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Abstract

The community's resilience in the face of natural hazards relies heavily on the rapid and efficient
restoration of electric power networks, which plays a critical role in emergency response,
economic recovery, and the functionality of essential lifeline and social infrastructure systems.
Leveraging the recent data revolution, the digital twin (DT) concept emerges as a promising tool
to enhance the effectiveness of post-disaster recovery efforts. This paper introduces a novel
framework for post-hurricane electric power restoration using a hybrid DT approach that combines
physics-based and data-driven models by utilizing a dynamic Bayesian network. By capturing the
complexities of power system dynamics and incorporating the road network's influence, the
framework offers a comprehensive methodology to guide real-time power restoration efforts in
post-disaster scenarios. A discrete event simulation is conducted to demonstrate the proposed
framework's efficacy. The study showcases how the electric power restoration DT can be
monitored and updated in real-time, reflecting changing conditions and facilitating adaptive
decision-making. Furthermore, it demonstrates the framework's flexibility to allow decision-
makers to prioritize essential, residential, and business facilities and compare different restoration

plans and their potential effect on the community.

Keywords: Community resilience, digital twin, disaster recovery strategies, electric power
restoration, hurricanes, road network.

Abbreviations: Al: artificial intelligence; BN: Bayesian network; DBN: dynamic Bayesian
network; DES: discrete event simulation; DT: digital twin; EPN: electric power network; IoT:
internet of things; RN: road network; RW: repair worth.

1. Introduction

1.1. Motivation and problem statement
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Post-hazard recovery has gained significant attention in recent years, highlighting the critical
role of community resilience in effective disaster management, as it contributes to reducing losses,
expediting recovery, and mitigating social and economic disruptions [1]. One key aspect of
community resilience is the fast and efficient restoration of electric power, which holds immense
importance for emergency response, economic recovery, and the proper functioning of essential
lifeline and social infrastructure systems [2]. While the interest in community response to
hurricanes dates back at least half a century [3], and despite the extensive research dedicated to
enhancing the resilience of the community in general and the electric power network (EPN) in
particular, the restoration and recovery of the EPN after hurricanes still face significant challenges
[4]. This is mainly due to the size and complexity of the EPN, coupled with its vulnerability to
natural hazards, and is further exacerbated by the deregulated nature of the profit-oriented
electricity market, which provides a minimal incentive for investing in community resilience

through preparedness and preplanning ([5]; [6]).

The main objective of post-disaster EPN recovery is to restore electricity to the maximum
number of customers as fast as possible, considering their significance in maintaining community
resilience [7]. Over the past decade, the reliability, hardening, and risk assessment of the EPN in
the face of strong-wind hazards have been extensively studied (e.g., [8]; [9]; [10]; [11]; [12]; [13];
[14]; [15]; [16]; [17]; [18]; [19]). Moreover, many studies analyzed the post-hurricane
performance and recovery of the EPN and its spatial and socio-economic distribution (e.g., [20];
[21]; [22]; [23]). Other studies proposed various methods to perform predictions and model the
response and restoration of the EPN in the face of hurricanes. These methods can broadly be
classified into two categories: (i) physics-based approaches, where hazard and fragility analysis

are coupled with network analysis (e.g., [24]; [25]; [26]; [27]; [28]; [29]; [30]) , and (i1) data-driven
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approaches, which involve utilizing statistical models and machine learning (e.g., [31]; [32]; [33];

[34]; [35D).

Physics-based methods play a crucial role in pre-hazard mitigation and preparedness, where
sophisticated hazard and structural damage models are developed using numerical and finite
element techniques. These methods offer strengths such as a solid physical foundation,
interpretability, scenario testing capabilities, and the ability to model probabilistic and uncertainty
factors. However, their static probabilistic outputs may be limited in post-disaster scenarios due to
significant epistemic and aleatory uncertainties inherent in natural hazards and their interactions
with structures. Furthermore, these methods often lack the capability to update prior estimates
during the restoration process. On the other hand, data-driven methods rely on post-disaster reports
and surveys, offering advantages in adaptability, efficiency, and handling complexities. However,
they encounter challenges during immediate emergency response phases due to the time required
for data collection and analysis. Moreover, the large volume of data needed is often unavailable
shortly after the disaster. Therefore, an integrated framework that combines the strengths of both
physics-based and data-driven methods is essential to extend the applicability of the risk
assessment framework to post-disaster emergency response. This integration can facilitate

adaptive decision-making and guide the restoration process effectively.

Amid the data revolution and the enormous advancements in artificial intelligence (Al) and the
Internet of Things (IoT), data-driven methods have advanced significantly, motivating researchers
to expand their use to collect and analyze real-time data to generate insights into current events
during and after the hazard occurrence. Therefore, the capabilities of the models can extend
beyond offline (pre-disaster) predictions toward online (post-disaster) learning. This can be

achieved through a digital twin (DT), which provides a virtual model integrated with the real
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system through real-time data transfer. Hence, researchers have recently proposed visions to
integrate DT in disaster management (e.g., [2]; [36]; [37]; [38]). When applied at the community
level, the DT has the potential to enhance disaster management and significantly improve its
resilience. By utilizing high-fidelity models and dynamic simulations that are updated in real-time,
decision-makers can make informed choices based on the actual conditions and take proactive

measures to mitigate the impact of disasters.

A DT is considered as an essential step toward smart cities [39]. A smart city DT relies on
physical and other types of sensors driven by the enormous advancements in the [oT and the fifth
generation of wireless systems [40]. Therefore, various studies have proposed DT frameworks for
the management and operation of the EPN (e.g., [41]; [42] [43]; [44]). These methods combine
the technologies of cyber-physical systems, smart grids, and the [oT to provide continuous real-
time data that is used to update the initial state estimates of the network. However, these methods
rely on the availability of large amounts of data and hence are suited for scenarios with limited
disruptions and the availability of almost complete information. Consequently, their direct
applicability in disaster management, where extensive damage is widespread across multiple
lifelines and social infrastructure systems including the physical sensors, and immediate

knowledge is often limited, may be constrained.

Therefore, a fundamental difference exists between a DT in normal conditions and the aftermath
of hazards. Integrating the concept of the DT at the community level and in the face of natural
hazards still faces significant challenges [45]. Since physical sensors are susceptible to damage,
and the traditional data gathering methods such as customer calls and site investigations are slow
and inefficient, virtual data sensing using smart technologies such as image recognition and social

sensing is an alternative method that is getting traction lately ([2]; [37]). While data-driven
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methods are essential parts of any DT as they provide the connection between the actual system
and its digital replica, they require a large amount of data that is usually not readily available after
the disaster. They also lack the generalization and interpretability of physics-based methods.
Hence, the DT must also incorporate physics-based methods [38]. Still, most proposed DT
frameworks for disaster management have mainly focused on data sensing in smart cities using
social sensors (e.g., [46]; [47]; [48]; [49]; [36]). Another challenge is that the DT requires a model
that is both highly detailed and computationally efficient. These are often two conflicting goals,

and the DT must balance between them.

Recently, Braik and Koliou [45] proposed a framework for a DT of the EPN subjected to
hurricanes. In their framework, a Bayesian network (BN) is utilized to generate a highly detailed
network model that captures the dependencies between the various elements of the EPN. The
Bayesian Network (BN) is initially constructed as a physics-based model, based on hazard and
fragility analysis. It is then extended to a Dynamic Bayesian Network (DBN) over the time domain
to facilitate updating with data evidence. This approach allows for the incorporation of new
information as it becomes available, enhancing the model's accuracy and reliability in real-time
scenarios. The proposed DBN is a hybrid physics-based and data-driven model that is both highly
detailed and computationally efficient, and therefore, extends the capabilities of predictive models
from offline learning to online learning where estimates are updated using real-time data. Still,

applying the DT in post-disaster recovery to guide the EPN restoration remains largely unexplored.

The road network (RN) plays a significant role in post-disaster power restoration [50] and must
be considered in the DT. The coupling of the EPN and RN was considered in a few previous EPN
restoration studies mainly through methods such as optimization (e.g., [S1]) and reinforcement

learning (e.g., [52]). However, these methods are better suited for normal operation scenarios
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where large amounts of data are available. On the other hand, the physics-based methods following

the risk-assesment framework rarely consider the interdependency between the EPN and the RN.

Hence, a significant gap is highlighted in previous studies, as there is a lack of a DT framework
to guide the post-disaster restoration and repair process. Addressing this gap, this paper proposes
a DT framework for EPN restoration. The DT enables adaptive decision-making, considering
interdependencies between the EPN and RN. It utilizes detailed network analysis and physics-
based estimates for pre-hazard preparedness, extending to post-disaster recovery by updating
estimates with real-time data via DBN. The framework automates repair prioritization, accounting
for uncertainties, repair times, and essential facility importance, allowing for efficient restoration

and resilient recovery.

1.2. Background on digital twins and their capabilities

The DT is a dynamic and interactive digital replica of a physical system, providing continuous
bidirectional synchronization of real-time data. Depending on the depth of integration between the
physical and digital twins, three primary modeling levels can be identified: digital model, digital
shadow, and DT. A digital model serves as a static snapshot of the real system at a specific
moment, lacking any further data transfer. In contrast, the digital shadow involves unidirectional
data flow, transmitting information from the real system to its digital counterpart. At the highest
level of integration, we find the DT, where continuous data transfer occurs in both directions. The
digital replica remains continuously updated through real-time data received from the physical
system, enabling it to offer feedback and simulate scenarios to support adaptive decision-making.

Ultimately, the DT can fully control the physical system [53].

DTs can be classified based on their capabilities. The supervision and operational DT represents

the lowest level, providing basic visualization and monitoring features. The simulation and
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prediction DT surpasses this level by optimizing system performance and making predictions
using algorithms and optimization techniques. Moving up, the intelligent DT incorporates machine
learning techniques to learn from data in addition to the previous capabilities. Finally, the
supervisory and control DT expands on all previous capabilities and encompasses decision-
making. In its simplest form, human involvement is required to implement the decisions, while in

its most advanced form, a fully autonomous DT is capable of making and executing decisions [54].

2. Scope

This paper proposes a DT framework for post-disaster restoration of the EPN, considering its
interdependency with the RN. The scope encompasses the entirety of the DT's development
process, integrating physics-based and data-driven modeling to enhance the efficiency of disaster
recovery strategies. First, disaster impact assessment is addressed, incorporating data, hazard, and
fragility analysis of the elements of the EPN and the RN. Then, network analysis is discussed,
where the EPN is modeled utilizing the BN framework proposed by Braik and Koliou [45], while
the RN is represented through an undirected graph network. A significant aspect of the restoration
process is establishing a repair hierarchy sequence, where elements are prioritized based on their
contribution to community resilience. Subsequently, the restoration process is analyzed,
considering the interdependencies between the EPN and RN. To demonstrate the applicability and
efficacy of the framework, the paper concludes with a discrete event simulation (DES) of the
restoration of Galveston Island’s EPN following Hurricane Ike, showcasing its practical

application in guiding resilient post-disaster recovery.

3. Methodology
Figure 1 shows a flowchart of the proposed framework. Then, the methodology’s details are

discussed in the following sections.
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Figure 1: Flowchart showing key steps of the proposed DT framework of electric power restoration.

3.1. Disaster impact assessment

3.1.1. Data analysis

To effectively build the power restoration DT, detailed data from both the EPN and RN is
required. This dataset encompasses comprehensive information about the various components
within the EPN, such as substations, transmission towers, utility poles, and customers, as well as
the road segments and intersections within the RN. This includes details regarding the connectivity
of these elements, geographical coordinates (longitude and latitude), and essential properties
necessary for fragility analysis, such as the height, diameter, age, and elevation. Then, the EPN
can be modeled as a directed BN graph, while the RN can be modeled as an undirected network

graph as explained in section 3.2.

3.1.2. Hazard analysis
To perform accurate fragility analysis within the DT framework, a detailed hurricane model is
needed with multiple simulations performed for various hurricane return periods to capture the
stochastic nature of the hazard ([55]; [56]). In this paper, the Advanced Circulation (ADCIRC)
and Simulating Waves Nearshore (SWAN) hurricane models generated by Darestani et al. [56]
and obtained from Incore [57] are used to provide detailed wind, wave, and surge maximum loads

for all locations within the system. However, for simplicity, a single hazard model is used per case
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study, representing either the historical Hurricane Ike or synthetic hurricanes of various return
periods. Hence, the hazard loads are modeled as deterministic, while the uncertainty in the damage
analysis employed within the DES stems from the fragility functions, as discussed in the next
section. Future research could focus on comprehensive hurricane probabilistic analysis to enhance

the prior load estimates.

3.1.3. Fragility analysis

A fragility function is a mathematical model that quantifies the probability that a system or
component will reach or exceed a specified damage state given a certain level of demand. Given
hazard intensity measures, fragility functions can be used to calculate the conditional failure
probabilities of various EPN and RN elements. In this paper, the fragility functions obtained from
Darestani et al. [58]; Darestani et al. [14]; Sanchez-Mufioz et al. [59]; and Darestani et al. [56] are
utilized to calculate the probabilities of failure of wood utility poles, transmission towers,
substations, and RN segments respectively, as shown in Equations 1-4, where o(y) is the standard
logistic function. V};, is the wind speed (m/s), 6y, is the wind direction (radians), Vi is the water
velocity (m/s), Hs is the surge height (m), Hy, is the significant wave height (m), H,, is the pole
height (m), tp is the pole age (years), A, is the conductor's effective area (m?), F is the flood
height (m), Dy is the distance from shore (m), and I is the flood duration (hours). The coefficients
(ag:as, ag: as3,v0:v1, Po: B2) can be obtained from existing literature adopted in this study (see

references above).

Pfailure—pole = (1

+ eXp (_(ao + a1VW + az(Hp - HS - Hw) + a3VFHS + a4VW Sln(gw)

-1
+ asVyAc + agmax(tp, 25) + a7HW))) (1)
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Pfailure—tower =1-[1-o0(ag + a;Vy sin(By))][1 — a(a; + a3V cos(By))]  (2)
Pfailure—substation = ‘D((ln(F) - VO)/)/l) (3)

Pfailure—road = (1 + eXp(ﬁO + ,Blln(Ds) + ﬁzln(IF)))_l (4)

The EPN incorporates isolator elements, positioned upstream of each line, to enable isolation in
response to disruptions [60]. This has been utilized by previous studies to aggregate EPN elements
into lines (e.g., [10]; [13]). Therefore, this allows aggregating elements within a line into nodes in
the BN proposed herein. For a line of m poles or towers, each having a probability of failure g;,
the line’s probability of failure P; can be calculated using Equation 5 [45].

P, =1-IIZ,(1 = q) (5)

3.2.  Network analysis

3.2.1. EPN analysis

The DBN DT framework proposed by Braik and Koliou [45] is adopted in this study. The EPN
network is modeled using a BN, where each element is assigned two nodes: a physical node
representing the physical state of the element (failed or not failed) obtained from the fragility
analysis, and a performance node representing the operational state of the element (outage or
restored). Figure 2 shows a sample DBN, where F and P stand for physical and performance nodes
respectively, while S, T, D, and C stand for substation, transmission line, distribution line, and
customers. When evidence is received about the physical state (failure or survival) of transmission
tower T, the probabilities of downstream nodes at time t, (BNo) are updated. The updated physical
node probabilities are then passed to the Bayesian Network at the next time step t; (BNi).

Similarly, if evidence is received regarding the performance state of customer C3, the probabilities

10
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of the entire BN1 are updated and subsequently passed to the next BN at time step t, (BN2). This
process continues, with the DBN being updated at each subsequent time step t,.

The BN’s ability to update prior estimates using data evidence distinguishes it from approaches
such as fault-tree analysis, where node states are sampled using Monte Carlo Simulation (MCS)
[61], and hence allows for extending the applicability of the risk assessment framework from pre-
hazard mitigation and preparedness toward post-disaster emergency response. The first step to
constructing the BN is to estimate the failure probabilities via fragility analysis. These represent
the marginal probabilities of the upstream physical nodes. Then, logical dependency rules between
nodes are established using conditional probability tables. Thus, the consideration of power flow
is based on the connectivity of EPN nodes, given the direct link between system failure and
physical damage to EPN components. For example, in Figure 2, the performance state of upstream
nodes like PS; depends solely on the state of the physical node of the same element FS;. On the
other hand, the performance state of intermediate nodes like PT; depends on both the state of the
physical node FT; and that of the upstream performance node PS;. Once the BN is constructed,
forward propagation can be used to calculate the probability of power outage for every
performance node in the network. Then, the BN can be updated in real-time using data by
extending the BN toward a DBN [45]. This data can be obtained via various data sensing methods
(discussed in Section 1). The algorithm for building the EPN BN and then updating the DBN with
data evidence is summarized in Table 1. Details on performing forward propagation for the BN

and updating the conditional distributions can be found in Darwiche [62].

11
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253 Figure 2: Sample EPN DBN
254 Table 1: Algorithm for building the BN and updating the DBN
Algorithm for building the BN and updating the DBN:
1. Input: Probabilities of physical damage to EPN elements from hazard and fragility analysis, Connectivity data of the EPN
elements, data evidence [d;, d,, ..., d;] obtained at times [t,, t,, ... t{]
2. Construct the BN nodes and edges using connectivity data and build the conditional distribution tables based on logical
dependencies
3. Populate the prior estimates of the upper (physical) nodes using probabilities obtained from hazard and fragility analysis
4. Perform forward propagation to calculate the outage probabilities of performance nodes conditional on physical nodes
and upstream performance nodes. This will generate the prior BN, at time t,
7. Define Function DBN(BN;, d;):
8. Update all physical and performance nodes probabilities conditional on d; to generate BN,
9. Return the posterior BN,
10. BN=BN,
11. fordin[d;, d,, ..., ds]:
12. BN=DBN(BN, d)
255
256 3.2.2. RN analysis
257 The RN can be modeled using a non-directed weighted graph network, where segments of the

258  graph represent the edges connecting the nodes, while the time of travel between two adjacent
259  nodes, which can be calculated as the length of the segment divided by the average travel speed,
260 is the weight of the edge within the graph. Ertugay et al. [63] suggested reducing the estimated
261  travel speed in proportion to the probability of road closure, and hence, the travel time (weight of
262  the edge within the graph) in this paper is divided by (1 — P¢_,) to consider the effect of road
263  closure following hurricanes, where Pr_, is the probability of failure of the road segment estimated
264  using the fragility functions. Moreover, as long as the road segment is flooded, the travel time is
265 assumed to be infinity. Hence, the travel time through any road segment, which represents the

266  weight of the segment’s graph edge, depends on its probability of failure Pr_, and the flood
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duration. This allows for estimating the minimum travel time between any two nodes within the
RN [64]. Therefore, based on these assumptions and by constructing the graph network, the
minimum travel time can be calculated for various states of flooding and damage to the RN
segments. Then, real-time data obtained about the actual states of the segments and travel times

can be used to update the physics-based estimates.

It is important to acknowledge that, in this framework, the initial physics-based estimates of the
RN post-disaster conditions only consider the damage and flooding states. Therefore, the RN
model focuses mainly on connectivity and accessibility to estimate the repair unit’s ability to reach
failed elements. On the other hand, the effect of the traffic flow is not considered. Up to date, most
post-hazard RN proposed models use pre-hazard traffic demand (e.g., [65]; [66]). Therefore, the
high computational cost of these models won’t necessarily enhance the accuracy of the
estimations. Recently, some studies have been proposing methods to estimate the traffic demand
resulting from the evacuation process (e.g., [67]). Such models can be further enhanced if coupled
with agent-based modeling (e.g., [68]; [69]; [70]). Hence, a more comprehensive RN analysis that
considers both the topology and the traffic flow could be incorporated within the proposed DT

framework in future studies.

3.2.3. Interdependencies between the EPN and RN
The interdependencies between the EPN and RN are considered by connecting each node within
the EPN to its closest RN node. Consequently, when an EPN repair crew unit completes repairs in
one element and needs to move to another, the travel time between these two is modeled based on
the distance between the nearest pair of RN nodes. This is explained using Figure 3, where the
travel time between EPN nodes E1 and E2 will be calculated using the travel time between RN

nodes R1 and R2, while the travel time between E1 and E3 will be calculated using R1 and R3.

13
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However, it is important to note that this paper does not account for other interdependencies, such
as the impact of damaged utility poles on the RN or the consequences of traffic signal outages and

it is acknowledged as a potential limitation.

R1. O E1
] EPN Node
R2 /'~ RN Node
B2 ... B3
R3

Figure 3: Interdependencies between the EPN and RN nodes

3.3.  Restoration modeling and repair prioritization

To maximize the efficiency of the restoration process, the repair and restoration of the EPN
elements during post-disaster outages follow a hierarchical process. This is consistent with the
principles outlined in the literature and industry practices for power restoration in utility networks,
where the priority sequence starts with repairing damaged substations and transmission towers and
then distribution lines serving essential facilities. After that, repairing the remaining utility poles

is based on restoring power to the largest number of customers as fast as possible ([71]; [72]; [73];

[74]).

During post-hurricane scenarios, the assessment of utility poles becomes challenging due to their
large numbers within the EPN compared to substations and transmission towers, making it harder
to evaluate their significance and monitor their conditions with limited information available.
Ouyang and Duefas-Osorio [72] proposed a formula to estimate the repair worth (RW) for
distribution lines in the EPN as the ratio of the number of customers served by the line to the repair
time required. However, this formula doesn’t consider the uncertainties in the physical and

performance states of the lines, and hence requires a near-complete knowledge of each line's

14



310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

condition, which is rarely attainable in post-hurricane scenarios. Moreover, it doesn’t allow for
giving different weights to customers based on their importance for community resilience and
recovery. It also does not incorporate factors such as travel time to reach the line or the accessibility
of the road segments, which are important considerations in prioritizing repair efforts and
optimizing the restoration process in post-disaster scenarios. Therefore, in this paper, a modified
RW formula is proposed, building upon the formula proposed by Ouyang and Duefias-Osorio [72]
per equation (6), where RW; is the RW of distribution line j, n is the total number of customers in
the system, and T; is the total time for repair of line j, including both the repair time and the travel
time. Moreover, g; is the probability of power restoration of customer i before the repair, and q;;'
is the probability of power restoration of the same customer if line j is repaired. g; and g;;' can be
calculated using the BN via the forward propagation variable elimination algorithm [45].
Therefore, q; represents the marginal probability of restoration, while q;;" represents the
conditional probability of restoration conditioned on updating the physical node of element j to be
repaired. Finally, w; is the weight assigned to the customer i based on its importance for
community resilience.

B (Zn qij'wi — X qiwi)
RW; =
g (T 2 qiw;)

(6)

While a single forward propagation run of the BN is computationally efficient as demonstrated
by Braik and Koliou [45], equation (6) requires running the algorithm to compare hundreds of
elements, and hence, it can become computationally expensive. Therefore, it is important to utilize
conditional independence within the BN [62] to prune the network and hence reduce its complexity
without affecting the mathematical accuracy of the results. This can be explained using Figure 2,

where repairing distribution line 2 (updating the state of FD, to “repaired”) only affects the state
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of customers PC; and PC,, while the states of the remaining customers are conditionally
independent of F D,. Hence, when applying equation (6) to F D,, the BN can be pruned to include
only FD, —» PD, — (PC3,PC,), while q;;' for the other customers will be equal to q;. As the
computational cost of the BN is proportional to its size [75], this will considerably reduce the run

time while resulting in equivalent mathematical results.

Therefore, once substations and transmission towers are checked and repaired, a weight of 1.0 is
given to the essential facilities (such as fire stations, police stations, hospitals, and major water
structures including water pumps and elevated tanks) and zero to the remaining customers. Then,
the lines feeding the essential facilities are prioritized for check and repair based on equation (6).
This can be utilized to further reduce the computational costs, as in this stage, only lines serving
customers with non-zero weights need to be compared, while the remaining lines and the
customers they feed can be pruned from the BN, as their computed RW using equation (6) will be
zero. Table 2 summarizes the algorithm for pruning the BN and prioritizing element for repair

using equation (6).

Table 2: Algorithm for BN pruning and prioritizing EPN elements for repair
Algorithm for BN pruning and selecting the EPN node with the maximum RW:
1. Input: n: number of customers, wi: weight of customer i for all i in [1:n], e number of upstream non-repaired EPN nodes,
TJ.: total time of repair of line j for all j in [1:e], BN: The full constructed BN

2. Define Function Prioratize_Element_for_Repair_Based_on_RWmax(n, list of w; , e, list of Tj , BN):

3 Calculate the outage probabilities g; for all i in [1:n] using the full BN

4 forjin 1:e:

5. Prune the BN to BN', which includes only customers C' (with size h<=n) downstream of the EPN node |
6 if (w,=0 for all k in [1:h]) or (Tj==°):

7 RWj =0

8. else:

9. Update the probabilities of of the pruned BN' conditoinal on repairing the EPN node of
10. foriin 1:n:

11. if customer; is in C".

12. calculate the outage probability g using the pruned BN'

13. else:

14. q4'=a

15. caluclate RWj using Equation (6)

16. Return the EPN node corresponding to the maximum RW value
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Once all essential facilities are restored, the remaining customers are given weights according to
their importance per stakeholder priorities, and the lines feeding them are checked and repaired in
order based on equation (6). The assignment of weights to customers is a crucial task that falls
upon decision-makers, and therefore, simulation analysis using techniques like DES is employed
in this paper to estimate the impact of different weights that can assist decision-makers in
understanding their effects. A formal definition and details of applying the DES to model the
restoration of the EPN are provided in Section 4 below. While some decision-makers may
prioritize residential customers, considering the significant role of prompt power restoration in
individuals and families' recovery, it is important to recognize that neglecting business and
industrial customers can have detrimental effects on them ([76]; [77]; [78]), resulting in long-term
consequences on the overall recovery and resilience of the community.

3.4. DT for disaster management

The electric power restoration framework proposed in this study allows for combining and
leveraging the advantages of both physics-based and data-driven modeling approaches. The
physics-based damage analysis and network modeling allow for a highly detailed model capable
of making predictions before the hazard occurrence. This enables decision-makers to test various
restoration scenarios to help in preplanning and preparedness and provides a basis to immediately
guide post-disaster investigation and repair. Then, the proposed framework allows for real-time
updating of the initial physics-based estimations with data. By utilizing a DBN, receiving data on
the state (physical or performance) of any element within the network can be used to update the
prior belief of the entire network while remaining within the true physical nature of the system.
Hence, the restoration process can be monitored and updated in real-time, reflecting changing

conditions and facilitating adaptive decision-making. Thus, the framework in this paper is
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proposed as a DT, with the digital model being continuously updated using real-time data sensing

and can influence the real system through adaptive decision-making.

The proposed DT possesses a range of capabilities, starting with supervision based on the
visualizations and models it generates. It also performs simulations and makes predictions utilizing
DES . Additionally, it incorporates the intelligence of the DT by updating the DBN and learning
from collected data. Furthermore, it is capable of controlling the real system through adaptive
decision-making and directing the restoration processes. However, it is essential to acknowledge
that in disaster management, achieving a fully autonomous DT is unlikely in the near future. Some
level of human involvement will still be necessary to apply and implement the decisions made by
the DT. For instance, repair crews would be responsible for executing repair decisions suggested

by the DT.

4. Application study using discrete event simulation
To showcase the practicality of the proposed framework, an illustrative application study

utilizing DES is conducted.

4.1. Galveston testbed

In this application study, the Galveston Island testbed in conjunction with the Hurricane Ike
model is utilized. A comprehensive dataset compiled from various sources, including Darestani
and Padgett [79], SPDCPB [80], Incore [57], and GalvestonGIS [81], provides the location, type,
properties, and connectivity of EPN components such as poles, towers, and substations.
Additionally, it provides details regarding the location and type of electricity receiving customers,
as well as the spatial distribution and connectivity of road segments and intersections within the

RN. This compiled dataset is used to build a high-fidelity model of the EPN and RN, as
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summarized in Table 3. The EPN elements, RN elements, buildings, and essential facilities of
Galveston are shown in Figure 4. To reduce the size of the BN as recommended by Braik and
Koliou [45], the poles are aggregated into 2,718 distribution lines, while the transmission towers
are aggregated into 1 transmission line. Moreover, the residential, commercial, and industrial
buildings are clustered into 2,102, 1,108, and 248 building clusters, respectively where the
buildings in each are assumed to share a common electricity feeder. Furthermore, this dataset
includes the results of Hurricane Ike simulations needed for fragility analysis, providing spatial
variations of wind speed and direction, wave speed, direction, and height, highest flood depth, and

flood duration across the island.

Table 3: Summary of EPN, RN, customer, and essential facilities quantities

Component Utility pole Transmission Substation | Residential Commercial Industrial
tower building building building

Count 13,207 52 9 24,756 2,681 357

Component Fire station Police station Hospital Water facility | Road segment

Count 7 1 21 22 5,035

Hence, by using the infrastructure data and the hazard analysis, fragility analysis is performed
for both the EPN and RN, which concludes step 1 of the methodology through disaster impact
assessment. Further discussion on the results of the fragility analysis is presented in Section 4.3.
Subsequently, utilizing the connectivity data, network analysis is performed in accordance with
step 2 of the methodology, facilitating the establishment of interdependencies between the EPN
and RN. The progression to step 3 of the methodology, restoration modeling and repair
prioritization, is demonstrated through the application of DES. The physics-based predictions
derived from hazard and fragility analysis serve as the prior estimates and initial conditions of the
DES. Subsequently, stochastic simulation is employed to model the entire restoration process. The
assumptions of the DES are explained in Section 4.2, while the results are elaborated upon in

Sections 4.3 and 4.4.
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4.2.  Discrete event simulation assumptions

DES is a computational method that models the behavior of complex systems as a discrete
sequence of events [82]. In this study, the events triggering a change in the state of the system are
the occurrence of hazards, leading to damages, outages, and flooding, as well as the subsequent
repair and drainage of the EPN and RN elements. The repair activities are conducted by repair
crew units, while the drainage is assumed to naturally occur following the estimations of the hazard
analysis. It is assumed that a fixed number of repair crew units is available for both the EPN and
RN and that these units possess equivalent capacities, with each capable of handling one task at a
time. Furthermore, the crew members within the unit will operate in shifts to ensure continuous

work throughout the simulation.

Assumptions of the repair times of the EPN and RN elements are based on average times
obtained from the literature. An average repair time t4,, of 72 hours is assumed for a single
substation or transmission tower, while the repair of a damaged utility pole takes an average of 5
hours [24]. Therefore, a line consisting of m poles or towers each having a predicted probability
of failure g; will have an expected number of failed elements of m" = )%, q;. Hence, the expected
repair time will be m’ times the average time of repair of a single element within the line. On the
other hand, the average time to repair a 1-km length road segment is assumed to be 1 day, if the
probability of damage to the road segment is less than 0.2, 7 days if it is more than 0.8, and 2 days
for all other cases [83]. However, it should be noted that the reliance on deterministic average

repair times might result in underestimating the uncertainties in the restoration process.

While the method proposed in this paper allows for updating the estimations based on various
types of evidence data as demonstrated by Braik and Koliou [45], it is assumed in the DES that

the only source of evidence is the feedback of repair crews. Therefore, once a repair crew reaches
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the selected line, the state of its elements is stochastically sampled based on their probabilities of
failure to give either failed or not failed, and the simulated time of repair is the number of damaged
elements times the average time of repair of a single element. Therefore, if a line contains m poles
or towers, the simulated number of damaged elements m'’ is stochastically sampled following m
independent non-identical Bernoulli (INB) trials [84], where the probability for each trial is equal
to the probability of failure of the element estimated through the fragility analysis. Even if no
element is failed, it is assumed that the minimum checking time ¢t is 0.5 hours for distribution
lines and 5 hours for substations and transmission lines. Therefore, t,¢pqir—j, the time of repair of

a line j, is sampled using equation (7), where t peck, tang, and m' are the minimum checking time,

average repair time, and simulated number of damaged elements, respectively, as defined above,

and q4, q3, ---, @ are the failure probabilities of poles or towers within the line j.

trepair—j = max(tcheck' m". tavg) ’ Where m''~ INB (CI1' qz; -, Qm) (7)

The EPN units are assumed to start working 4 hours after the hurricane [85], while the RN units
are assumed to start working only after all roads are drained. Both EPN and RN units start from
the road node in the mainland before the Galveston bridge. An average travel speed of 25 mph
(11.2 m/s) is assumed through an undamaged and drained road segment. This speed is reduced
based on the probability of failure of the road as elaborated in Section 3.2.2. This reduction in
travel speed is capped at a minimum of 2.5 mph (1.12 m/s), ensuring that even in the presence of
substantial damage, travel remains possible but significantly slowed. In the case of flooded
roadways, repair units are expected to face impassable conditions, except for access to substations,
where it is expected that given the high value and significance of the substations, access will be

made possible even in the event of flooding.
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The repair prioritization follows the criteria discussed earlier, with substations and transmission
lines taking precedence for repair. Subsequently, distribution lines are prioritized based on their
RW, where Equation (6) is used to assign each EPN crew unit an element to repair. Since any
downstream line cannot operate unless all its upstream lines are repaired, the upstream lines are
compared for prioritization at each step. Initially, priority is given to restoring essential facilities,
indicated by assigning them a weight of one, while assigning a weight of zero to the rest of the
customers. Subsequently, attention shifts to the remaining customers, who are then assigned non-
zero weights. The road segment with the highest probability of damage is given the highest repair

priority.

4.3.  Supervisory and control DT

In Figure 5, a dynamic dashboard is presented, tracking the progress of electric power
restoration. In this application study, equal importance is assigned to the restoration of residential,
commercial, and industrial buildings. Additionally, allocation has been made for 8 repair units for
the EPN and 5 units for the RN. Figure 5 (a) displays the initial state of the EPN immediately after
the hurricane's impact. As no data has yet been collected, the estimates are primarily based on the
prior physics-based analysis and show a significant failure of EPN components, resulting in a
nearly complete power outage across the island. Furthermore, most RN segments are flooded, with

damage concentrated near the shoreline.

Figure 5 (b) portrays the intermediate state of the EPN on the sixth day following the hazard
occurrence. At this stage, the restoration of essential facilities and a substantial portion of the
remaining customers has been achieved. Additionally, the RN has been drained, and repairs are
being undertaken for damaged segments. Notably, significant recovery has been experienced in

the upper half of the island, while the other half still faces a widespread outage. This underscores
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the importance of visualizing spatial variations, allowing for the identification of overlooked areas.

Finally, in Figure 5 (c), the fully repaired and restored state of the EPN on day 16 is shown.

As discussed in Section 3.4, the proposed DT exhibits a versatile range of capabilities, from
supervision to intelligent decision-making. The DT provides dynamic and detailed visualizations
that allow decision-makers to assess the damage and performance of the EPN components and
their effect on customers, in addition to the state of the RN segments and their effect on the
mobility of repair units. It extends its capabilities further through simulation and prediction, as
demonstrated by the DES application study and the resulting estimates. One of its standout features
is its intelligent capability, achieved through the BN updates. By collecting data on specific nodes
within the EPN, the entire network can be updated. Therefore, predictions for other nodes that
share upstream connections with the nodes we have monitored can be enhanced. This adaptive
learning ensures the DT's ability to provide more accurate predictions following real-time data
sensing. Moreover, by prioritizing elements for repair through the RW calculations, the DT can be
used in adaptive decision-making and to direct and control the restoration process. Furthermore, it
allows decision-makers to intervene at any point in time and redirect the restoration strategies and
the distribution of resources. Hence, the proposed DT possesses the full capabilities of a

supervisory and control DT.

4.4.  Case studies
In this section, an analysis of different case studies is conducted, with a focus on the modification
of prioritization strategies, the adjustment of weights, and the reallocation of resources. These are

compared to the benchmark case presented in Section 4.3.
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4.4.1. Sensitivity analysis
To enable a comparison between the results of stochastic simulations, MCS is utilized.
Therefore, the convergence of the cumulative mean of the samples is examined, and it is
subsequently used to compare different cases. Figure 6 shows the convergence of the cumulative
mean of the restoration percentage for the benchmark case for days 1 to 16 after the occurrence of
the hazard. Similar checks were performed in other cases and for various types of customers and
essential facilities. Convergence for all cases was achieved after 40 runs, hence, the restoration

plots of the mean of the 40 runs are used.

25



513

Restoration Curves

° — Residential
% — Commercial
@ —— Industrial
0 —— Fire station
g

10

Restoration %

Police station

Hospital
~ Water

Latitude

550 = 18
Longitude

Building outage map

Restoration Curves

100
B
@
n
Ll
g © —
2 — Residential
g o — commercial
¥ oo ~—— Industrial
& wn —— Fire station
A Palice station
Hospital
© — Water
= a 2 4 3 8 10 Z 4 16 18
Time (days)

950 549 -9a8

Longitude
Building outage map

Restoration

Residential
Commercial
Industrial
Fire station
Police station
Hospital
Water

Restoration %

950 949 548

Lengitude
Building outage map

EPN DT Restoration Dashboard

Day: O
EPN repair units:
* ok k ok ok k ok ok
Road repair units:
* * *

1.0
08
7
£
06 35
i
D,di 3
02
L 950 943
Longitude
EPN failure map
(@)
EPN DT Restoration Dashboard
Day: 6
EPN repair units:
ok ok ok ok Kk ok ok
Road repair units:
* * %
10
LX) o
{
LU
: 2
04§ 3
0.2
00
EPN DT Restoration Dashboard
Day: 16
EPN repair units:
* ok k ok ok ok kK
Road repair units:
% * K
10
08 -
£
063
Iy
=3
g3
04l§
02
0.0

950 949
Lengitude

EPN failure map
(c)

26

Restoration bar plots

100

Restoration %

o
qasde™ i M w“"d 'W,mw'ww’,m e

10° 10°
w3 wd
£ g
3 Z
L %
107 & 1077 g
i
10} 103
0 0
50 a3
Longitude
Road damage map
o Restoration bar plots
a0
-
T
3
3w
20
. aeh
5 ¢ 5 o
et WK“"\ M rk“'w\,ﬂ‘ﬂ""'WM o
100 3 100
107! ; m"g
E H
wig 1028
H 4
107 10-3
o 0
-95.0 -9 -348
Longitude
Road damage map
i Restoration bar plots
804
* e
p 60
g
1w
204
. @ s
ot g aon o
“,w"‘“ P R L v e P R L
10° 10°
10 §’ m*lg
2 k] ls‘
L 10718
H H
103 10-3




514
515

516
517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

Figure 5: DT dashboard for: (a) Day 0 (immediately after the hurricane), (b) Day 6, and (c) Day 16 (end of EPN
repair and restoration)
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Figure 6: Convergence of the MCS cumulative mean for the benchmark case

4.4.2. Comparison studies

In Figure 7 (a), a comparison is made between the restoration of the benchmark case described
above and the actual restoration of Galveston Island following Hurricane Ike, as retrieved from
historical records [29]. The almost linear shape of the actual restoration plot, when compared to
the S-shaped curve of the simulation plot, suggests that a more efficient restoration could have
been attained if a more informed prioritization of elements for repair had been followed, as
proposed in this paper. Figure 7 (b) compares the restoration curves of synthetic hurricanes based
on Hurricane Ike of various return periods; T=50, 100, and 500 years. The return period events
were determined by water level exceedance probabilities at Stewart Beach, near the eastern end of
Galveston Island [56]. The results of the hurricane models were obtained from [57, 86]. The time
to restoration of the 500-year return period hurricane is significantly larger than the other
hurricanes, which shows the considerable effect of the hazard intensity on the restoration process.
Figure 7 (c) shows the impact of resource allocation on the restoration process. As anticipated, an
increase in the number of repair crew units results in an acceleration of the restoration rate. This
graphical representation serves as a tool for evaluating the incremental advantages of adding
resources. The transition from 5 to 8 repair units yields significantly more benefit compared to

increasing the numbers from 8 to 10 units.
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Figure 8 displays the restoration plots for residential, commercial, and industrial customers for
different prioritization strategies. In Figure 8 (a), the benchmark case is shown where equal
weights are assigned to all customers, resulting in similar restoration plots with small variations
influenced by spatial distributions. In contrast, Figure 8 (b) reveals the restoration plots when
prioritization is centered around residential customers. In this scenario, the residential restoration
plot is shifted slightly to the right, with a more noticeable effect on the delay of restoration for
commercial and industrial plots. Then, in Figure 8 (c), the restoration plots are shown when
prioritization factors are determined by the expected monetary loss per hour of outage, following
the ratios of 1:325:1200 for residential, commercial, and industrial customers, respectively [87].
Therefore, in this case, business recovery takes precedence, and rapid restoration is observed for
industrial and commercial buildings compared to the benchmark case, while the restoration of

residential buildings is slightly delayed.

Figure 9 demonstrates the impact of prioritizing essential facilities for restoration. Figure 9 (a)
shows that when not given priority, the restoration of water facilities takes nearly three times the
duration. Similarly, in Figure 9 (b), a significant delay in hospital power restoration is seen when
considered as regular customers.

These figures include confidence bands showing one standard deviation above and below the
average MCS restoration plots. It is noted that the variability becomes more pronounced when
focusing on the restoration of a smaller subset of customers, such as industrial facilities, compared
to the total restoration, since the aggregated effect tends to reduce variability in larger systems.
This highlights the importance of considering spatial and categorical variability. However, some

assumptions made, such as the deterministic hazard model and the use of average repair times,
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557  contribute to underestimating the total uncertainty. This motivates a more comprehensive

558  uncertainty quantification in future studies.
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567 4.4.3. Updating prior estimations with data evidence via backward propagation

568 To demonstrate the capability of the DT in updating prior estimates using belief propagation, a
569 case study is considered in which the outage and restoration state of 10 customers have been
570  observed. When data evidence about the outage or restoration status of any customer is obtained,

571 it can be used to update the prior outage probabilities for the entire island. This method influences
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the estimations for customers connected to the same upstream line as those for whom data has
been received, even if there is no direct data available for them. As shown in Figure 10 (a), 5
customers in the middle of the island were observed to have power restored, while another 5
customers in the lower part of the island experienced power outages at the same time. The updated
outage map, displayed in Figure 10 (b), shows a significant portion of the island having power
restored using only these 10 data points. It is noteworthy that the upper right portion of the island
was not significantly updated using the observed data. This is because the observed restored
customers receive electricity directly from the mainland substation via an underground electricity

cable, as illustrated in Figure 4.

29.35 - 29.35 1.0
29.30 29.30 0.8 g
—~ % S
29.251 J.‘ 29.25 =
; 0.6 &
2 B7 ¥ 2
229.20 it 229.20 o >
© y © o c
- . ) — 3 ” 04 =
29.15 1 29.15 1 @
op g2 o
m  Building
29.10 | ' e Restoration evidence 29.10 ‘ 0.2
e Outage evidence
29.05 T T T T 29.05 T T T T 0.0
-95.1 -95.0 -94.9 -94.8 —-94.7 -95.1 -95.0 -94.9 —-94.8 -94.7
Longitude Longitude

(a) (b)

Figure 10: DT outage map for (a) prior estimations (b) posterior estimations using observed data

5. Conclusions and future work

This paper has introduced a novel framework for post-hurricane electric power restoration,
leveraging the concept of the DT. As demonstrated in this study, the DT provides dynamic
visualizations that offer a holistic evaluation of the EPN performance, while also assessing the
condition of the RN and its influence on the mobility of repair units. By employing a DBN that
integrates physics-based and data-driven models, the framework expands its capabilities from

offline to online learning, enabling real-time updates to continuously enhance the accuracy of the
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estimations. These capabilities are further extended through simulation and prediction, as
showcased by the DES application study. Additionally, the ability to guide and prioritize repair
and restoration efforts allows for adaptive decision-making, extending the framework toward a

supervisory and control DT.

Despite the promising results, the proposed framework still has limitations in its current form.
The case studies rely on scenarios of single hazards rather than comprehensive hazard analysis.
Moreover, several assumptions regarding restoration times are treated as deterministic average
values rather than probabilistic random variables, potentially underestimating the uncertainty in
the results. Additionally, the RN is modeled as a graph network and does not incorporate traffic
and flow analysis, nor does it account for debris that might disrupt traffic. Finally, the cascading
effect of power outages on the RN is not considered. The water network is only considered by
including main water facilities, such as water pumps, instead of modeling a comprehensive water

network.

Future research can focus on the RN by conducting comprehensive traffic and flow analyses that
account for evacuation, return, the impact of debris, and other important factors that might affect
the mobility of repair units. Furthermore, there is a need for a more comprehensive hazard analysis
considering the stochastic nature of hurricane loads. Additionally, there exists potential for in-
depth analysis of the restoration of the water network and its impact on community functionality
and resilience. Future research can also explore the synergy between the disaster management DT
of the EPN and the normal operation DT. By integrating these two, where power flow is based on
connectivity during disasters and on DC flow analysis during normal operations, researchers can

combine the concepts of smart and resilient infrastructure systems.
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Moreover, the proposed framework can be utilized to analyze restoration efforts focusing on
socially vulnerable communities. The simulation analysis offered can further evolve through the
application of agent-based modeling, taking into consideration various social systems in
conjunction with critical infrastructure systems, ultimately developing a full community DT. Since
the proposed DT framework utilizes data to update prior estimates, future research could focus on
innovative data collection and analysis approaches to enhance the efficiency of the restoration
process. Therefore, this paper establishes the groundwork for a paradigm shift in disaster recovery
strategies through more efficient, adaptable, and data-informed methods that enhance post-

hurricane electric power restoration, ultimately contributing to more resilient communities.

Relevance to resilience

This paper presents a framework for post-hurricane electric power restoration using a DT
approach, focusing on the restoration of the EPN and RN. By prioritizing repairs and optimizing
resource allocation, the framework enhances infrastructure resilience, ensuring efficient
restoration of essential services crucial for maintaining community functionality and well-being
after a disaster. Through adaptive decision-making and data-driven methodologies, the framework
contributes to building more resilient communities and enabling real-time updates based on
accurate information. Overall, the study underscores the importance of leveraging DT technology

to enhance post-disaster recovery efforts, ultimately contributing to community resilience.
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