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With advances in high-throughput technology, molecular disease sub-
typing by high-dimensional omics data has been recognized as an effective
approach for identifying subtypes of complex diseases with distinct disease
mechanisms and prognoses. Conventional cluster analysis takes omics data as
input and generates patient clusters with similar gene expression pattern. The
omics data, however, usually contain multifaceted cluster structures that can
be defined by different sets of genes. If the gene set associated with irrelevant
clinical variables (e.g., sex or age) dominates the clustering process, the re-
sulting clusters may not capture clinically meaningful disease subtypes. This
motivates the development of a clustering framework with guidance from a
prespecified disease outcome, such as lung function measurement or survival,
in this paper. We propose two disease subtyping methods by omics data with
outcome guidance using a generative model or a weighted joint likelihood.
Both methods connect an outcome association model and a disease subtyp-
ing model by a latent variable of cluster labels. Compared to the generative
model, weighted joint likelihood contains a data-driven weight parameter to
balance the likelihood contributions from outcome association and gene clus-
ter separation, which improves generalizability in independent validation but
requires heavier computing. Extensive simulations and two real applications
in lung disease and triple-negative breast cancer demonstrate superior disease
subtyping performance of the outcome-guided clustering methods in terms of
disease subtyping accuracy, gene selection and outcome association. Unlike
existing clustering methods, the outcome-guided disease subtyping frame-
work creates a new precision medicine paradigm to directly identify patient
subgroups with clinical association.

1. Introduction. Many complex diseases used to be considered as a single disease en-
tity in which all patients receive identical diagnosis and treatment regardless of individual
differences. With the advances of modern omics technologies, heterogeneous disease sub-
types have been identified with distinct disease mechanisms, therapeutic targets, and survival
outcomes. Targeted treatment for many disease subtypes has improved prognosis toward pre-
cision medicine. One prominent example is the discovery of breast cancer subtypes of luminal
A, luminal B, HER2-enriched and basal-like, first reported by Perou et al. (2000). Luminal-
type (luminal A and luminal B) patients tend to have better survival and lower recurrence;
HER?2-enriched patients are often treated with HER2-targeted therapies, such as trastuzumab;
basal-like tumors usually have a poor prognosis with rapid relapse and require a combination
of surgery, radiotherapy, and chemotherapy. Precision medicine via successful molecular dis-
ease subtyping has decreased breast cancer mortality over the years (Jemal et al. (2009)).

Cluster analysis, such as K -means, Gaussian mixture models, and many others, have been
widely used in disease subtyping when the dimensionality of data is low (e.g., cluster analysis

Received June 2023; revised December 2023.
Key words and phrases. Disease subtyping, omics data, high-dimensional cluster analysis, generative model,
weighted joint likelihood.

1947



1948 Y. LIET AL.

by clinical variables) and when the clusters are well-separated. High-dimensional omics data,
such as microarray or RNA-seq data, often have moderate sample size (e.g., 50~500) but a
larger number of genes (e.g., 2,000~20,000), which leads to a small-n-large-p problem. It has
been generally recognized that cluster structure is determined by a small fraction of features
(i.e., signature or intrinsic genes) while the other genes are essentially background noise.
As a result, most high-dimensional clustering methods simultaneously perform clustering
and feature selection (Fop and Murphy (2018), Pan and Shen (2007), Witten and Tibshirani
(2010), Zhou, Pan and Shen (2009)). For example, two popular methods for the clustering of
high-dimensional omics data embed feature selection in the models: sparse K -means (Witten
and Tibshirani (2010)) and penalized model-based clustering (PMBC) (Pan and Shen (2007))
(more details in Supplementary Material Section S1 (Li et al. (2024))). Sparse K-means
incorporates gene-specific weights in K-means to allow feature selection by maximizing
the weighted between-cluster sum-of-squares with a lasso penalty. In general, only a small
set of genes is expected to characterize the clusters. The tuning parameter controlling gene
sparsity is selected by gap statistic (Tibshirani, Walther and Hastie (2001)). PMBC is based
on the Gaussian mixture model with a lasso penalty to facilitate feature selection, which is
determined by Bayesian information criterion (BIC).

The current practice of determining the success and interest of further investigation of
identified clusters is to conduct a post hoc association analysis between the clusters and clin-
ical outcomes of interest (e.g., survival). If there is little or no association with the clinical
outcome, the omics cluster analysis is considered as a failed exploration. High-dimensional
omics data, however, often form multifaceted cluster structures where many are associated
with clinically irrelevant variables (e.g., clusters associated with sex, age, or race charac-
terized by their respective gene signatures), which often impede the identification of clini-
cally relevant subtypes. For example, Supplementary Material Figure S1(A) and S1(B) show
male/female and young/middle-age/old clusters defined by sex- and age-related genes in a
lung disease transcriptomic dataset, which will be investigated further as the first real ap-
plication in Section 5.1. These well-separated clusters are clinically irrelevant but can mask
the discovery of novel disease subtypes that we want to pursue toward precision medicine.
To alleviate this problem, Bair and Tibshirani (2004) attempted a two-stage semisupervised
clustering method which first selects the top M genes marginally correlated with survival
outcome by a Cox model (Cox (1972)), followed by conventional clustering methods such
as K-means. Such a two-stage approach is ad hoc in determining M, and marginal screen-
ing alone is well-known to ignore gene dependence and can miss critical genes in clustering.
Consequently, we will only consider marginal screening as an optional preprocessing step on
top of our proposed methods and will assess its usefulness in gene selection.

In this paper we propose two latent class methods, namely, a generative model (abbreviated
as ogClustgy,) and a weighted joint likelihood (ogClustyyy; ) for outcome-guided disease sub-
typing. Both methods simultaneously identify disease subtypes with outcome guidance and
perform gene selection. As will be shown in Section 2, ogClustgy, contains two components:
an outcome association model and a gene disease subtyping model, linked by a latent variable
of cluster labels. Although ogClustg), incorporates outcome guidance to enhance the detec-
tion of clinically relevant disease subtypes, it lacks the flexibility to tune the relative contri-
bution of outcome association and gene expression separation, which potentially can reduce
generalizability in independent validation. As a remedy, ogClusty,j;, contains a data-driven
weight parameter for adjusting the relative likelihood contribution of outcome association
and gene cluster separation. We will perform extensive simulations and two real applica-
tions to evaluate these two disease subtyping methods with outcome guidance. ogClusty;.
is expected to alleviate potential overfitting of ogClustgy; while with an expense of heavier
computing.
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Both ogClustgys and ogClustyy;;, belong to the field of latent class models, which in our
view contains at least four major categories. The first category is a set of unsupervised model-
based clustering methods (e.g., Gaussian mixture models) (Dean and Raftery (2010), Lanza
and Rhoades (2013)), which often identify clinically irrelevant clusters, as we discussed
above. The second category links outcome with latent class variables without variables (sig-
natures) to characterize the cluster membership, making it incapable of classifying future
patients into the subtypes (Chang et al. (2020), Desantis et al. (2012)). In other words, these
models rely on the outcome to classify the patients, but outcome information (e.g., survival) is
often unavailable for new patients. The third set of latent class models assumes outcome fol-
lows a mixture of distributions where the probability of each component is a function of other
variables (e.g., covariates or gene signatures). For a new patient, cluster membership can be
determined by the predicted probability of belonging to a mixture component. These models
have been widely applied in social sciences, psychology as well as public health (Desantis
et al. (2008), Guo, Wall and Amemiya (2006), Houseman, Coull and Betensky (2006)). The
generative model in ogClustgy; belongs to this category. The fourth category is the widely
used joint analysis of survival and longitudinal data (Furgal, Sen and Taylor (2019), Lin et al.
(2002), Proust-Lima et al. (2014), Proust-Lima and Taylor (2009), Sun et al. (2019)), where
survival and longitudinal data come from a common mixture of components and the cluster
assignment is determined by the joint-likelihood of both parts. The weighted joint likelihood
approach in ogClusty;; is closely related to this category, while it has two major innova-
tions, including a data-driven weight parameter to balance the contribution from two data
sources of gene expression and clinical outcome (Section 3.2.2), and a weight rescaling step
to normalize the likelihood contribution between thousands of genes and one outcome vari-
able (Section 3.2.1). The four categories of latent class models above can also be viewed as
a “mixture of experts model” (Gormley and Frithwirth-Schnatter (2019)), which is a broad
definition of any mixture model incorporating covariates or concomitant variables. In this
paragraph above, we only discuss selected “mixture of experts models,” which are relevant
to the clustering/disease-subtyping problem that our model is intended to address.

The paper is structured as follows. In Section 2 and Section 3, ogClustgy; and ogClustyy .
will be introduced, respectively, followed by inference and tuning parameter selection, and
their extension to a survival outcome will be discussed in Supplementary Material Section
S6. Benchmarks for method evaluation are introduced in Section 2.2. Extensive simulations
and two real applications in lung disease and triple-negative breast cancer (TNBC) are shown
in Sections 4 and 5, respectively. Section 6 provides a final conclusion and discussion.

2. Outcome-guided clustering by generative model (ogClustgy;). Throughout the pa-
per, suppose we have n samples from K clusters, p genes, g covariates, and one out-
come of interest, and each gene vector is standardized to mean zero. Denote by y;, g; =
(gi1, g2, ...,gip)T and x; = (x;1, X2, ..., x,-q)T the outcome, gene features and covariates
of the ith sample (1 <i < n). The generative model ogClustg)y; assigns n samples into K
clinically meaningful clusters based on gene expression features G = {g;, 1 <i < n} with
guidance from clinical outcome Y = {y;, 1 <i < n}, where the output clustering result is de-
noted as latent group label Z = {z;, 1 <i <n}, z; € {1, ..., K}, and z; = k means that sample
i is assigned to cluster k. ogClustgy; contains two components connected by the latent class
7. gene disease subtyping model and outcome association model.

The gene disease subtyping model is a conventional high-dimensional discriminant anal-
ysis in which we train to characterize 7y = Pr(z; = k|g;) for observation i. In this paper
we consider multinomial logistic regression and sparse linear discriminant analysis (Witten
and Tibshirani (2011)) for this component and compare them by simulation (see Section 4
and Supplementary Material Figure 8 for comparison). We will leave the description of
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sparse linear discriminant analysis (LDA) to Supplementary Material Section S2 and describe

T
multinomial logistic regression here: mj; |y = M, where y ={y;,1 <k <K} and
Zz:] exp(g; v1)
Yi= Wk, ---, ypk)T. Since p is usually large, we assume only a small subset A C {1, ..., p}

of features are effective in characterizing the clusters that affect the outcome, where its cardi-
nality card(A) < min(n, p). In other words, y;; #0if j € Aand y[;; =0if j € A°, where
Yij1= (¥j1, ..., Vjk). We apply lasso regularization (Tibshirani (1996)) for gene selection
(see the next subsection), although group lasso or elastic net could also be considered.

In the outcome association model, given covariates X = {x;, 1 <i < n}, we assume a mix-
ture model f(y;; x;) = Zle ik f (vi; xi), where fi(y; x) is the density function of cluster
k. We assume a continuous response Y, where the kth mixture density fi(y; x, Bok, B, 0) is
parameterized by cluster specific intercept Sox, common covariate effect 8 = (81, ..., ﬂq)T,
and a homogeneous error o. Here we impose Gaussian assumption y;|z; = k ~ N (Bor +
ﬂTxi, 0?) with mixture probability mjx = %, k=1,...,K. Denote by 6 =
{Bo. By, 0o}, the collection of all parameters in ogClustgy, where By = (Bo1, ..., ,BOK)T.
Given Y, X, and G, @ can be estimated by maximizing the following sample likelihood of the
basic model: L(0) = [T, Y&, 7 (gi, ¥) fr (vis X4, Boks B, 0).

We note that the outcome Y can be extended to be a time-to-event survival outcome, and
the accelerated failure time (AFT) model is used to model the outcome association (see de-
tails in Supplementary Material Section S6). We also note that the current model assumes a
simplified common covariate effect 8 across all clusters. It is easy to extend to allow cluster-
specific interaction term By, meaning cluster-specific age or sex effects, when the sample size
is sufficiently large.

2.1. Estimation and inference. Below we develop an EM algorithm for parameter esti-
mation in ogClustgys. By introducing zix, k =1, ..., K, as missing indicator variables, the
complete log-likelihood function can be written as

n K
(1 150) =Y "> {ziklogmik + zik log fi(yis Xi, ok, B. o)},

i=1k=1

where z;; = 1 if sample i belongs to cluster k, and z;r = 0 otherwise.

Since gene expression is usually high dimensional, including noninformative genes in .A¢
will introduce extra noise to the gene disease subtyping model. In the following we will
illustrate a lasso penalty for gene selection. We define the penalized log-likelihood function
as

n K
) 150) =Y "> {zixlogmix + zik log fi (yi: xi. Pox. B.0)} — AR(p).
i=1k=1

where A is the regularization tuning parameter and R(y) = Zf —1 Z,le lyjk|. This procedure
performs feature selection and clustering simultaneously. As alternatives, one could use group
lasso penalty R(y) = Zle l¥(j1ll2 or, more generally, group elastic net penalty R(y) =

Syl + e X! S vE (Zou and Hastie (2005)), where [yl = /YA, v
For computational efficiency we will implement and present the lasso penalty in this paper,
and p is estimated following an approximation procedure of Friedman, Hastie and Tibshirani
(2010). Maximization of [,2 (@) can be achieved by iteratively updating By, 8, o0 and y in
the EM algorithm, which is described in detail in Supplementary Material Section S3. The
pseudo-code for fitting ogClustgys is given in Algorithm 1 in Supplementary Material Section
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S3. Multiple initial values could be used to avoid convergence to local minimums and increase
the numerical stability of clustermg
With the estimated ,B()k, ﬂ y, 6 by EM algorithm, the conditional probability is

TA
A A exp(g; Vi)
3) A
D=1 exp(g; 7))
and the cluster assignment can be estimated as C = {Z1,22,...,2,}, where Z; =

arg maxi<x<k Tik-

2.2. Benchmarks for evaluation. In terms of method evaluation for clustering, two pri-
mary benchmarks are assessed: clustering accuracy and feature selection accuracy. Addi-
tionally, two secondary benchmarks considered are outcome association and gene cluster
separation (i.e., gene signature separation across clusters).

Clustering accuracy can be evaluated by adjusted Rand index (ARI) and feature selec-
tion accuracy is evaluated by Jaccard index. To evaluate the association of clustering re-
sults with a preselected continuous outcome, we calculate the R-squared value and root
mean square error (RMSE) of outcome association. Speciﬁcally, the R-squared value of out-

A {1
come association is defined as R2,.ome(C) =1 — % (i.e., the proportion of out-
i=1i
come variation explained by clustering, where the clustering assignment C= (21,22, .-+, Zn}

by ogClustgy, is calculated from equation (3) in Section 2.1). Here y; is predicted out-
come by fitting the regression using y; as dependent variable and cluster assignment Z; as

A~ A 5 ~T A
well as x; as independent variables (i.e., y; = Zle I{z; = k}(Box + B x;)), while y,-(])
is the predicted outcome by fitting the regression using y; as dependent variable and only
the covariates x; as independent variable. The RMSE of outcome association is defined as

RMSE(C) =,/ "_,(yi — ¥i)?. For gene cluster separation, we calculate average R-squared
values among selected genes (i.e., the average proportion of gene expression variation ex-

plained by clustering): Rgeneg(C, G) = Zjeé{l — %}/Iél, where G is the set of
selected genes by the clustering algorithm, g;; is the predicted gene expression level from the
cluster assignment Z; and gene expression model, and g.; is the overall mean expression of
gene j.

Furthermore, if the preselected outcome is survival (right-censored), we benchmark the
outcome association by the log-rank test statistic using the partial F statistics of C from
fitting the proportional hazard regression y; ~ Z; + x;. We also calculate another outcome as-
sociation benchmark by the adjusted C-index. The C-index (Pencina and D’ Agostino (2004))
is a concordance index to measure the consistency between y; and y; for time-to-event data,
which can be calculated by R package “survcomp” (Schroder et al. (2011)). To avoid skewed
interpretation where the C-index is always positive, even in random data, we calculate the
adjusted C-index by cindeXudjust = W, where E (cindex) is calculated by permu-
tation analysis under the null hypothesis (i.e., the average C-index from repeated permutation
of y;). This adjustment is similar to the adjusted Rand index (Hubert and Arabie (1985)).

We will benchmark the Réenes(C, G), R2,icome (C), RMSE(C), log-rank test statistics, and
adjusted C-index in both training and testing cohorts. We note that clustering accuracy and
feature selection accuracy can be evaluated in simulations where the underlying truths of
informative genes and sample cluster labels are known, but they are not feasible in real ap-

plications.
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2.3. Tuning parameter selection. There are two tuning parameters of ogClustgy: K and
A. Many methods have already been proposed and evaluated for determining K (e.g., gap
statistic, BIC, or resampling evaluation), which can also be applied here. In this section we
focus on the selection of A, when K is prespecified, and determining A based on the new
criterion described below. .

Given N candidate values of A: L = {Aq, ..., An}, for each A we perform 10-fold cross-
validation. Specifically, within each fold of the training/testing split, we fit ogClustgy; using
the training set, predict the cluster labels in the testing fold, and then calculate the average R-

squared value of selected genes as Réenes(é , G: A,) and the R-squared value of outcome asso-

ciation as Rgutcome(é; 2,) (both are defined in Section 2.2). We determine 4 by the geometric
mean of R2,,..... and Réenes: A =arg maxlSrSN(\/(Rgutcome(é; Ar) - R2....(C.G:1,)). Note

genes
2

that, compared to arithmetic mean, the geometric mean avoids a low value in either R7;.ome
or R? (e.g., R*’s = (0.95, 0.25) vs. (0.6, 0.6) gives the same arithmetic mean, but the latter

genes
is more balanced and preferred).

3. Outcome-guided clustering by weighted joint likelihood (ogClustyyyy ). In
ogClustgy,, the generative information flows from the gene disease subtyping model to out-
come association model through the latent class variable. Although its full model-based ap-
proach is appealing, the likelihood contribution from outcome association tends to dominate
since gene disease subtyping model only contributes indirectly through mixture probabilities
mik. This often generates overfitting in the training data with seemingly higher outcome asso-
ciation, while the outcome association can greatly reduce in the testing study. To circumvent
this issue, we develop a weighted joint likelihood approach ogClusty; , motivated from a
category of methods for joint analysis of survival and longitudinal data (see the fourth cat-
egory of existing methods in Section 1). We propose to link observed data {y;, x;, g;} by a
weighted penalized joint log-likelihood,

n
@ L6 =) [(1—w) - log(fe(gilm, X)) +w-log(fo(yilxi, Bo, B, 7)) — Ah(m),
i=1

where fo(g;lm, 2) = Sfo; e - (10 N(gijlijk, oD folvilxi, Bo, Bro?) = {7 -
[N (yilBok + B xi, 0], 61 = {Bo. B. {mi )i, =, 0}, and By = (Bor. ... ox)” . Here f,
denotes the density of gene features g;, which is a mixture of distributions of K compo-
nents with probability w3 for the kth component (1 < k < K), and cluster-specific density
fek = ]_[f: 1 N(gijlijk, ajz) is constructed by the multivariate normal density with cluster-

specific mean vector pr = (Uik, U2ky .-+ L pk)T and common diagonal covariance matrix
Y= diag(olz, 022, ey o*l%) across all clusters, assuming independence of gene features. Same
as ogClustgy;, outcome association is modelled by f,, which follows a normal distribu-
tion with mean Bor + ﬂT x; for cluster k and homogeneous standard deviation o. That
is, yilzi = k ~ N(Bor + ﬂTxi, 02), where z; is the latent cluster membership for the ith
sample. Similar ogClustgy;, 0gClusty); can be extended to accommodate time-to-event
outcome by the accelerated failure time (AFT) model (details described in Supplemen-
tary Material Section S6). To achieve feature selection, we similarly utilize lasso penalty
h(p) = fz | Zf: 1 |1 jk|, ensuring that only a small fraction of genes contribute to catego-
rizing the clusters. Since each gene vector is standardized to a zero mean, if u j; = 0 for all
k (1 <k < K), then the jth gene does not contribute to the clustering of omics data. A is
a tuning parameter controlling gene selection, and w is a weight to determine the relative
contribution of outcome association and gene clustering pattern.

The weight w is a critical parameter in ogClustyj; . Intuitively, f,(g;|61) pursues cluster
separation based on gene expression data, and f,(y;|x;, #1) helps seek clusters with outcome
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association. If w = 0, the model is reduced to unsupervised clustering based on omics data,
and the identified clusters may be irrelevant to clinical outcome y;, as discussed in Section 1.
If w is close to 1, the model mostly emphasizes on the outcome association and may obtain
weak gene pattern in clusters, which weakens generalizability in test studies. Data-driven
parameter selection of w will be discussed in Section 3.2 in detail.

3.1. Estimation and inference. Maximization of equation (4) can be achieved by using
the EM algorithm. By introducing latent variable z;z = 1 if the ith sample belongs to the
kth cluster and O otherwise, the problem becomes maximization of the following complete
penalized log-likelihood:

n K 14
Le@) =YY" zitloglme) + (1 —w) Y log(N(gijlijk-07))
i=1k=1 j=1

(5)
P K
+ wlog(N (vilBok + B xi, )t =AY Y Il
i=1k=1

where 6, = {61, z} and z = {zjx} (1 <i <n and 1 <k < K). Optimization of equation (5) is
achieved by EM algorithm, which is described in detail in Supplementary Material Section
S4. With the estimated ,30/(, Ak, 62, B, [ jk» and &]-2, the final cluster membership probability
is

Ak Tl ATy N (8ijl e, DY N (il Box + (B) xi. 62}
S A T Ty N gijlijr, DY =N (il Bor + (B xi, 62

and the cluster assignment can be estimated as C = {21,%2,..., 2.}, where 3 =
arg maxj<x<k Zik- One of the most important goals of disease subtyping is to predict the
subtype label of new patients without knowing the outcome value, which can be predicted by

©6)  Zik=

A =y T19—1 N (gij validation| 2k 7)
Zlel o] 1_[;'1:1 Hle N(gij,validation“ljl’ 612)
using only the gene expression data. Similarly, we can conclude the predicted label of the
validation samples as Zi validation = &rg Maxi <k<k Zik,validation-

To evaluate ogClustyj , we assess the same benchmarks in Section 2.2, and the clustering
assignment C= {z1, 22, ..., Zn} here is calculated from equation (6) and equation (7).

(7) 2 ik,validation =

3.2. Tuning parameter selection. 0gClusty;; has three tuning parameters: K, w, and A.
Similar to ogClustgy,, in the subsections below we focus on the selection of w and A when
K is prespecified.

3.2.1. Reparameterization of weight w. In equation (5), since we have p genes but
only one outcome, the magnitude of gene expression likelihood Zle log(N(gijlmjk, 01.2))

is much larger than that of outcome log-likelihood log(N (v;|Box + ﬂTxi, 02)), which can be
an issue in grid search of w. Denote by s the true number of informative genes, which is an
unknown quantity. Equation (5) can be written as

b1 1og(N (gij i ji, 612))

n K
L)=3Y zik{log(m 11— wyso]

i=1k=1 S0

K
+ wlog(N (vil o +ﬂTxi,02))} —kz > Ikl

j=lk=1
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(or, equivalently, w = —X%L )  Since

We reparametrize w) = oy F1—w

__w
w—(1—w)sg

P 1og(N(gijlpj
2 j=t Lo (g’ ko and log(N (yi| Box + ﬂTx,, 02)) are roughly in the same scale and com-

parable, umform grld search of 0 < w; <1 is more effective than that of the original parame-
terization 0 < w < 1. As shown in Table S1, when sy = 500, to search w from 0.04 to 1, the
effective searching space of w is from 0.95 to 1, which brings difficulty for searching optimal
w in practice. As a result, for determining optimal w, we perform a uniform grid search for
w, transform it back to w, and then solve equation (5), as we previously discussed. This
approach does not change the optimization process (i.e., one-to-one mapping between w and
wy). Since the true sg is unknown, we need to estimate and plug in §g. Table S1 indicates
that, even if we cannot exactly estimate §, searching for w; evenly between 0 and 1 provides
certain robustness for wrongly estimated §o. For an extreme example, even if we incorrectly
estimate §g, denoting its estimate as §o = 50 when the true value is so = 500, searching for
w1 (S0 = 50) equally between O to 1 can still cover most of the search space of w (sop = 500)
(see Supplementary Material Table S1(B)). In practice, we plug in §o = 0.1 x p. In the rest of
the paper, we discuss the selection of weight w; instead of the original weight w since they
are equivalent.

We note that the weight w has monotonic interpretation in that larger weight means heavier
contribution of outcome association in the joint likelihood. The magnitude of weight, how-
ever, does not have a direct interpretation since the likelihood of outcome association and that
of gene clustering are not directly comparable. For example, w = 0.5 or w; = 0.5 does not
mean equal contribution from outcome association and gene clustering in a theoretical sense.
The reparameterization here is mainly for computational purpose for effective grid search of
the weight.

3.2.2. Determining optimal wy and A. We conduct a two-dimensional search for w; and
A. For each (wy, 1) pair, we perform 10-fold cross-validation. Specifically, within each fold
of training/testing split, we fit ogClusty,y; using the training set and predict cluster label in
the testing fold using equation (7). We calculate the average R-squared value of selected
genes as RgeneS(C ; wi, A), which intuitively measures the degree of cluster separation in
gene expression of selected genes, with larger values being better. The R-squared value of
outcome fitness conditional on the covariates can be calculated as Routcome(C; w1, A), which
intuitively measures whether the predicted cluster can separate the outcome well in the cross-
validation, conditional on the covariates. Both Rgenes and R2 ... are defined in Section 2.2.

We note that the roles and importance of w; and A in clustering differ. w; deter-
mines the relative contribution between gene likelihood and outcome likelihood and has
a more critical impact on the final clustering result. In contrast, A controls gene se-
lection, and a slight change of A usually does not significantly alter the clustering re-
sult. Hence, instead of a naive two-dimensional grid search, we propose a two-stage ap-
proach by first focusing on whether predicted subtypes by gene expression data have

good outcome separation (1e Routcome(C ;wi, A)). Specifically, we obtain w; by w; =

Outcome(C wi, A)). After 12)1 is selected, we determine A by the geomet-
(C; i, 2) and Rgenes(C, G; w1, 1), the same criteria as ogClustgy:

- arg maX}\ (\/(ROHICOIHG(C wl )\‘) Rgenes(c7 G’ 12)17 )\'))
As mentioned in Section 3.2.1, searching for w; evenly between O and 1 is reasonable.

Suppose we generate grids of T weights {w}, wlz, ey wlT}. The next issue lies in design-

ing the grids of A= {)i 1,...,AN]}, Wwhere N is the number of A’s to be searched for each
weight. We note that if A is not properly designed, most of the computing time will be wasted
since many A values select almost identical number of genes. Consequently, for each w; the
proper grid A should be designed differently, denoted as Ay, = (Ayy 1, ..., Ay, N). Inspired

arg maxy,, (max; R

2
ric mean of RZicome
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by the efficient search algorithm by Li et al. (2022), we develop a similar bisection search
algorithm for each weight wy, which makes the corresponding numbers of selected genes of
Aw, Toughly equally spaced in log2 scale. The detailed bisection search algorithm is shown
in Supplementary Material Section S5. In practice, to reduce computing time, it is recom-
mended to use a small N (e.g., 10-20) when selecting w; in the first stage. In the second
stage of selecting X, a more dense search with a large N (e.g., 50-100) can be used.

4. Simulations.

4.1. Simulation settings. We conduct two simulations to evaluate the performance of
clustering, feature selection, and outcome association of ogClustgy, and ogClusty,j; while
comparing with existing methods sparse K-means and PMBC. Note that both sparse K-
means and PMBC only take g; as input to identify clusters, while clusters by ogClustgy; and
ogClustyy;. are characterized by g; with guidance from outcome y;. In this section we de-
scribe and show simulation results with guidance from a continuous outcome, while leaving
simulations for survival outcome in Supplementary Material Section S7. In terms of the sim-
ulation setting with a continuous outcome, we simulate n = 99 samples with K =3 clusters,
one outcome variable, two covariates, and 2000 genes in total where 50 true signal genes (p1),
50 genes that define random clusters (p»), 50 genes that are correlated with covariates (p1),
and the rest is noise genes (p4). We vary the effect size for outcome separation c; € {2, 3}
and the effect size for gene cluster signal i € {0.9, 1.2, 1.5, 1.8} to evaluate the performances
under different levels of outcome association and gene cluster separation. For each setting
we repeat 50 times. Detailed simulation procedures are described in Supplementary Material
Section S7.1.

In the evaluation and for each simulated dataset, we randomly split samples into three
folds where two folds serve as training/discovery data and the remaining one for external
testing/validation. We assume the true number of informative genes is unknown and use our
proposed approach (see Section 2.3 and 3.2) to select wy and A for ogClusty,; and A for
ogClustgy,, while sparse K-means and PMBC use gap statistic and BIC, respectively, to
select genes (Pan and Shen (2007), Witten and Tibshirani (2010)). In addition, to allow a
fair comparison, we perform an additional comparison when each method selects the number
of genes close to the underlying truth p; = 50 (i.e., by performing a grid search of A and
selecting the A that generates the number of genes closest to the underlying truth).

4.2. Simulation results. Figure 1 shows the result at ¢; = 2 when the true number of
signal genes (p; = 50) is unknown. The result demonstrates a general superior performance
of outcome-guided clustering methods (ogClustgy, and ogClustyj; ) over traditional cluster-
ing without outcome guidance (sparse K-means and PMBC) in terms of disease subtyping
accuracy, feature selection, and outcome association. As expected, ogClustyy; improves the
overfitting of ogClustg), and shows better performance in some independent validation sce-
narios.

In Figure 1 with continuous outcome guidance and an unknown number of informative
genes, the average number of selected genes from 50 simulations (standard error in parenthe-
sis) by each method are shown in Figure 1(A) for varying ¢ and the boxplots of corresponding
Jaccard indexes are shown in Figure 1(B). The result shows inadequate feature selection by
sparse K-means, PMBC and ogClustgy; and that although the numbers of selected features
are close to the truth p; = 50, Jaccard indexes are less than 0.3, even when gene signal is
strong at u = 1.8. ogClusty;;, performs the best with increasingly accurate feature selec-
tion in strong signal cases (selects about 47 genes and Jaccard index ~ 0.9 when u = 1.8).
In terms of disease subtyping performance, Figure 1(C) shows clustering accuracy by ARI
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FIG. 1. Result for Simulation I under outcome association effect size c¢1 = 2, assuming the true number of
informative features is unknown for all four methods. Tuning parameters of ogClustgy; and ogClustyyyr, are
determined by the approach in Section 2.3 and Section 3.2 while tuning parameters of sparse K -means and PMBC
are selected by gap statistic and BIC, respectively. Table (A) shows the average number of features selected over
50 replications with standard error in parenthesis by each method under different values of . Figure (B) shows
the distribution of the Jaccard index from 50 replications for benchmarking feature selection accuracy. Figures
(C=F) show ARI (clustering accuracy), Réenes of selected genes (gene cluster separation), R(z)utcome (outcome
association), and RMSE (outcome association) in the training (upper) and testing (lower) data, respectively. The
error bar represents the standard error across 50 replications.

of each method. Sparse K-means and PMBC both do not perform well (ARI =0 — 0.4) in
training and testing. ogClustgy, has high clustering accuracy (ARI = 0.4 — 0.5) in training
but shows overfitting with lower accuracy in testing. In contrast, ogClustyj; has the best per-
formance with the highest ARI in both training and testing data. Figure 1(D) shows gene clus-
ter separation by Réenes of selected genes. The result presents an improved performance of
ogClustyyg , compared to ogClustgy, indicating stronger gene signatures in identified disease
subtypes. Sparse K -means and PMBC have comparable or sometimes higher Réenes because
they might have selected genes from clinically irrelevant clusters (pa genes) or with covariate
association (p3 genes), which does not mean better performance. Figure 1(E) and 1(F) illus-
trate outcome association of identified clusters by R2,..me and RMSE, respectively. The two
outcome-guided clustering methods outperform sparse K-means and PMBC by a large mar-
gin. ogClustgy; shows stronger overfitting drawback and often has worse performance than
ogClustyyy;. in testing data. Similar results hold when ¢; = 3 in Supplementary Material Fig-

ure S2 where both ogClustgys and ogClusty; have better performance, and ogClusty; in
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particular shows almost perfect feature selection (Jaccard index ~ 1) and clustering accuracy
(ARI ~ 1) in strong gene signal.

Since Figure 1 corresponds to an unknown number of informative genes, the performance
of different methods in Figure 1(C)—(F) may depend on different numbers of selected genes
in Figure 1(A). Alternatively, we perform another set of evaluations, assuming that p; = 50
is given and all methods select as close to 50 genes as possible. The corresponding results are
included in Supplementary Material Figure S3 with almost identical conclusions as shown in
Figure 1(C)—(F).

To evaluate the impact of marginal screening (i.e., selecting top outcome-associated genes
before clustering), Supplementary Material Figure S4 shows the result of preselecting the top
500 outcome-associated genes out of 2000 genes. Performance of feature selection, disease
subtyping, and outcome association improve significantly for sparse K-means and PMBC.
The improvement is of a much smaller magnitude for ogClustgy; and ogClusty; , demon-
strating their strength with embedded outcome guidance. Since the decision of marginal
screening parameter (i.e., the number of prescreened genes) is usually subjective, we rec-
ommend marginal screening as an optional step in our software package and generally do not
recommend it for ogClustgy; and ogClustyyy; .

The simulation setting above contains an equal sample size for all three clusters. To eval-
uate the performance of detecting a rare disease subtype (cluster) with a relatively smaller
sample size, Supplementary Material Figure S9 shows results with sample size ratio 3:3:1,
2:2:1, 3:3:2, 1:1:1 with identical total sample size (i.e., the smallest cluster has 1/7, 1/5, 1/4,
and 1/3 of the total sample size). Similar to previous results, ogClusty,; has the best perfor-
mance of the four methods in the testing data. As expected, performance decreases when the
smallest cluster has fewer samples in ogClustgy and ogClustyyy; .

5. Real applications.

5.1. Lung disease transcriptomic application. In this subsection we evaluate ogClustgy,
and ogClusty;;. on two lung disease transcriptomic studies from the Lung Genomics Re-
search Consortium (for details, see Supplementary Material Section S8), which contains the
datasets of 12,958 common genes over 218 COPD (chronic obstructive pulmonary disease)
patients and 249 ILD (interstitial lung disease) patients in total. Currently, COPD and ILD are
classified purely by clinical features and, due to somewhat shared symptoms between these
two diseases, the classification is often debatable. Forced expiratory score (FEV1) measures
the amount of air that can be forced from lungs in one second, which is a key clinical fea-
ture and is used as the outcome to guide disease subtyping, while age and sex are utilized as
relevant covariates. In data preprocessing we first filter out half of the genes with low aver-
age expression, and among the remaining half, we further keep the top 50% genes of large
standard deviation (i.e., filter out nonexpressed genes by mean and noninformative genes by
standard deviation), resulting in 3,240 remaining genes. In addition, the downloaded FEV1
outcome is normalized to zero mean and unit standard deviation, although the standardization
does not impact likelihood in the methods.

We treat data from the study of 143 COPD and 188 ILD patients as the discovery study and
the remainder as a validation study. We perform disease subtyping using the discovery cohort
with the number of clusters K = 3 by ogClustgy, 0gClustyy;y; , sparse K-means, and PMBC,
and evaluate the four methods by performing clustering in the training cohort and apply the
estimated clustering parameters to determine clustering in the testing cohort. We first apply
tuning parameter selection criteria in each method for selecting A in ogClustgy, w1 and A in
ogClustyy;. and feature selection in sparse K -means (by gap statistic) and PMBC (by BIC).
It turns out that the four methods select very different numbers of genes (197, 300, 3240 and
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FIG. 2.  Results of independent validation evaluation of ogClustgyg, ogClustyyyy , sparse K-means, and PMBC
in the lung disease application. Table (A) shows the different numbers of genes selected for clustering after param-
eter tuning of each method as well as the number of genes used in clustering when selecting as close to 300 genes
as possible for all the methods. With about 300 genes selected by each method, Figure (B) shows R(z)utcome and
RMSE, which reflects the outcome association, as well as Réenes for gene cluster separation by each method in
training and testing data. Figure (C) is the boxplot of the outcome observations FEV1 in three predicted clusters
by each method in the training (upper) and testing (lower) study, respectively.

2674 genes in Figure 2(A)). For a fair comparison without impact from varying gene selec-
tion, we select roughly 300 genes in all four methods and the result is shown in Figure 2(B)
and 2(C). To evaluate the sensitivity of choosing different numbers of selected genes, Supple-
mentary Material Figure S6(II) shows the method comparison of selecting about 400 genes.
For each method, the cluster label is reordered to “low, medium,” and “high” according to the
median of FEV1 value in the cluster from discovery/training cohort analysis.

Unlike in simulation, the true informative genes and true disease subtyping are unknown
in real applications, so evaluations by ARI and Jaccard index are not applicable. Figure 2(B)
shows results of outcome association (by R2,..me and RMSE) and gene cluster separation

(by Rgenes) from applying the four methods in the training and validating in the testing co-

hort. Similar to the simulation result, both outcome-guided clustering methods generate sam-
ple clusters with better outcome association (larger R2,,.ome and smaller RMSE) than sparse
K-means and PMBC. Clustering from ogClusty; has slightly better outcome association
and less overfitting in the testing study result than that from ogClustgy;. The boxplots in

Figure 2(C) further show outcome association between identified clusters and normalized
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FEV1 in the learning in training and validation in the testing study. We find that differen-
tial FEV1 values across clusters are clear in the ogClustgy, and ogClusty;, results but not
in sparse K-means and PMBC, showing failure of the two traditional methods to identify
clinically relevant clusters. In terms of gene cluster separation, ogClusty;. slightly outper-
forms ogClustgy, (larger Réenes) in Figure 2(B) for both training and testing studies. Sparse
K -means and PMBC appear to identify well-separated cluster patterns in gene expression
(Réenes ~ 0.5) but with almost no clinical association with FEV1. All the findings and con-
clusions are similar in Supplementary Material Figure S6(I) and S6(II), where the number of
informative genes is learned from the algorithm or assumed at about 400 genes, respectively.

We next conduct pathway enrichment analysis for the ~300 genes selected by each method
using Ingenuity Pathway Analysis (IPA). Supplementary Material Table S2 shows the num-
ber of detected pathways under different cutoffs of p-value and false discovery rate (FDR).
At FDR= 5% threshold, ogClustyy; identifies 40 enriched pathways, while the other three
methods do not detect any. To provide a fair presentation, Supplementary Material Table S3
shows the union of the top 10 pathways detected by the four methods and their enrichment
p-values. ogClusty,;, identifies many pathways with highly significant p-values associated
with immune responses and organismal injury while the top pathways from the other three
methods are less relevant to lung disease. For example, ogClustyy; identifies IL-10 signaling
and IL-6 signaling pathway, which has important ramifications for the diseases of asthma
and chronic obstructive pulmonary disease (Lin et al. (2021), Ogawa, Duru and Ameredes
(2008)), pathogen-induced cytokine storm signaling pathway, where anticytokine therapy has
potentials in chronic obstructive pulmonary disease (Chung (2001)), role of chondrocytes in
rheumatoid arthritis signaling pathway, and many other important pathways.

5.2. Triple-negative breast cancer transcriptomic application. Triple-negative breast
cancer (TNBC) accounts for about 10-15% of all breast cancers, which is categorized by
lack of ER, PR and HER2 protein expression. TNBC lacks targeted therapy and usually has
the worst prognosis compared with ER, PR, or HER2 positive breast cancers. In this sub-
section we investigate two large-scale breast cancer studies (for details, see Supplementary
Material Section S8) with transcriptomic data of 275 and 151 TNBC samples, respectively,
from Illumina HT-12 microarray and Illumina HiSeq to evaluate the disease subtyping in
TNBC of the four methods discussed. We take the study of 275 samples as the training co-
hort while the other as the testing cohort. Overall survival is used as the outcome variable for
subtyping guidance, and age at diagnosis is utilized as a relevant covariate. In total, the two
datasets have 18,964 genes in common. Similar to the lung disease application, we filter out
75% of genes based on mean and standard deviation, retaining 4741 genes. As we will see
later, successful training in microarray data and independent validation in RNA-seq data is a
strength in this application.

ogClustgyy, 0gClustyyy, sparse K-means, and PMBC are applied for disease subtyping
with K =2 in the training cohort and identified disease subtypes are validated in the testing
cohort. Similar to the lung disease application, sparse K-means and PMBC fail in feature
selection by selecting 4166 and 2273 genes in Figure 3(A) while ogClustgy; and ogClusty
select 195 and 429 genes. To provide a fair comparison, we select roughly 400 genes, accord-
ing to the ogClustyyj;, result for all four methods, and leave the result of selecting 300 genes
to Supplementary Material Figure S7(II).

Figure 3(B) shows results of outcome association (by log-rank test statistic and adjusted
C-index) and gene cluster separation (by Réenes) from applying the four methods in the train-
ing study and validating in the testing cohort. Similar to the simulation and lung disease
application results, ogClusty,j;. generates patient clusters with better outcome association
(larger log-rank test statistic and larger adjusted C-index) than sparse K-means, PMBC and
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FIG. 3. Independent validation evaluation of ogClustgy, ogClustyyy., sparse K-means, and PMBC in the
triple-negative breast cancer application. Table (A) shows the different numbers of genes selected for clustering
after parameter tuning of each method as well as the number of genes used in clustering when selecting as close
to 400 genes as possible for all the methods. With about 400 genes selected for each method, Figure (B) shows
log-rank test statistic and adjusted C-index, which reflects the outcome association, as well as Réenes for gene
cluster separation, by each method in training and testing data. Figure (C) shows Kaplan—Meier survival curves
of identified clusters from each method in the training (upper) and testing (lower) cohort, respectively.

ogClustgy, in the testing cohort. ogClustgy; shows overfitting with high performance in train-
ing but much worse in testing. Figure 3(C) shows Kaplan—Meier survival curves of identified
clusters from each method, and the result further confirms the conclusion above. Results of

gene cluster separation by Réenes are similar to the lung disease application that sparse K -

means and PMBC can identify well-separated clusters (large Réenes) while the clusters are

clinically irrelevant with no outcome association. All results are similar in Supplementary
Material Figure S7(I) and S7(II), where the number of informative genes is learned from the
algorithm or assumed at about 300 genes, respectively.

Next, we conduct pathway enrichment analysis using IPA. Supplementary Material Ta-
ble S4 shows the number of enriched pathways under different p-values and FDR cutoffs.
ogClustyy;, detects more enriched pathways than the other methods and ogClustgy, detects
almost none (e.g., at FDR=5%, ogClusty;; has 13 enriched pathways, sparse K-means and
PMBC have six, and ogClustg), detects zero). The union of the top 10 pathways from each
method is shown in Supplementary Material Table S5, where many immune-related pathways
are identified. These include Th1 and Th2 pathways, allograft rejection signaling pathways,
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PD1 and PD-L1 pathways, and many T cell and B cell pathways, which are known to be re-
lated to breast cancer treatment and prognosis (Oshi et al. (2021), Planes-Laine et al. (2019),
Zhao et al. (2019)). Immune response has been recognized as critical prognosis biomarkers in
breast cancer and many targeted therapies function as immune checkpoint inhibitors (Wang,
Wu and Sun (2022)).

6. Conclusion and discussion. In this paper we propose a novel outcome-guided clus-
tering framework with two proposed methods by generative model ogClustg, and weighted
joint likelihood ogClustyy; for performing disease subtyping by transcriptomic data with
guidance from a clinical outcome. In ogClustgy; the generative model utilizes gene expres-
sion to characterize disease subtypes by a latent class variable, which further associates with
outcome. The likelihood target function in ogClustgys, however, is not flexible for balanc-
ing contribution from gene clustering and outcome association. In view of this drawback,
ogClustyy; uses a weighted joint likelihood approach for integrating information from gene
features and clinical outcome. The weight w determines relative likelihood contribution of
outcome association and gene cluster separation. By tuning the weight, ogClusty;; can iden-
tify clusters with distinct gene cluster signatures and high outcome association simultane-
ously so that the omics subtyping model obtained from the training study can generalize to
the testing cohort. Compared to the two proposed outcome-guided clustering methods, con-
ventional cluster analysis (e.g., sparse K-means and PMBC) purely based on transcriptomic
data often identifies clusters irrelevant to clinical outcomes. In extensive simulations and two
real applications, ogClustyj; generally has slightly better performance than ogClustyy; .

For the lung disease application (n = 331 patients in the training cohort, p = 3240 genes,
and g = 2 covariates) in Section 5.1, ogClustg) requires about 25 minutes for given a fixed A,
using the proposed multinomial logistic regression, and reduces to 30 seconds if changed to
sparse linear discriminant analysis. With the additional tuning step of w, ogClustyy; requires
about six hours in computing. Although computing is relatively heavy, they are affordable in
general omics applications. Since the optimization is through EM algorithm with a closed-
form solution in the iterative updates, the methods are almost linearly scalable and can be
paralleled in computing. For example, searching for parameters using 50 grids of w; and 20
grids of A with 10-fold cross-validation in Section 3.2 can be finished within one hour by 64
computing threads (Intel Xeon Gold with 384GB RAM) and can be further improved with
GPU computing. Overall, ogClusty; is preferred in general applications when computing is
not an issue. But when computing is a top concern (e.g., in cross-validation or repeated sub-
sampling evaluation), ogClustgy, is an effective method with fast implementation, especially
by using the sparse linear discriminant analysis option.

Our proposed algorithm and evaluations in simulations and real applications assume the
number of clusters is given. When we used a larger K in the two applications, our methods
have inferior clustering performance (almost empty cluster or clusters with worse validation).
Estimating the number of clusters is widely studied in the literature (e.g., by elbow plot or
resampling evaluation (Li et al. (2022))) and is not the focus of this paper. While our model
only incorporates one cohort and considers one type of omics data (i.e., transcriptomic data)
to characterize disease subtypes, it can be extended to incorporate multiple data sources, such
as multiomics data (i.e., vertical integration) or multiple transcriptomic studies (i.e., horizon-
tal meta-analysis) to enhance the signal, which will be a future direction. Another future
direction is cluster analysis guided by multiple potentially relevant outcomes. In complex
diseases the subtypes are often relevant to multiple clinical outcomes. Take lung disease ap-
plication as an example; forced vital capacity (FVC) measures the amount of air that can be
forcibly exhaled after taking the deepest breath possible. In clinical practice, FEV1, FVC,
and FEV1/FVC are all critical outcomes, and how to utilize multiple outcomes for clustering



1962 Y. LIET AL.

guidance is also a future direction. Finally, current applications summarize RNA-seq data to
a continuous expression level. Direct modeling of count data, similar to Li et al. (2023), is
expected to improve the performance and is a potential future direction.

We note that, unlike ogClustg)y;, 0gClustyy; is a nonstandard handling of the likelihood
function and is not fully model-based under a probabilistic framework. To circumvent over-
fitting of ogClustgy, a fully generative model can be developed similar to Bayesian consen-
sus clustering (Lock and Dunson (2013)), where outcome-fitting clustering and gene-fitting
clustering adhere loosely to an overall consensus clustering. Although such a full model is
mathematically appealing, the required Bayesian computing and inference is expected to be
prohibitive for thousands of genes.

An R package “ogClust”, together with data and programming code used in the simulations
and real applications, are available on GitHub https://github.com/wenjiaking/ogClust.
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SUPPLEMENTARY MATERIAL

Web-based supplementary materials for “Outcome-guided disease subtyping by gen-
erative model and weighted joint likelihood in transcriptomic applications” (DOI:
10.1214/23-AOAS1865SUPP; .pdf). A zip file that contains a pdf file for supplementary
method descriptions, algorithms, figures and tables, as well as the code and data sets to repli-
cate the analysis shown in the paper.
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