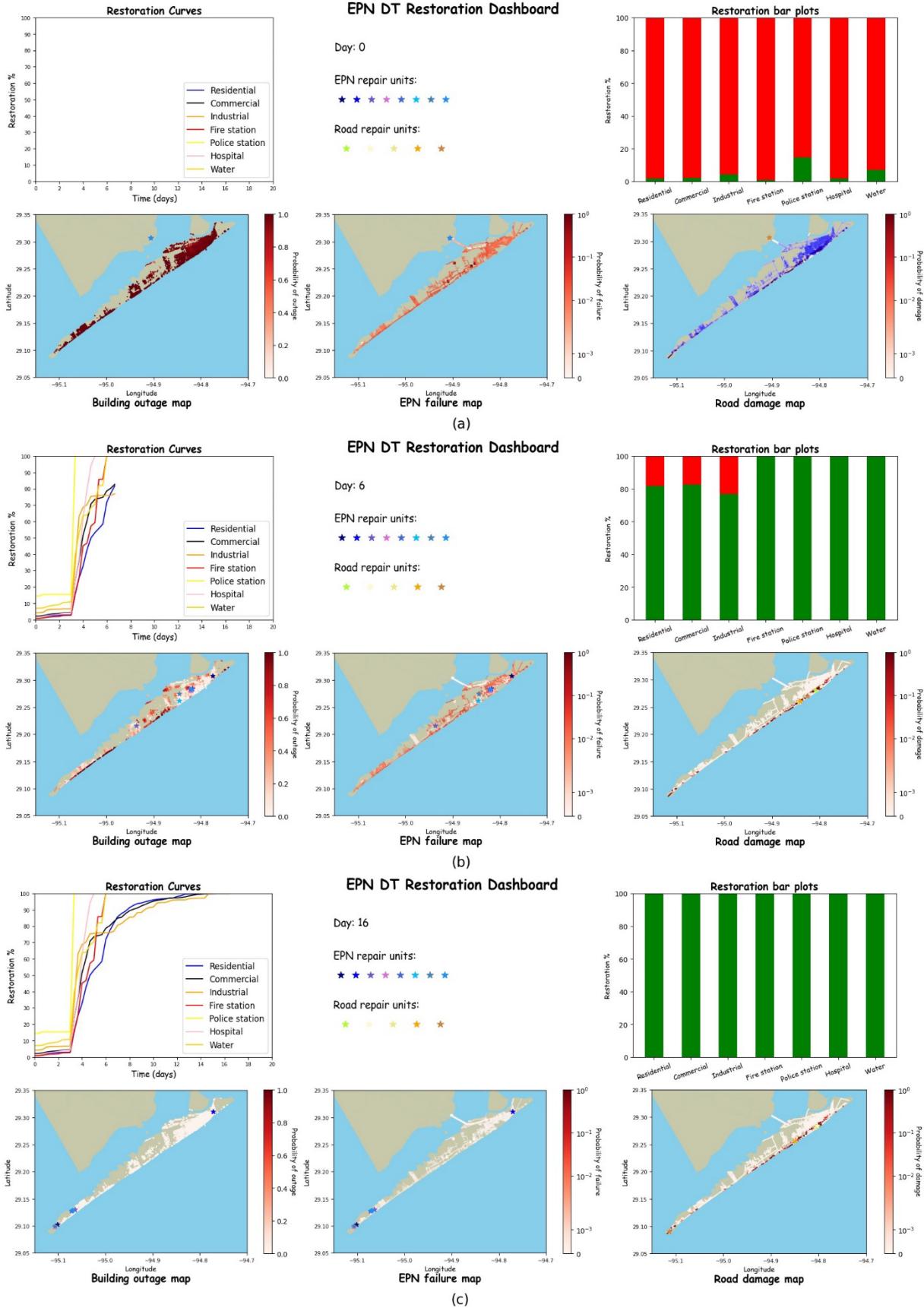
486 As discussed in Section 3.4, the proposed DT exhibits a versatile range of capabilities, from
487 supervision to intelligent decision-making. The DT provides dynamic and detailed visualizations
488 that allow decision-makers to assess the damage and performance of the EPN components and
489 their effect on customers, in addition to the state of the RN segments and their effect on the
490 mobility of repair units. It extends its capabilities further through simulation and prediction, as
491 demonstrated by the DES application study and the resulting estimates. One of its standout features
492 is its intelligent capability, achieved through the BN updates. By collecting data on specific nodes
493 within the EPN, the entire network can be updated. Therefore, predictions for other nodes that
494 share upstream connections with the nodes we have monitored can be enhanced. This adaptive
495 learning ensures the DT's ability to provide more accurate predictions following real-time data
496 sensing. Moreover, by prioritizing elements for repair through the RW calculations, the DT can be
497 used in adaptive decision-making and to direct and control the restoration process. Furthermore, it
498 allows decision-makers to intervene at any point in time and redirect the restoration strategies and
499 the distribution of resources. Hence, the proposed DT possesses the full capabilities of a
500 supervisory and control DT.

501 **4.4. Case studies**

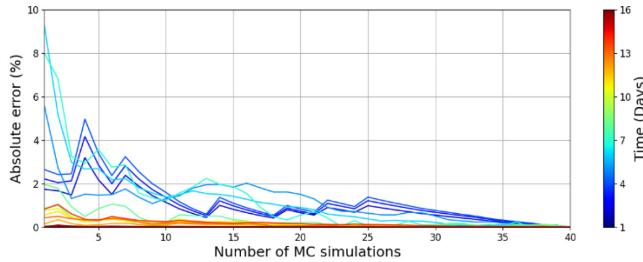
502 In this section, an analysis of different case studies is conducted, with a focus on the modification
503 of prioritization strategies, the adjustment of weights, and the reallocation of resources. These are
504 compared to the benchmark case presented in Section 4.3.

505 4.4.1. *Sensitivity analysis*

506 To enable a comparison between the results of stochastic simulations, MCS is utilized.
507 Therefore, the convergence of the cumulative mean of the samples is examined, and it is
508 subsequently used to compare different cases. Figure 6 shows the convergence of the cumulative
509 mean of the restoration percentage for the benchmark case for days 1 to 16 after the occurrence of
510 the hazard. Similar checks were performed in other cases and for various types of customers and
511 essential facilities. Convergence for all cases was achieved after 40 runs, hence, the restoration
512 plots of the mean of the 40 runs are used.



514 Figure 5: DT dashboard for: (a) Day 0 (immediately after the hurricane), (b) Day 6, and (c) Day 16 (end of EPN
 515 repair and restoration)



516

517 Figure 6: Convergence of the MCS cumulative mean for the benchmark case

518 4.4.2. *Comparison studies*

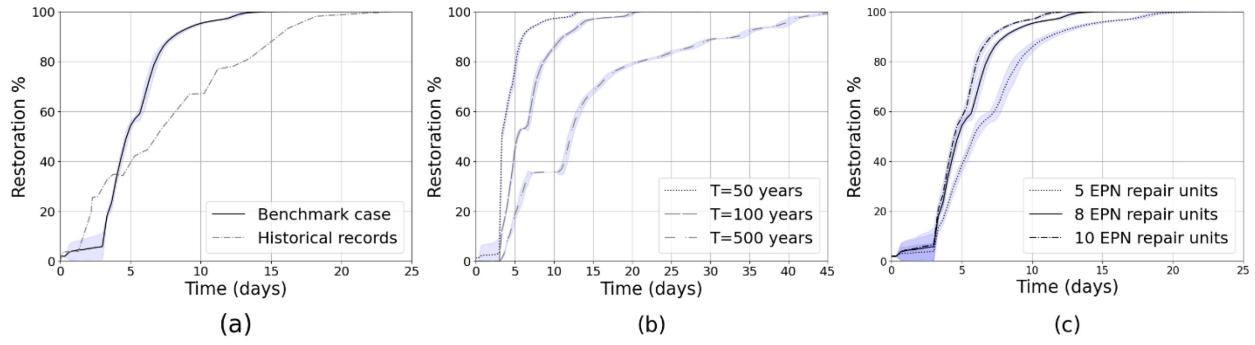
519 In Figure 7 (a), a comparison is made between the restoration of the benchmark case described
 520 above and the actual restoration of Galveston Island following Hurricane Ike, as retrieved from
 521 historical records [29]. The almost linear shape of the actual restoration plot, when compared to
 522 the S-shaped curve of the simulation plot, suggests that a more efficient restoration could have
 523 been attained if a more informed prioritization of elements for repair had been followed, as
 524 proposed in this paper. Figure 7 (b) compares the restoration curves of synthetic hurricanes based
 525 on Hurricane Ike of various return periods; $T=50$, 100 , and 500 years. The return period events
 526 were determined by water level exceedance probabilities at Stewart Beach, near the eastern end of
 527 Galveston Island [56]. The results of the hurricane models were obtained from [57, 86]. The time
 528 to restoration of the 500-year return period hurricane is significantly larger than the other
 529 hurricanes, which shows the considerable effect of the hazard intensity on the restoration process.
 530 Figure 7 (c) shows the impact of resource allocation on the restoration process. As anticipated, an
 531 increase in the number of repair crew units results in an acceleration of the restoration rate. This
 532 graphical representation serves as a tool for evaluating the incremental advantages of adding
 533 resources. The transition from 5 to 8 repair units yields significantly more benefit compared to
 534 increasing the numbers from 8 to 10 units.

535 Figure 8 displays the restoration plots for residential, commercial, and industrial customers for
536 different prioritization strategies. In Figure 8 (a), the benchmark case is shown where equal
537 weights are assigned to all customers, resulting in similar restoration plots with small variations
538 influenced by spatial distributions. In contrast, Figure 8 (b) reveals the restoration plots when
539 prioritization is centered around residential customers. In this scenario, the residential restoration
540 plot is shifted slightly to the right, with a more noticeable effect on the delay of restoration for
541 commercial and industrial plots. Then, in Figure 8 (c), the restoration plots are shown when
542 prioritization factors are determined by the expected monetary loss per hour of outage, following
543 the ratios of 1:325:1200 for residential, commercial, and industrial customers, respectively [87].
544 Therefore, in this case, business recovery takes precedence, and rapid restoration is observed for
545 industrial and commercial buildings compared to the benchmark case, while the restoration of
546 residential buildings is slightly delayed.

547 Figure 9 demonstrates the impact of prioritizing essential facilities for restoration. Figure 9 (a)
548 shows that when not given priority, the restoration of water facilities takes nearly three times the
549 duration. Similarly, in Figure 9 (b), a significant delay in hospital power restoration is seen when
550 considered as regular customers.

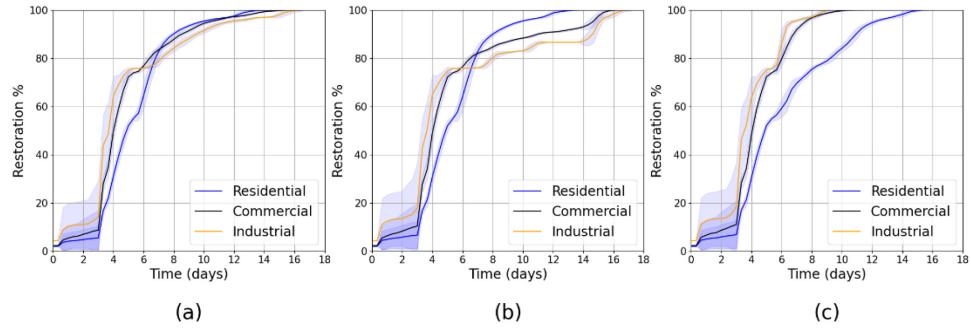
551 These figures include confidence bands showing one standard deviation above and below the
552 average MCS restoration plots. It is noted that the variability becomes more pronounced when
553 focusing on the restoration of a smaller subset of customers, such as industrial facilities, compared
554 to the total restoration, since the aggregated effect tends to reduce variability in larger systems.
555 This highlights the importance of considering spatial and categorical variability. However, some
556 assumptions made, such as the deterministic hazard model and the use of average repair times,

557 contribute to underestimating the total uncertainty. This motivates a more comprehensive
 558 uncertainty quantification in future studies.



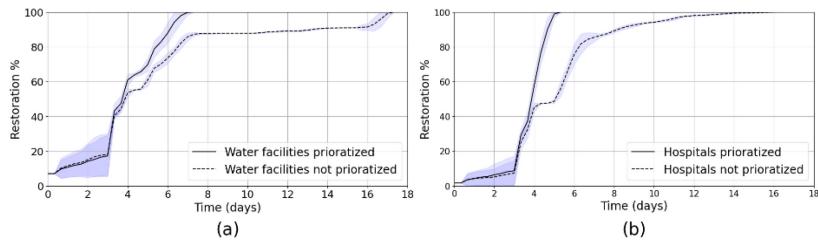
559

560 Figure 7: Comparison studies of: (a) the benchmark case restoration against the actual restoration obtained from
 561 historical records (b) the restoration plots of various hurricane return periods (c) the effect of allocated resources



562

563 Figure 8: Restoration plots for residential, commercial, and industrial buildings for: (a) equal weights (benchmark
 564 case) (b) residential buildings given priority (c) business facilities given priority



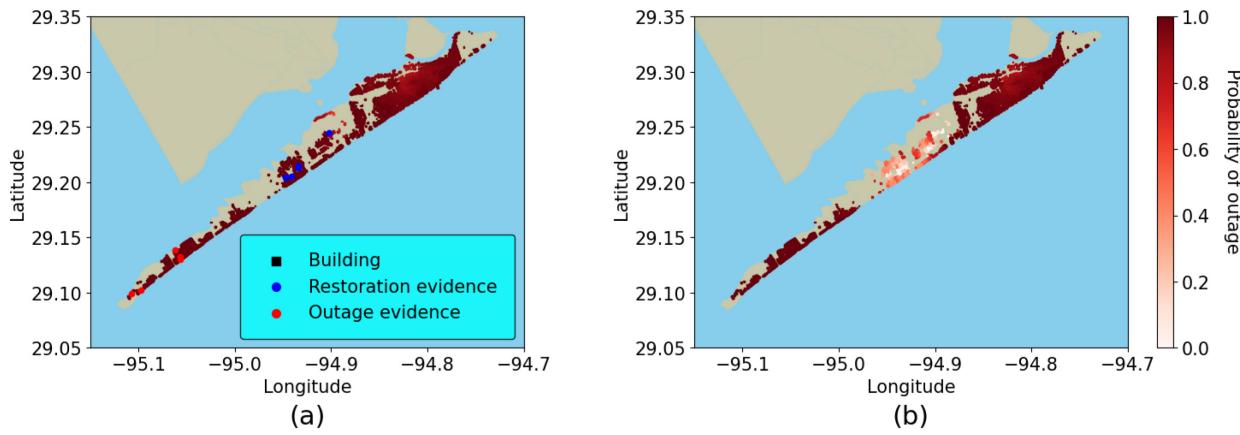
565

566 Figure 9: Effect of prioritizing: (a) water facilities (b) hospitals

567 4.4.3. *Updating prior estimations with data evidence via backward propagation*

568 To demonstrate the capability of the DT in updating prior estimates using belief propagation, a
 569 case study is considered in which the outage and restoration state of 10 customers have been
 570 observed. When data evidence about the outage or restoration status of any customer is obtained,
 571 it can be used to update the prior outage probabilities for the entire island. This method influences

572 the estimations for customers connected to the same upstream line as those for whom data has
 573 been received, even if there is no direct data available for them. As shown in Figure 10 (a), 5
 574 customers in the middle of the island were observed to have power restored, while another 5
 575 customers in the lower part of the island experienced power outages at the same time. The updated
 576 outage map, displayed in Figure 10 (b), shows a significant portion of the island having power
 577 restored using only these 10 data points. It is noteworthy that the upper right portion of the island
 578 was not significantly updated using the observed data. This is because the observed restored
 579 customers receive electricity directly from the mainland substation via an underground electricity
 580 cable, as illustrated in Figure 4.



581
 582 Figure 10: DT outage map for (a) prior estimations (b) posterior estimations using observed data
 583

5. Conclusions and future work

584 This paper has introduced a novel framework for post-hurricane electric power restoration,
 585 leveraging the concept of the DT. As demonstrated in this study, the DT provides dynamic
 586 visualizations that offer a holistic evaluation of the EPN performance, while also assessing the
 587 condition of the RN and its influence on the mobility of repair units. By employing a DBN that
 588 integrates physics-based and data-driven models, the framework expands its capabilities from
 589 offline to online learning, enabling real-time updates to continuously enhance the accuracy of the

590 estimations. These capabilities are further extended through simulation and prediction, as
591 showcased by the DES application study. Additionally, the ability to guide and prioritize repair
592 and restoration efforts allows for adaptive decision-making, extending the framework toward a
593 supervisory and control DT.

594 Despite the promising results, the proposed framework still has limitations in its current form.
595 The case studies rely on scenarios of single hazards rather than comprehensive hazard analysis.
596 Moreover, several assumptions regarding restoration times are treated as deterministic average
597 values rather than probabilistic random variables, potentially underestimating the uncertainty in
598 the results. Additionally, the RN is modeled as a graph network and does not incorporate traffic
599 and flow analysis, nor does it account for debris that might disrupt traffic. Finally, the cascading
600 effect of power outages on the RN is not considered. The water network is only considered by
601 including main water facilities, such as water pumps, instead of modeling a comprehensive water
602 network.

603 Future research can focus on the RN by conducting comprehensive traffic and flow analyses that
604 account for evacuation, return, the impact of debris, and other important factors that might affect
605 the mobility of repair units. Furthermore, there is a need for a more comprehensive hazard analysis
606 considering the stochastic nature of hurricane loads. Additionally, there exists potential for in-
607 depth analysis of the restoration of the water network and its impact on community functionality
608 and resilience. Future research can also explore the synergy between the disaster management DT
609 of the EPN and the normal operation DT. By integrating these two, where power flow is based on
610 connectivity during disasters and on DC flow analysis during normal operations, researchers can
611 combine the concepts of smart and resilient infrastructure systems.

612 Moreover, the proposed framework can be utilized to analyze restoration efforts focusing on
613 socially vulnerable communities. The simulation analysis offered can further evolve through the
614 application of agent-based modeling, taking into consideration various social systems in
615 conjunction with critical infrastructure systems, ultimately developing a full community DT. Since
616 the proposed DT framework utilizes data to update prior estimates, future research could focus on
617 innovative data collection and analysis approaches to enhance the efficiency of the restoration
618 process. Therefore, this paper establishes the groundwork for a paradigm shift in disaster recovery
619 strategies through more efficient, adaptable, and data-informed methods that enhance post-
620 hurricane electric power restoration, ultimately contributing to more resilient communities.

621 **Relevance to resilience**

622 This paper presents a framework for post-hurricane electric power restoration using a DT
623 approach, focusing on the restoration of the EPN and RN. By prioritizing repairs and optimizing
624 resource allocation, the framework enhances infrastructure resilience, ensuring efficient
625 restoration of essential services crucial for maintaining community functionality and well-being
626 after a disaster. Through adaptive decision-making and data-driven methodologies, the framework
627 contributes to building more resilient communities and enabling real-time updates based on
628 accurate information. Overall, the study underscores the importance of leveraging DT technology
629 to enhance post-disaster recovery efforts, ultimately contributing to community resilience.

630 **Declaration of competing interests**

631 The authors declare that they have no known competing financial interests or personal
632 relationships that could have appeared to influence the work reported in this paper.

633 **Acknowledgments**

634 Financial support for this work was provided by the US National Science Foundation (NSF)
635 under Award Number 2052930. This financial support is gratefully acknowledged. Any opinions,
636 findings, conclusions, and recommendations presented in this paper are those of the authors and
637 do not necessarily reflect the views of NSF.

638 **References**

639 [1] Koliou M, van de Lindt JW, McAllister TP, Ellingwood BR, Dillard M, Cutler H. State of
640 the research in community resilience: Progress and challenges. Sustainable and resilient
641 infrastructure. 2020;5:131-51.

642 [2] Ford DN, Wolf CM. Smart cities with digital twin systems for disaster management. Journal
643 of management in engineering. 2020;36:04020027.

644 [3] Moore HE, Bates FL, Layman MV, Parenton VJ. BEFORE THE WIND. A STUDY OF THE
645 RESPONSE TO HURRICANE CARLA. NATIONAL ACADEMY OF SCIENCES-NATIONAL
646 RESEARCH COUNCIL WASHINGTON DC; 1963.

647 [4] Arab A, Khodaei A, Han Z, Khator SK. Proactive recovery of electric power assets for
648 resiliency enhancement. Ieee Access. 2015;3:99-109.

649 [5] Helbing D, Ammoser H, Kühnert C. Disasters as extreme events and the importance of
650 network interactions for disaster response management. Extreme events in nature and society.
651 2006;319-48.

652 [6] Miller LM, Antonio RJ, Bonanno A. Hazards of neoliberalism: Delayed electric power
653 restoration after Hurricane Ike 1. The British journal of sociology. 2011;62:504-22.

654 [7] Castillo A. Risk analysis and management in power outage and restoration: A literature
655 survey. Electric Power Systems Research. 2014;107:9-15.

656 [8] Shafieezadeh A, Onywuchi UP, Begovic MM, DesRoches R. Age-dependent fragility
657 models of utility wood poles in power distribution networks against extreme wind hazards. IEEE
658 Transactions on Power Delivery. 2013;29:131-9.

659 [9] Boggess J, Becker G, Mitchell M. Storm & flood hardening of electrical substations. 2014
660 IEEE PES T&D Conference and Exposition: IEEE; 2014. p. 1-5.

661 [10] Salman AM, Li Y, Stewart MG. Evaluating system reliability and targeted hardening
662 strategies of power distribution systems subjected to hurricanes. Reliability Engineering & System
663 Safety. 2015;144:319-33.

664 [11] Yuan H, Zhang W, Zhu J, Bagtzoglou AC. Resilience assessment of overhead power
665 distribution systems under strong winds for hardening prioritization. ASCE-ASME Journal of Risk
666 and Uncertainty in Engineering Systems, Part A: Civil Engineering. 2018;4:04018037.

667 [12] Braik AM, Salman AM, Li Y. Risk-based reliability and cost analysis of utility poles
668 subjected to tornado hazard. *Journal of Aerospace Engineering*. 2019;32:04019040.

669 [13] Braik AM, Salman AM, Li Y. Reliability-based assessment and cost analysis of power
670 distribution systems at risk of Tornado hazard. *ASCE-ASME Journal of Risk and Uncertainty in*
671 *Engineering Systems, Part A: Civil Engineering*. 2020;6:04020014.

672 [14] Darestani YM, Juddi AB, Shafieezadeh A. Hurricane Fragility Assessment of Power
673 Transmission Towers for a New Set of Performance-Based Limit States. *Engineering for*
674 *Extremes: Decision-Making in an Uncertain World*: Springer; 2021. p. 167-88.

675 [15] Li Y, Salman AM, Braik A, Bjarnadóttir S, Salarieh B. Risk-Based Management of Electric
676 Power Distribution Systems Subjected to Hurricane and Tornado Hazards. *Engineering for*
677 *Extremes: Decision-Making in an Uncertain World*: Springer; 2021. p. 143-66.

678 [16] Ma L, Khazaali M, Bocchini P. Component-based fragility analysis of transmission towers
679 subjected to hurricane wind load. *Engineering Structures*. 2021;242:112586.

680 [17] Daeli A, Mohagheghi S. Power Grid Infrastructural Resilience against Extreme Events.
681 *Energies*. 2022;16:64.

682 [18] Du X, Hajjar J. Hurricane fragility analysis of electrical transmission towers. *Electrical*
683 *Transmission and Substation Structures 2022: Innovating for Critical Global Infrastructure*:
684 *American Society of Civil Engineers Reston, VA*; 2022. p. 348-57.

685 [19] Lu Q, Zhang W. Integrating dynamic Bayesian network and physics-based modeling for
686 risk analysis of a time-dependent power distribution system during hurricanes. *Reliability*
687 *Engineering & System Safety*. 2022;220:108290.

688 [20] Reilly AC, Davidson RA, Nozick LK, Chen T, Guikema SD. Using data envelopment
689 analysis to evaluate the performance of post-hurricane electric power restoration activities.
690 *Reliability Engineering & System Safety*. 2016;152:197-204.

691 [21] Mitsova D, Esnard A-M, Sapat A, Lai BS. Socioeconomic vulnerability and electric power
692 restoration timelines in Florida: the case of Hurricane Irma. *Natural Hazards*. 2018;94:689-709.

693 [22] Ulak MB, Kocatepe A, Konila Sriram LM, Ozguven EE, Arghandeh R. Assessment of the
694 hurricane-induced power outages from a demographic, socioeconomic, and transportation
695 perspective. *Natural hazards*. 2018;92:1489-508.

696 [23] Beck AL, Cha EJ. Probabilistic disaster social impact assessment of infrastructure system
697 nodes. *Structure and Infrastructure Engineering*. 2022;1-12.

698 [24] Mensah AF, Dueñas-Osorio L. Efficient resilience assessment framework for electric power
699 systems affected by hurricane events. *Journal of Structural Engineering*. 2016;142:C4015013.

700 [25] He X, Cha EJ. Modeling the damage and recovery of interdependent critical infrastructure
701 systems from natural hazards. *Reliability engineering & System safety*. 2018;177:162-75.

702 [26] Johansen C, Tien I. Probabilistic multi-scale modeling of interdependencies between critical
703 infrastructure systems for resilience. *Sustainable and Resilient Infrastructure*. 2018;3:1-15.

704 [27] Khomami MS, Sepasian MS. Pre-hurricane optimal placement model of repair teams to
705 improve distribution network resilience. *Electric Power Systems Research*. 2018;165:1-8.

706 [28] Applegate CJ, Tien I. Framework for probabilistic vulnerability analysis of interdependent
707 infrastructure systems. *Journal of Computing in Civil Engineering*. 2019;33:04018058.

708 [29] He X, Cha EJ. DIN II: incorporation of multi-level interdependencies and uncertainties for
709 infrastructure system recovery modeling. *Structure and Infrastructure Engineering*. 2021;17:1566-
710 81.

711 [30] Opabola EA, Galasso C. A Probabilistic Framework for Post-Disaster Recovery Modeling
712 of Buildings and Electric Power Networks in Developing Countries. *Reliability Engineering &*
713 *System Safety*. 2023;109679.

714 [31] Han SR, Guikema SD, Quiring SM. Improving the predictive accuracy of hurricane power
715 outage forecasts using generalized additive models. *Risk Analysis: An International Journal*.
716 2009;29:1443-53.

717 [32] Guikema SD, Nateghi R, Quiring SM, Staid A, Reilly AC, Gao M. Predicting hurricane
718 power outages to support storm response planning. *Ieee Access*. 2014;2:1364-73.

719 [33] Nateghi R, Guikema S, Quiring SM. Power outage estimation for tropical cyclones:
720 Improved accuracy with simpler models. *Risk analysis*. 2014;34:1069-78.

721 [34] Dehghanian P, Zhang B, Dokic T, Kezunovic M. Predictive risk analytics for weather-
722 resilient operation of electric power systems. *IEEE Transactions on Sustainable Energy*.
723 2018;10:3-15.

724 [35] Kabir E, Guikema SD, Quiring SM. Predicting thunderstorm-induced power outages to
725 support utility restoration. *IEEE Transactions on Power Systems*. 2019;34:4370-81.

726 [36] Ham Y, Kim J. Participatory sensing and digital twin city: Updating virtual city models for
727 enhanced risk-informed decision-making. *Journal of Management in Engineering*.
728 2020;36:04020005.

729 [37] Fan C, Zhang C, Yahja A, Mostafavi A. Disaster City Digital Twin: A vision for integrating
730 artificial and human intelligence for disaster management. *International Journal of Information
731 Management*. 2021;56:102049.

732 [38] Alibrandi U. Risk-informed digital twin of buildings and infrastructures for sustainable and
733 resilient urban communities. *ASCE-ASME Journal of Risk and Uncertainty in Engineering
734 Systems, Part A: Civil Engineering*. 2022;8:04022032.

735 [39] Deng T, Zhang K, Shen Z-JM. A systematic review of a digital twin city: A new pattern of
736 urban governance toward smart cities. *Journal of Management Science and Engineering*.
737 2021;6:125-34.

738 [40] Qi Q, Tao F, Hu T, Anwer N, Liu A, Wei Y et al. Enabling technologies and tools for digital
739 twin. *Journal of Manufacturing Systems*. 2021;58:3-21.

740 [41] Zhou M, Yan J, Feng D. Digital twin framework and its application to power grid online
741 analysis. *CSEE Journal of Power and Energy Systems*. 2019;5:391-8.

742 [42] Saad A, Faddel S, Mohammed O. IoT-based digital twin for energy cyber-physical systems:
743 design and implementation. *Energies*. 2020;13:4762.

744 [43] Darbali-Zamora R, Johnson J, Summers A, Jones CB, Hansen C, Showalter C. State
745 estimation-based distributed energy resource optimization for distribution voltage regulation in
746 telemetry-sparse environments using a real-time digital twin. *Energies*. 2021;14:774.

747 [44] Mountzis D, Angelopoulos J, Panopoulos N. Development of a PSS for smart grid energy
748 distribution optimization based on digital twin. *Procedia CIRP*. 2022;107:1138-43.

749 [45] Braik AM, Koliou M. A novel digital twin framework of electric power infrastructure
750 systems subjected to hurricanes. *International Journal of Disaster Risk Reduction*. 2023;104020.

751 [46] De Albuquerque JP, Herfort B, Brenning A, Zipf A. A geographic approach for combining
752 social media and authoritative data towards identifying useful information for disaster
753 management. *International journal of geographical information science*. 2015;29:667-89.

754 [47] Chen Y, Han D. Water quality monitoring in smart city: A pilot project. *Automation in
755 Construction*. 2018;89:307-16.

756 [48] Ragini JR, Anand PR, Bhaskar V. Big data analytics for disaster response and recovery
757 through sentiment analysis. *International Journal of Information Management*. 2018;42:13-24.

758 [49] Fan C, Jiang Y, Mostafavi A. Social sensing in disaster city digital twin: Integrated textual–
759 visual–geo framework for situational awareness during built environment disruptions. *Journal of
760 Management in Engineering*. 2020;36:04020002.

761 [50] Azad S, Ghandehari M. A study on the association of socioeconomic and physical cofactors
762 contributing to power restoration after hurricane Maria. *IEEE Access*. 2021;9:98654-64.

763 [51] Wang H, Fang Y-P, Zio E. Resilience-oriented optimal post-disruption reconfiguration for
764 coupled traffic-power systems. *Reliability Engineering & System Safety*. 2022;222:108408.

765 [52] Shuai H, Li F, She B, Wang X, Zhao J. Post-storm repair crew dispatch for distribution grid
766 restoration using stochastic Monte Carlo tree search and deep neural networks. *International
767 Journal of Electrical Power & Energy Systems*. 2023;144:108477.

768 [53] Kritzinger W, Karner M, Traar G, Henjes J, Sihn W. Digital Twin in manufacturing: A
769 categorical literature review and classification. Ifac-PapersOnline. 2018;51:1016-22.

770 [54] Wagg D, Worden K, Barthorpe R, Gardner P. Digital twins: state-of-the-art and future
771 directions for modeling and simulation in engineering dynamics applications. ASCE-ASME J Risk
772 and Uncert in Engrg Sys Part B Mech Engrg. 2020;6.

773 [55] Wang Y, Mao X, Jiang W. Long-term hazard analysis of destructive storm surges using the
774 ADCIRC-SWAN model: A case study of Bohai Sea, China. International journal of applied earth
775 observation and geoinformation. 2018;73:52-62.

776 [56] Darestani YM, Webb B, Padgett JE, Pennison G, Fereshtehnejad E. Fragility analysis of
777 coastal roadways and performance assessment of coastal transportation systems subjected to storm
778 hazards. Journal of Performance of Constructed Facilities. 2021;35:04021088.

779 [57] Incore. Galveston Testbed. 2023.

780 [58] Darestani Y, Padgett J, Shafieezadeh A. Parametrized Wind–Surge–Wave Fragility
781 Functions for Wood Utility Poles. Journal of Structural Engineering. 2022;148:04022057.

782 [59] Sánchez-Muñoz D, Domínguez-García JL, Martínez-Gomariz E, Russo B, Stevens J, Pardo
783 M. Electrical grid risk assessment against flooding in Barcelona and Bristol cities. Sustainability.
784 2020;12:1527.

785 [60] Brown RE. Electric power distribution reliability: CRC press; 2017.

786 [61] Khakzad N, Khan F, Amyotte P. Safety analysis in process facilities: Comparison of fault
787 tree and Bayesian network approaches. Reliability Engineering & System Safety. 2011;96:925-32.

788 [62] Darwiche A. Modeling and reasoning with Bayesian networks: Cambridge university press;
789 2009.

790 [63] Ertugay K, Argyroudis S, Düzgün HŞ. Accessibility modeling in earthquake case
791 considering road closure probabilities: A case study of health and shelter service accessibility in
792 Thessaloniki, Greece. International journal of disaster risk reduction. 2016;17:49-66.

793 [64] Wilson RJ. Introduction to Graph Theory uPDF eBook: Pearson Higher Ed; 2015.

794 [65] Zou Q, Chen S. Enhancing resilience of interdependent traffic-electric power system.
795 Reliability Engineering & System Safety. 2019;191:106557.

796 [66] Zou Q, Chen S. Resilience modeling of interdependent traffic-electric power system subject
797 to hurricanes. Journal of Infrastructure Systems. 2020;26:04019034.

798 [67] Feng K, Lin N. Modeling and analyzing the traffic flow during evacuation in Hurricane
799 Irma (2017). Transportation research part D: transport and environment. 2022;110:103412.

800 [68] Aghababaei M, Koliou M. An agent-based modeling approach for community resilience
801 assessment accounting for system interdependencies: Application on education system.
802 Engineering Structures. 2022;255:113889.

803 [69] Aghababaei M, Koliou M. Community resilience assessment via agent-based modeling
804 approach. Computer-Aided Civil and Infrastructure Engineering. 2023;38:920-39.

805 [70] Han X, Koliou M. Investigation of effects of hazard geometry and mitigation strategies on
806 community resilience under tornado hazards using an Agent-based modeling approach. Resilient
807 Cities and Structures. 2024;3:1-19.

808 [71] CenterPointEnergy. How we restore power after storms. 2013.

809 [72] Ouyang M, Dueñas-Osorio L. Multi-dimensional hurricane resilience assessment of electric
810 power systems. Structural Safety. 2014;48:15-24.

811 [73] CarolinaCountry. How power is restored after a storm. 2016.

812 [74] EEI E. Restoring Power After a Storm: A Step-by-Step Process. 2023.

813 [75] Murphy K. The bayes net toolbox for matlab. Computing science and statistics.
814 2001;33:1024-34.

815 [76] Rose A, Benavides J, Chang SE, Szczesniak P, Lim D. The regional economic impact of an
816 earthquake: Direct and indirect effects of electricity lifeline disruptions. Journal of Regional
817 Science. 1997;37:437-58.

818 [77] Sydnor S, Niehm L, Lee Y, Marshall M, Schrank H. Analysis of post-disaster damage and
819 disruptive impacts on the operating status of small businesses after Hurricane Katrina. Natural
820 Hazards. 2017;85:1637-63.

821 [78] Liu H, Tatano H, Samaddar S. Analysis of post-disaster business recovery: Differences in
822 industrial sectors and impacts of production inputs. International Journal of Disaster Risk
823 Reduction. 2023;87:103577.

824 [79] Darestani Y, Padgett J. Galveston Island (TX) Electric Power Network Data. 2022.

825 [80] SPDCPB. Spatial Data Collection and Products Branch. TIGER/Line Shapefile, 2021,
826 County, Galveston County, TX, All Roads. 2022.

827 [81] GalvestonGIS. City of Galveston's GIS Data Download Site. 2023.

828 [82] Robinson S. Simulation: the practice of model development and use: Bloomsbury
829 Publishing; 2014.

830 [83] Fan X, Zhang X, Wang X, Yu X. A deep reinforcement learning model for resilient road
831 network recovery under earthquake or flooding hazards. Journal of Infrastructure Preservation and
832 Resilience. 2023;4:8.

833 [84] Wang YH. On the number of successes in independent trials. *Statistica Sinica*. 1993;295-
834 312.

835 [85] Ouyang M, Dueñas-Osorio L, Min X. A three-stage resilience analysis framework for urban
836 infrastructure systems. *Structural Safety*. 2012;36:23-31.

837 [86] Incore. Hurricane Ike's hindcast data. 2023b.

838 [87] LaCommare KH, Eto JH. Cost of power interruptions to electricity consumers in the United
839 States (US). *Energy*. 2006;31:1845-55.

840