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a b s t r a c t

How can non-communicating agents learn to share congested resources efficiently? This is a challeng-
ing task when the agents can access the same resource simultaneously (in contrast to multi-agent
multi-armed bandit problems) and the resource valuations differ among agents. We present a fully
distributed algorithm for learning to share in congested environments and prove that the agents’
regret with respect to the optimal allocation is poly-logarithmic in the time horizon. Performance
in the non-asymptotic regime is illustrated in numerical simulations. The distributed algorithm has
applications in cloud computing and spectrum sharing.
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1. Introduction

Suppose N agents need to share M resources where N k M ,

i.e., in a congested environment. The utility of each agent n at

each time instant t depends on the resource mt
n it chooses and is

inversely proportional to the number of other agents that choose

the same resource at the same time, i.e., when each agent gets an

equal share of the resource. The agents do not know the value of

each resource. Each agent is aware of the resource-sharing struc-

ture but can only obtain a noisy realization of its utility corrupted

by sub-Gaussian noise.1 This problem is a generalization of the

multi-armed multi-agent bandit problem for distributed resource

sharing (Bistritz & Leshem, 2018b, 2020). The problem can be

considered as learning of a congestion game with incomplete

information. Like most games, resource-sharing among agents

can benefit significantly from cooperation (Owen, 1968). This is

especially important when there is no central management of the
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resources. Resource sharing is a challenging problem when com-
munication between agents is limited or does not exist. A further
complication arises when agents need to learn their individual
resource valuations. An example of unknown valuations is the
case of multiple servers having different hardware architectures,
e.g., GPU-based machines and vector processors, a different num-
ber of cores, size of memory, and different communication links
to the servers are some examples.

Resource sharing can be modeled as a non-cooperative game
(Owen, 1968), specifically, a congestion game (Monderer & Shap-
ley, 1996; Rosenthal, 1973). More specifically, resource sharing
can be modeled as a congestion game with agent-specific util-
ities (Milchtaich, 1996) that arises when agents are scattered in
the physical world. These games are used to model a wide variety
of applications including routing, load-balancing, and spectrum
allocation (Cheng et al., 2013; Pradelski & Young, 2012; Suri
et al., 2004). Using game theory, it is possible to design adaptive
agents whose actions optimize the overall welfare, where the
welfare of a game is defined as the sum of the rewards, even
when based on partial and imprecise information. Best response
algorithms applied to congestion games converge to Pure Nash
Equilibria (PNE), which may have low welfare. One way to deal
with this problem is to bound the ratio between the best and
worst PNE (Koutsoupias & Papadimitriou, 1999). A second way
is to search for an efficient PNE (Pradelski & Young, 2012). A
third way is to perform the welfare maximization of congestion
games in a central unit (Blumrosen & Dobzinski, 2007). A fourth
way is to simplify the discussion by not considering player-
specific rewards (Cheng et al., 2013). Finally, the discussion can
be restricted to a special class of congestion games called collision
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games, where all colliding players receive zero utility (Bistritz &
Leshem, 2019). However, in collision games, when the number of
resources is smaller than the number of agents, some agents will
receive zero utility.

Typically, achieving the social optimum requires communi-
cation between agents. Surprisingly, it has been shown recently
that for collision-type multi-agent multi-armed bandit problems,
a distributed assignment problem can be solved without explicit
information exchange between agents, as long as the number
of resources is larger or equal to the number of agents. Exam-
ples include the Game of Thrones algorithm (Bistritz & Leshem,
2018b, 2020), exploiting the auction algorithm (Bertsekas, 1979)
to obtain logarithmic regret in the multi-agent multi-arm bandit
with message exchange between the agents (Kalathil et al., 2014),
using the distributed auction algorithm (Naparstek & Leshem,
2013) which exploit properties of the wireless channel to obtain
a distributed learning with no coordination (Zafaruddin et al.,
2019), swap-based algorithms for stable configurations (Avner &
Mannor, 2019; Darak & Hanawal, 2019), or to signal resource
valuations (Boursier et al., 2019; Bubeck et al., 2019; Tibrewal
et al., 2019) and the musical chairs algorithm (Rosenski et al.,
2016). Similarly, algorithms for the adversarial case have been
studied in Alatur et al. (2020). In these papers, it is assumed
that agents who choose the same arm simultaneously receive no
reward.

Motivated by applications in spectrum collaboration in ad-hoc
wireless networks (Avner & Mannor, 2019; Bistritz & Leshem,
2018a; Bubeck et al., 2019; Darak & Hanawal, 2019; Tibrewal
et al., 2019; Zafaruddin et al., 2019), cloud computing (Tang et al.,
2018) and machine scheduling (Tang et al., 2018), we deal with
the heavily congested regime together with utilities that depend
non-linearly on the number of sharing agents. When multiple
agents simultaneously choose the same arm they suffer a penalty.
To overcome this, arm-sharing protocols can be devised, and the
utility of each agent depends on the load on the arm. Recently, we
have shown that a time division structure can be implemented
using opportunistic carrier sensing combined with the auction
algorithm (Boyarski et al., 2023). However, this requires a more
complicated communication protocol. In Magesh and Veeravalli
(2021) a collision-based solution is proposed under a slightly
different setting.

The algorithms and analysis in this paper depart significantly
from existing works in that we consider simultaneous resource
sharing in heavily loaded systems with multiple non-
communicating agents. Specifically, we develop a learning
framework for incomplete information congestion games with
non-linear utilities. To that end, we construct a novel algorithm
(Estimate, Negotiate, Exploit), dividing the learning into epochs of
increasing length. Each epoch has a constant exploration phase
followed by a negotiation phase which is a poly-logarithmic
fraction of the following exploitation phase. By proving that
the probability of error in the negotiation phase decreases sup-
exponentially we obtain the main result: A poly-logarithmic
regret in Theorem 4.1. That is, the regret R grows with time T
as R = O(log3+¶

2 (T )). where 0 f ¶ f 1.
Our proposed algorithm extends the work of Marden et al.

(2014) to incomplete information games and Bistritz and Leshem
(2018a) to the heavily congested case where there are fewer
resources than agents and there is no collision information but
only rewards which depend on the load since multiple agents
access each resource simultaneously. Another novel feature of
our algorithm is the identification of specific states, which allows
us to accelerate the algorithm, reduce the effective state space
used in the negotiation phase and therefore allow us to apply the
algorithm for a larger number of agents.

The rest of this paper is organized as follows: Section 2 sets
up the model formulation and describes the problem. Section 3

describes our novel learning algorithm. Section 4 performs a
regret analysis of the learning algorithm. In Section 5 we discuss
the complexity of the algorithm, and the structure of the state
space. Following this, we propose a significant reduction in the
computational cost as well as the convergence time, by devising
a novel step for distributed identification of the all-content state
without explicit communication between the agents. This in turn
allows us to consider the conditional stationary distribution of
the perturbed Markov chain conditioned on all agents being
in the content state. In Section 6 we give numerical examples
to illustrate the regret of the proposed algorithm compared to
the distributed Upper Confidence Bound algorithm and random
allocations. Details of the proofs are provided in the Appendix.

2. Distributed cooperative sharing of congested resources

In this section, we define the resource sharing problem. We
assume that each resource is equally shared among the agents
who choose it, e.g., via a round-robin mechanism. This is the
simplest mechanism for sharing the resource when the resource
is required continuously by all agents. Suppose N agents are
sharing M resources where N k M . This makes the resource
sharing much more challenging than the case N f M; Yet this
model is important in spectrum sharing and cloud computing
applications as discussed in Section 1.

We assume that time is slotted with t = 1, 2, . . . , T indexing
the time slots (discrete time) and agents are synchronized to the
slots. The number of time slots T is unknown to the agents. The
single resource chosen by agent n at time t is denoted mt

n. The
allocation at time t is

mt = (mt
1, . . . ,m

t
N )

The load experienced by agent n at time t under allocation mt

is the number of agents who chose the same resource (including
itself), i.e.,

ℓtn = ℓn(m
t ) ≜

N
∑

k=1
1(mt

k = mt
n), (1)

where mt
k is the action of agent k at time t . The utility of agent

n with resource m and load 1 is denoted by Un,m,1. We assume
that these utilities are nonnegative, bounded by Umax, and do
not evolve with time. The utility of agent n at time t , given the
resource allocation vector mt is

Un(m
t ) =

Un,mt
n,1

ℓtn
. (2)

The welfare W at time t with allocation mt is the sum of the
utilities over the N agents:

W t = W (mt ) ≜

N
∑

n=1
Un(m

t ) =
N
∑

n=1
U t
n. (3)

The best and second-best welfares are denoted by

W ∗ ≜ max
m

W (m) W ∗∗ ≜ max
m̸=m∗

W (m) (4)

The sub-optimality gap is defined as:

Ä ≜
W ∗ −W ∗∗

2N
(5)

The optimal allocation is

m∗ ≜ argmax
m

W (m). (6)

A crucial property of our model is that of incomplete information:
agents are aware of the time-sharing structure of the utility

2
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function that is inversely proportional to their load, but they
cannot directly observe their utilities, and they do not know their
unique utility function parameters Un,m,1 ∀1 f m f M . Instead,
they observe noisy versions of their utilities known as sample
rewards. The sample reward of agent n at time t with in allocation
mt is

rn(m
t ) = Un(m

t
n)+ ¿t

n, (7)

where ¿t
n is zero-mean sub-Gaussian noise, i.i.d. in time and

among agents with variance proxy b.2

Since the utilities of the agents with each resource and load
1 are independently distributed continuous random variables,
drawn once at the beginning of the sharing process, the optimal
allocation m∗ is unique with probability 1.

The main performance metric of the above resource-sharing
processes is the regret:

R ≜ TW ∗ − E

(

T
∑

t=1
W t

)

, (8)

where the expectation E is taken with respect to the randomness
in the rewards as well as the agents’ choices.

3. Learning the optimal allocation

How can the optimal allocation m∗ defined in (6) be learned
by the agents in a distributed way? This section presents the
Estimation, Negotiation, and Exploitation (ENE) learning algorithm
that achieves a regret that is poly-logarithmic in the number of
time steps

R = O(log3+¶
2 (T ))

where 0 f ¶ f 1. The algorithm divides the T time slots
of the sharing problem into J epochs of dynamic length. As in
other related work, e.g., Bistritz and Leshem (2018a), Boursier
et al. (2019), Tibrewal et al. (2019) and Zafaruddin et al. (2019),
each epoch is further divided into phases whose length is also
dynamic.

Our proposed algorithm has three phases: Estimation, Negoti-
ation, and Exploitation.

(1) In the first phase each agent individually and distributedly
estimates its utilities with any resource and any load.

(2) In the second phase agents negotiate over resources with-
out direct communication.

(3) In the third phase agents exploit the allocation they dis-
tributedly decided upon in the previous phase. If the first
and second phases are successful, the third phase is regret-
free.

The algorithm is illustrated in Fig. 1. Each of the three phases is
further divided into blocks. Intuitively, the purpose of the blocks
is to average out the sub-Gaussian noise. There is an underly-
ing clock that generates the time steps of the sharing process.
We assume that the agents are synchronized to this clock. This
assumption is typical in other papers in multi-agent distributed
learning. The index n refers to an agent, m to a resource, and
ℓ to the load. The reward during epoch j, phase i, block k, and

time-step Ä is denoted r
j,i,k,Ä

n,m,ℓ = Un,m,ℓ + ¿
j,2,k,Ä
n .

Estimation phase: This phase has M + 1 blocks. Each block has
j time-steps.3 In block k where 1 f k f M agent n accesses

2 Some of the basic properties of sub-Gaussian random variables used in this

paper are mentioned in the Appendix.
3 In Magesh and Veeravalli (2021) the authors assume that the number of

players is bounded and that whenever more than N∗ access a resource, the

utility is 0. Since we do not make this assumption, our concentration result

requires, the number of samples for estimation to grow super-linearly.

Fig. 1. The ENE algorithm structure. Each epoch j consists of three phases:

Estimation, Negotiation and Exploitation, on time intervals T1(j), T2(j), T3(j),

respectively.

resource k with probability 1. As the number of epochs j→∞,
the number of samples used for estimating the utilities also grows
to infinity, and therefore, by the strong law of large numbers a
consistent estimate of the utilities is possible, as shown below.

Agent n then estimates its utility with resource k and load N

as the average of its rewards from this block from all epochs until
now:

Û
j

n,k,N = r
j,1,k
n =

∑j

i=1
∑i

Ä=1 r
i,1,k,Ä
n

1
2
j(j+ 1)

j→∞−→ Un,k,N (9)

In each time step of block M + 1 each agent accesses the first
resource with probability 1/2. Agent n denotes the average of its
rewards from this block from all epochs until now by4

r
j,1,M+1
n =
∑j

i=1
∑i

Ä=1

(

1

(

m
j,1,M+1,Ä
n = 1

)

· r i,1,M+1,Än

)

∑j

i=1
∑i

Ä=1 1

(

m
j,1,M+1,Ä
n = 1

)

j→∞−→ Un,1,N · 2
(

1− 1

2N

)

(10)

Agent n estimates N in epoch j to be

N̂ j
n =

1

ln (1/2)
ln

(

1− r
j,1,M+1
n

2r j,1,1n

)

j→∞−→ N (11)

Recall that N̂
j
n denotes agent n’s estimate of the number of agents

and that Û
j

n,m,N is its estimate of its own utility with resource m

and maximal load. Agent n can now use these two quantities to
compute its utility with any load ℓ:

Û
j

n,m,ℓ =
1

ℓ
N̂Û

j

n,m,N

j→∞−→ Un,m,ℓ (12)

The allocation that maximizes the estimated utilities of epoch j is
denoted by

m∗j ≜ argmax
m

N
∑

n=1
Û

j

n,mn,ℓn(m) (13)

The estimated optimal utilities are

Û∗jn ≜ Û
j

n,m
∗j
n ,ℓn(m∗j)

Û∗j ≜
(

Û
∗j
1 , . . . , Û

∗j
N

) (14)

Negotiation Phase: In the heart of the ENE algorithm is the Ne-
gotiation Phase, inspired by Marden et al. (2014). The Negotiation
Phase of epoch j is divided into j1+¶/3 load-estimation-blocks5

that are each composed of j1+¶/3 time-steps. Agent n in block k

has a mood that is either Content or Discontent and denoted by

S
j,2,k
n ∈ {C,D}. A Content agent is stable while a Discontent agent

4 See Appendix.
5 We believe that using the significantly more complicated techniques

from Bistritz and Leshem (2020) we can use only j¶/3 Negotiation Blocks, thereby

reducing to total regret of the algorithm to O(log2+¶ T ).

3
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is unstable. The probability of an individual agent to enter such
a Content and Stable state increases with its estimated utility.
Therefore, the probability of the community to enter an all-
content-all-stable state increases with the Welfare. On the other
hand, the probability to exit an all-Content-all-stable state is
constant and independent of the Welfare. Hence, during the tail of
the Negotiation Phase, the community will spend most of its time
in an optimal all-Content-all-stable state with high probability.
Agents can then count which resources they visit most frequently
during the tail of the Negotiation Phase and use these during the
Exploitation Phase. The meta-parameter controlling the dynamics
of the Markov chain is denoted by ε ∈ (0, 1). In the first block of
the Negotiation Phase, all agents are Discontent. In block k, agent
n performs the following actions distributedly and individually
without direct communication with its peers:

(1) Choose a resource. A discontent agent n chooses a re-

source m
j,2,k
n at epoch j, phase 2 (Negotiation) and block k

uniformly at random:

P

(

mj,2,k
n = a

)

= 1

M
, ∀ 1 f a f A. (15)

A content agent chooses the same resource with high prob-
ability and will otherwise explore uniformly:

P

(

mj,2,k
n = a

)

=
{

1− εc a = m
j,2,k−1
n

εc

A−1 a ̸= m
j,2,k−1
n

(16)

where c > N is a parameter of Algorithm 1. c ensures
that an agent stays content for sufficiently long time so
that other agents can become content as well (See the
discussion in Section 5 for further insight.)

(2) Stay with this resource for the rest of this block and collect
j1+¶/3 i.i.d. reward samples.

(3) Averages these reward and denotes the average by r
j,2,k
n .

(4) Estimate load based on the utility estimation from the
previous phase:

ℓ̂j,2,kn ← argmin
1fℓfN

⏐

⏐

⏐
r
j,2,k
n − Û

j

n,m
j,2,k
n ,ℓ

⏐

⏐

⏐
(17)

(5) Estimate utility based on the load estimation ℓ̂
j,2,k
n and the

utility estimation of the previous phase:

Û j,2,k
n ← Û

j

n,m
j,2,k
n ,ℓ̂

j,2,k
n

(18)

(6) Choose a new Mood. If an agent was previously Content

S
j,2,k−1
n = C , and its action and estimated utility have not

changed m
j,2,k
n = m

j,2,k−1
n ' Û

j,2,k
n = Û

j,2,k−1
n , then it will

remain Content with probability 1:

C→C w.p.1. (19)

If an agent was previously Discontent S
j,2,k−1
n = D, or

changed its resource or estimated utility from the previous

block m
j,2,k
n ̸= m

j,2,k−1
n ( Û

j,2,k
n ̸= Û

j,2,k−1
n , its new Mood is

chosen according to the following probability:

[C/D] →
{

C w.p. εUmax−Ûj,2,k
n

D w.p. 1− εUmax−Ûj,2,k
n

. (20)

Exploitation Phase: The third and final phase of the ENE algo-
rithm has only one block and 2j time-steps. Each agent chooses
individually and distributedly the resource it visited most fre-
quently during the tail of the last Negotiation Phase:

mj,3
n = argmax

a

j1+¶/3
∑

k=(1−³)j1+¶/3

1(mj,2,k
n = a) (21)

where 0 < ³ < 1 is a forgetting factor. Choosing ³ = 0.5 is
sufficient. The agent then stays with this resource throughout the
block, gathering rewards. If the first two phases were success-
ful, this phase will be regret free. The complete ENE method is
described in Algorithm 1.

Algorithm 1 The Estimation, Negotiation, and Exploitation al-
gorithm at the individual agent level, to be performed fully
distributedly and without communication between agents

1: Input: ε > 0, ³ ∈ (0, 1), ¶ > 0, c g N , c1, c2, c3, c4 the initial
lengths of the phases.

2: Moodn ← D.
3: for j = 1 to J epochs do

4: Payoff Estimation Phase

5: for m = 1 to M do

6: for Ä = 1 to c1j do

7: m
j,1,m,Ä
n ← m

8: end for

9: Estimate U
j

n,m,N according to (9).
10: end for

11: for Ä to j do

12: m
j,1,M+1,Ä
n =

{

1 w.p. 1/2
∅ w.p. 1/2

13: end for

14: Calculate r
j,1,M+1
n according to (10).

15: Estimate N according to (11).

16: Estimate U
j

n,m,ℓ ∀1 f m f M, 1 f ℓ f N according to (12).
17: Negotiation Phase

18: S
j,2,0
n ← D

19: for k = 1 to c2j
1+¶/3 do

20: Choose new resource m
j,2,k
n according to (15) or (16).

21: for Ä = 1 to c4j
1+¶/3 do

22: m
j,2,k,Ä
n ← m

j,2,k
n

23: end for

24: Calculate r
j,2,k
n ← 1

j1+¶/3

∑j1+¶/3

Ä=1 r
j,2,k,Ä
n .

25: Estimate load ℓ̂
j,2,k
n according to (17).

26: Estimate utility Û
j,2,k
n according to (18).

27: Choose new Mood according to (19) or (20).
28: end for

29: Exploitation Phase

30: Choose resource m
j,3
n according to (21).

31: for Ä to c32
j do

32: m
j,3,1,Ä
n ← m

j,3
n

33: end for

34: end for

4. Regret analysis of ENE algorithm

In this section, we analyze the expected regret of the ENE
Algorithm 1. We present the main Theorem, whose proof fol-
lows via a sequence of Lemmas (in the Appendix) to bound the
probability of error for each error event.

Theorem 4.1. For the resource sharing problem specified in Sec-

tion 2 there exists a parameter6 ε > 0 in algorithm 1 such that the

regret of the ENE algorithm is upper-bounded by O
(

log3+¶
2 (T )

)

.

Before providing the rigorous proof, we provide an outline
that will assist the reader. We consider the first two phases as
resulting in full regret, i.e., each agent suffers regret of Umax.

6 The choice of ε is related to the perturbed Markov chain used in the

Negotiation Phase. Practically, we found that values between 10−3 and 0.1

perform satisfactorily.
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Hence the contribution of these phases to epoch j’s expected
regret is O

(

j2+¶
)

which is the length of these phases in epoch

j. Summing up to epoch J this yields O
(

J3+¶
)

. Since exploitation
grows exponentially, up to time T there are O (log T ) epochs and
the total regret from exploration and negotiation is O

(

log3+¶ T
)

(This is proved in Lemma 4.2.) The main part of the proof is
showing that the total regret from exploitation is bounded. This
comprises two parts: Prove that the probability that the agents
use sub-optimal actions at the end of the negotiation phase of
epoch j decays exponentially at a rate faster than 2−j. This is based
on the analysis of the Markov chain and the proof is given in
Appendix A.3. All that remains is to sum up the geometric series
bounding the overall exploitation regret.

Proof. Let R1, R2 and R3 denote the accumulated regret from the
Estimation, O

(

J3+¶
)

Negotiation, and Exploitation phases of all
the epochs of the algorithm, respectively, such that R = R1+R2+
R3. Recall that Algorithm 1 operates over J epochs. By Lemma 4.3
R3 = O (J) and R1 + R2 is upper bounded by

NUmax

J
∑

j=1

(

j(M + 1)+ j2+2¶/3
)

= O
(

J3+¶
)

(22)

Furthermore, according to Lemma 4.2 J f log2(T ). □

Having sub-linear regret means that the ratio between the
amount of time spent on sub-optimal allocations and the amount
of time spent on the optimal allocation approaches zero as T→∞.
Because the sharing process described in Section 2 is a variation
on a single-agent multi-armed bandit problem, the optimal regret
for this problem is O(log2(T )) according to Lai and Robbins (1985)
and not far from ours.

Lemma 4.2. The number of epochs J that Algorithm 1 operates

satisfies E < log2(T )

Proof. Ignoring the last epoch and the durations of the Esti-

mation and Negotiation Phases produces T g
∑J−1

j=1 2j = (2J −
2).

Lemma 4.3. R3 = O(J).

Proof. The exploitation phase of epoch j will accumulate regret
only if the following error event occurred:

E j,3 : mj,3 ̸= m∗ (23)

That regret is upper bounded by NUmax2
j. Therefore:

Rj,3 f NUmax2
j
P

(

E j,3
)

(24)

According to Lemma A.5 in the Appendix, the probability P

(

E j,3
)

is O(exp(−j1+¶/4)). Hence, Rj,3 = O(1). Finally, R3 =
∑J

j=1 Rj,3 =
O(J).

5. Complexity of the algorithm and an acceleration scheme

The size of the state space of the Markov chain in Algorithm
1 is (2|A|)N . For large N this is huge, e.g., if N = 16 and
there are two actions, the state space size is 232. This makes
the convergence to the stationary distribution of the perturbed
Markov chain very slow. This makes Algorithm 1 unsuitable for
large values of M,N . In this section, we propose an algorithm
that significantly reduces the running time of Algorithm 1. The
algorithm that we discuss in this section exploits the structure of
the Markov chain, to base the agents’ decision on a much smaller
subset of the state space. This results in faster convergence to the
conditional stationary distribution.

As the main theorem states for sufficiently small ε the Markov
chain concentrates with high probability in the all-content state
and the optimal action

(

CN , a∗
)

. The mixing time of this Markov
chain can be large. Although we have no explicit bound for the
mixing time, it can grow as O(MN ), where M = |A| is the
cardinality of the action set and N is the number of agents.

We would like to provide some insight into the dynamics
which will allow us to develop a heuristic that converges much
faster. Each agent acts independently. Hence the probability of
an agent becoming content at time t when it is discontent is
εUmax−Un(t). Hence (assuming that Umax = 1), this is larger than
ε. Therefore, it is expected that using random actions the agent
will become content in time shorter than ε−1. On the other hand,
once it is content it will change its action and therefore become
discontent is εc , and c > N . Hence after time shorter than ´Nε−1

for any ´ > 1 all users will become content. All the agents
will remain content for time interval (1 − Nεc)−1 which can be
approximated by 1

Nεc
which is much longer. Hence we expect

that most of the time the Markov chain will be in an all-content
state. Conditioning on an all-content state, the probability that
the transition was using an action vector a is proportional to

εNUmax−
∑N

n=1 Un(a). Specifically,

P(a) = εNUmax−
∑N

n=1 Un(a)

∑

a∈AN
∑N

N=1 εNUmax−
∑N

n=1 Un(a)
. (25)

So the all-content states appear with a relatively high probability.
If the agents could identify these all-content states, they could
choose an action based on the frequency of each action in the
all-content states. This would become for each agent a problem
of finding the maximum of |A| counting processes, each with tran-
sition probability P(a) = εUmax−Un(a). A standard concentration
argument shows that with probability 1 and exponentially fast,
the correct state will be chosen except finitely many cases in
this random walk. This is the insight behind the analysis of the
stationary probability. However, this insight suggests that there is
a significant value in identifying the all-content state, since this
will accelerate the convergence to the optimal action.

Following the above discussion, we would like to identify the
states where all players are content, and only take into account
these states when determining the action. Surprisingly, this can
be done distributedly, by adding to the negotiation phase, another
sub-phase. In this sub-phase, all users apply action 1 for k1+¶/10

steps. Following this, all the content users apply action 1 again,
while discontent users do not act for another k1+¶/10 steps. If
some users are discontent, the value for each content user during
the second sub-phase is larger than in the first sub-phase by at

least
Un,1

N(N−1) , since the load in this phase is reduced. As k increases

the probability of misidentifying the all content state by any user
approaches 0 exponentially fast, using standard concentration
arguments. This amounts to adding Algorithm 2 at the end of each
block j in the negotiation phase after line 27 of Algorithm 1

V (a) is a vector of counters that counts how many times the
agent visited a in an all-content state. It is updated once every I

blocks. Now, Eq. (21) is replaced with

mj,3
n = argmax

a

V (a). (26)

6. Numerical examples

We illustrate the performance of the ENE algorithm in the
non-asymptotic regime in comparison with a random allocation
and the distributed (selfish) Upper Confidence Bound (dUCB)
algorithm (Besson & Kaufmann, 2018).

Suppose N = 4 agents share M = 2 communication chan-
nels. When two agents or more choose the same channel at the

5
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Algorithm 2 Identify all-content states

1: Input: V (a) : a ∈ A, Mood, an = m
j,2,k
n .

2: Let I = + 1
ε
,.

3: Select a = 1.
4: vn,N = 0.
5: for i = 1 to j1+¶/10 do

6: Perform action 1 and store r1n,N .

7: vn,N ← i−1
i

vn,N + 1
i
r1n,N .

8: end for

9: if mood=C then

10: Select a = 1.
11: vn,N−1 = 0.
12: for i = 1 to j1+¶/10 do

13: Perform action 1 and store r1n,N−1.

14: vn,N−1 ← i−1
i

vn,N−1 + 1
i
r1n,N−1

15: end for

16: if vn,N−1 > vn,N

(

1+ 1
2N(N−1)

)

then

17: mood= D.
18: else

19: mood← C .
20: All content← 1.
21: V (an) = V (an)+ 1.
22: end if

23: end if

same time, they share it equally via a round-robin Time Division
Multiple Access (TDMA) mechanism. Assume one communication
channel has high throughput (strongly desirable) and the other
has low throughput (weakly desirable). If all agents use the high
throughout the channel, then the channel becomes overcrowded
and its throughout reduces. We illustrate how the agents can
achieve an optimal distributed allocation over the channels using
the ENE algorithm.

To improve the convergence speed the number of blocks and
their duration can be scaled by fixed constants to better fit the
specific meta-parameters which represent the initial number of
iterations in each phase (c1, c2, c3) This is a feature of the ENE
algorithm and does not change the O(log32(T )) regret guarantee. In
the first set of simulations the noise ¿ was Gaussian with variance
0.1, the constant ³ is 1, the constant c is N , and ε = 10−2. We
set the parameter ¶ = 1. We used c1 = 5 · 102, c2 = 5 · 103,
c3 = 2.5 · 106. The number of epochs was 10. The matrices Un,m,1

were:
(

1 1 1 1
0.24 0.24 0.24 0.24

)

(27)

Fig. 2(a) depicts the sample path of the regret when It can be
seen that the regret is indeed O(log32(t)), while the two other
algorithms suffer a linear regret.

In the second set of simulations, we estimated the efficiency
of the algorithm, defined by:

Efficiency ≜

(

1
T

∑T

t=1 W
t
)

−Wworst

W ∗ −Wworst

(28)

where the worst welfare is:

Wworst ≜ min
m

W (m) (29)

Fig. 2(b) depicts the average efficiency of 50 random trials. The
matrices Un,m,1 are:
(

1 1 1 1
0.2 0.2 0.2 0.2

)

− Q , (30)

Fig. 2. Comparing the ENE algorithm, the dUCB, and a random allocation over

time. (a) Regret for the matrix (27). (b) Average Efficiency for 50 random

matrices (30).

where Q is a random matrix where all the entries are uniformly
distributed between 0 and 0.2. The steady-state efficiency of the
ENE algorithm is 93% while for the random allocation, it is 85%
and for the selfish UCB it is only 82%.

High dimension example. We simulated the following example:
N = 16,M = 2. In this case, the joint state space is of
size 232. However, as we will show, using the modified protocol
(Algorithm 2 of Section 5) results in faster convergence, and the
exploitation regret becomes 0 relatively quickly. As mentioned,
the methodology of Bistritz et al. (2021) and Bistritz and Leshem
(2020) provides a finer analysis of the Markov chain, showing
that we can use previous epochs to estimate the most frequent
state. Hence we used a negotiation phase of length c2j

0.25 during
epoch j where ¶ = 0.75, instead of 1 + 0.25, and the cur-
rent state utility estimation used 2j1.25 samples. This resulted in
O
(

log2.5(T )
)

regret. We selected a random non-negative 16 × 2
reward matrix with a difference between utilities in different
states of each player constrained to be larger than 0.2. A standard
N(0, 1) Gaussian noise was added to each measurement. The
parameters of the simulation were ε = 0.001, c1 = 105, c2 = 105,
c3 = 103, c = 1.1. We performed 200 independent Monte-Carlo
simulations of 24 epochs each. The results are displayed in Fig. 3.
We can clearly see the nearly linear dependence of the regret
on log(T ) as expected. The figure also displays the 10% and 90%
confidence bounds on the regret. We can see that even though the
90% regret curve is higher, it is within the ballpark of the median
regret curve and not an order of magnitude larger.

Finally, we comment on the choice of c1, c2, c3. Estimation of
the utilities during exploration is faster than the convergence
time of the Markov chain. Furthermore, estimating the load re-
quires a large number of samples per iteration, so c1 can be
chosen smaller or equal to c2 without significant impact on the
regret. On the other hand, following the discussion of the Markov
chain convergence in Section 5, we require that c2 is significantly
larger than ε−1. Finally, the choice of c3 does not significantly im-
pact the exploitation regret since the duration of the exploitation
phase grows exponentially with the number of epochs.

6
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Fig. 3. Regret vs. time, with Algorithm 2 for N = 16, M = 2. Also shown are

the 10% and 90% confidence bounds +,× respectively. Also the median regret

is shown since it disregards outliers.

7. Conclusions

This paper extends the multi-agent multi-armed bandit prob-
lem formulation and the regret analysis to the heavily congested
case where multiple agents can share a resource without any
communication between agents. The problem is motivated by
applications to cloud computing, spectrum collaboration (in wire-
less networks), and machine scheduling (in operations research).
Our formulation uses a congestion game with incomplete infor-
mation. We propose a novel three-phased algorithm with prov-
able expected regret of O

(

log3+¶
2 (T )

)

. In contrast to prior art
we propose to add an identification of the all-content state to
accelerate the convergence. This allows us to implement the
algorithm even for 16 agents and state space of size 232 with
very good results. Simulation results show that regret order can
be made lower.

Appendix

A.1. Properties of sub-Gaussian random variables

Let ¿ be a sub-Gaussian random variable with variance proxy
b. The moment-generating function of ¿ is bounded by

E(e¿s) f exp

(

bs2

2

)

∀s ∈ R (A.1)

The following properties are repeatedly used in the proofs of
the lemmas of the main paper. For proofs, see e.g., Wainwright
(2019).

Lemma A.1. Let ¿ be a sub-Gaussian random variable with
variance proxy b. Let g be some constant. The random variable g¿ is
sub-Gaussian with variance proxy bg2.

Lemma A.2. The average of k independently and identically dis-
tributed sub-Gaussian random variables with variance proxy b is
sub-Gaussian with variance proxy b/k.

An immediate corollary of Lemmas A.1 and A.2 is that the av-
erage of k independently and identically distributed sub-Gaussian

random variables with variance proxy b times a constant g is a

sub-Gaussian random variable with variance proxy bg2

k
:

E

(

exp

(

gs
1

k

k
∑

i=1
¿i

))

f exp

(

bs2g2

2k

)

(A.2)

Lemma A.3. Let ¿1 and ¿2 be independent sub-Gaussian random

variables with variance proxies b1 and b2 respectively, then ¿1 + ¿2

is sub-Gaussian with variance proxy b1 + b2.

Lemma A.4. Let ¿ be sub-Gaussian random variable with variance

proxy b. For any s, it holds that

P(¿ > s) f e−
s2

2b and P(¿ < −s) f e−
s2

2b (A.3)

An immediate consequence of Lemma A.4 and Eq. (A.2) is
that the probability that a constant g times the absolute value of
the average of k independently and identically distributed sub-
Gaussian random variables with variance proxy b will be greater
than s is bounded as follows:

P

(⏐

⏐

⏐

⏐

⏐

g

k

k
∑

i=1
¿i

⏐

⏐

⏐

⏐

⏐

> s

)

f 2 exp

(

− ks2

2bg2

)

. (A.4)

A.2. Proof of (10)

If agent n was active in time slot Ä of block M + 1 of phase 1
of epoch j its load is a random variable distributed as follows:

ℓj,1,M+1,Än ∼ Binomial(N − 1, 1/2)+ 1 (A.5)

Let us consider the more general case where the probability of
an agent to be active in time slot Ä of block M + 1 of phase 1 of
epoch j is not 1/2 but rather p. The first inverse moment of this
random variable can be obtained as follows:

E

[

1

ℓ
j,1,M+1,Ä
n

]

=
N−1
∑

i=0

1

i+ 1

(

N − 1

i

)

pi(1− p)N−1−i

=
N−1
∑

i=0

1

N

(

N

i+ 1

)

pi(1− p)N−1−i

= 1

pN

N−1
∑

i=0

(

N

i+ 1

)

pi+1(1− p)N−1−i

= 1

pN

N−1
∑

i=0

(

N

i+ 1

)

pi+1(1− p)N−1−i

+ (1− p)N

pN
− (1− p)N

pN

= 1

pN

N
∑

i=0

(

N

i

)

pi(1− p)N−i − (1− p)N

pN

= 1

pN
− (1− p)N

pN
= 1− (1− p)N

pN

(A.6)

Setting p = 1/2 completes the proof.

A.3. Lemmas in proof of main theorem

Lemma A.5. P(E j,3) = O(exp(−j1+¶/4)).

Proof. Estimation and Negotiation Phase failures are denoted by

E j,1 : m∗j ̸= m∗ (A.7)

7
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E j,2 : mj,3 ̸= m∗j (A.8)

The probabilities of these are bounded by O(exp(−j1.4)) and
O(exp(−j1+¶/4)), respectively, according to Lemmas A.6 and A.9,
respectively. Furthermore,

P(E j,3) f P(E j,1)+ P(E j,2) (A.9)

Lemma A.6. P(E j,1) = O
(

exp
(

−j1.4
))

.

Proof. Let us define the following errors events:

Ẽ j,1 : max
n,m,ℓ

⏐

⏐

⏐
Un,m,ℓ − Û

j

n,m,ℓ

⏐

⏐

⏐
g Ä (A.10)

Ẽ
j,1
N : ∃n : N̂ j

n ̸= N (A.11)

Ẽ
j,1
U : max

n,m

⏐

⏐

⏐
Un,m,N − Û

j

n,m,N

⏐

⏐

⏐
>

Ä

N
(A.12)

We bound P

(

E j,1
)

as follows:

P(E j,1)
(a)

f P

(

Ẽ j,1
)

(b)

f P

(

Ẽ
j,1
N

)

+ P

(

Ẽ
j,1
U

)

(A.13)

where (a) is a simple modification of Lemma (1) in Bistritz
and Leshem (2018a), and (b) is clear from (12). The probability

P

(

Ẽ
j,1
N

)

is O(exp(−j1.4)) according to Lemma A.7. We bound

P

(

Ẽ
j,1
U

)

as follows:

P

(

Ẽ
j,1
U

)

(a)

f NMP

(⏐

⏐

⏐
Un,m,N − Û

j

n,m,N

⏐

⏐

⏐
>

Ä

N

)

(b)

f 2NM exp

(

− 1

2b

( Ä

N

)2 j2 + j

2

)

(c)

f 2NM exp

(

− j2

4b

( Ä

N

)2
)

= O(exp(−j1.5))

(A.14)

where (a) is a union bound on the agents and resources, (b) is
Chernoff’s inequality for the average of i.i.d. sub-Gaussian random
variables, and (c) holds for any positive j.

Lemma A.7. P

(

Ẽ
j,1
N

)

= O(exp(−j−1.4)).

Proof. An error event by agent n in block k of phase 1 of epoch

j is denoted with E
j,1,k
n and defined by

⏐

⏐r
j,1,k
n − E

[

r
j,1,k
n

]
⏐

⏐ > 2−N−4E
[

r
j,1,k
n

]

(A.15)

As is proved in appendix A.7 the following holds:

P

(

N̂ j
n ̸= N

)

f P

(

E j,1,1
n

)

+ P

(

E j,1,M+1
n

)

(A.16)

According to Chernoff’s inequality:

P

(

E j,1,1
n

)

f 2 exp

(

− j2

4b

(

Un,1,N · 2−N−4
)2

)

(A.17)

According to Lemma A.8 the probability P

(

E
j,1,M+1
n

)

is

O(exp(−j1.4)). A union bound on the agents preserves the asymp-

totic behavior in j such that P

(

Ẽ
j,1
N

)

is upper bounded by the

same order.

Lemma A.8. P(E
j,1,M+1
n ) = O(exp(−j1.4))

Proof. Let the number of samples collected by agent n during all
epochs until epoch j in phase 1 and block M + 1 be:

À j,1,M+1
n ≜

j
∑

i=1

i
∑

Ä=1
1

(

mi,1,M+1,Ä
n = 1

)

(A.18)

The probability P

(

E
j,1,M+1
n

)

is upper bounded by the sum of the

following two probabilities:

P

(

À j,1,M+1
n <

j1.5

2

)

(A.19)

P

(

E j,1,M+1
n

⏐

⏐

⏐

⏐

À j,1,M+1
n >

j1.5

2

)

(A.20)

Since À
j,1,M+1
n is a binomial random variable with parameters

1
2
(j2+ j) and 1/2, the probability in (A.19) can be upper bounded

with Hoeffding’s inequality by the following expression:

exp

⎛

⎝−2 · 1
2
(j2 + j)

(

1

2
− j1.5

2 · 1
2
(j2 + j)

)2
⎞

⎠

(a)
< exp

(

−j2
(

1

2
− 1

j0.5

)2
)

(b)
< exp

(−j2
100

)

(A.21)

where (a) holds for any epoch and (b) holds from the seventh
epoch. This is of course O(exp(−j1.4)).

Since r
j,1,M+1
n is the sum of a sub-Gaussian random variable

with variance proxy b and another random variable bounded be-
tween Un,1,1 and Un,1,N then the probability in (A.20) can be upper
bounded with Chernoff–Hoeffding’s inequality by the following
expression:

2 exp

(

−1

4
·
(

E

[

r
j,1,M+1
n

]

· 2−N−4
)2

j1.5

b+ (Un,1,1 − Un,1,N )2

)

(A.22)

The last expression is also O(exp(−j1.4)).

Lemma A.9. P(E j,2) = O
(

exp
(

−j1+¶/4
))

.

Proof. A Load Estimation Error occurs when at least one agent
incorrectly estimates its load during at least one block of the
Negotiation Phase:

E
j,2
load : ∃n, k : ℓ̂j,2,kn ̸= ℓj,2,kn (A.23)

The probability of this error is O
(

exp
(

−j1+¶/4
))

according to
Lemma A.10.

An Insufficient Mixing Time Error is defined as follows:

E
j,2
mix = E j,2 ' ¬E j,2

load (A.24)

The probability of this error is O
(

exp
(

−j1+¶/4
))

according to
Lemma A.13.

To finish this lemma:

P

(

E j,2
)

f P

(

E
j,2
load

)

+ P

(

E
j,2
mix

)

. (A.25)

Lemma A.10. P

(

E
j,2
load

)

= O
(

exp
(

−j1+¶/4
))

Proof. Agent n will incorrectly estimate its load in block k if the

average reward it receives in that block with resource m
j,2,k
n = m

and load ℓ
j,2,k
n = ℓ is sufficiently far from its estimated utility:

⏐

⏐

⏐
r
j,2,k
n,m,ℓ − Û

j

n,m,ℓ

⏐

⏐

⏐
> ¨ (A.26)

where ¨ is defined as

¨ ≜
1

3
min
n,m

⏐

⏐

⏐
Û

j

n,m,N−1 − Û
j

n,m,N

⏐

⏐

⏐
(A.27)

The difference between the average reward and estimated
utility in the left-hand side of (A.26) is a sub-Gaussian random

variable with variance proxy b

j1+¶/3 + 2b

j2+j = b
j+2j¶/3+1

j2+¶/3+j¶/3+1 <
2b

j1+¶/3 . A union bound on (A.26) with respect to the agents and

8
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load-estimation-blocks together with Chernoff’s bound produces:

P

(

E
j,2
load

)

f 2Nj1+¶/3 exp

(

−¨2j1+¶/3

2b

)

= O
(

exp
(

−j1+¶/4
))

(A.28)

Lemma A.11. P

(

E
j,2
mix

)

= O
(

exp
(

−j1+¶/4
))

Proof. Let M
j be the Markov chain of the Negotiation Phase

of epoch j. Define the optimal state to be the estimated optimal
allocation (13) with the optimal estimated utilities (14) and all
agents Content:

z∗ ≜ (m∗j,U∗j, CN ). (A.29)

Let M̃j be a Markov Chain on Z identical to M
j except that a

Load Estimation Error is impossible. The stationary probability in
M̃

j of the optimal state is Ã∗. According to Lemma A.12: Ã∗ >

2/3. The state of the Markov Chain in block k of the Negotiation
Phase of epoch j is z j,2,k. The estimated stationary probability of
the optimal state is:

Ã̂∗ ≜
1

³j1+¶/3

j1+¶/3
∑

k=(1−³)j1+¶/3

1(z j,2,k = z∗) (A.30)

We wish to bound the probability that the optimal state was
visited in less than half the blocks of the tail of the Negotia-
tion Phase due to insufficient mixing time of the Markov chain.
According to Lemma A.13 this is:

P

(

Ã̂∗ f 1

2
f Ã∗

3

4

)

= O
(

exp
(

−j1+¶/4
))

(A.31)

Lemma A.12. Ã∗ > 2/3

Proof. Any two agents can increase or decrease each other’s
utilities by choosing the same action or a different action, respec-
tively. Formally, this is known as interdependence and is defined
in Marden et al. (2014). As ε→0 we have Ã∗→1. This is due to the
interdependence of our dynamics and Theorem 3.2 from Marden
et al. (2014). For our ε, the stationary probability of the optimal
state is Ã∗ > 2/3.

Lemma A.13. P

(

Ã̂∗ f 1
2
f Ã∗ 3

4

)

= O

(

e−j
1+¶/4

)

Proof. Let Z be the set of states of M̃j and Let Ã be its stationary
distribution. Let ϕ be the distribution of block (1 − ³)j1+¶/3. Let
∥ϕ∥Ã be the Ã-norm of ϕ defined by:

∥ϕ∥Ã ≜

√

∑

z∈Z

ϕ2(z)

Ã (z)
(A.32)

Let T1/8 be the minimal amount of time necessary for M̃
j

to reach a total variation distance of 1/8 from Ã with arbitrary
initialization. Let C be a positive constant, independent of ϕ, T1/8,

and Ã . Let ¸ ≜ 1 − 1
2Ã∗ . According to Lemma A.12 we have

Ã∗ > 2/3 and therefore ¸ < 1. After setting 1
2
= (1 − ¸)Ã∗

into (A.31), the Markovian concentration bound from Chung et al.
(2012) produces the following upper bound on the probability of
an Insufficient Mixing

Time Error of (A.31):

C∥ϕ∥Ã exp

(

−
(

1− 1
2Ã∗
)2

Ã∗³j1+¶/3

72T1/8

)

(A.33)

Because Ã∗ > 2/3 we obtain
(

1− 1

2Ã∗

)2

Ã∗ g 1

24
(A.34)

setting this into (A.33) completes the proof.

There is a tradeoff regarding ∥ϕ∥Ã . Starting from an arbitrary
initial condition, ∥ϕ∥Ã can be large. By dedicating the first ³j1+¶/3

blocks of the Negotiation Phase to letting the Markov chain ap-
proach its stationary distribution, and starting to count the visits
to z∗ only afterward, we can reduce ∥ϕ∥Ã significantly, at the cost
of (1−³)j1+¶/3 turns less for estimating z∗. Optimizing over ³ can
improve the constants of the bound in (A.33).

A.4. Proof of Eq. (A.16)

Agent n will correctly estimate the number of agents when

N − 1

2
<

1

ln (1/2)
ln

(

1− r
j,1,M+1
n

2r j,1,1n

)

< N + 1

2
(A.35)

After applying some algebra to (A.35) we obtain:

2

(

1− 1

2N

)

+ 1

2N−1

(

1−
√
2
)

f r
j,1,M+1
n

r
j,1,1
n

f 2

(

1− 1

2N

)

+ 1

2N−1

(

1− 1√
2

)
(A.36)

Because
⏐

⏐1− 21/2
⏐

⏐ > 1− 2−1/2 we can make the lower bound in
(A.36) tighter:

2

(

1− 1

2N

)

− 1

2N−1

(

1− 1√
2

)

f r
j,1,M+1
n

r
j,1,1
n

f 2

(

1− 1

2N

)

+ 1

2N−1

(

1− 1√
2

)
(A.37)

We now wish to move from an additive bound to a multiplicative
bound. We take notice of the following:

21−N (1− 2−1/2)

2(1− 2−N )
>

(1− 2−1/2)

2N
>

1/4

2N
> 2−2−N , (A.38)

We use (A.38) to make the bounds in (A.37) tighter:

2

(

1− 1

2N

)

(

1− 2−N−2
)

f r
j,1,M+1
n

r
j,1,1
n

f 2

(

1− 1

2N

)

(

1+ 2−N−2
)

(A.39)

We multiply all sides of (A.39) by the ratio of the expectations:

(

1− 2−N−2
)

f r
j,1,M+1
n

r
j,1,1
n

·
E

[

r
j,1,1
n

]

E

[

r
j,1,M+1
n

] f
(

1+ 2−N−2
)

(A.40)

The last expression will hold if

√

(

1− 2−N−2
)

f r
j,1,M+1
n

E

[

r
j,1,M+1
n

] f
√

(

1+ 2−N−2
)

(A.41)

√

(

1− 2−N−2
)

f
E

[

r
j,1,1
n

]

r
j,1,1
n

f
√

(

1+ 2−N−2
)

(A.42)

Subtracting 1 from all sides of (A.41) and (A.42) and re-
arranging produces:

E

[

r
j,1,M+1
n

]

(

√

(

1− 2−N−2
)

− 1

)

f

r
j,1,M+1
n − E

[

r
j,1,M+1
n

]

f

E

[

r
j,1,M+1
n

]

(

√

(

1+ 2−N−2
)

− 1

)

(A.43)
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E

[

r
j,1,1
n

]

⎛

⎝

1
√

(

1− 2−N−2
)

− 1

⎞

⎠ g

r
j,1,1
n − E

[

r
j,1,1
n

]

g

E

[

r
j,1,1
n

]

⎛

⎝

1
√

(

1+ 2−N−2
)

− 1

⎞

⎠

(A.44)

For convenience we define the following bounds and notice
that the upper bound is tighter in (A.43) while the lower bound
is tighter in (A.44):

L1 ≜

⏐

⏐

⏐

⏐

⏐

⏐

1
√

(

1+ 2−N−2
)

− 1

⏐

⏐

⏐

⏐

⏐

⏐

f

1
√

(

1− 2−N−2
)

− 1

(A.45)

L2 ≜

√

(

1+ 2−N−2
)

− 1 f
⏐

⏐

⏐

⏐

√

(

1− 2−N−2
)

− 1

⏐

⏐

⏐

⏐

(A.46)

We make the bounds in (A.43) and (A.44) tighter according to
our observations from (A.45) and (A.46):
⏐

⏐r
j,1,1
n − E

[

r
j,1,1
n

]⏐

⏐ f E

[

r
j,1,1
n

]

L1 (A.47)

⏐

⏐r
j,1,M+11
n − E

[

r
j,1,M+1
n

]
⏐

⏐ f E

[

r
j,1,M+1
n

]

L2 (A.48)

We use Taylor’s series to obtain the following bounds:

1√
1+ x

f 1− 0.5x+ 0.375x2 (A.49)

√
1+ x g 1+ x/2− x2/8 (A.50)

We use (A.49) and (A.50) to obtain the following bounds:

L1 g 1− 1+ 2−N−3 − 0.375 · 2−2N−4 g 2−N−4 (A.51)

L2 g 1+ 2−N−3 − 2−2N−7 − 1 g 2−N−4 (A.52)

When (A.51) and (A.52) hold, then (A.35) holds.

A.5. Proof of (22)

The proof of (22) is quite straightforward. We need to prove
that

J
∑

j=1
j2+2¶/3 = O(J3+¶). (A.53)

To do so we begin with the following equation:

(j1+¶/3 − 1)3 = j3+¶ − 3j2+2¶/3 + 3j1+¶/3 − 1 (A.54)

Rearrange (A.54) to obtain:

3j2+2¶/3 − 3j1+¶/3 + 1 = j3+¶ − (j1+¶/3 − 1)3 f
j3+¶ − (j− 1)3+¶

(A.55)

We take (A.55) and sum over all the epochs of the algorithm :

J
∑

j=1
3j2+2¶/3 − 3j1+¶/3 + 1 f

J
∑

j=1
j3+¶ − (j− 1)3+¶ = J3+¶ (A.56)

We rearrange (A.56) to obtain

J
∑

j=1
j2+2¶/3 f J3+¶ − J

3
+

J
∑

j=1
j1+¶/3 = O(J3+¶) (A.57)
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