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Abstract—Precoding and Modulation techniques are widely
investigated to mitigate interference in the space, time, and
frequency domains, respectively. However, next-generation (xG)
channels are increasingly dense and mobile, making these do-
mains highly correlated and resulting in high-dimensional chan-
nel tensors. Separate interference cancellation methods treating
the channel as independent 2-D matrices fail to cancel the
joint interference across multiple Degrees of Freedom (DoF).
High Order Generalized Mercer’s Theorem (HOGMT) based
precoding and Multidimensional Eigenwave Multiplexing (MEM)
modulation have been proposed to cancel the joint interference
by leveraging the jointly orthogonal eigencomponents of the
channel. However, these methods rely heavily on perfect Channel
State Information (CSI), and their performance degrades with
imperfect CSI. In this paper, we propose a joint interference
cancellation method based on the Convolutional Neural Network
(CNN) with a single linear kernel (JIC-CLK). We show that a
CNN with a single linear kernel is equivalent to a wireless system,
where the linear kernel itself is identical to the transmitted signal
with the CSI as input. By training the output to approach the
desired signal at the receiver with MSE loss, the kernel converges
to the optimal transmitted signal in the MMSE sense. The
proposed method adapts to both perfect and imperfect CSI and
can be extended to high-dimensional channels. The accuracy and
generality of the proposed method are validated by simulations
in three cases: 1) Perfect CSI, 2) Imperfect CSI, and 3) 4-D
spatio-temporal channels with imperfect CSI.

Keywords—Convolutional Neural Network, Interference Can-
cellation, Imperfect CSI, Multi-dimensional Channels.

I. INTRODUCTION

In general, precoding is employed for spatial interference
cancellation in MU-MIMO channels. It requires CSI to capture
the mutual effects among users and then design the precoding
matrix to cancel Inter-User Interference (IUI). Conventional
linear precoding methods include Maximum Ratio Trans-
mission (MRT), Zero-Forcing (ZF), and MMSE Precoding.
MRT maximizes the signal power at the intended user and is
suitable for systems where inter-user interference is negligible
compared to noise [1]. ZF precoding nullifies IUI as well as
the channel gain, performing well in scenarios where noise is
weak compared to interference [2]. MMSE achieves a balance
by maximizing a ratio between the signal gain at the intended
user and the interference plus noise [3]. Nonlinear precoding
stems from Dirty Paper Coding (DPC), which is capacity-
achieving for downlink MIMO channels [4]–[6]. However,
its impractical complexity limits the application in reality.
Alternatively, Tomlinson-Harashima Precoding (THP) offers a
suboptimal solution with less complexity [7]. The performance

Table I: Conventional Precoding and Modulation methods

Waveform Design Precoding Modulation

Methods MMSE DPC THP OFDM OTFS

Linearity Linear Nonlinear Linear

CSI Requirement Yes No

Cancellation Types IUI ISI ISI-ICI

Error Source Imperfect CSI ICI IDI

of precoding techniques is affected by the accuracy of CSI and
nonlinear precoding methods are generally more sensitive to
CSI errors than linear precoding methods [8].

Modulation techniques are widely investigated for interfer-
ence cancellation in the time, frequency, and delay-Doppler
domains by designing orthogonal data carriers. Orthogonal
Frequency-Division Multiplexing (OFDM) modulation trans-
mits symbols in the frequency domain to avoid interference
in the time domain, known as Inter-Symbol Interference (ISI).
However, when the channel experiences Doppler shift, OFDM
suffers from interference in the frequency domain, known as
Inter-Carrier Interference (ICI). Orthogonal Time-Frequency
Space (OTFS) modulation [9] has been proposed to avoid
both ISI and ICI by designing orthogonal data carriers in the
delay-Doppler domain. However, in rapidly time-varying chan-
nels, there exists interference in the delay-Doppler domain,
called Inter-Doppler Interference (IDI), which prevents OTFS
symbols from maintaining orthogonality. Meanwhile, Fourier
Transform (FT) based methods only design data carriers in
the time, frequency, and delay-Doppler domains, which are
unable to find jointly orthogonal bases when incorporating the
space domain. Table I summarizes the conventional precoding
and modulation methods. The waveform design based on
these modulation and precoding methods treats interference
separately, thereby failing to mitigate joint interference.

A joint spatio-temporal precoding method based on
HOGMT [10] has been proposed to cancel joint interference in
the spatio-temporal domain by projecting the transmitted sig-
nal onto the eigenspace of the spatio-temporal channels. Mean-
while, Multi-dimensional Eigenwave Multiplexing (MEM)
modulation has been proven to cancel interference across
all DoF with perfect CSI by decomposing high-dimensional
channels into eigenwaves and using those as data carriers [11].
However, since both methods require eigen decomposition
of the channel, their performance degrades with CSI errors,
which is common in real-world scenarios. This motivates us
to propose a joint interference cancellation method robust to
the imperfect CSI. In this paper, we show that the convolution
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operation of the CNN is equivalent to the wireless system. For
a CNN with a single linear kernel, the kernel itself is exactly
the same as the transmitted signal. Therefore, the objective
of CNN training in our method is to obtain a desired kernel
for one-time transmission rather than a general model. The
contributions of this paper are summarized as follows:

• We show the equivalence between CNN and the wireless
system, revealing that, with the CSI and the desired signal
as inputs, the single linear kennel of CNN converges to
the optimal transmitted signal in MMSE.

• The proposed method cancels spatial interference while
avoiding post-coding steps, thereby reducing the compu-
tational burden at the receiver.

• The proposed method is adaptive to both perfect and
imperfect CSI cases and can be extended to high-
dimensional channels for joint interference cancellation.

• We validate the accuracy and generality of the proposed
method by extensive simulations in three cases: 1) Spatial
channels with the perfect CSI, 2) Spatial channels with
the imperfect CSI and 3) Spatio-temporal channels with
imperfect CSI. The comparison with SoTA is provided.

II. PRELIMINARIES

A. Channel Representations and Domain Transformations

In Linear Time-Variant (LTV) channels, the transmitted
signal s(t) is impacted by the underlying physics of the
channel, described by path delays and Doppler shift to produce
the received signal r(t) [12] as,

r(t) =
∑P

p=1
hps(t− τp)e

j2πνpt (1)

where hp, τp and νp are the path attenuation factor, time delay
and Doppler shift for path p, respectively. We omit the noise
term for simplicity. Then (1) is expressed in terms of the
overall delay τ and Doppler shift ν as

r(t) =

∫∫

SH(ν, τ)s(t−τ)ej2πνt dτ dν (2)

=

∫

h(t, τ)s(t−τ) dτ (3)

where SH(ν, τ) is the (Doppler-delay) spreading function and
h(t, τ) is the time-varying impulse response, which describes
the channel gains for all paths in the Doppler-delay domain
and the time-delay domain, respectively. The time-frequency
and frequency-Doppler representation can be obtained by

LH(t, f)=

∫∫

SH(ν, τ)ej2π(tν−fτ) dτ dν (4)

b(f, ν) =

∫∫

h(t, τ)ej2π(−tν−fτ) dt dτ (5)

where LH(t, f) and b(f, ν) are the TF transfer function and
spectrum transfer function, respectively.

Since all the channels can be transformed to the time-delay
domain, we use h(t, τ) to characterize the interference in the
LTV channels without considering the space domain.

Interpretation: For Linear Time-Invariant (LTI) channels,
h(t, τ) and SH(ν, τ) collapse to h(τ); b(f, ν) and LH(t, f)
collapses to H(f). OFDM with cyclic prefix achieves close-
optimal performance since there is no Doppler shift (ICI-free).

B. Joint Spatio-Temporal Precoding: HOGMT Precoding

For the spatio-temporal (time-varying MIMO) channels,
h(t, τ) is extended to incorporate multiple users. For sim-
plicity, we consider the single-antenna user case. Denotes
hu,u′(t, τ) [13] as the time-varying impulse response between
the u′-th transmit antenna and the u-th user. The 4-D channel
tensor is expressed by

H(t, τ) =







h1,1(t, τ) · · · h1,u′(t, τ)
...

. . .

hu,1(t, τ) hu,u′(t, τ)







(6)

HOGMT precoding [8] cancels the spatial, temporal and
joint spatio-temporal interference existing in H(t, τ). Let
ku,u′(t, t′)=hu,u′(t, t−t′) be the 4-D channel kernel [12],
[14], (3) is rewritten as the spatio-temporal case

r(u, t) =

∫∫

k(u, t;u′, t′)s(u′, t′) du′ dt′ (7)

By HOGMT, the 4-D channel kernel k(u, t;u′, t′) is decom-
posed into eigen components as follows,

k(u, t;u′, t′) =
∑N

n=1
σnψn(u, t)φn(u

′, t′) (8)

with orthonormal properties as

〈ψn(u,t),ψ
∗

n′(u,t)〉 = δnn′

〈φn(u,t),φ
∗

n′(u,t)〉 = δnn′

(9)

The two decomposed eigenfunction sets show duality as
∫

k(u, t;u′, t′)φ∗n(u
′, t′) du′ dt′ = σnψn(u, t) (10)

The eigenfunctions with the above duality is known as dual

eigenfunctions. (10) shows that transmitting a eigenfunction
through the channel, its dual will be received at the receiver.
Then the precoded signal x(u, t) based on HOGMT is derived
by combining the jointly orthogonal eigenfunctions with the
desired coefficients xn as,

x(u,t)=
N
∑

n=1

xnφ
∗

n(u,t) where, xn=
〈s(u,t),ψn(u,t)〉

σn
(11)

Interpretation: Since HOGMT precoding projects the entire
signal onto the eigenspace spanned by eigenfunctions {φn}
and {ψn}, its accuracy is influenced by two main aspects: 1)
the number of eigenfunctions, which affects the completeness
of the signal projection, and 2) the accuracy of the CSI, which
affects the correctness of the decomposed eigenfunctions.

C. Multi-dimensional Modulation: MEM Modulation

MEM [11] employs eigenfunctions (also known as eigen-
waves) as data carriers, multiplexing the data symbols {sn}
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and eigenfunctions {φn} as,

x(u, t)=
N
∑

n=1

snφ
∗

n(u, t) (12)

Transmitting x(u, t) over the channel, the data carrier φn
is converted to its dual ψn scaled by subchannel gains σn
according to (10). Therefore, the received signal is given by

r(u, t)=
N
∑

n=1

σnsnψn(u, t) + v(u, t) (13)

where v(u, t) is the AWGN. Since eigenfunctions are or-
thogonal, the estimate symbol {ŝn} can be obtained by the
demultiplexing using the conjugate of {ψn} at the receiver as,

ŝn=

∫∫

r(u, t)ψ∗

n(u, t) du dt=σnsn + vn (14)

Interpretation: Unlike HOGMT precoding projecting the en-
tire signal onto eigenfunctions, MEM transmits each symbol
independently. Therefore, the number of eigenfunctions does
not affect the accuracy but does affect the throughput. How-
ever, since it involves a demultiplexing step, i.e., matched
filtering using eigenfunctions at the receiver, CSI is required
at both the transmitter (CSIT) and the receiver (CSIR). Incon-
sistency between them will lead to demultiplexing errors.

III. LEARNING TO CANCEL JOINT INTERFERENCE

By the nature of wireless systems, the received signal is
obtained by the convolution of the channel gains and the trans-
mitted signal as shown in (3). Considering the work principle
of the CNN is also based on convolution, it is promising to find
a mapping between them. From a system view, the input, CNN
kernel and the output correspond to the transmitted signal,
the channel and the received signal, respectively. However,
this mapping is meaningless as our objective is to optimize
the transmitted signal. Noticing the interchangeability of the
convolution variables, the input can serve as the channel while
the CNN kernel acts as the transmitted signal. Meanwhile,
since the signal is linear and there is no “multiple layers” of
signals in reality, the CNN kernel must be one linear layer.
Thus the interference cancellation is solved by Theorem 1.

Theorem 1. (JIC-CLK) Given imperfect CSI H̃=H+∆H,

where ∆H ∼ N (0,σ∆H) and modulated symbols s, CNN with

a single linear kernel w minimizes the loss function in (15)

L=
1

B

B
∑

b=1

||w(H̃b)−s||2

s.t. ||w||2 ≤ P

(15)

such that employing the kernel w as the transmitted signal

minimizes the interference in MMSE sense. Where w(·) is the

kernel operation. H̃b is one batch imperfect CSI and B is the

batch size. P is the power constraint.

Proof. Transmitting a signal x through the channel H̃, the
interference is expressed by H̃x− s. Then the optimal trans-
mitted signal w with respect to interference cancellation in

Imperfect CSI 

MSE Loss

Desired SignalCNN Kernel Output

Channel

Tx signal Rx signal

CNN training domain

MMSE

Transmission domain

Desired Signal

Figure 1: The connection between the training domain and the
transmission domain for a 3x3 signal example.

MMSE is obtained by solving

argmin
x

E
{

||H̃x− s||2
}

s.t. ||x||2 ≤ P
(16)

For CNN with one linear kernel, we have w(H) = Hw.
Comparing (15) and (16), we observe that the kernel w

is equivalent to the transmitted signal x. Therefore, CNN
minimizing L enables w converging to the optimal x with
respect to minimal interference in MMSE.

Extension to high-dimensional channels: In the spatio-
temporal channels, the imperfect CSI is represented by a 4-D
tensor with added errors, H̃(t, τ) = H(t, τ)+∆H(t, τ), where
the entry is denoted as h̃u,u′(t, τ), with u and u′ as indices of
antennas at the receiver and the transmitter, respectively. Let
k̃u,t(u′, t′)=h̃u,u′(t, t− t′), L is rewritten as

L=
1

B

B
∑

b=1

||〈k̃u,t(u
′, t′), w(u′, t′)〉−s(u, t)||2 (17)

where 〈a, b〉 is the inner product of a and b. w(u′, t′) and
s(u, t) are 2-D forms of w and s in (15), respectively, which
are spatio-temporal signals in the transmission domain.

Figure 1 shows the high-level view of JIC-CLK, where the
inputs are the imperfect CSI and the desired signal. The linear
CNN kernel is trained to minimize the MSE loss between the
output and the desired signal, where the output is the received
signal in the transmission domain. Therefore, transmitting the
linear kernel over the channel renders the received signal to
approach the desired signal in MMSE sense.

Remark 1. Since the received signal directly converges to

the desired signal in MMSE, JIC-CLK eliminates the need for

post-coding steps, thereby reducing the computational burden

at the receiver. This is a crucial advantage for practical

applications, especially for hardware-limited user equipment

such as mobile phones and vehicular communication systems.

Remark 2. In general, conventional CNN methods are mod-

eled as black boxes, where the kernels consist of multiple
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Figure 2: Performance of THP, DPC, MMSE precoding and JIC-CLK for Case-1
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Figure 3: Performance of THP, DPC, MMSE precoding and JIC-CLK at σ∆H = 0.2 for Case-2
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Figure 4: BER of THP, DPC, MMSE precoding and JIC-CLK over σ∆H for Case-2

layers with nonlinear activation functions. Employing this

type of CNN to optimize the transmitted signal, where the

transmitted signal can only be the output of the CNN, cannot

ensure convergence due to the following reasons: 1) the black

box kernel lacks explainability, and 2) since both the CSI and

data symbols are randomly generated, the trained model with a

fixed kernel struggles to generalize to this double randomness.

IV. RESULTS

A. Case-1: Spatial Channels with Perfect CSI

In the training phase, we generate 1000 random channels
H ∈ C16×16 with standard Gaussian distribution and data
symbols s ∈ C16×1 pairs. For each pair, we conduct model
training over 50 epochs, with each epoch consisting of 2000
identical samples (perfect CSI). The bandwidth is 20 MHz.
During the testing phase, we obtain the transmitted signal
x ∈ C16×1, which is the kernel, from the trained model and
transmit it through the channel H under an AWGN environ-
ment with varying Signal-to-Noise Ratio (SNR) conditions,
ranging from 0 dB to 20 dB. The received signal r ∈ C16×1

is obtained by r = Hx+v. We then compare the demodulated

r and s to compute the Bit Error Rate (BER).

Figure 2a shows the training and validation loss, both of
which converge within 50 epochs. Figure 2b compares the
BER of THP, DPC, MMSE precoding and JIC-CLK with the
QPSK scheme. JIC-CLK performs worse than DPC, which is
reasonable since DPC is a capacity-achieving method with the
perfect CSI. THP shows the highest BER as it is not suitable
for large MIMO channels. JIC-CLK outperforms both MMSE
and THP, achieving near-ideal BER from 0 dB SNR to around
5 dB SNR. Figure 2c shows that JIC-CLK achieves a similar
throughput to DPC, and both outperform MMSE form 0 dB
SNR to 10 dB SNR. THP has the lowest throughput. Figure 2d
shows the BER of JIC-CLK with QPSK, 16QAM, 64QAM
and 128QAM, where a higher-order QAM leads to a higher
BER since more bits are modulated in one QAM symbol.

B. Case-2: Spatial Channels with Imperfect CSI

With imperfect CSI, each sample is added an random error
as H̃ = H + ∆H with ∆H ∼ N (0,σ2

∆H), where σ∆H

represents the known CSI error variation. In this case, we set
σ∆H from 0.01 to 0.2 with 0.01 steps. Other settings remain
same as Case-1. Figure 3a shows the traning and validation
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Figure 5: Channel profile and statistics in the time and space domain of Case-3

Table II: Parameters of the channel in Case-3

Parameter Value

Channel model 3GPP 38.901 UMa NLOS [15]

Array type BS: 3GPP 3-D [16]; UE: Vehicular [17]

BS antenna Height hb = 10 m; Number Nu′ = 10

UE antenna Height hu = 1.5 m; User Number Nu = 10

UE speed v ∈ [100, 150] km/h

Bandwidth Bw = 20 MHz; Center frequency: fc = 5 GHz

Channel size Each segments: H(t, τ) ∈ C10×10×64×64

loss for σ∆H = 0.05, 0.1, 0.15 and 0.2, respectively, where
larger σ∆H leads to slower convergence. Figure 3b compares
the BER at σ∆H = 0.2. While DPC is optimal with perfect
CSI, it is highly sensitive to CSI errors. MMSE precoding
achieves a similar BER to JIC-CLK from 0 dB SNR to
10 dB SNR but degrades after 10 dB SNR. As the MMSE
precoding matrix is WMMSE = HH(HH

H + I/SNR)−1,
the influence of the regularization term I/SNR diminishes as
SNR increases, causing it to degrade to ZF precoding. This
makes MMSE precoding more sensitive to CSI errors at high
SNR levels. In this case, JIC-CLK achieves the lowest BER.
The corresponding throughput is shown in Figure 3c, where
TPC performs the worst before 13 dB SNR but better than
DPC thereafter. JIC-CLK outperforms the other three methods.
Figure 3d compares the BER of JIC-CLK with varying QAM
schemes at σ∆H = 0.2, where All QAM schemes except
QPSK perform poorly, with BER larger than 10−1.

Figure 4a-4d show the change in BER over σ∆H for the
four methods. Overall, THP has the highest BER, while DPC
is the most sensitive to CSI errors. MMSE precoding shows
some robustness in the low SNR region due to the regulazation
term in the precoding matrix. As SNR increases, it becomes
more sensitive to CSI errors despite experiencing less noise.
In contrast, the robustness of JIC-CLK is not affected by SNR,
which achieves the best performance with imperfect CSI.

C. Case-3: Spatio-temporal Channels with Imperfect CSI

The spatio-temporal channel is generated using 3GPP
38.901 UMa NLOS senario built on QuaDriga in Matlab.
The channel parameters and the layout of the base station
(BS) and the user equipment (UE) are shown in Table II. As
THP, DPC and MMSE precoding are unavailable for spatio-
temporal channels, we compare our method with HOGMT
precoding and MEM modulation in Case-3. As discussed in
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Figure 6: BER of HOGMT precoding, MEM modulation and
JIC-CLK at β = 0 and β = 0.2, respectively.

the Section II, the number of eigenfunctions N have different
effects on HOGMT precoding and MEM modulation. For
a fair comparison, we choose the top 98% eigenfunctions
for both methods. Since H(t, τ) is not standard Gaussian
distributed in Case-3, we set σ∆H = β ·Var(H(t, τ)), where β
is from 0 to 0.2 with 0.01 steps. It represents the relative CSI
error variation. The number of samples is 18000. Figure 5a
and 5b show the power delay profile and autocorrelation func-
tion (ACF) for the first user, respectively. A drift is observed
due to the mobility of the user, leading to the time-varying
distribution in overview. Correlation Matrix Distance (CMD)
is a measure of the stationary interval in the space domain [18].
Figure 5c and 5d show the CMD at the transmitter and the
receiver, respectively, where they are presented over time
instead of distance because the varying mobility profiles of
multiple users lead to different distances over time.

Figure 6a compares the BER of HOMGT precoding, MEM
modulation and JIC-CLK at β = 0, i.e., with perfect CSI.
MEM modulation and JIC-CLK achieve a similar BER, both
outperforming HOMGT precoding by around 1 order of
magnitude at 10 dB SNR. They can achieve a similar BER
as HOMGT precoding by using 2 dB less SNR. Figure 6b
shows the BER of three methods at β = 0.2, where JIC-
CLK achieves a significantly lower BER than both HOGMT
precoding and MEM modulation. Figure 7a-7c show the
change of BER over β for three methods. There is a significant
performance gap for HOGMT precoding between perfect CSI
and imperfect CSI. As discussed in the “interpretation” in
Section II-B, HOMGT precoding projects the entire signal
onto the eigenfunctions. Consequently, any error in an eigen-
function will affect the reconstruction of the entire signal. In
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Figure 7: BER of HOGMT precoding, MEM modulation and JIC-CLK over β for Case-3

contrast, MEM modulation transmits symbols independently
over each eigenfunction. Therefore, an error in an eigen-
function will only affect the symbol corresponding to that
eigenfunction. MEM modulation shows a certain robustness at
the low CSI error region, but degrades rapidly when β > 0.05,
while JIC-CLK shows a slow and smooth degradation of BER
over the entire CSI error region without abrupt jumps and
significant fluctuations. This indicates a more predictable and
consistent performance decline, showing that JIC-CLK is more
robust to CSI errors compared to the other two methods.

V. DISCUSSION

Although the complexity is not the focus of this paper, it
is important to note that employing the CNN kernel as the
transmitted signal requires retraining for each transmission,
while each transmission can include multiple data frames.
Since JIC-CLK involves only one linear CNN kernel, the
complexity remains practical, particularly in scenarios where
the CSI error is large and the robustness is critical, such as
underwater and High-speed train and V2X channels.

VI. CONCLUSION

In this paper, we proposed a joint interference cancellation
method by leveraging the equivalence between the wireless
system and a CNN with a single linear kernel. By transmitting
the CNN kernel through the channel, the received signal
approaches the desired signal in the MMSE sense without
requiring post-coding steps. We demonstrate that for spatial
channels with perfect CSI, JIC-CLK achieves near-ideal BER
from 0 dB SNR to around 5 dB and outperforms both THP
and MMSE precoding. With imperfect CSI, it surpasses THP,
DPC, and MMSE precoding. For spatio-temporal channels
with imperfect CSI, it is more robust than both HOGMT
precoding and MEM modulation.
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