
KPZ EQUATION WITH A SMALL NOISE, DEEP UPPER TAIL AND LIMIT SHAPE

PIERRE YVES GAUDREAU LAMARRE, YIER LIN, AND LI-CHENG TSAI

Abstract. In this paper, we consider the KPZ equation under the weak noise scaling. That is, we introduce a small parameter√
ε in front of the noise and let ε → 0. We prove that the one-point large deviation rate function has a 3

2
power law in the

deep upper tail. Furthermore, by forcing the value of the KPZ equation at a point to be very large, we prove a limit shape
of the solution of the KPZ equation as ε → 0. This confirms the physics prediction in [KK07, KK09, KMS16, MKV16,
LDMRS16, HMS19].

1. Introduction

The Kardar–Parisi–Zhang (KPZ) equation [KPZ86] is a non-linear stochastic PDE which describes the random growth
of an interface that has a property of lateral growth and relaxation

∂th =
1

2
∂xxh+

1

2
(∂xh)2 + ξ. (1.1)

Here ξ is the space-timewhite noise, which can be informally understood as aGaussian fieldwithDirac-delta correlation
function E[ξ(t, x)ξ(s, y)] = δ(t− s)δ(x− y). The KPZ equation has been studied intensively over the past 35 years.
We refer to [FS10, Qua11, Cor12, QS15, CW17, CS20] for some surveys of the mathematical studies of the KPZ
equation.

Care is needed to make sense of the solution to (1.1) due to the non-linearity and space-time white noise in the equation.
One way of defining the solution is through the Hopf-Cole transform. That is, we define h := logZ, where Z solves
the Stochastic Heat Equation (SHE)

∂tZ =
1

2
∂xxZ + ξZ.

We say that Z is the mild solution to the SHE if

Z(t, x) =

∫
R
p(t, x− y)Z(0, y)dy +

∫ t

0

∫
R
p(t− s, x− y)Z(s, y)ξ(s, y)dsdy, (1.2)

where p(t, x) := 1√
2πt

e−
x2

2t is the heat kernel. The solution theory of the SHE is standard; see [Qua11, Sections
2.1-2.6] for more details. Moreover, for function-valued initial data Z(0, ·) ≥ 0 that is not identically zero, [Mue91]
shows that Z is always positive, i.e. almost surely Z(t, x) > 0 for all t > 0 and x ∈ R. This guarantees the
wellposedness of h. One often considered initial data is Z(0, ·) = δ(·), where δ(·) is a Dirac-delta function. We
refer to this as the Dirac-delta initial data for Z and the narrow wedge initial data for h. [MF14] shows that under the
Dirac-delta initial data, almost surely Z is positive for all t > 0 and x ∈ R. Other definitions and constructions of
the solution to the KPZ equation are given by regularity structure [Hai14], paracontrolled distribution [GIP15] or the
notion of energy solution [GJ14, GP18].

In recent years, the large deviations of the KPZ equation have received much attention in the mathematics and physics
communities. The large deviations of the KPZ equation can be studied in two regimes: long time regime (t → ∞)
and short time regime (t → 0). For the long time regime, the work [CG20b] rigorously proved a detailed bound for
the lower tail of the KPZ equation under the narrow wedge initial data. This bound captures a cubic to 5

2 crossover;
see also the physics work [KLD18]. [CG20a] obtained similar bounds for the KPZ equation under general initial data.
Under the narrow wedge initial data, the exact one-point lower tail large deviation rate function was derived in the
physics works [SMP17, CGK+18, KLDP18, LD20] and was proved rigorously by [Tsa18, CC21]. [KLD19] showed
that the four methods in [SMP17, CGK+18, KLDP18, Tsa18] are closely related. For the upper tail, the physics work
[LDMS16] predicted the 3

2 -power law for the entire rate function of the KPZ equation narrow wedge initial data.
[DT21] gave a rigorous proof for the upper tail Large Deviation Principle (LDP). The result was extended to general
initial data by [GL20].
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For the large deviations of the KPZ equation in the short time regime, the results are fruitful in the physics literature;
see [Kra19]. In particular, the physics literature [KK07, KK09, KMS16, MKV16] predicted that for the narrow wedge
and flat initial data, the one-point large deviation rate function exhibits a 3

2 -power law in the deep upper tail, a quadratic
power law in the near-center tail and a 5

2 -power law in the deep lower tail. The physics work [LDMRS16] derived
the entire one-point rate function, from which the authors are able to confirm these power laws. Their prediction was
backed by the numerical result [HLDM+18]. The one-point large deviations were rigorously proved in [LT21]. The
authors also rigorously proved the quadratic to 5

2 -power law crossover in the lower tail rate function.

Studying the KPZ equation in the short time regime is the same as studying the KPZ equation in the weak noise regime.
That is, we introduce a small parameter

√
ε in front of the noise,

∂thε = 1
2∂xxhε + 1

2 (∂xhε)
2 +
√
εξ. (1.3)

The solution to the above equation is defined to be hε := logZε where Zε solves the SHE

∂tZε = 1
2∂xxZε +

√
εξZε. (1.4)

Throughout the paper, we set Zε(0, ·) = δ(·). The short time regime of (1.1) is related to (1.3) through scaling,
namely, h(ε2·, ε·) + log ε

d
= hε(·, ·). We add log ε to guarantee that hε starts from the narrow wedge initial data.

The LDP of Zε = Zε(·, ·) under the limit ε → 0 has been rigorously proven in [LT21]. The rate function is of
Freidlin-Wentzell type. In particular, by the contraction principle, for λ ≥ 0,

lim
ε→0

ε logP
[
hε(2, 0) + log

√
4π ≤ −λ

]
= −Φ(−λ), (1.5)

lim
ε→0

ε logP
[
hε(2, 0) + log

√
4π ≥ λ

]
= −Φ(λ), (1.6)

where Φ is the infimum of the Freidlin-Wentzell rate function subject to the relevant constraint. Extracting the
asymptotics of Φ is non-trivial. [LT21] proved that limλ→0 λ

−2Φ(λ) = 1√
2π

and limλ→∞ λ−
5
2 Φ(−λ) = 4

15π .

1.1. Main results. The first result of the current paper concerns the deep upper tail of the rate function Φ. In other
words, we look at the asymptotic of Φ(λ) as λ → ∞. It has been predicted in the physics literature [KK07, KK09,
KMS16, MKV16, LDMRS16] that limλ→∞ λ−3/2Φ(λ) = 4

3 . Our first result gives a rigorous proof of the
3
2 -power

law in the deep upper tail.

Theorem 1.1. We have lim
λ→∞

λ−3/2Φ(λ) = 4
3 .

The second result of the current paper proves the limit shape of (the solution of) the KPZ equation under the
weak noise scaling and the deep upper tail conditioning. This limit shape was predicted in the physics works
[KK07, KK09, KMS16, MKV16, HMS19].

Theorem 1.2. Define hε,λ = λ−1hε(t, λ
1
2x). For arbitrary fixed δ > 0, we have

lim
λ→∞

lim
ε→0

P
[
‖hε,λ − h∗‖L∞([δ,2]×[−δ−1,δ−1]) < δ

∣∣hε(2, 0) + log
√

4π ≥ λ
]

= 1.

Here, we use ‖·‖L∞(D) to denote the L∞ norm on the domain D. The limit shape h∗ is given by

h∗(t, x) :=

{
−|x|+ t

2 , when |x| ≤ t,
−x

2

2t , when |x| ≥ t.
(1.7)

See Figure 1 for illustration.

Remark 1.3. Theorem 1.1 gives the λ→∞ limit of hε,λ under the upper-tail conditioning. A natural related question
is to obtain the limit under the lower-tail conditioning hε(2, 0) + log

√
4π ≤ −λ. The latter question has recently

been solved in [LT22]. We emphasize that the mechanisms for the large deviations are very different in the upper- and
lower-tail conditioning. In the upper-tail conditioning, the contribution of the noise ξ concentrates around x = 0; in
the lower-tail conditioning, the contribution of the noise spans a wide region in spacetime. The required analysis in the
current paper and in [LT22] hence differ.
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Figure 1. The graph of h∗(t, ·), when t = 0.5, 1, 1.5.

Remark 1.4. The limit shape h∗ was predicted earlier in the physics work [KK07, KK09, KMS16, MKV16] via the
weak noise theory, and in [HMS19] by simulations. Recently, the physics work [KLD21] solved the finite λ limit
shape of hε,λ. Using this, they confirmed the rate function Φ discovered in [LDMRS16]. In the limit of large λ, they
discussed how the form (1.7) emerges in the exact solution.

Remark 1.5. The reason that we set hε(2, 0) + log
√

4π > λ in the theorem instead of hε(2, 0) > λ is purely for the
convenience of the proof. It makes no difference since we let λ→∞.

Remark 1.6. Our method does not rely on exact formulas and may apply to other initial data. In particular, our method
should apply to the flat initial data hε(0, ·) = 0. The result in Theorem 1.1 remains the same for the flat initial data,
while Theorem 1.2 holds with a different limit shape

hflat∗ (t, x) :=

{
−|x|+ t

2 , when |x| ≤ t
2 ,

0, when |x| > t
2 .

More broadly, one can consider applying our method to a function-valued, symmetrically decreasing initial data:
hic(x) = hic(|x|) and hic(|x|) non-increasing in |x|. We conjecture that the result in Theorem 1.1 remains the same;
the limit shape (in-general) needs to be adjusted according to the initial data.

Going beyond symmetrically decreasing initial data, one may see different behaviors of the deviations. In particular,
a dynamical phase transition triggered by a symmetry breaking has been predicted in [JKM16, SKM18] (see also
[KLD17, HMS21, KLD22]) for the Brownian initial data. For such initial data, we do not expect our method to apply
directly and new ideas are needed.

1.2. A review of the Freidlin-Wentzell LDP for the SHE. To motivate the proof of Theorems 1.1 and 1.2, we recall
the Freidlin-Wentzell LDP for the SHE {Zε}ε>0. The result was established for the SHE under function-valued initial
data and the narrow wedge initial data in [LT21, Proposition 1.7]. For our propose, we only state the result for the
narrow wedge initial data.

Let us first recall the definition of an LDP. Let Ω be a topological space. We say that a sequence of Ω-valued random
variables {Yε}ε>0 satisfies an LDP with speed ε−1 and rate function I if

lim sup
ε→0

ε logP(Yε ∈ F ) ≤ − inf
x∈F

I(x) if F ⊆ Ω is closed,

lim inf
ε→0

ε logP(Yε ∈ G) ≥ − inf
x∈G

I(x) if G ⊆ Ω is open.

We now state the LDP for the SHE {Zε}ε>0. Fix T > 0 and δ ∈ (0, T ). We take Ω = C([δ, T ]× [−δ−1, δ−1]) with
the uniform topology and view Zε as an Ω-valued random variable. The reason that we avoid t = 0 in our choice of
Ω is because Zε starts from the Dirac-delta initial data, which is singular. For t > 0, the heat kernel in (1.2) smoothes
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out the singularity, so Zε is Ω-valued for any fixed δ > 0; see [Qua11].

Since Zε in (1.4) is driven by the space-time white noise
√
εξ, it would be helpful to first look at the LDP of {

√
εξ}ε>0.

We view ρ ∈ L2([0, T ] × R) as a deviation
√
εξ. Since ξ has Dirac-delta correlation function, we have informally

P(
√
εξ ≈ ρ) ≈ exp(− 1

2ε
−1‖ρ‖2L2([0,T ]×R)) for small ε. We replace the noise

√
εξ with its deviation ρ and consider

the PDE
∂tZ =

1

2
∂xxZ + ρZ, Z(0, x) = δ(x), (1.8)

where Z = Z(ρ; t, x), t ∈ [0, T ] and x ∈ R. Like the SHE, the solution to this PDE is understood in the mild form

Z(ρ; t, x) = p(t, x) +

∫ t

0

∫
R
p(t− s, x− y)ρ(s, y)Z(ρ; s, y)dsdy. (1.9)

By iteration of (1.9), the solution Z(ρ) admits a series expansion and we have the Feynman-Kac formula

Z(ρ; t, x) = E0→x

[
exp

(∫ t

0

ρ(s,Bb(s))ds
)]
p(t, x), t ∈ (0, T ]× R, (1.10)

where Bb is a Brownian bridge such that Bb(0) = 0 and Bb(t) = x.

It is standard to see that Z(ρ) is a continuous function on (0, T ]×R, we refer to [LT21, Section 2] for more detail. Fix
δ > 0. We view Z : ρ 7→ Z(ρ) as a map from L2([0, T ] × R) to C([δ, T ] × [−δ−1, δ−1]). We now state the LDP for
{Zε}ε>0.

Proposition 1.7. Fix T <∞ and 0 < δ < T . LetZε be the solution to (1.4)with the Dirac-delta initial data. {Zε}ε>0

satisfies an LDP in C([δ, T ]× [−δ−1, δ−1]) with speed ε−1 and the rate function

I(f) := inf
{

1
2‖ρ‖

2
L2([0,T ]×R) : ρ ∈ L2([0, T ]× R),Z(ρ) = f

}
, f ∈ C([δ, T ]× [−δ−1, δ−1]),

where Z(ρ) is the unique solution to ∂tZ = 1
2∂xxZ + ρZ with the Dirac-delta initial data Z(0, x) = δ(x).

Proof. This is a direct consequence of [LT21, Proposition 1.7] Part (b). �

Since Zε = ehε , we have P[hε(2, 0) + log
√

4π ≥ λ] = P[Zε(2, 0) ≥ 1√
4π
eλ]. By (1.6), we have Φ(λ) =

− limε→0 ε logP[Zε(2, 0) ≥ 1√
4π
eλ]. Taking T = 2 in Proposition 1.7 and applying contraction principle yield that

for λ ≥ 0,

Φ(λ) = inf
{1

2
‖ρ‖2L2([0,2]×R) : ρ ∈ L2([0, 2]× R), Z(ρ; 2, 0) ≥ 1√

4π
eλ
}
. (1.11)

1.3. Proof ideas. We explain the ideas for proving Theorems 1.1 and 1.2. The first step towards proving Theorem
1.1 is to apply a scaling to the variational formula (1.11). By the Feynman-Kac formula (1.10), we know that for
arbitrary ρ ∈ L2([0, 2] × R), Z(λρ(λ·, λ 1

2 ·); t, x) = λ
1
2Z(ρ;λt;λ

1
2x). Using this relation and applying the scaling

ρ 7→ λρ(λ·, λ 1
2 ·), one can rewrite the rate function in (1.11) as

Φ(λ) = λ
3
2 inf

{ 1

2λ
‖ρ‖2L2([0,2λ]×R) : ρ ∈ L2([0, 2λ]× R), Z(ρ; 2λ, 0) ≥ 1√

4πλ
eλ
}
. (1.12)

The value of the infimum should be of constant order, this explains the 3
2 -power in Theorem 1.1. To prove Theorem

1.1, it suffices to show that

lim
λ→∞

inf
{ 1

2λ
‖ρ‖2L2([0,2λ]×R) : ρ ∈ L2([0, 2λ]× R), Z(ρ; 2λ, 0) ≥ 1√

4πλ
eλ
}

=
4

3
. (1.13)

We explain why the 4
3 appears on the right hand side. To motivate the discussion, let us assume that the minimizers

(there might be more than one) of (1.13) become asymptotically time-independent as λ→∞. Under this assumption,
we only need to consider ρ such that ρ(t, ·) = ϕ(·) for t ∈ [0, 2λ] and some ϕ : R→ R. So (1.13) simplifies to

lim
λ→∞

inf
{
‖ϕ‖2L2(R) : ϕ ∈ L2(R), Z(ϕ; 2λ, 0) ≥ 1√

4πλ
eλ
}

=
4

3
. (1.14)

Recall that Z(ϕ) solves the PDE ∂tZ = 1
2∂xxZ+ϕZ. Sinceϕ does not depend on time, we treat Z(t) as function-valued

and view the PDE as a function-valued ODE ∂tZ(t) = AϕZ(t), whereAϕ := 1
2∂xx+ϕ is a Schrödinger-type operator.
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Set the largest eigenvalue of Aϕ to be F (ϕ), whose expression is given in (2.3). It is natural to expect that Z(ρ; t, 0) at
large time t grows as exp(tF (ϕ)). In particular, we have Z(ϕ; 2λ, 0) ∼ exp(2λF (ϕ)) as λ→∞. This suggests that

LHS of (1.14) = inf
{
‖ϕ‖2L2(R) : F (ϕ) ≥ 1

2

}
. (1.15)

The problem of finding the minimizers of (1.15) can be transformed into understanding when the equality of the
Gagliardo–Nirenberg-Sobolev inequality holds, see Lemma 2.4. It turns out that the minimizers of the infimum are
given by sech2(x + v), where v is an arbitrary constant. Since ‖ sech2(x + v)‖2L2(R) = 4

3 for all v, we know that the
right hand side of (1.15) equals 4

3 . This explains why Theorem 1.1 should hold.

We proceed to explain the idea for proving Theorem 1.2. Under the time-independence assumption, it is natural to
believe that the minimizers of the infimum in (1.12) converges to the minimizers of the infimum in (1.15) as λ→∞.
However, from the previous paragraph, the minimizer of the infimum in (1.15) is not unique and this causes a problem
to our analysis. To resolve this, we show that any minimizer of the infimum in (1.12) has to be symmetric in the x
coordinate (in fact the function should reach its peak at 0 and decrease on both sides of 0). The proof of this is carried
out in Section 3.1.2. Consequently, we see that the minimizer of (1.13) should converge to sech2 x as λ→∞.

We denote ρ∗(t, x) := ρ∗(x) := sech2 x. By the Freidlin-Wentzell LDP stated in Proposition 1.7 and scaling, one
can show that for fixed λ, as ε → 0, the space-time path hε,λ concentrates around λ−1 logZ(ρ∗;λ·, λ·). By the
Feynman-Kac formula (1.10),

λ−1 logZ(ρ∗;λt, λx) = λ−1 logEλx→0

[
exp

(∫ λt

0

ρ∗(Bb(s))ds
)]
− x2

2t
− λ−1 log

√
4π. (1.16)

We seek to compute the λ→∞ limit of the first term on the right hand side of (1.16).

Assume x 6= 0. The Brownian bridge starts from λx, which is far way from 0. Since ρ∗(x) = sech2(x) decays
exponentially as |x| → ∞, the path of Bb contributes little to the integral until it arrives near 0. Fix s ∈ [0, t], the
probability of the event that the first time Bb hits 0 around time λs is approximately exp(−λx

2(t−s)
2st ). After arriving

at 0, we have E0→0[exp(
∫ λt
λs
ρ∗(Bb(r))dr)] ≈ exp(λ(t−s)2 ) for large λ. Optimizing over s ∈ [0, t], we expect that

lim
λ→∞

λ−1 logEλx→0

[
exp

(∫ λt

0

ρ∗(Bb(s))ds
)]

= sup
s∈[0,t]

(
− x2(t− s)

2st
+
t− s

2

)
= h∗(t, x) +

x2

2t
.

Using this together with (1.16) shows that λ−1 logZ(ρ∗;λ·, λ·) converges to h∗ defined in (1.7).

1.4. Technical Difficulties. In this section, we emphasize some of the technical difficulties in our proof. Denote the
set of minimizers of (1.12) to be Kλ. As mentioned in the previous section, one important step in our proof is to show
thatKλ converges to ρ∗ as λ→∞. We explain the proof ingredients of it in Sections 1.4.1 and 1.4.2. In Section 1.4.3,
we describe a technical issue for proving the limit shape.

1.4.1. Properties of Kλ. To prove that the elements of Kλ converge to ρ∗ as λ → ∞, we first need to show that
Kλ is not empty, i.e. the minimizer of the infimum in (1.12) exists. To prove this, we need 1). the compactness
of the level sets {ρ : ‖ρ‖2L2([0,2λ]×R) ≤ r}; 2). the continuity of the map ρ 7→ Z(ρ; 2λ, 0). Unfortunately, the
level sets {ρ : ‖ρ‖2L2([0,2λ]×R) ≤ r} are not compact in L2([0, 2λ] × R). To overcome this, we consider an abstract
Wiener space (B, µ) such that L2([0, 2λ] × R) ⊆ B is the Cameron-Martin space. This gives us the compactness of
{ρ : ‖ρ‖2L2([0,2λ]×R) ≤ r} in B and it preserves the continuity of the map ρ 7→ Z(ρ; 2λ, 0).

We also need to show that the elements of Kλ are symmetric and decreasing in space (see Section 3.1.2 for the precise
definition). We prove this by considering the symmetric and decreasing rearrangement of ρ. Using the rearrangement
inequalities from [BLL74, LL01], we show that the symmetric and decreasing rearrangement of ρ preserves the L2

normwhile it increases the value of Z(ρ; 2λ, 0). This implies that the elements inKλ must be symmetric and decreasing
in space.
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1.4.2. Kλ converges to ρ∗. The key innovations for proving the convergence are 1). A near-optimal upper bound of
Z(ρ; 2λ, 0) in terms of an exponential integral of the ground state F (ρ), see Proposition 2.9; 2). A perturbative analysis
of F , see Lemma 3.9.

For 1), one can obtain an upper bound of Z(ρ; 2λ, 0) via iterating (1.9) and applying the Cauchy-Schwarz inequality, see
Lemma 2.3. However, such bounds are not optimal. In Proposition 2.9, we prove a near-optimal bound of Z(ρ; 2λ, 0).
The proof of the proposition relies on the time-dependent semigroup ∂t − 1

2∂xx − ρ, an energy estimate when ρ is
smooth and compactly supported, and the method of approximation for ρ ∈ L2([0, 2λ] × R), which is accomplished
in Lemmas 2.3, 2.6 and 2.7.

We explain 2) in more detail. Using the L4 Gagaliardo-Nirenberg-Sobolev inequality, we obtain an optimal upper
bound of F (ϕ) as well as identify its optimizers; see Lemma 2.4. The optimizer in Lemma 2.4 is only unique up to
shifting. Our perturbative analysis says that when ϕ is symmetric and decreasing and F (ϕ) is near its optimal upper
bound, ϕ must be close to the symmetric optimizer. The proof of this is through a weak-convergence argument.

The proof of the convergence is carried out in Proposition 3.10. Combining items 1) and 2), the condition ρ ∈ Kλ
implies that for most r ∈ [0, 2λ], ‖ρ(r, ·)‖L2(R) is close to ‖ρ∗‖L2(R) and F (ρ(r, ·)) is close to F (ρ∗), which is the
optimal upper bound. This implies the convergence of Kλ to ρ∗, as λ→∞.

1.4.3. The equi-continuity. By the Freidlin-Wentzell LDP,we can show that for fixedλ > 0, as ε→ 0,hε,λ concentrates
around the set of functionsλ−1 log λ

1
2Z(Kλ;λ·, λ·). In Section 1.4.2, we explain how to prove thatKλ converges to ρ∗,

as λ → ∞. To prove Theorem 1.2, we need to show additionally that the distance between λ−1 log λ
1
2Z(Kλ;λ·, λ·)

and λ−1 log λ
1
2Z(ρ∗;λ·, λ·) is small as λ → ∞. This is proved by establishing the equi-continuity of the maps

fλ : ρ 7→ λ−1 log λ
1
2Z(ρ;λ·, λ·), see Proposition 4.1.

Acknowledgments. We thank Ivan Corwin, Alexandre Krajenbrink, Pierre Le Doussal, and Baruch Meerson for their
helpful comments on the presentation of this work. We thank the referees for their useful comments on the manuscript,
especially for pointing out an error in Lemma 3.1 in the first version of the manuscript. The research of LCT is partially
supported by the Sloan Fellowship and the NSF through DMS-1953407 and DMS-2153739.

Outline of the rest of the paper. In Section 2, we prove Theorem 1.1 and confirm the 3
2 -power law in the deep upper

tail rate function. In Section 3, we give some detailed characterization of the minimizers in (1.13). We also prove that
the asymptotic limit of these minimizers equals sech2 x. In Section 4, we establish some result about equi-continuity
and prove the convergence of the left hand side of (1.16) to h∗, thus completing the proof of Theorem 1.2.

2. The 3
2 -power law

By the discussion in Section 1.3, to prove Theorem 1.1, it suffices to show (1.13). In particular, (1.13) follows if we
can show

lim sup
λ→∞

inf
{ 1

2λ
‖ρ‖2L2([0,2λ]×R) : ρ ∈ L2([0, 2λ]× R), Z(ρ; 2λ, 0) ≥ 1√

4πλ
eλ
}
≤ 4

3
, (LimSup)

lim inf
λ→∞

inf
{ 1

2λ
‖ρ‖2L2([0,2λ]×R) : ρ ∈ L2([0, 2λ]× R), Z(ρ; 2λ, 0) ≥ 1√

4πλ
eλ
}
≥ 4

3
. (LimInf)

The rest of the section is devoted to proving (LimSup) and (LimInf).

For the rest of the paper, we will use C = C(a1, a2, . . . ) to denote a deterministic positive finite constant. The
constant may change from line to line or even within the same line, but depends only on the designated variables
a1, a2, . . . . In addition, we will denote the Brownian motion as B and Brownian bridge as Bb. When we write
Ex→y[f(

∫ b
a
Bb(s)ds)], the expectation is taken with respect to a Brownian bridge with Bb(a) = x and Bb(b) = y.

When we write Ex[f(
∫ b
a
B(s)ds)], the expectation is taken with a Brownian motion starting from B(a) = x.
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2.1. Proof of (LimSup). The key to the proof is to consider the exponential moment of the Bb subject to a time-
independent potential ϕ. More precisely, for ϕ ∈ L2(R), we consider

Z(ϕ; 2λ, 0) = E0→0

[
exp

(∫ 2λ

0

ϕ(Bb(s))ds
)]
p(2λ, 0). (2.1)

To analyze (2.1), let us recall some background knowledge from [Che10, Section 4.1]. Fixing a bounded continuous
function ϕ : R→ R, we define Tϕt : L2(R)→ L2(R) as

(Tϕt g)(x) = Ex
[

exp
(∫ t

0

ϕ(B(s))ds
)
g(B(t))

]
.

By [Che10, page 105], (Tϕt )t≥0 forms a strongly-continuous, self-adjoint and non-negative semi-group on L2(R). Let
Aϕ be the generator of the semi-group (Tϕt )t≥0. Denote the domain of the generator Aϕ by D(Aϕ). Let C∞c (R) be
the space of compactly supported smooth function. Let H1(R) to be the Sobolev space {g ∈ L2(R) : g′ ∈ L2(R)}.
By [Che10, Theorem 4.1.2 and Lemma 4.1.3], C∞c (R) ⊆ D(Aϕ) ⊆ H1(R). Further, for g ∈ D(Aϕ),

〈Aϕg, g〉L2(R) =

∫
R
ϕ(x)g(x)2 − 1

2
g′(x)2dx. (2.2)

For ϕ ∈ L2(R), define

F (ϕ) := sup
{∫

R
ϕ(x)g(x)2 − 1

2
g′(x)2dx : g ∈ H1(R), ‖g‖L2(R) = 1

}
. (2.3)

Assume that ϕ is bounded and continuous. Since C∞c (R) is dense in H1(R) (w.r.t. the H1-norm), we have

F (ϕ) = sup{〈Aϕg, g〉L2(R) : g ∈ C∞c (R), ‖g‖L2(R) = 1}. (2.4)

Further, we record two useful inequalities from [Che10, Eq 4.1.25 and 4.1.29]. For g ∈ C∞c (R),

exp
(
t〈Aϕg, g〉L2(R)

)
≤ 〈Tϕt g, g〉L2(R) ≤ exp

(
tF (ϕ)

)
. (2.5)

It is known that (see [Che10, Thereom 4.1.6]) for bounded continuous ϕ,

lim
λ→∞

1

λ
logE0

[
exp

(∫ λ

0

ϕ(B(s))ds
)]

= F (ϕ).

We prove a similar result for the Brownian bridge, allowing the starting position to deviate from zero by an amount
less than O(λ

1
2 ).

Lemma 2.1. Fix bounded continuous ϕ : R→ R. Fix α ∈ (0, 1/2). Uniformly for |x| ≤ λα,

lim
λ→∞

1

λ
logEx→0

[
exp

(∫ λ

0

ϕ(Bb(s))ds
)]

= F (ϕ). (2.6)

Remark 2.2. Here we only need the x = 0 result for proving (LimSup), and the result for x 6= 0 will be needed in
Section 4.

We say that lim infλ→∞ fλ(t, x) ≥ g(t, x) uniformly for (t, x) ∈ O, if for any ζ > 0, there exists M such that
f(t, x) > g(t, x)− ζ for all λ > M and (t, x) ∈ O. Similarly, we say that lim supλ→∞ fλ(t, x) ≤ g(t, x) uniformly
for (t, x) ∈ O if for any ζ > 0, there existsM such that f(t, x) < g(t, x) + ζ for all λ > M and (t, x) ∈ O.

Proof of Lemma 2.1. The idea of the proof is from [Che10, Theroem 4.1.6]. Recall that for a Brownian bridge Bb(s)
with Bb(0) = x and Bb(λ) = 0, the random variable Bb(1) and Bb(λ− 1) has joint probability density function

fBb(1),Bb(λ−1)(y, z) :=
p(1, x− y)p(λ− 2, y − z)p(1, z)

p(λ, x)
.

Using the boundedness of ϕ and the preceding joint density in order, we have

Ex→0

[
exp

(∫ λ

0

ϕ(Bb(s))ds
)]

≥ 1

C
EBb(0)=x,Bb(λ)=0

[
exp

(∫ λ−1

1

ϕ(Bb(s))ds
)]
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=
1

Cp(λ, x)

∫
R
p(1, x− y)Ey

[
exp

(∫ λ−1

1

ϕ(B(s))ds
)
p(1, B(λ− 1))

]
dy. (2.7)

Since ϕ is fixed, we omit the dependence on ϕ in the constant C. For any compactly supported g ∈ C∞c (R), since
|x| ≤ λα, 1

p(λ,x) ≥ C
√
λ and p(1, x− y) ≥ 1

C(g) |g(y)| exp(−Cλ2α). Hence,

1

p(λ, x)

∫
R
p(1, x− y)Ey

[
exp

(∫ λ−1

1

ϕ(B(s))ds
)
p(1, B(λ− 1))

]
dy

≥ exp(−Cλ2α)

C(g)

∫
R
g(y)Ey

[
exp

(∫ λ−1

1

ϕ(B(s))ds
)
g(B(λ− 1))

]
dy

≥ exp(−Cλ2α)

C(g)
〈Tϕλ−2g, g〉 ≥

exp(−Cλ2α)

C(g)
exp

(
(λ− 2)〈Aϕg, g〉L2(R)

)
.

The last inequality follows from (2.5). Inserting the above bound into the right hand side of (2.7) yields

Ex→0

[
exp

(∫ λ

0

ϕ(Bb(s))ds
)]
≥ exp(−Cλ2α)

C(g)
exp

(
(λ− 2)〈Aϕg, g〉L2(R)

)
.

Taking the logarithm of the both sides, dividing the result by λ and sending λ → ∞, we obtain that uniformly for
|x| ≤ λα,

lim inf
λ→∞

1

λ
logEx→0

[
exp

(∫ λ

0

ϕ(Bb(s))ds
)]
≥ 〈Aϕg, g〉L2(R).

Taking the supremum of the right hand side over g ∈ C∞c (R) and using (2.4), we conclude that uniformly for |x| ≤ λα,

lim inf
λ→∞

1

λ
logEx→0

[
exp

(∫ λ

0

ϕ(Bb(s))ds
)]
≥ F (ϕ).

To prove the reverse inequality, we write

Ex→0

[
exp

(∫ λ

0

ϕ(Bb(s))ds
)]

= Ex→0

[
exp

(∫ λ

0

ϕ(Bb(s))ds
)
1{|Bb(1)|≤λ2,|Bb(λ−1)|≤λ2}

]
+ Ex→0

[
exp

(∫ λ

0

ϕ(Bb(s))ds
)
1{|Bb(1)|≥λ2 or |Bb(λ−1)|≥λ2}

]
≤ Ex→0

[
exp

(∫ λ

0

ϕ(Bb(s))ds
)
1{|Bb(1)|≤λ2,|Bb(λ−1)|≤λ2}

]
+ C exp(−C−1λ2). (2.8)

Recall that |x| ≤ λα, α ∈ (0, 12 ). The last inequality follows from the boundedness of ϕ together with the tail decay
of P[Bb(1) ≥ λ2] and P[Bb(λ− 1) ≥ λ2]. For the first term on the right hand side of (2.8),

Ex→0

[
exp

(∫ λ

0

ϕ(Bb(s))ds
)
1{|Bb(1)|≤λ2,|Bb(λ−1)|≤λ2}

]
≤ CEBb(0)=x,Bb(λ)=0

[
exp

(∫ λ−1

1

ϕ(Bb(s))ds
)
1{|Bb(1)|≤λ2,|Bb(λ−1)|≤λ2}

]
=

C

p(λ, x)

∫
R
p(1, x− y)1{|y|≤λ2}Ey

[
exp

(∫ λ−1

1

ϕ(B(s))ds
)
p(1, B(λ− 1))1{|B(λ−1)|≤λ2}

]
dy. (2.9)

The first inequality follows from the boundedness of ϕ and the second equality is due to the transition probabilities
of the Brownian bridge. Let gλ ∈ C∞c (R) be such that gλ(y) = 1 for all |y| ≤ λ2, gλ(y) = 0 for |y| ≥ 2λ2 and
gλ(y) ∈ [0, 1] for all y. Then p(1, x− y)1{|y|≤λ2} ≤ gλ(y) and thus∫

p(1, x− y)1{|y|≤λ2}Ey
[

exp
(∫ λ−1

1

ϕ(B(s))ds
)
p(1, B(λ− 1))1{|B(λ−1)|≤λ2}

]
dy

≤
∫
gλ(y)Ey

[
exp

(∫ λ−1

1

ϕ(B(s))ds
)
gλ(B(λ− 1))

]
dy
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= 〈Tϕλ−2gλ, gλ〉L2(R) ≤ ‖gλ‖2L2(R) exp
(
(λ− 2)F (ϕ)

)
.

The last equality follows from (2.5). Inserting the above bound into (2.9) and then inserting the result to (2.8), we
conclude that uniformly for |x| ≤ λα,

lim sup
λ→∞

1

λ
logEx→0

[
exp

(∫ λ

0

ϕ(Bb(s))ds
)]
≤ F (ϕ).

This concludes the lemma. �

We are now ready to prove (LimSup). Recall that ρ∗(t, x) = ρ∗(x) = sech2(x). Fix arbitrary ζ > 0 and take x = 0 in
Lemma 2.1. We have

lim
λ→∞

1

λ
logZ((1 + ζ)ρ∗; 2λ, 0) = lim

λ→∞

1

λ
logE0→0

[
exp

(∫ 2λ

0

(1 + ζ)ρ∗(Bb(s))ds
)]
·p(2λ, 0)

= 2F ((1 + ζ)ρ∗).

(2.10)

Referring to (2.3) for the definition of F and taking g = 1√
2

sech(x), ‖g‖L2(R) = 1, we have

F ((1 + ζ)ρ∗) ≥
∫
R

(1 + ζ)ρ∗(x)g(x)2 − 1

2
g′(x)2dx =

1

2
+

2

3
ζ.

This, together with (2.10), implies that for λ large enough, Z((1 + ζ)ρ∗; 2λ, 0) ≥ e(1+ζ)λ > 1√
4πλ

eλ. Consequently,
for λ large enough,

inf
{ 1

2λ
‖ρ‖2L2([0,2λ]×R) : Z(ρ; 2λ, 0) ≥ 1√

4πλ
eλ
}
≤ 1

2λ
‖(1 + ζ)ρ∗‖2L2([0,2λ]×R) =

4

3
(1 + ζ)2.

In the last equality, we used ‖ sech(·)2‖2L2(R) = 4
3 . Taking ζ → 0 concludes (LimSup).

2.2. Proof of (LimInf). Fix T > 0 and ρ ∈ L2([0, T ] × R). Let us define the time-dependent semigroup P (ρ; s →
t) : L2(R)→ L2(R), 0 ≤ s < t ≤ T . Given a function f ∈ L2(R), fix s and consider the PDE

∂rZ
s,f (r, x) =

1

2
∂xxZ

s,f (r, x) + ρ(r, x)Zs,f (r, x), Zs,f (s, ·) = f. (2.11)

We define P (ρ; s→ t)f := Zs,f (t, ·). Note that Zs,f is the unique solution to the integral equation

Zs,f (t, x) =

∫
R
p(t− s, x− y)f(y)dy +

∫ t

s

∫
R
p(t− r, x− y)ρ(r, y)Zs,f (r, y)drdy.

Via Picard iteration, we have Zs,f (t, x) =
∫
R P ((s, x)→ (t, y))f(y)dy where the kernel

P (ρ; (s, x)→ (t, y))

:= p(t− s, x− y) +
∞∑
n=1

∫
s<tn<···<t1<t

∫
Rn

n+1∏
i=1

p(ti−1 − ti, xi−1 − xi)ρ(ti, xi)dtidxi. (2.12)

Here, we set t0 = t and x0 = x, tn+1 = s and xn+1 = y.

Next we establish four bounds for the time-dependent semigroup.

Lemma 2.3. There exists a universal constant C such that for all s < t and a > 0,

‖P (ρ; (s, 0)→ (t, ·))‖L2(R) ≤ C(t− s)−1/4 exp(a2C(t− s) +
1

a
‖ρ‖2L2([s,t]×R)), (2.13)

‖P (ρ; (s, ·)→ (t, 0)‖L2(R) ≤ C(t− s)−1/4 exp(a2C(t− s) +
1

a
‖ρ‖2L2([s,t]×R)), (2.14)

‖P (ρ; s→ t)‖L2(R)→L2(R) ≤ C exp(a2C(t− s) +
1

a
‖ρ‖2L2([s,t]×R)), (2.15)

|P (ρ; (s, y)→ (t, x))| ≤ C exp(a2C(t− s) +
1

a
‖ρ‖2L2([s,t]×R))p(t− s, x− y). (2.16)
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Proof. In the proof, we assume without loss of generality that s = 0.

Let us first prove (2.13). View the right hand side of (2.12) as a series of function in x, and bound the L2 norm of each
function. For the zeroth function in (2.12), we have ‖p(t, ·)‖2L2(R) = Ct−

1
2 . For the n-th functions in (2.12), applying

the Cauchy-Schwarz inequality gives

‖(n-th)‖2L2(R) ≤
∫
R

∫
0<tn<···<t1<t

∫
Rn

n+1∏
i=1

p(ti−1 − ti, xi−1 − xi)2dtidxidx
‖ρ‖2nL2([0,t]×R)

n!

=
Cn

Γ(n/2)
t
n
2−

1
2

‖ρ‖2nL2([0,t]×R)

n!
.

Hence, we have

‖P (ρ; (0, 0)→ (t, ·))‖L2(R) ≤ Ct−
1
4

∞∑
n=0

Cntn/4

Γ(n/2)
1
2

‖ρ‖nL2([0,t]×R)

(n!)1/2

≤ Ct− 1
4

( ∞∑
n=0

anCntn/2

Γ(n/2)

) 1
2
( ∞∑
n=0

a−n‖ρ‖2nL2([0,t]×R)

n!

) 1
2

.

This concludes (2.13).

The left hand sides of (2.13) and (2.14) are the same upon time reversal, so (2.14) follows.

The proof of (2.15) is similar in spirit to (2.13). Using (P (ρ; 0→ t)f)(x) =
∫
R P ((0, x)→ (t, y))f(y)dy and (2.12),

we express P (ρ; 0 → t)f as a series of functions. We bound the L2 norm of each function in the series. By the
Cauchy-Schwarz inequality, we have(∫

R
p(t, x− y)f(y)dy

)2
≤
∫
R
p(t, x− y)f(y)2dy. (2.17)

Integrating both sides of (2.17) in x gives that for the zero-th function, ‖
∫
R p(t, · − y)f(y)dy‖2L2(R) ≤ ‖f‖

2
L2(R). For

the n-th function, applying the Cauchy-Schwarz inequality yields

‖(n-th)‖2L2(R) ≤
∫
R

∫
0<tn<···<t1<t

∫
Rn

(∫
p(tn, xn − y)f(y)dy

)2 n∏
i=1

p(ti−1 − ti, xi−1 − xi)2dtidxidx
‖ρ‖2nL2([0,t]×R)

n!
.

Using (2.17) and p(t, x)2 ≤ 1√
2πt

p(t, x), we get

‖(n-th)‖2L2(R) ≤
‖ρ‖2nL2([0,t]×R)‖f‖L2(R)

n!

∫
0<tn<···<t1<t

n∏
i=1

1√
2π(ti−1 − ti)

dti =
Cntn/2

Γ(n/2)

‖ρ‖2nL2([0,t]×R)

n!
‖f‖2L2(R).

Taking the square root of both sides and summing over n, the rest of the proof is similar to the proof of (2.13).

To prove (2.16), we view the right hand side of (2.12) as a series of real numbers. We bound the value of each term in
the series. The zeroth term equals p(t− s, x− y). For the n-th term, applying the Cauchy-Schwarz inequality yields

|(n-th)|2 ≤
∫
0<tn<···<s1<t

∫
Rn

n+1∏
i=1

p(ti−1 − ti, xi−1 − xi)2dtidxi
‖ρ‖2nL([s,t]×R)

n!
≤ Cntn/2

Γ(n/2)

‖ρ‖2nL2([0,t]×R)

n!
p(t, x− y)2.

Taking the square root of both sides and summing over n, the rest of the proof is similar to the proof of (2.13).
�

Lemma 2.4. For every ϕ ∈ L2(R), we have

F (ϕ) ≤ 1

2
(
3

4
)2/3‖ϕ‖

4
3

L2(R). (2.18)

Moreover, the equality holds if and only if ϕ(·) = α2 sech2(α(· − v)) for some α ≥ 0.
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Proof. Referring to (2.3), we have

F (ϕ) ≤ sup
{
‖ϕ‖L2(R)

(∫
g(x)4dx

) 1
2 − 1

2

∫
g′(x)2dx

}
: g ∈ H1(R), ‖g‖L2(R) = 1

}
(2.19)

≤ sup
{

3−
1
4 ‖ϕ‖L2(R)‖g′‖

1
2

L2(R) −
1

2
‖g′‖2L2(R) : g ∈ H1(R), ‖g‖L2(R) = 1

}
(2.20)

≤ 1

2
(
3

4
)2/3‖ϕ‖

4
3

L2(R). (2.21)

The inequality (2.19) is due to the Cauchy-Schwarz inequality. The inequality (2.20) follows from the one-dimensional
L4 Gagliardo-Nirenberg-Sobolev inequality, which states that, for g ∈ L2(R) and g′ ∈ L2(R),

‖g‖L4(R) ≤ 3−1/8‖g′‖1/4L2(R)‖g‖
3/4
L2(R). (2.22)

The inequality (2.21) follows from the elementary inequality 3−
1
4 yx

1
2 − 1

2x
2 ≤ 1

2 ( 3
4 )2/3y

4
3 .

To prove the if and only if statement, we need to investigate when the inequalities (2.19)-(2.21) become equalities. The
inequality (2.19) becomes an equality if and only if ϕ = const ·g. By [DELL14, Proposition 3.1], the inequality (2.20),
i.e. (2.22) becomes an equality if and only if g(x) = a sech(b(x − v)) for some a, v and b > 0; the inequality (2.21)
becomes an equality if and only if ‖g′‖L2(R) = ( 1

2 )2/33−1/6‖ϕ‖2/3L2(R). Combining these with ‖g‖L2(R) = 1 gives that

g(·) = a sech
(
2a2(· − v)

)
, ϕ(·) = 4a4 sech2

(
2a2(· − v)

)
.

Replacing 2a2 with α implies that ϕ(·) = α2 sech2(α(· − v)). �

Remark 2.5. We only need (2.18) for this section, and the if and only if part is required in Section 3.

The key for proving (LimInf) is an improved upper bound (compared with (2.15)) for ‖P (ρ; s→ t)‖L2(R)→L2(R) stated
in Proposition 2.9. To prove this upper bound, we need to first establish the following two lemmas about continuity.

Lemma 2.6. Fix 0 ≤ s < t. The map ‖P (·; s→ t)‖L2(R)→L2(R) : L2([s, t]× R)→ R is continuous.

Proof. Fix f ∈ L2(R). Since Zs,f (t, x) = (P (ρ; s→ t)f)(x) solves (2.11), by the Feynman-Kac formula,

Zs,f (ρ; t, x) = Ex
[

exp
(∫ t

s

ρ(t− r,B(r))dr
)
f(B(t))

]
.

Given ρ, ρ̃ ∈ L2([s, t] × R). We write ρ = ρ − (1 − ζ)ρ̃ + (1 − ζ)ρ̃ in the exponent above and apply the Hölder
inequality to the result. We have for ζ ∈ (0, 1),

Zs,f (ρ; t, x) = Ex
[

exp
(∫ t

s

(ρ− (1− ζ)ρ̃)(t− r,B(r))dr
)(
f(B(t))

)ζ
· exp

(∫ t

s

(1− ζ)ρ̃(t− r,B(r))dr
)(
f(B(t))

)1−ζ]
≤ Zs,f

(
ζ−1(ρ− (1− ζ)ρ̃); t, x

)ζ
Zs,f (ρ̃; t, x)1−ζ .

Squaring both sides, integrating in x and using the Hölder inequality again gives∥∥Zs,f (ρ; t, ·)∥∥L2(R) ≤
∥∥Zs,f(ζ−1(ρ− (1− ζ)ρ̃); t, ·)∥∥ζL2(R)

∥∥Zs,f (ρ̃; t, ·)∥∥1−ζL2(R).

Taking the supremum over {f : ‖f‖L2(R) ≤ 1} yields that∥∥P (ρ; s→ t)
∥∥
L2(R)→L2(R) ≤

∥∥P (ζ−1(ρ− (1− ζ)ρ̃); s→ t
)∥∥ζ
L2(R)→L2(R)

∥∥P (ρ̃; s→ t)
∥∥1−ζ
L2(R)→L2(R). (2.23)

SetG(ρ) := log ‖P (ρ; s→ t)‖L2(R)→L2(R). Our goal is to show thatG is continuous in ρ. We do this by showing that
G is both upper and lower semi-continuous. Taking the logarithm of both sides of (2.23) and applying (2.15) yields

G(ρ) ≤ ζG
(
ζ−1(ρ− (1− ζ)ρ̃)

)
+ (1− ζ)G(ρ̃)

≤ C(s, t)ζ + Cζ‖ζ−1(ρ− (1− ζ)ρ̃)‖2L2([s,t]×R) + (1− ζ)G(ρ̃). (2.24)

Subtracting (1− ζ)G(ρ̃) + ζG(ρ) from both sides and applying the inequality ‖f + g‖2L2 ≤ 2(‖f‖2L2 + ‖g‖2L2) yield

(1− ζ)(G(ρ)−G(ρ̃)) ≤ C(s, t)ζ + Cζ−1(1− ζ)2‖ρ− ρ̃‖2L2([s,t]×R) + Cζ‖ρ‖2L2([s,t]×R) − ζG(ρ)
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≤ Cζ−1(1− ζ)2‖ρ− ρ̃‖2L2([s,t]×R) + ζC(s, t, ρ).

Taking ζ = ‖ρ − ρ̃‖L2([s,t]×R) and letting ρ̃ → ρ, we see that lim supρ̃→ρG(ρ̃) ≤ G(ρ). Thus, G is upper semi-
continuous.

On the other hand, if we swap ρ and ρ̃ in (2.24), a similar argument gives

G(ρ̃)−G(ρ) ≤ ζC(s, t, ρ) + Cζ−1‖ρ̃− ρ‖2L2([s,t]×R).

Taking ζ = ‖ρ − ρ̃‖L2([s,t]×R) and letting ρ̃ → ρ, we see that G is lower semi-continuous. This concludes the
lemma. �

Lemma 2.7. Fix 0 ≤ s < t and M ≥ 0. There exists a constant C(M) > 0. For ϕ1, ϕ2 ∈ L2(R) such that
0 ≤ ϕ1, ϕ2 ≤M almost everywhere, we have

|F (ϕ1)− F (ϕ2)| ≤ C(M)‖ϕ1 − ϕ2‖L2(R).

Proof. By the definition of F (ϕ2) in (2.3), for any ζ > 0, there exists gζ that ‖gζ‖2L2(R) = 1 and

F (ϕ2) ≤
∫
R
ϕ2g

2
ζ −

1

2
(g′ζ)

2 + ζ. (2.25)

Moreover, we have F (ϕ1) ≥
∫
R ϕ1g

2
ζ − 1

2 (g′ζ)
2. Using this and (2.25), we have

F (ϕ2)− F (ϕ1) ≤
∫
R

(ϕ2 − ϕ1)g2ζ + ζ.

Applying the Cauchy-Schwarz inequality to the right hand side above and then applying (2.22) to the result, we have

F (ϕ2)− F (ϕ1) ≤ 3−
1
4 ‖ϕ2 − ϕ1‖L2(R)‖g′ζ‖

1
2

L2(R) + ζ. (2.26)

By (2.25), 1
2‖g
′
ζ‖2L2(R) ≤

∫
R ϕ2g

2
ζ − F (ϕ2) + ζ. Since 0 ≤ ϕ2 ≤M and ‖gζ‖L2(R) = 1, we can upper bound the first

term on the right hand side byM and the second term by a universal constantC. Hence, we have 1
2‖g
′
ζ‖2L2(R) ≤ C(M).

Inserting this to the right hand side of (2.26) and letting ζ → 0 yields

F (ϕ2)− F (ϕ1) ≤ C(M)‖ϕ2 − ϕ1‖L2(R).

Swapping ϕ1 and ϕ2 concludes the lemma. �

Corollary 2.8. Fix 0 ≤ s < t andM ≥ 0. There exists a constant C(M, t, s). For ρ1, ρ2 ∈ L2([s, t]× R) such that
0 ≤ ρ1, ρ2 ≤M almost everywhere, we have∣∣∣ ∫ t

s

F (ρ1(r, ·))dr −
∫ t

s

F (ρ2(r, ·))dr
∣∣∣ ≤ C(M, t, s)‖ρ1 − ρ2‖L2([s,t]×R).

Proof. It is straightforward to see that∣∣∣ ∫ t

s

F (ρ1(r, ·))dr −
∫ t

s

F (ρ2(r, ·))dr
∣∣∣ ≤ ∫ t

s

∣∣F (ρ1(r, ·))− F (ρ2(r, ·))∣∣dr. (2.27)

Applying Lemma 2.7 to upper bound the right hand side above and applying the Cauchy Schwarz inequality to the
result, we have

RHS of (2.27) ≤ C(M)

∫ t

s

‖ρ1(r, ·)− ρ2(r, ·)‖L2(R)dr ≤ C(M)(t− s) 1
2 ‖ρ1 − ρ2‖L2([s,t]×R).

This concludes the corollary. �

Proposition 2.9. Fix 0 ≤ s < t. For all ρ ∈ L2([s, t]× R) satisfying ρ ≥ 0 almost everywhere, we have

‖P (ρ; s→ t)‖L2(R)→L2(R) ≤ exp
(∫ t

s

F (ρ(r, ·))dr
)
. (2.28)
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Proof. Fix smooth and compactly supported ρ and f . Since ρ is smooth, the function Zs,f (t, x) = (P (s → t)f)(x)
solves (2.11) point-wise. Multiply both side by Z, integrate the result over x ∈ R and interchange the integration and
differentiation. We have

1

2
∂r‖Zs,f (r, ·)‖2L2(R) ≤ F (ρ(r, ·))‖Zs,f (r, ·)‖2L2(R).

Integrating in time from s to t gives

‖Zs,f (t, ·)‖2L2(R) ≤ ‖f‖
2
L2(R) exp

(
2

∫ t

s

F (ρ(r, ·))dr
)
.

For fixed smooth and compact supported ρ, by approximation, the above inequality also holds for general f ∈ L2(R).
Thus, we have proven (2.28) for smooth and compactly supported ρ.

The general result follows by approximation and monotonicity. Fix arbitraryM ≥ 0. We first prove that (2.28) holds
for all ρ ∈ L2([s, t] × R) such that almost everywhere 0 ≤ ρ ≤ M . By a density argument, there exists smooth and
compactly supported functions {ρn}∞n=1 such that 0 ≤ ρn ≤M and ‖ρn− ρ‖L2([s,t]×R) → 0 as n→∞. (2.28) holds
when ρ is replaced by ρn. Let n→∞, by Lemma 2.6 and Corollary 2.8, (2.28) also holds for ρ.

Finally, we prove (2.28) for ρ ∈ L2([s, t] × R) such that almost everywhere ρ ≥ 0. As n → ∞, ρ1{ρ≤n} → ρ in
L2([s, t]×R). In the preceding paragraph, we have proved that (2.28) holds when ρ is replaced by ρ1{ρ≤n}, for all n.
Using this and the monotonicity of F , we have

‖P (ρ1{ρ≤n}; s→ t)‖L2(R)→L2(R) ≤ exp
(∫ t

s

F (ρ1{ρ≤n}(r, ·))dr
)
≤ exp

(∫ t

s

F (ρ(r, ·))dr
)
.

Letting n→∞, by Lemma 2.6, the left hand side above converges to ‖P (ρ; s→ t)‖L2(R)→L2(R). Hence, we conclude
(2.28). �

Based on the preceding results, we now proceed to prove (LimInf). The proof amounts to showing that, for any
ρ ∈ L2([0, 2λ]×R) such thatZ(ρ; 2λ, 0) ≥ 1√

4π
eλ, we have 1

2λ‖ρ‖
2
L2([0,2λ]×R) ≥

4
3−oλ(1)where limλ→∞ oλ(1) = 0.

With loss of generality, we can assume that
1

2λ
‖ρ‖2L2([0,2λ])×R ≤ 2. (2.29)

Moreover, define ρ+ := min(ρ, 0). Because Z(ρ+; 2λ, 0) ≥ Z(ρ; 2λ, 0) and ‖ρ+‖L2([0,2λ]×R) ≤ ‖ρ‖L2([0,2λ]×R), we
can also assume that ρ ≥ 0 almost everywhere. Note that Z(ρ; 2λ, 0) = P (ρ; (0, 0)→ (2λ, 0)). Using the semigroup
property, we have

Z(ρ; 2λ, 0) = P (ρ; (0, 0)→ (1, ·))P (ρ; 1→ (2λ− 1))P (ρ; (2λ− 1, ·)→ (2λ, 0))

≤ ‖P (ρ; (0, 0)→ (1, ·))‖L2(R)‖P (ρ; 1→ (2λ− 1))‖L2(R)→L2(R)‖P (ρ; (2λ− 1, ·)→ (2λ, 0))‖L2(R).

Applying (2.13)-(2.14) (take a = λ
1
3 ) to upper bound the first and third term on the right hand side, using Proposition

2.9 and (2.29) to upper bound the second term, we have

Z(ρ; 2λ, 0) ≤ C‖P (ρ; 1→ (2λ− 1))‖L2(R)→L2(R) exp
(
Cλ

2
3 + λ−

1
3 ‖ρ‖2L2([0,1]×R) + λ−

1
3 ‖ρ‖2L2([2λ−1,2λ]×R)

)
≤ C exp(Cλ

2
3 ) exp

(∫ 2λ

0

F (ρ(r, ·))dr
)
. (2.30)

Here C is a universal constant. For the integral above, using Lemma 2.4 to bound F , together with Young’s inequality,
‖ρ(r, ·)‖ 4

3

L2(R) ≤
61/3

3 (‖ρ(r, ·)‖2L2(R) + 2
3 ) for every r, we have

Z(ρ; 2λ, 0) ≤ C exp(Cλ
2
3 ) exp

(∫ 2λ

0

1

2

(3

4

) 2
3 ‖ρ(r, ·)‖ 4

3

L2(R)dr
)

≤ C exp(Cλ
2
3 ) exp

(∫ 2λ

0

1

4

(
‖ρ(r, ·)‖2L2(R) +

2

3

)
dr

)
.

Applying 1√
4πλ

eλ ≤ Z(ρ; 2λ, 0) to lower bound Z(ρ; 2λ, 0), we have that that λ(1− oλ(1)) ≤ 1
4‖ρ‖

2
L2([0,2λ]×R) + λ

3 ,
where limλ→ oλ(1) = 0. Hence 1

2λ‖ρ‖
2
L2([0,2λ]×R) ≥

4
3 − oλ(1). Letting λ→∞ concludes the desired (LimInf).
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3. Minimizers of the variational formula

For a ρ ∈ L2([0, 2λ]× R), recall that Z(ρ) = Z(ρ; t, x) is the (unique) solution to the PDE

∂tZ =
1

2
∂xxZ + ρZ, (t, x) ∈ (0, 2λ]× R, Z(ρ; 0, ·) = δ0(·).

Let Kλ denote the set of minimizers of

inf
{1

2
‖ρ‖2L2([0,2λ]×R) : ρ ∈ L2([0, 2λ]× R), Z(ρ; 2λ, 0) ≥ 1√

4πλ
eλ
}
. (3.1)

It is convenient to consider the scaled version of Kλ: Let K̃λ be the set of minimizers of

inf
{1

2
‖ρ‖2L2([0,2]×R) : ρ ∈ L2([0, 2]× R), Z(ρ; 2, 0) ≥ 1√

4π
eλ
}
. (3.2)

Recall the scaling property Z(λρ(λ·, λ 1
2 ·); 2, 0) = λ

1
2Z(ρ; 2λ, 0). We have

K̃λ = {λρ(λ·, λ 1
2 ·) : ρ ∈ Kλ}. (3.3)

To prepare for the proof of Theorem 1.2, in this section, we develop a few properties of Kλ for fixed λ. We also study
the asymptotic behavior of Kλ as λ→∞.

3.1. Properties of Kλ.

3.1.1. Kλ is not empty. We first show that Kλ is not empty. By the scaling (3.3), it suffices to show that K̃λ is not
empty, i.e. a minimizer of (3.2) exists.

Let us first introduce a few facts that would be useful throughout Section 3. We take a Banach space B with Gaussian
measure µ such that L2([0, 2] × R) is the Cameron-Martin space of (B, µ). We further assume the embedding
L2([0, 2]×R) ⊆ B is dense. For a concrete choice of (B, µ), see [LT21, Section 2.1.1]. The advantage of introducing
B is that it brings us compactness. Since L2([0, 2]×R) is the Cameron-Martin space of B, for arbitrary r ≥ 0, the set
{ρ : ‖ρ‖L2([0,2]×R) ≤ r} is compact in B. The compactness would be crucial for us to prove the non-emptiness of Kλ.

We are going to view Z as a map from ρ ∈ L2([0, 2]×R) to the space-time function Z(ρ; ·, ·). If we restrict the time
and space coordinates in (t, x) ∈ [δ, 2]× [−δ−1, δ−1], it follows from [LT21, Section 2.1] that Z maps L2([0, 2]× R)
to C([δ, 2]× [−δ−1, δ−1]).

We useL2
B([0, 2]×R) to denote the same spaceL2([0, 2]×R) with the topology induced by the topology of the Banach

space B. Even though Z : L2
B([0, 2]× R)→ C([δ, 2]× [−δ−1, δ−1]) is not continuous in general, its restriction onto

{ρ : ‖ρ‖L2([0,2]×R) ≤ r} is continuous for any r <∞, as shown in the following lemma.

Lemma 3.1. Fix arbitrary δ > 0 and r < ∞. The map Z : ρ 7→ Z(ρ; ·, ·) is continuous from L2
B([0, 2] ×

R)∩{ρ : ‖ρ‖L2([0,2]×R) ≤ r} to C([δ, 2]× [−δ−1, δ−1]).

Proof. Define the extension of Z

Z′ : B → C([δ, 2]× [δ−1, δ−1]), Z′(ρ) :=

{
Z(ρ), when ρ ∈ L2([0, 2]× R),

0, otherwise.
(3.4)

By the proof of [LT21, Lemma 3.7] (see the paragraph above Eq (3.18’) therein), there exists a sequence of continuous
functions ϕN : B → C([δ, 2]× [−δ−1, δ−1]) such that for all r <∞,

lim
N→∞

sup
1
2‖ρ‖

2
L2([0,2]×R)

≤r
‖Z′(ρ)− ϕN (ρ)‖L∞([δ,2]×[−δ−1,δ−1]) = 0.

Using this, we conclude that the map Z′ : B∩{ρ : ‖ρ‖L2([0,2]×R) ≤ r} → C([δ, 2] × [−δ−1, δ−1]) is continuous. By
(3.4), we have the desired continuity of Z : L2

B([0, 2]×R)∩{ρ : ‖ρ‖L2([0,2]×R) ≤ r} → C([δ, 2]× [−δ−1, δ−1]). �

Denote the infimum in (3.2) by qλ.

Proposition 3.2. Fix λ > 0, the set Kλ is not empty.
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Proof. By the scaling (3.3), it suffices to prove that K̃λ is not empty, i.e. the minimizer of (3.2) exists. Let {ρn}n∈Z≥1
⊆

L2([0, 2] × R) be such that Z(ρn; 2, 0) ≥ 1√
4π
eλ and 1

2‖ρn‖
2
L2([0,2]×R) ↓ qλ. Since for arbitrary fixed r<∞, the set

{ρ : 1
2‖ρ‖

2
L2([0,2]×R) ≤ r} is compact in B, after passing to a subsequence, ρn converges to some ρ ∈ L2([0, 2]×R) in

the topology ofB. By Lemma 3.1, ρ 7→ Z(ρ; 2, 0) is a continuousmap fromLB([0, 2]×R)∩{ρ : ‖ρ‖L2([0,2]×R) ≤ r} to
R. This implies that Z(ρ; 2, 0) ≥ 1√

4π
eλ. By the compactness of {ρ : 1

2‖ρ‖
2
L2([0,2]×R) ≤ r}, we have ‖ρ‖L2([0,2]×R) ≤

lim infn→∞ ‖ρn‖L2([0,2]×R). Hence, ρ is a minimizer of (3.2). �

3.1.2. Symmetric decreasing function in space. In this subsection, we show that every ρ ∈ Kλ is symmetric decreasing
in space.

We say that f is symmetric decreasing if there exists a non-increasing function g : [0,∞) → [0,∞) such that
f(x) = g(|x|) holds for almost every x ∈ R. We say that f is strictly symmetric decreasing if g is strictly decreasing.
We say that a measurable function ρ : [0, T ] × R → [0,∞) is symmetric decreasing in space if for almost every
0 ≤ s ≤ T , ρ(s, ·) is symmetric decreasing.

Proposition 3.3. Fix λ > 0, every element ρ ∈ Kλ is symmetric decreasing in space.

Let A ⊆ R be a measurable set with finite Lebesgue measure |A|. We define the symmetric rearrangement of A,
denoted A∗, as the interval [−|A|/2, |A|/2]. Given a measurable function f : R → [0,∞), we can express f by the
layer-cake representation f(x) =

∫∞
0

1{y∈R:f(y)>`}(x)d`. We define its symmetric decreasing rearrangement as

f∗(x) :=

∫ ∞
0

1{y∈R:f(y)>`}∗(x)d`.

It is straightforward to show that for arbitrary fixed ` ≥ 0, the sets {x : f(x) ≥ `} and {x : f∗(x) ≥ `} have the same
Lebesgue measure. As a consequence, ‖f‖Lp(R) = ‖f∗‖Lp(R) for every p ≥ 1.

Let ρ : [0, T ] × R → [0,∞). We define the Steiner symmetrization of ρ along the time-axis, denoted ρs, as follows:
For every fixed 0 ≤ s ≤ T , we define the function ρs(s, ·) := ρ∗(s, ·).
To prove Proposition 3.3, we rely on the following two rearrangement inequalities known respectively as the Hardy-
Littlewood inequality and the Brascamp-Lieb-Luttinger inequality.

Lemma 3.4 ([LL01, Theorem 3.4]). For any non-negative f, g ∈ L2(R), one has∫
R
f(x)g(x)dx ≤

∫
R
f∗(x)g∗(x)dx.

Moreover, if f = f∗ is strictly symmetric decreasing, then the inequality above becomes an equality if and only if
g = g∗ almost everywhere.

Lemma 3.5 ([BLL74, Theorem 1.2]). Let fj , 1 ≤ j ≤ k, be non-negative measurable functions on R, and let ajm,
1 ≤ j ≤ k, 1 ≤ m ≤ n be real numbers, then∫

Rn

k∏
i=1

fj(
n∑

m=1

ajmxm)dx1 . . . dxn ≤
∫
Rn

k∏
i=1

f∗j (
n∑

m=1

ajmxm)dx1 . . . dxn.

The following result contains the major step for proving Proposition 3.3.

Lemma 3.6. If ρ ∈ L2([0, 2]×R) is non-negative, then Z(ρ; 2, 0) ≤ Z(ρs; 2, 0). In addition, the equality holds if and
only if ρ is symmetric decreasing in space.

Proof. Note that

Z(ρ; 2, 0) = p(2, 0) +
∞∑
n=1

∫
0<tn<···<t1<t0

∫
Rn

n+1∏
i=1

p(ti−1 − ti, xi−1 − xi)
n∏
i=1

ρ(ti, xi)dtidxi, (3.5)

where t0 = 2 and x0 = tn+1 = xn+1 = 0. For the n = 1 term in the sum above, by Lemma 3.4,∫ 2

0

∫
R
p(2− s, x)p(s, x)ρ(s, x)dsdx ≤

∫ 2

0

∫
R
p(2− s, x)p(s, x)ρs(s, x)dsdx. (3.6)
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Since p(2 − s, ·)p(s, ·) is strictly symmetric decreasing for every fixed s ∈ (0, 2), the above becomes an equality if
and only if ρ is symmetric decreasing in space.

For the n ≥ 2 term. View the integrand as product of functions in space for fixed tn < tn−1 < · · · < t1 and note that
p(t, ·) = ps(t, ·). By Lemma 3.5,∫

0<tn<···<t1<t0

∫
Rn

n+1∏
i=1

p(ti−1 − ti, xi−1 − xi)
n∏
i=1

ρ(ti, xi)dtidxi

≤
∫
0<tn<···<t1<t0

∫
Rn

n+1∏
i=1

p(ti−1 − ti, xi−1 − xi)
n∏
i=1

ρs(ti, xi)dtidxi. (3.7)

Combining (3.5)-(3.7), we conclude that Z(ρ; 2, 0) ≤ Z(ρs; 2, 0). Furthermore, the equality holds if and only if ρ is
symmetric decreasing in space. �

Proof of Proposition 3.3. By the scaling (3.3), it suffices to prove Proposition 3.3 for K̃λ. First, we claim that if
ρ ∈ K̃λ, then ρ ≥ 0 almost everywhere. Define ρ+ = max(ρ, 0). The claim follows from Z(ρ; 2λ, 0) ≤ Z(ρ+; 2λ, 0)
and ‖ρ‖L2([0,2]×R) > ‖ρ+‖L2([0,2]×R), if ρ is not almost everywhere non-negative. Next, suppose that there exists
ρ ∈ K̃λ that is not symmetric decreasing in space. By Lemma 3.6, we have Z(ρs; 2, 0) > Z(ρ; 2, 0) ≥ 1√

4π
eλ. By the

continuity of ρ 7→ Z(ρ; 2, 0) in L2([0, 2]×R), there exists some 0 < θ < 1 such that Z(θρs; 2, 0) = 1√
4π
eλ. However,

‖θρs‖L2([0,2]×R) < ‖ρs‖L2([0,2]×R) = ‖ρ‖L2([0,2]×R),

which contradicts with ρ ∈ K̃λ. �

3.2. The ε→ 0 limit of hε,λ for fixed λ. For f ∈ C([δ, 2]× [−δ−1, δ−1]) and A ⊆ C([δ, 2]× [−δ−1, δ−1]), define

distδ(f,A) := inf{‖f − g‖L∞([δ,2]×[−δ−1,δ−1]) : g ∈ A}.

Recall that we denote the infimum in (3.2) by qλ.

Lemma3.7. Consider {ρn}n∈Z≥1
⊆ L2([0, 2]×R) such thatZ(ρn; 2, 0) ≥ 1√

4π
eλ. If limn→∞

1
2‖ρn‖

2
L([0,2]×R) = qλ,

then we have
lim
n→∞

distδ(Z(ρn),Z(K̃λ)) = 0. (3.8)

Proof. The proof is similar to the proof of Proposition 3.2. Fix arbitrary r ≥ 0. The set {ρ : ‖ρ‖L2([0,2]×R) ≤ r} is
compact in B. Using this, after passing to a subsequence, ρn converges to some ρ ∈ L2([0, 2] × R) in the topology
B. In addition, Z(ρ; 2, 0) = limn→∞ Z(ρn; 2, 0) ≥ 1√

4π
eλ and ‖ρ‖L2([0,2]×R) ≤ lim infn→∞ ‖ρn‖L2([0,2]×R). Hence

ρ ∈ K̃λ. This implies that
lim
n→∞

inf{‖ρn − ρ‖B : ρ ∈ K̃λ} = 0. (3.9)

Further, by Lemma 3.1, themapZ : L2
B([0, 2]×R)∩{ρ : ‖ρ‖L2([0,2]×R) ≤ r} → C([δ, 2]×[−δ−1, δ−1]) is continuous.

Since {ρ : ‖ρ‖L2([0,2]×R) ≤ r} is compact in B, the map

Z : {ρ : ‖ρ‖L2([0,2]×R) ≤ r} → C([δ, 2]× [−δ−1, δ−1])

is uniformly continuous, where we endow {ρ : ‖ρ‖L2([0,2]×R) ≤ r}with the topology induced by B. Using the uniform
continuity of Z and the convergence in (3.9), we conclude (3.8). �

Recall that hε,λ = λ−1 logZε(t, λ
1
2x). Define hλ(ρ; t, x) := λ−1 log

(
λ

1
2Z(ρ;λt, λx)

)
.

Proposition 3.8. Fix λ, δ > 0. We have

lim
ε→0

P
[
distδ(hε,λ, hλ(Kλ)) < δ

∣∣Zε(2, 0) ≥ 1√
4π
eλ
]

= 1.

Proof. Set h̃λ(ρ; t, x) := λ−1 logZ(ρ; t, λ
1
2x). By the scaling (3.3) and Z(λρ(λ·, λ 1

2 ·); t, x) = λ
1
2Z(ρ;λt;λ

1
2x), we

have hλ(Kλ) = h̃λ(K̃λ). Hence, we need to prove

lim
ε→0

P
[
distδ(λ

−1 logZε(·, λ 1
2 ·), λ−1 logZ(K̃λ; ·, λ 1

2 ·)) ≤ δ ∣∣Zε(2, 0) ≥ 1√
4π
eλ
]

= 1.
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Since λ is fixed, we can drop the λ−1 in front of the log and λ 1
2 in front of the x-variable. It suffices to prove

lim
ε→0

P
[
distδ(logZε, logZ(K̃λ)) < δ

∣∣Zε(2, 0) ≥ 1√
4π
eλ
]

= 1. (3.10)

Let us first show that for fixed λ, δ > 0,

lim
ε→0

P
[
distδ(Zε,Z(K̃λ)) < δ

∣∣Zε(2, 0) ≥ 1√
4π
eλ
]

= 1, (3.11)

and then explain how (3.11) implies (3.10).

To prove (3.11), consider the set Gλ,δ := {f ∈ C([δ, 2]× [−δ−1, δ−1]) : f(2, 0) ≥ 1√
4π
eλ and distδ(f,Z(K̃λ)) ≥ δ}.

Since Gλ,δ is a closed set in C([δ, 2]× [−δ−1, δ−1]), by Proposition 1.7, we have

lim sup
ε→0

ε logP
[
Zε ∈ Gλ,δ

]
≤ − inf

f∈Gλ,δ
I(f). (3.12)

By (1.11), we also have

lim
ε→0

ε logP
[
Zε ≥

1√
4π
eλ
]

= −qλ, (3.13)

recall that qλ is equal to (3.2). Using

P
[
distδ(Zε,Z(K̃λ)) ≥ δ

∣∣Zε(2, 0) ≥ 1√
4π
eλ
]

=
P[Zε ∈ Gλ,δ]

P[Zε(2, 0) ≥ 1√
4π
eλ]

and applying (3.12)-(3.13), we have

lim sup
ε→0

ε logP
[
distδ(Zε,Z(K̃λ)) ≥ δ

∣∣Zε(2, 0) ≥ 1√
4π
eλ
]
≤ qλ − inf

f∈Gλ,δ
I(f).

By Lemma 3.7, there exists ζ > 0 such that inff∈Gλ,δ I(f) ≥ qλ + ζ. The above inequality implies

lim
ε→0

P
[
distδ(Zε,Z(K̃λ)) ≥ δ

∣∣Zε(2, 0) ≥ 1√
4π
eλ
]

= 0.

Therefore, We conclude (3.11).

Finally, we show how (3.11) implies (3.10). Recall that Z(ρ; t, x) = P (ρ; (0, 0)→ (t, x)). Referring to (2.12), due to
the non-negativity of ρ, we have the lower bound Z(ρ; t, x) ≥ p(t, x). The upper bound of Z(ρ; t, x) is given by (2.16).
This implies the existence of a constantM such that for all ρ ∈ K̃λ,

M−1 ≤ ‖Z(ρ)‖L∞([δ,2]×[−δ−1,δ−1]) ≤M. (3.14)

(3.10) follows from (3.11), (3.14) and the uniform continuity of the log function on the interval [(2M)−1, 2M ]. �

3.3. The λ → ∞ asymptotic of Kλ. For simplicity, we adopt the shorthand notation ‖·‖2 := ‖·‖L2(R). The
functional F defined in (2.3) enjoys a scaling property: Letting ϕα(x) = α2ϕ(αx), we have F (ϕα) = α2F (ϕ).
Choosing α = ‖ϕ‖−2/32 to normalize the L2 norm of ϕ, we have

F (ϕ) = ‖ϕ‖
4
3
2 F (ϕ‖ϕ‖−2/3

2
), ‖ϕ‖ϕ‖−2/3

2
‖2 = 1. (3.15)

We set

r?(x) := (
3

4
)2/3 sech2((

3

4
)1/3x). (3.16)

Also, let SD denote the space of symmetric decreasing functions (see Section 3.1.2 for the definition).

Lemma 3.9. For any ζ > 0, there exists δ > 0 such that for all ϕ ∈ SD,

F (ϕ) ≥ 1

2
(
3

4
)

2
3 ‖ϕ‖

4
3
2 (1− δ) implies ‖ϕ‖ϕ‖−2/3

2
− r?‖2 < ζ.
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Proof. By the scaling (3.15) we assumewithout loss of generality that ‖ϕ‖2 = 1. The desired statement is equivalent to
the following: Any sequence {ϕn} ⊆ SDwith ‖ϕn‖2 = 1 such thatF (ϕn)→ 1

2 ( 3
4 )

2
3 has a subsequence that converges

in L2 to r?. Fix any such ϕn. Let fn ∈ H1(R) be such that ‖fn‖2 = 1 and
∫
ϕnf

′2
n − 1

2f
′2
n dx → 1

2 ( 3
4 )2/3. Since

{(ϕn, fn, f ′n)} is bounded in (L2(R))3, by the Banach-Alaoglu theorem, after passing to a subsequence, (ϕn, fn, f
′
n)

converges weakly to (r∗, f∗, g∗) with ‖r∗‖2 ≤ 1, ‖f∗‖2 ≤ 1 and ‖g∗‖ ≤ lim infn→∞ ‖f ′n‖2. Since (fn, f
′
n) converges

weakly to (f∗, g∗), we must have f ′∗ = g∗. Moreover, since fn and f ′n are bounded in L2(R), fn is locally uniformly
bounded and equi-continuous. By the Arzela-Ascoli theorem, we know that fn → f∗ on compact sets. Next, because
‖ϕn‖2 = 1 and because ϕn ∈ SD, ϕn(±M) ≤ M−

1
2 . Therefore,

∫
|x|>M ϕnf

2
ndx ≤ M−

1
2 ‖fn‖22 = M−

1
2 . This

gives

lim sup
n→∞

∫
R
ϕnf

2
n1{|x|≤M} −

1

2
f ′2n dx ≥

1

2

(3

4

) 2
3 −M− 1

2 .

The left hand side is bounded above by
∫
R r∗f

2
∗ − 1

2f
′
∗
2
dx. Sending M → ∞ gives

∫
R r∗f

2
∗ − 1

2f
′
∗
2
dx ≥ 1

2 ( 3
4 )2/3.

This together with ‖r∗‖2 ≤ 1 and ‖f∗‖2 ≤ 1 implies that F (r∗) ≥ 1
2 ( 3

4 )2/3. By the if and only if part in Lemma 2.4
and the fact that r∗ ∈ SD, we know that r∗ = r?. Since ϕn weakly converges to r? and limn→∞ ‖ϕn‖2 = 1 = ‖r?‖2,
we conclude that ϕn converges to r? in L2. �

Recall that ρ∗(t, x) = ρ∗(x) = (sechx)2. The main result of this section says that the elements of Kλ tend to ρ∗ as
λ→∞.

Proposition 3.10. We have limλ→∞ sup{ 1
2λ‖ρ− ρ∗‖

2
L2([0,2λ]×R) : ρ ∈ Kλ} = 0.

Proof. Set ζ > 0. According to (1.13), which is proved in Section 2, for large enough λ and all ρ ∈ Kλ,
1

2λ
‖ρ‖2L2([0,2λ]×R) ≤

4

3
+ ζ. (3.17)

By Z(ρ; 2λ, 0) ≥ 1√
4πλ

eλ and (2.30),

1√
4πλ

eλ ≤ C exp
(
Cλ2/3 +

∫ 2λ

0

F (ρ(r, ·))dr
)
.

Taking the logarithm of both sides and then applying Lemma 2.4 to the right hand side yields that for all λ large enough,

λ(1− ζ) ≤
∫ 2λ

0

F (ρ(r, ·))dr ≤
∫ 2λ

0

1

2

(3

4

) 2
3 ‖ρ(r, ·)‖ 4

3
2 dr.

Young’s inequality gives (( 3
4‖ρ(r, ·)‖22)2/3 ≤ 1

3 + 2
3 ( 3

4‖ρ(r, ·)‖22)). Furthermore, there exists a strictly increasing
function ψ : R≥0 → R such that ψ(0) = 0, ( 3

4‖ρ(r, ·)‖22)2/3 ≤ 1
3 + 2

3 ( 3
4‖ρ(r, ·)‖22)−ψ(|1− 3

4‖ρ(r, ·)‖22|). Applying
this to the right hand side above yields

λ(1− ζ) ≤
∫ 2λ

0

F (ρ(r, ·))dr ≤
∫ 2λ

0

1

2

(3

4

) 2
3 ‖ρ(r, ·)‖ 4

3
2 dr ≤

∫ 2λ

0

1

6
+

1

4
‖ρ(r, ·)‖22 − 1

2
ψ(1− 3

4
‖ρ(r, ·)‖22)dr

≤ λ(1 + ζ)−
∫ 2λ

0

1

2
ψ(1− 3

4
‖ρ(r, ·)‖22)dr.

The last inequality is due to (3.17). Using the inequalities above, we have for all λ large enough,∫ 2λ

0

ψ(|1− 3

4
‖ρ(r, ·)‖22|)dr ≤ 4λζ, (3.18)∫ 2λ

0

1

2

(3

4

) 2
3 ‖ρ(r, ·)‖ 4

3
2 − F (ρ(r, ·))dr ≤ 4λζ. (3.19)

Since ψ is strictly increasing with ψ(0) = 0. For any ζ ′ > 0, we have ψ(z) ≥ ψ(ζ ′) =: C(ζ ′) when z ≥ ζ ′. Applying
this to (3.18) gives that for all λ large enough,

Leb
[{
r ∈ [0, 2λ] :

∣∣∣1− 3

4
‖ρ(r, ·)‖22

∣∣∣ > ζ ′
}]
≤ 4λζ

C(ζ ′)
. (3.20)
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Here, Leb denotes the Lebesgue measure. Since ρ ∈ Kλ, by Proposition 3.3, ρ(r, ·) ∈ SD for almost all r ∈ [0, 2λ].
Using (3.19) and Lemma 3.9 we conclude that for any ζ ′ > 0, there exists C(ζ ′) > 0 such that

Leb
[{
r ∈ [0, 2λ] : ‖ρ(r, ·)‖ρ(r,·)‖−2/3

2
− r?‖2 > ζ ′

}]
≤ λζ

C(ζ ′)
, (3.21)

where we denote ρ(r, ·)α = α2ρ(r, α·). We have

‖ρ(r, ·)‖ρ(r,·)‖−2/3
2
− r?‖2 = ‖ρ(r, ·)‖−12 ‖ρ(r, ·)− (r?)‖ρ(r,·)‖2/32

‖2.

Applying this to (3.21) yields

Leb
[{
r ∈ [0, 2λ] : ‖ρ(r, ·)− (r?)‖ρ(r,·)‖2/32

‖2 > ζ ′‖ρ(r, ·)‖2
}]
≤ λζ

C(ζ ′)
. (3.22)

Taking ζ ≤ min(C(ζ ′), 1)ζ ′, the right hand side of (3.22) is upper bounded by λζ ′. By (3.20), we know that for most
r ∈ [0, 2λ], ‖ρ(r, ·)‖2 is around

√
4
3 . Applying this and (r?)(

√
4
3 )

2/3 = ρ∗ to (3.22) gives that for any ζ ′ > 0,

Leb
[{
r ∈ [0, 2λ] : ‖ρ(r, ·)− ρ∗‖2 > ζ ′

}]
≤ Cλζ ′ (3.23)

holds for all λ large enough. The inequality (3.23) together with the fact ‖ρ∗‖22 = 4
3 implies

1

2λ

∫ 2λ

0

‖ρ(r, ·)‖221{‖ρ(r,·)−ρ∗‖2≤ζ′}dr ≥ 4

3
− Cζ ′.

This, together with (3.17) (we have taken ζ ≤ ζ ′) imply that

1

2λ

∫ 2λ

0

‖ρ(r, ·)‖221{‖ρ(r,·)−ρ∗‖2>ζ′}dr ≤ Cζ ′. (3.24)

In addition, by ‖ρ∗(r, ·)‖22 = 4
3 and (3.23),

1

2λ

∫ 2λ

0

‖ρ∗(r, ·)‖221{‖ρ(r,·)−ρ∗‖2>ζ′}dr ≤ Cζ ′. (3.25)

Combining (3.24) and (3.25), we conclude that

1

2λ
‖ρ− ρ∗‖2L2([0,2λ]×R) =

1

2λ

∫ 2λ

0

‖ρ(r, ·)− ρ∗(r, ·)‖221{‖ρ(r,·)−ρ∗‖2>ζ′}dr
+

1

2λ

∫ 2λ

0

‖ρ(r, ·)− ρ∗(r, ·)‖221{‖ρ(r,·)−ρ∗‖2≤ζ′}dr ≤ Cζ ′.
Letting λ→∞ and then ζ ′ → 0 concludes the proposition. �

4. The Limit shape

The goal of the section is to prove Theorem 1.2.

4.1. Equi-continuity of hλ. Recall from Section 3.2 that hλ(ρ; t, x) = λ−1 log
(
λ

1
2Z(ρ;λt, λx)

)
. Let L2

≥0([0, 2λ]×
R) denote the set of non-negative functions which belong to L2([0, 2λ] × R). Consider the normalized norm
λ−

1
2 ‖·‖L2([0,2λ]×R). The following proposition settles the equi-continuity of hλ(·, t, x) : L2

≥0([0, 2λ] × R) → R
with respect to this norm.

Proposition 4.1. There exists a constant C such that for all λ > 0, ρ1, ρ2 ∈ L2
≥0([0, 2λ]×R) and (t, x) ∈ (0, 2]×R,

if λ− 1
2 ‖ρ1 − ρ2‖L2([0,2λ]×R) < 1,

|hλ(ρ1; t, x)− hλ(ρ2; t, x)| ≤ Cλ− 1
2 ‖ρ1 − ρ2‖L2([0,2λ]×R)(1 + λ−1‖ρ1‖2L2([0,2λ]×R) + λ−1‖ρ2‖2L2([0,2λ]×R)).

Proof. Set Z̃(ρ; t, x) = Z(ρ; t, x)/p(t, x). Since

λ−1 log Z̃(ρ1;λt, λx)− λ−1 log Z̃(ρ2;λt, λx) = λ−1 logZ(ρ1;λt, λx)− λ−1 logZ(ρ2;λt, λx)

= hλ(ρ1;λt, λx)− hλ(ρ2;λt, λx),



20 PIERRE YVES GAUDREAU LAMARRE, YIER LIN, AND LI-CHENG TSAI

it suffices to prove that for λ > 0 and (t, x) ∈ (0, 2]× R,

λ−1
∣∣ log Z̃(ρ1;λt, λx)− log Z̃(ρ2;λt, λx)

∣∣
≤ Cλ− 1

2 ‖ρ1 − ρ2‖L2([0,2λ]×R)(1 + λ−1‖ρ1‖2L2([0,2λ]×R) + λ−1‖ρ2‖2L2([0,2λ]×R)). (4.1)

Note that Z(ρ; t, x) = P (ρ; (0, 0)→ (t, x)). We apply (2.16) with a = 1 to obtain

Z̃(ρ;λt, λx) ≤ C exp(Cλt+ ‖ρ‖2L2([0,λt]×R)). (4.2)

The constant C here is universal. Further, by the Feynman-Kac formula,

Z̃(ρ;λt, λx) = E0→λx

[
exp

(∫ λt

0

ρ(s,Bb(s))
)]
.

Let us use (4.2) and the Feynman-Kac formula to prove (4.1). Fix ζ ∈ (0, 1). Similar to the proof of Lemma 2.6, by
the Feynman-Kac formula and the Hölder inequality,

Z̃(ρ1;λt, λx) ≤ Z̃(ζ−1(ρ1 − (1− ζ)ρ2);λt, λx)ζ Z̃(ρ2;λt, λx)1−ζ .

Taking the logarithm of both sides yields

log Z̃(ρ1;λt, λx) ≤ ζ log Z̃(ζ−1(ρ1 − (1− ζ)ρ2);λt, λx) + (1− ζ) log Z̃(ρ2;λt, λx)

≤ ζ log Z̃(ζ−1(ρ1 − (1− ζ)ρ2);λt, λx) + log Z̃(ρ2;λt, λx). (4.3)

The last inequality is due to Z̃(ρ2; t, x) ≥ 1, since ρ2 is non-negative.

Subtracting log Z̃(ρ2;λt, λx) from both sides of (4.3) and applying (4.2) to the resulting right hand side, we get

log Z̃(ρ1;λt, λx)− log Z̃(ρ2;λt, λx) ≤ ζ log Z̃(ζ−1(ρ1 − (1− ζ)ρ2);λt, λx)

≤ Cζλt+ Cζ−1‖ρ1 − (1− ζ)ρ2‖2L2([0,λt]×R).

Applying t ≤ 2 and the inequality ‖f + g‖2L2 ≤ 2(‖f‖2L2 + ‖g‖2L2) to the right hand side leads to

log Z̃(ρ1;λt, λx)− log Z̃(ρ2;λt, λx) ≤ Cζλ+ Cζ−1‖ρ1 − ρ2‖2L2([0,λt]×R) + Cζ‖ρ2‖2L2([0,λt]×R). (4.4)

The constant C is universal and does not depend on λ, t, x. Swapping ρ1, ρ2 in (4.4) gives that∣∣ log Z̃(ρ1;λt, λx)− log Z̃(ρ2;λt, λx)
∣∣ ≤ C(ζ−1‖ρ1−ρ2‖2L2([0,λt]×R)+ζ(λ+‖ρ1‖2L2([0,λt]×R)+‖ρ2‖2L2([0,λt]×R))

)
.

Dividing both sides by λ and using t ≤ 2, we have

λ−1
∣∣ log Z̃(ρ1;λt, λx)− log Z̃(ρ2;λt, λx)

∣∣
≤ C

(
ζ−1λ−1‖ρ1 − ρ2‖2L2([0,2λ]×R) + ζλ−1(λ+ ‖ρ1‖2L2([0,2λ]×R) + ‖ρ2‖2L2([0,2λ]×R))

)
. (4.5)

Taking ζ = λ−
1
2 ‖ρ1 − ρ2‖L2([0,2λ]×R) ∈ (0, 1), we conclude (4.1). �

4.2. Proof of Theorem 1.2. We begin with a reduction. Recall that Proposition 3.8 states, for arbitrary fixed λ, δ > 0,

lim
ε→0

P
[
distδ(hε,λ, hλ(Kλ)) < δ

∣∣hε(2, 0) + log
√

4π ≥ λ
]

= 1.

Combining Propositions 3.10 and 4.1 gives limλ→∞ distδ(hλ(Kλ), hλ(ρ∗)) = 0. Given these results, it suffices to
prove

lim
λ→∞

distδ(hλ(ρ∗), h∗) = 0, for any δ > 0. (4.6)

The proof of (4.6) starts with the Feynman-Kac formula. Set ϕ = ρ∗ in (2.1) and take logarithm on both sides to get

hλ(ρ∗; t, x) = λ−1 logEλx→0

[
exp

(∫ λt

0

ρ∗(Bb(s))ds
)]
− x2

2t
− λ−1 log

√
4π. (4.7)

For Ui = Ui(t, x, λ) > 0, we write U1 ∼ U2 if limλ→∞ λ−1 log(U1/U2) = 0 uniformly over (t, x) ∈ [δ, 2] ×
[−δ−1, δ−1]. Our goal is to estimate the expectation in (4.7). Fix a mesoscopic scale λa. Any a ∈ (0, 12 ) will do, and
we fix a = 1

4 for the sake of concreteness. The Brownian bridge in (4.7) starts atBb(0) = λx and returns toBb(λt) = 0.
Consider the first time the bridge enters the region [−λ 1

4 , λ
1
4 ], namely τ := inf{s ≥ 0 : |Bb(s)| ≤ λ

1
4 }. Decompose the
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integral in (4.7) into
∫ τ
0

+
∫ λt
τ

. In the first integral, we have |Bb(s)| > λ
1
4 , which gives |ρ∗(Bb(s))| ≤ exp(−λ1/4/C).

This shows that the contribution of ρ∗(Bb(s)) within s ∈ [0, τ ] is negligible, so

Eλx→0

[
exp

(∫ λt

0

ρ∗(Bb(s))ds
)]
∼ Eλx→0

[
exp

(∫ λt

τ

ρ∗(Bb(s))ds
)]
. (4.8)

To proceed, condition on τ in (4.8), namely Eλx→0[·] = Eλx→0[E[·|τ ]], and recognize the inner expectation as
E[exp(

∫ λt
τ
ρ∗(Bb(s))ds)|τ ] = U(τ, t), where U(s′, t) := Eλ1/4→0[exp(

∫ λt−s′
0

ρ∗(Bb(s))ds)]. Fix any ζ ∈ (0, δ).
By Lemma 2.1 and 2.4, U(s′, t) ∼ 1

2 exp(λt− s′), uniformly over t ∈ [δ, 2] and s′ ∈ [0, λt−λζ]. This approximation
extends to s′ ∈ [0, λt]. To see why, note that when s′ ∈ (λt− λζ, λt], we have |

∫ λt
τ
ρ∗(Bb(s))ds| ≤ λζ, and note that

ζ can be taken to be arbitrarily small. Therefore,

Eλx→0

[
exp

(∫ λt

0

ρ∗(Bb(s))ds
)]
∼ eλt2 Eλx→0[e−

1
2 τ ]. (4.9)

Next we bound the right side of (4.9). By symmetry it suffices to consider x ≥ 0, which we assume hereafter. Let
T(s, u) be the first hitting time of 0 of the Brownian bridge that starts from u at time 0 and returns to 0 at time
s. For fixed u > 0, T(s, u) is stochastically increasing in s. This fact can be proven by expressing the bridge as a
drifted Brownian motion via Doob’s h transform. Recall that τ is the first time Bb enters [−λ1/4, λ1/4]. After the first
entrance, consider the excess amount of time it takes forBb to hit 0, namely σ := inf{s ≥ 0 : Bb(s+ τ) = 0}. Indeed,
τ + σ = T(λt, λx), so Eλx→0[e−

1
2 τ ] = E[e−

1
2T(λt,λx)e

1
2σ]. Conditioned on τ , σ is equal in law to T(λt − τ, λ1/4),

which is stochastically bounded above by T(λt, λ1/4). Using Hölder’s inequality and the stochastic bound, we have

E[e−
1
2T(λt,λx)] ≤ Eλx→0[e−

1
2 τ ] ≤

(
E[e−

n+1
2n T(λt,λx)]

) n
n+1
(
E[e

n+1
2 T(λt,λ1/4)]

) 1
n+1 . (4.10)

Given (4.10), we seek to estimate E[exp(−βT(λt, λx))]. The first step is to derive the probability density function
of T(λt, λx). Express the Brownian bridge Bb by a Brownian motion as Bb(s) = (1 − s

λt )(λx −
√
λtB( s

λt−s ));
relate T(λt, λx) to a hitting time of B; use the known density function of the hitting time of B. The result reads
(density function of T(λt, λx))(s) = (

√
λ3tx2/

√
2πs3(λt− s)) exp(−λt−s2λts (λx)2). Use this density function to ex-

press E[exp(−βT(λt, λx))] as an integral, and perform a change of variables s 7→ λts. We have

E[e−βT(λt,λx)] =

∫ 1

0

√
λx2√

2πts3(1− s)
exp

(
λVβ(s, t, x)

)
ds, (4.11)

where Vβ(s, t, x) := −βts − 1−s
2st x

2. This integral can be analyzed by Laplace’s method. Differentiating V in s,
one finds that V (·, x) attains its unique maximum at s = min{ x√

2β t
, 1}, and ∂2sVβ = x2

ts3 . Using these properties
in (4.11), it is not hard to show that E[exp(−βT(λt, λx))] ∼ exp(−λtVβ(min{ x√

2β t
, 1}, t, x)), for fixed β > 0 and

uniformly over [t, x] ∈ [δ, 2] × [0, δ−1]. Insert this estimate into (4.10); take λ−1 log(·) of the result; send λ → ∞
first and n→∞ later. We obtain

lim
λ→∞

λ−1 logEλx→0[e−
1
2 τ ] = V1/2(min{xt , 1}, t, x) =

{
x2

2t − x, when x ∈ [0, t],
− t

2 , when x > t,

uniformly over [t, x] ∈ [δ, 2] × [0, δ−1]. Inserting this into (4.9) and then inserting the result into (4.7) completes the
proof of (4.6) and hence the proof of Theorem 1.2.
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