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KPZ EQUATION WITH A SMALL NOISE, DEEP UPPER TAIL AND LIMIT SHAPE

PIERRE YVES GAUDREAU LAMARRE, YIER LIN, AND LI-CHENG TSAI

ABsTRACT. In this paper, we consider the KPZ equation under the weak noise scaling. That is, we introduce a small parameter
/€ in front of the noise and let ¢ — 0. We prove that the one-point large deviation rate function has a % power law in the
deep upper tail. Furthermore, by forcing the value of the KPZ equation at a point to be very large, we prove a limit shape
of the solution of the KPZ equation as ¢ — 0. This confirms the physics prediction in [KK07, KK09, KMS16, MKV 16,
LDMRS16, HMS19].

1. INTRODUCTION

The Kardar—Parisi—Zhang (KPZ) equation [KPZ86] is a non-linear stochastic PDE which describes the random growth
of an interface that has a property of lateral growth and relaxation

Oth = %&mh + %(8xh)2 +¢&. (1.1)

Here ¢ is the space-time white noise, which can be informally understood as a Gaussian field with Dirac-delta correlation
function E[£(t, x)&(s, y)] = d(t — s)d(x — y). The KPZ equation has been studied intensively over the past 35 years.
We refer to [FS10, Quall, Corl2, QS15, CW17, CS20] for some surveys of the mathematical studies of the KPZ
equation.

Care is needed to make sense of the solution to (1.1) due to the non-linearity and space-time white noise in the equation.
One way of defining the solution is through the Hopf-Cole transform. That is, we define h := log Z, where Z solves
the Stochastic Heat Equation (SHE)

1
We say that Z is the mild solution to the SHE if

t
Z(t,z) = /]Rp(t7 x—y)Z(0,y)dy + / /Rp(t —s,x—y)Z(s,y)&(s,y)dsdy, (1.2)

0
where p(t,z) = \/%e_%f is the heat kernel. The solution theory of the SHE is standard; see [Quall, Sections

2.1-2.6] for more details. Moreover, for function-valued initial data Z (0, ) > 0 that is not identically zero, [Mue91]
shows that Z is always positive, i.e. almost surely Z(¢,2) > 0 for all ¢ > 0 and x € R. This guarantees the
wellposedness of h. One often considered initial data is Z(0, -) = §(-), where d(+) is a Dirac-delta function. We
refer to this as the Dirac-delta initial data for Z and the narrow wedge initial data for h. [MF14] shows that under the
Dirac-delta initial data, almost surely Z is positive for all ¢ > 0 and x € R. Other definitions and constructions of
the solution to the KPZ equation are given by regularity structure [Hail4], paracontrolled distribution [GIP15] or the
notion of energy solution [GJ14, GP18].

In recent years, the large deviations of the KPZ equation have received much attention in the mathematics and physics
communities. The large deviations of the KPZ equation can be studied in two regimes: long time regime (t — 00)
and short time regime (¢ — 0). For the long time regime, the work [CG20b] rigorously proved a detailed bound for
the lower tail of the KPZ equation under the narrow wedge initial data. This bound captures a cubic to % Crossover;
see also the physics work [KLD18]. [CG20a] obtained similar bounds for the KPZ equation under general initial data.
Under the narrow wedge initial data, the exact one-point lower tail large deviation rate function was derived in the
physics works [SMP17, CGK* 18, KLDP18, LD20] and was proved rigorously by [Tsal8, CC21]. [KLD19] showed
that the four methods in [SMP17, CGK™ 18, KLDP18, Tsal8] are closely related. For the upper tail, the physics work
[LDMS16] predicted the %—power law for the entire rate function of the KPZ equation narrow wedge initial data.
[DT21] gave a rigorous proof for the upper tail Large Deviation Principle (LDP). The result was extended to general
initial data by [GL20].
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For the large deviations of the KPZ equation in the short time regime, the results are fruitful in the physics literature;
see [Kral9]. In particular, the physics literature [KK07, KK09, KMS16, MKV 16] predicted that for the narrow wedge
and flat initial data, the one-point large deviation rate function exhibits a %—power law in the deep upper tail, a quadratic
power law in the near-center tail and a %-power law in the deep lower tail. The physics work [LDMRS16] derived
the entire one-point rate function, from which the authors are able to confirm these power laws. Their prediction was
backed by the numerical result [HLDM ™ 18]. The one-point large deviations were rigorously proved in [LT21]. The
authors also rigorously proved the quadratic to %-power law crossover in the lower tail rate function.

Studying the KPZ equation in the short time regime is the same as studying the KPZ equation in the weak noise regime.
That is, we introduce a small parameter \@ in front of the noise,

Othe = $0,5he + 3(0:he)® + V/eE. (1.3)
The solution to the above equation is defined to be h. := log Z. where Z. solves the SHE
0 Ze = %6ILEZ8 + ﬁgzs (1.4)

Throughout the paper, we set Z.(0,+) = 6(+). The short time regime of (1.1) is related to (1.3) through scaling,

namely, h(g2+,c+) + loge < he(+, +). We add log ¢ to guarantee that h,. starts from the narrow wedge initial data.

The LDP of Z. = Z.(-,+) under the limit ¢ — 0 has been rigorously proven in [LT21]. The rate function is of
Freidlin-Wentzell type. In particular, by the contraction principle, for A > 0,

lirr(l)slogIP’[hE(Z 0) +log VAT < —=A] = —®(=)), (1.5)
e—
lirr(l)z-:log]P[hg(Q,O) +log Vdm > A = —®()), (1.6)
E—r

where @ is the infimum of the Freidlin-Wentzell rate function subject to the relevant constraint. Extracting the
asymptotics of ® is non-trivial. [LT21] proved that limy o A™2®()\) = \/#27 and limy 00 A™2®(—\) = .
1.1. Main results. The first result of the current paper concerns the deep upper tail of the rate function ®. In other
words, we look at the asymptotic of ®(A\) as A — oo. It has been predicted in the physics literature [KK07, KK09,
KMS16, MKV 16, LDMRS16] that lim_, o A™3/2®(\) = %. Our first result gives a rigorous proof of the %-power
law in the deep upper tail.

Theorem 1.1. We have lim A™%/2®()\) = 3
A—00

The second result of the current paper proves the limit shape of (the solution of) the KPZ equation under the
weak noise scaling and the deep upper tail conditioning. This limit shape was predicted in the physics works
[KK07, KK09, KMS16, MKV16, HMS19].

Theorem 1.2. Define h. x = A" h.(t, )\%x). For arbitrary fixed 6 > 0, we have
lim lim P[Hha)\ — h*HLoo([&Q]X[,éfl}éfl]) <90 | hs(Q,O) + log var > )\] =1.

A—o00 e—0

Here, we use ||+ || . (p) to denote the L> norm on the domain D. The limit shape h, is given by

— L h <t
h(t, ) ::{ [+ 5, when |z < t, 1.7)

-5, when |x| > t.

See Figure 1 for illustration.

Remark 1.3. Theorem 1.1 gives the A\ — oo limit of A, ) under the upper-tail conditioning. A natural related question
is to obtain the limit under the lower-tail conditioning h.(2,0) + log v4m < —\. The latter question has recently
been solved in [LT22]. We emphasize that the mechanisms for the large deviations are very different in the upper- and
lower-tail conditioning. In the upper-tail conditioning, the contribution of the noise £ concentrates around z = 0; in
the lower-tail conditioning, the contribution of the noise spans a wide region in spacetime. The required analysis in the
current paper and in [LT22] hence differ.
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Ficure 1. The graph of h, (¢, -), when ¢t = 0.5,1, 1.5.

Remark 1.4. The limit shape h, was predicted earlier in the physics work [KK07, KK09, KMS16, MKV 16] via the
weak noise theory, and in [HMS19] by simulations. Recently, the physics work [KLD21] solved the finite A limit
shape of h. . Using this, they confirmed the rate function ® discovered in [LDMRS16]. In the limit of large A, they
discussed how the form (1.7) emerges in the exact solution.

Remark 1.5. The reason that we set h(2,0) + log v/47 > X in the theorem instead of h.(2,0) > A is purely for the
convenience of the proof. It makes no difference since we let A — oco.

Remark 1.6. Our method does not rely on exact formulas and may apply to other initial data. In particular, our method
should apply to the flat initial data h.(0, -) = 0. The result in Theorem 1.1 remains the same for the flat initial data,
while Theorem 1.2 holds with a different limit shape

hﬁat(t {,C) o —|$| + %7 when |$‘ < %7
* ) T t
0, when [z| > 3.

More broadly, one can consider applying our method to a function-valued, symmetrically decreasing initial data:
hic(x) = hic(|z|) and hic(|=|) non-increasing in |z|. We conjecture that the result in Theorem 1.1 remains the same;
the limit shape (in-general) needs to be adjusted according to the initial data.

Going beyond symmetrically decreasing initial data, one may see different behaviors of the deviations. In particular,
a dynamical phase transition triggered by a symmetry breaking has been predicted in [JKM16, SKM18] (see also
[KLD17, HMS21, KLD22]) for the Brownian initial data. For such initial data, we do not expect our method to apply
directly and new ideas are needed.

1.2. A review of the Freidlin-Wentzell LDP for the SHE. To motivate the proof of Theorems 1.1 and 1.2, we recall
the Freidlin-Wentzell LDP for the SHE {Z_}.~. The result was established for the SHE under function-valued initial
data and the narrow wedge initial data in [LT21, Proposition 1.7]. For our propose, we only state the result for the
narrow wedge initial data.

Let us first recall the definition of an LDP. Let €2 be a topological space. We say that a sequence of (2-valued random
variables {Y; }.~¢ satisfies an LDP with speed <! and rate function [ if
limsupelogP(Y; € F) < — inf I(x) if I C Qis closed,
e—0 zeF

liminfelogP(Y; € G) > — inf I(x) if G C Qs open.
e—0 zeG

We now state the LDP for the SHE {Z.}.~¢. Fix T > 0and § € (0,T). We take Q = C([6, T x [-5~1,67]) with
the uniform topology and view Z. as an {2-valued random variable. The reason that we avoid ¢ = 0 in our choice of
Q) is because Z. starts from the Dirac-delta initial data, which is singular. For ¢ > 0, the heat kernel in (1.2) smoothes
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out the singularity, so Z. is 2-valued for any fixed § > 0; see [Quall].

Since Z. in (1.4) is driven by the space-time white noise /¢, it would be helpful to first look at the LDP of {/z€}.~0.
We view p € L?([0,T] x R) as a deviation 1/z¢. Since ¢ has Dirac-delta correlation function, we have informally
P(VEE =~ p) ~ exp(—2e7H|pl|22 ([O_T}XR)) for small e. We replace the noise /£ with its deviation p and consider
the PDE

1
Ol = iamz +pZ, Z2(0,2) = o(x), (1.8)
where Z = Z(p;t,x), t € [0,T] and = € R. Like the SHE, the solution to this PDE is understood in the mild form

t
Z(p:t,x) = plt, x) + /0 /R Dt — 5,2 — y)p(s,9)Z(p; 5, y)dsdy. (1.9)

By iteration of (1.9), the solution Z(p) admits a series expansion and we have the Feynman-Kac formula

t
Z(p;t,x) = Eoya {exp (/ p(s, Bb(s))ds)}p(tw), te (0,T] xR, (1.10)
0
where B, is a Brownian bridge such that By,(0) = 0 and By(t) = .

It is standard to see that Z(p) is a continuous function on (0, T] x R, we refer to [LT21, Section 2] for more detail. Fix
§ > 0. We view Z : p — Z(p) as a map from L?([0,T] x R) to C([6,T] x [-671,67]). We now state the LDP for

{Ze}s>0-

Proposition 1.7. FixT < coand0 < 6 < T. Let Z. be the solution to (1.4) with the Dirac-delta initial data. {Z:}.~¢
satisfies an LDP in C ([0, T] x [—0~1,571]) with speed e ~* and the rate function

1(£) = inf {2]1pll2 o.zym £ € L2(0.T] X R),Z(p) = £}, f € C(15,T) x [~6,67)),
where Z(p) is the unique solution to 0,7 = +8,,Z + pZ with the Dirac-delta initial data Z(0, ) = §(x).
Proof. This is a direct consequence of [LT21, Proposition 1.7] Part (b). ]

Since Z. = el=, we have P[h.(2,0) + logv4dr > )] = P[Z.(2,0) > \/%e/\]. By (1.6), we have ®()\) =

—lim, g elogP[Z.(2,0) > \/%e/\]. Taking 7' = 2 in Proposition 1.7 and applying contraction principle yield that
for A >0,

. 1
®()) = inf {§||p||%z([o,2]xm :pe L*([0,2] x R), Z(p;2,0) > ek}- (1.11)

1
VAam
1.3. Proof ideas. We explain the ideas for proving Theorems 1.1 and 1.2. The first step towards proving Theorem
1.1 is to apply a scaling to the variational formula (1.11). By the Feynman-Kac formula (1.10), we know that for
arbitrary p € L2([0,2] x R), Z(Ap(A-, AZ+);t,2) = A2Z(p; At; A2z). Using this relation and applying the scaling
p = Ap(A+, A2 +), one can rewrite the rate function in (1.11) as
1 }

et s.
Var
The value of the infimum should be of constant order, this explains the %-power in Theorem 1.1. To prove Theorem
1.1, it suffices to show that

: : 1 2 . 2 .
liminf { ol o 2nwm £ 2 € L2(0,2)] X R), Z(p;2,0) >

I 1
®(A) = A2 inf {ﬁ”ﬂ”imo,wxm :p € L*([0,2)] x R), Z(p; 2X,0) > (1.12)

4
Al _ 2
e }—3. (1.13)

1
VAT
We explain why the % appears on the right hand side. To motivate the discussion, let us assume that the minimizers
(there might be more than one) of (1.13) become asymptotically time-independent as A\ — co. Under this assumption,

we only need to consider p such that p(t, -) = ¢(+) for ¢t € [0,2)] and some ¢ : R — R. So (1.13) simplifies to

1 4
im i 2 : 2 ; > - .
)\lggo 1nf{||go||Lz(R) p € L*(R), Z(p;2X,0) > \/me } 3 (1.14)

Recall that Z(¢) solves the PDE 8, Z = $0,,Z+¢Z. Since ¢ does not depend on time, we treat Z(t) as function-valued
and view the PDE as a function-valued ODE 0,Z(t) = A¥Z(t), where A% := 10,, + ¢ is a Schrédinger-type operator.
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Set the largest eigenvalue of A% to be F'(¢), whose expression is given in (2.3). It is natural to expect that Z(p; ¢, 0) at
large time ¢ grows as exp(tF'(¢)). In particular, we have Z(p; 2\, 0) ~ exp(2AF(p)) as A — oo. This suggests that
1
LHS of(1.14):inf{|\go||%z(R) : F(p) > 5}. (1.15)
The problem of finding the minimizers of (1.15) can be transformed into understanding when the equality of the
Gagliardo—Nirenberg-Sobolev inequality holds, see Lemma 2.4. It turns out that the minimizers of the infimum are
given by sech®(z + v), where v is an arbitrary constant. Since || sech®(z + v) 12, ®) = 3 for all v, we know that the

right hand side of (1.15) equals %. This explains why Theorem 1.1 should hold.

We proceed to explain the idea for proving Theorem 1.2. Under the time-independence assumption, it is natural to
believe that the minimizers of the infimum in (1.12) converges to the minimizers of the infimum in (1.15) as A — oo.
However, from the previous paragraph, the minimizer of the infimum in (1.15) is not unique and this causes a problem
to our analysis. To resolve this, we show that any minimizer of the infimum in (1.12) has to be symmetric in the x
coordinate (in fact the function should reach its peak at 0 and decrease on both sides of 0). The proof of this is carried
out in Section 3.1.2. Consequently, we see that the minimizer of (1.13) should converge to sech? z as A — oc.

We denote p, (L, z) := p,(x) := sech®? z. By the Freidlin-Wentzell LDP stated in Proposition 1.7 and scaling, one
can show that for fixed A, as ¢ — 0, the space-time path h. ) concentrates around A~ !log Z(p.; A+, A+). By the
Feynman-Kac formula (1.10),

At 2
A Hog Z(pu; M, Ax) = A og By, o [exp (/ p*(Bb(s))ds)] - % — X ltlogV4n. (1.16)
0

We seek to compute the A — oo limit of the first term on the right hand side of (1.16).

Assume = # 0. The Brownian bridge starts from Az, which is far way from 0. Since p,(z) = sech?(z) decays
exponentially as |z| — oo, the path of By, contributes little to the integral until it arrives near 0. Fix s € [0,¢], the

2
— %ﬁ;s) ). After arriving

at 0, we have quo[exp(f;‘; P« (Bp(r))dr)] = exp(@) for large A. Optimizing over s € [0, ¢], we expect that

probability of the event that the first time By hits 0 around time \s is approximately exp(

2

t—s T
= h,(t, —.
+ 5 ) (tx)—l-%

2% (t — 5)
2st

At
lim A 'logEx,—o {exp (/ p*(Bb(s))dsﬂ = sup (—
A—roo 0 s€[0,t]

Using this together with (1.16) shows that A= log Z(p.; A+, A+) converges to h, defined in (1.7).

1.4. Technical Difficulties. In this section, we emphasize some of the technical difficulties in our proof. Denote the
set of minimizers of (1.12) to be K. As mentioned in the previous section, one important step in our proof is to show
that /Cy converges to p,. as A — co. We explain the proof ingredients of it in Sections 1.4.1 and 1.4.2. In Section 1.4.3,
we describe a technical issue for proving the limit shape.

1.4.1. Properties of KCx. To prove that the elements of ) converge to p, as A — oo, we first need to show that
K is not empty, i.e. the minimizer of the infimum in (1.12) exists. To prove this, we need 1). the compactness
of the level sets {p : Hp||%2([0 anJxr) < T}s 2). the continuity of the map p — Z(p;2A,0). Unfortunately, the

level sets {p : ||p||2L2([O’2/\]XR) < r} are not compact in L?([0,2)] x R). To overcome this, we consider an abstract

Wiener space (B, i) such that L2([0,2)\] x R) C B is the Cameron-Martin space. This gives us the compactness of
{p: ||pH2L2([0,2MXR) < r} in B and it preserves the continuity of the map p — Z(p; 2, 0).

We also need to show that the elements of K are symmetric and decreasing in space (see Section 3.1.2 for the precise
definition). We prove this by considering the symmetric and decreasing rearrangement of p. Using the rearrangement
inequalities from [BLL74, LLO1], we show that the symmetric and decreasing rearrangement of p preserves the L2
norm while it increases the value of Z(p; 2, 0). This implies that the elements in /) must be symmetric and decreasing
in space.
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1.4.2. KCy converges to p.. The key innovations for proving the convergence are 1). A near-optimal upper bound of
Z(p; 2, 0) in terms of an exponential integral of the ground state F'(p), see Proposition 2.9; 2). A perturbative analysis
of F', see Lemma 3.9.

For 1), one can obtain an upper bound of Z(p; 2, 0) via iterating (1.9) and applying the Cauchy-Schwarz inequality, see
Lemma 2.3. However, such bounds are not optimal. In Proposition 2.9, we prove a near-optimal bound of Z(p; 2, 0).
The proof of the proposition relies on the time-dependent semigroup 0y — %8“6 — p, an energy estimate when p is
smooth and compactly supported, and the method of approximation for p € L?([0,2)] x R), which is accomplished
in Lemmas 2.3, 2.6 and 2.7.

We explain 2) in more detail. Using the L* Gagaliardo-Nirenberg-Sobolev inequality, we obtain an optimal upper
bound of F'(y) as well as identify its optimizers; see Lemma 2.4. The optimizer in Lemma 2.4 is only unique up to
shifting. Our perturbative analysis says that when  is symmetric and decreasing and F'(() is near its optimal upper
bound, ¢ must be close to the symmetric optimizer. The proof of this is through a weak-convergence argument.

The proof of the convergence is carried out in Proposition 3.10. Combining items 1) and 2), the condition p € Iy
implies that for most r € [0, 2], [|p(7, «)||L2(w) is close to ||p.||z2(r) and F(p(r, +)) is close to F'(p.), which is the
optimal upper bound. This implies the convergence of K to p,, as A — oo.

1.4.3. The equi-continuity. By the Freidlin-Wentzell LDP, we can show that for fixed A > 0,ase — 0, h._» concentrates
around the set of functions A\ ™! log A3 Z(Kx; A+, A+). InSection 1.4.2, we explain how to prove that K converges to p,
as A — o0o. To prove Theorem 1.2, we need to show additionally that the distance between A~! log A%Z(IC A A Al
and A\~ !log )\%Z(p*; A+, \.) is small as A — oo. This is proved by establishing the equi-continuity of the maps
fa:p> A log A2Z(p; A-, A+), see Proposition 4.1.

Acknowledgments. We thank Ivan Corwin, Alexandre Krajenbrink, Pierre Le Doussal, and Baruch Meerson for their
helpful comments on the presentation of this work. We thank the referees for their useful comments on the manuscript,
especially for pointing out an error in Lemma 3.1 in the first version of the manuscript. The research of LCT is partially
supported by the Sloan Fellowship and the NSF through DMS-1953407 and DMS-2153739.

Outline of the rest of the paper. In Section 2, we prove Theorem 1.1 and confirm the %—power law in the deep upper
tail rate function. In Section 3, we give some detailed characterization of the minimizers in (1.13). We also prove that
the asymptotic limit of these minimizers equals sech? z. In Section 4, we establish some result about equi-continuity
and prove the convergence of the left hand side of (1.16) to h,, thus completing the proof of Theorem 1.2.

2. THE %-POWER LAW

By the discussion in Section 1.3, to prove Theorem 1.1, it suffices to show (1.13). In particular, (1.13) follows if we
can show

: . 1 1 4 .
llgsogp inf {ﬁ“ﬂ”%z([o,z)\]xm) :p € L2([0,2)\] x R), Z(p; 2),0) > 47r)\e/\} < 3 (LimSup)
lim inf i f{iu 12 :p € L2([0,2)\] x R), Z(p; 2),0) > L A} > 4 (LimInf)
l/\Hl)g n I 14 L2([0,2A] xR) P s s Ps y = 47(_)\6 = 3 imin

The rest of the section is devoted to proving (LimSup) and (LimInf).

For the rest of the paper, we will use C = C(aj,as,...) to denote a deterministic positive finite constant. The
constant may change from line to line or even within the same line, but depends only on the designated variables
ai,as,.... In addition, we will denote the Brownian motion as B and Brownian bridge as B,. When we write

Euosyf( fab By(s)ds)], the expectation is taken with respect to a Brownian bridge with By,(a) = = and By(b) = v.

When we write E,[f( f: B(s)ds)], the expectation is taken with a Brownian motion starting from B(a) = x.
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2.1. Proof of (LimSup). The key to the proof is to consider the exponential moment of the B, subject to a time-
independent potential ¢. More precisely, for ¢ € L?(R), we consider

Z(p;2X,0) = Eo—o [GXP </02A W(Bb(s))ds)]P(2)\70)- 2.1

To analyze (2.1), let us recall some background knowledge from [Chel0, Section 4.1]. Fixing a bounded continuous
function ¢ : R — R, we define 77 : L?(R) — L*(R) as

(Tf9)(x) = E. [exp ( / t w(B(s))ds)g(B(t»} .

By [Chel0, page 105], (T;7):>0 forms a strongly-continuous, self-adjoint and non-negative semi-group on L?(R). Let
A? be the generator of the semi-group (7}”);>0. Denote the domain of the generator A? by D(A¥). Let C2°(R) be
the space of compactly supported smooth function. Let H*(RR) to be the Sobolev space {g € L?(R) : ¢’ € L?(R)}.
By [Chel0, Theorem 4.1.2 and Lemma 4.1.3], C2°(R) C D(A¥) C H'(R). Further, for g € D(A¥),

(479.9) 120 = [ (@@ - 30/ @ (.2
For ¢ € L?(R), define
F(e)=su { [ ele)gle) = 50/ (@Pde g € H'R) lglzee = 1}, @3
Assume that ¢ is bounded and continuous. Since C2°(RR) is dense in H!(R) (w.r.t. the H'-norm), we have
F(p) = sup{(A?g,9)r2(r) : 9 € CZ(R), llgll L2y = 1}- 2.4
Further, we record two useful inequalities from [Chel0, Eq 4.1.25 and 4.1.29]. For g € C°(R),
exp (H(A%g, 9) L2w)) < (179, 9)12(m) < exp (tF(p)). (2.5)

It is known that (see [Che10, Thereom 4.1.6]) for bounded continuous ¢,

1 A
lim — logE, {exp (/ @(B(s))ds)} = F(p).
A—o0 )\ 0
We prove a similar result for the Brownian bridge, allowing the starting position to deviate from zero by an amount

less than O(\2 ).
Lemma 2.1. Fix bounded continuous ¢ : R — R. Fix a € (0,1/2). Uniformly for |x| < A%,

/\h_)n;o % logE, 0 [exp (/OA go(Bb(s))ds)} = F(p). (2.6)

Remark 2.2. Here we only need the = = 0 result for proving (LimSup), and the result for x # 0 will be needed in
Section 4.

We say that liminfy_,o fa(t,2) > g¢(¢,x) uniformly for (¢,2) € O, if for any ¢ > 0, there exists M such that
flt,x) > g(t,x) — (forall A\ > M and (¢, z) € O. Similarly, we say that limsup, _, .. fa(t,x) < g(t, ) uniformly
for (t,z) € O if for any ¢ > 0, there exists M such that f(¢,z) < g(t,z) + ( forall A > M and (¢,2) € O.

Proof of Lemma 2.1. The idea of the proof is from [Chel0, Theroem 4.1.6]. Recall that for a Brownian bridge By(s)
with By(0) = x and B, (\) = 0, the random variable By, (1) and B, (A — 1) has joint probability density function

p(L,z —y)p(A — 2,y — 2)p(1, 2)
fBb(1),Bb(,\—1)(y7Z) = p(A,x) .

Using the boundedness of ¢ and the preceding joint density in order, we have

Esms [exp (/ A @(Bb(S))dS)]

1 A—1
> 6EBb(O):w,Bb()\):O {GXP (/1 @(Bb(s))dsﬂ
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= m /Rp(l,x —y)E, {exp (/1“ gD(B(s>)ds)p(1,B(A - 1))}@. 2.7

Since ¢ is fixed, we omit the dependence on ¢ in the constant C. For any compactly supported g € C°(R), since
|z] < A%, m >CvVXand p(1, 2 —y) > %\g(yﬂ exp(—CA?®). Hence,

]ﬁ /Rp(l,x —y)E, [eXp (/j\l @(B(S))d*g)p(l’B()\ - 1))] dy
2 W/Rg(y)%{exp (/IA_lw(B(S))dS)g(B(/\— 1))]dy
exp(~ON*?) exp(~CA%?)

oy a9.9) = TEGm— exp (0= 2)(4%9.6)iace ).

The last inequality follows from (2.5). Inserting the above bound into the right hand side of (2.7) yields

Ez—o {exp (/0/\ @(Bb(s))ds)} > e;q)(c—(j))\?a) exp (()\ - 2)<A@979>L2(R))~

Taking the logarithm of the both sides, dividing the result by A and sending A — oo, we obtain that uniformly for
|z] < A9,

ol A
hAH_glongloglEHo[eXP (/O ‘P(Bb(s))ds):| > (A%g, 9) L2 (w)-

Taking the supremum of the right hand side over g € C5°(R) and using (2.4), we conclude that uniformly for |z] < A%,

lim inf % log E; 0 {exp (/0A @(Bb(s))ds)} > F(p).

To prove the reverse inequality, we write

Esm0 [exp (/ A so(&(s))dsﬂ

) \ _
=E, 0| exp (/ w(Bb(S))d8>1{|Bb<1>\92,|Bb<xfl)|92}
L 0 J

A
+E. 0 {exp (/0 @(Bb(s))ds) 1B, (1)|>A2 or |Bb()\—1)|2>\2}:|

- A -
< Ea:—>0 exp (/ gp(Bb(S))dS>1{|Bb(1)‘S)\27|Bb()\—1)|§)\2} + CeXp(—Cil/\Z). (28)
L 0 J

Recall that |z] < A%, a € (0, %) The last inequality follows from the boundedness of ¢ together with the tail decay
of P[By(1) > A?] and P[By(A — 1) > A2]. For the first term on the right hand side of (2.8),

A
Eﬁo{exp (/0 @(Bb(S))dS)l{Bbu)§A2,|Bb<x—1>|§v}]

A—1
< CEB,(0)=2,B,(\)=0 {GXP (/ ‘P(Bb(s))ds)l{le(l)g/\Q,Bb()\—l)g)\?}}
1

C A—1
=000 /Rp(l,m — )iy < Ey [eXp (/1 @(B(S))dS)p(LB()\ - 1))1{|B()\1)|<>\2}:|dy- (2.9)

The first inequality follows from the boundedness of ¢ and the second equality is due to the transition probabilities
of the Brownian bridge. Let gy € C2°(R) be such that g(y) = 1 for all |y| < A2, gx(y) = 0 for |y| > 2)? and
gr(y) € [0,1] for all y. Then p(1,z — y)1{y<r2} < ga(y) and thus

/P(l,x — )Ly <a1 By {GXP (/:_1 @(B(S))d8>P(1a B(A - 1))1{B(>\—1)|§>\2}] dy

< [, oo ( | T Bl ds)or (B~ )| dy



KPZ EQUATION WITH A SMALL NOISE, DEEP UPPER TAIL AND LIMIT SHAPE 9

= (T 295 90) L2®) < llgall 72y exp (A = 2)F()).

The last equality follows from (2.5). Inserting the above bound into (2.9) and then inserting the result to (2.8), we
conclude that uniformly for || < A%,

li)I\ILSOIip % logE, 0 [exp (/0)\ @(Bb(s))ds)} < F(p).

This concludes the lemma. ]

We are now ready to prove (LimSup). Recall that p, (t,z) = p.(x) = sech?(x). Fix arbitrary ¢ > 0 and take 2 = 0 in
Lemma 2.1. We have

1 1 2\
lim < logZ((1+)p-i2X,0) = lim. AlogEoﬁo[exp( / <1+<>p*<Bb<s>>ds)}-p<2x,o>

— 2F((1+ )p.)-

(2.10)

Referring to (2.3) for the definition of F' and taking g = % sech(z), ||g|lL2r) = 1, we have
2 L, 2 1 2
F(1+0)ps) 2 R(l + Op«(2)g(x)” - 29 (x)%dx = 5 + §C'

This, together with (2.10), implies that for A large enough, Z((1 + ¢)ps; 2),0) > e(1HOA > ﬁe’\. Consequently,
for )\ large enough,

1

. 1 1 4
inf { 2ol vy 2620, 0) 2~ b < o1+ OplEoanay = 501+ 0

In the last equality, we used || sech(-)2||%2(R) = 3. Taking { — 0 concludes (LimSup).

2.2. Proof of (LimInf). Fix T > 0 and p € L%([0,T] x R). Let us define the time-dependent semigroup P(p;s —
t): L?(R) — L*(R),0 < s < t < T. Given a function f € L?(R), fix s and consider the PDE

1
0,257 (r,x) = §amz&f(r, x) + p(r,2) 2% (r, x), z59(s,+) = f. (2.11)
We define P(p;s — t)f := Z%7(t, +). Note that Z*7 is the unique solution to the integral equation
¢
ZS7f(t7 .’IJ) = /]Rp(t — 5T - y)f(y)dy + / /Rp(t T — y)p(Ta y)zsj(n y)d?"dy

Via Picard iteration, we have Z*7 (t,z) = [, P((s,x) — (t,y))f(y)dy where the kernel

P(p; (s,2) = (t,y))

::p(t—s,x—y)"‘i/s

Here, we settg =tand g = x, t,,41 = sand x, 1 = ¥.

n+1
/ H p(tic —ti, xi1 — x3) p(ts, x;)dtida;. (2.12)
" i=1

<t <o <t1 <t

Next we establish four bounds for the time-dependent semigroup.

Lemma 2.3. There exists a universal constant C' such that for all s < t and a > 0,

B 1
1ot (5.0) = (4Dl 2y < Ot~ )7 exp(@®Clt — 5) + 3 g @13)
_ 1
IP(ps (5, +) = (£,0)[|z2m) < C(t — 5)"/* exp(a®C(t — 5) + ;HpH%Z([sJ]XR))’ (2.14)
1
1P (o3 5 = )l 2wy 2y < C exp(@®C(t = 8) + —llplIT2 (s, xm))s (2.15)

1
[P(p; (5,y) = (t,2))] < Cexp(a®C(t = 5) + —pll7z (o, )Pt = 5,7 — y). (2.16)
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Proof. In the proof, we assume without loss of generality that s = 0.

Let us first prove (2.13). View the right hand side of (2.12) as a series of function in z, and bound the L? norm of each
function. For the zeroth function in (2.12), we have ||p(t, +)||%., ® = Ct™ 2. For the n-th functions in (2.12), applying
the Cauchy-Schwarz inequality gives

2 n+1 9 ||p||%75([0,thR>
||(n—th)HL2(lR) < R R H p(tic1 —ti, xio1 — x3) dtidmide
0<t,<-—-<t1<t n s )

c” (3- 1Hp||L2(0t]><R)

T T(n/2) n!

Hence, we have

crt/h 1ol (o, xr)
P(p; (0,0 2m) < Ot 1 ; ’
1P(p:(0,0) = (t, )l 2(ay < ;F(n/z)i ()12

1= @O 2N 5 a’"HpH%’é([ovt] R)\ 2
<t 4(;_:0 T(n/2) ) (le_:o i )"

This concludes (2.13).
The left hand sides of (2.13) and (2.14) are the same upon time reversal, so (2.14) follows.
The proof of (2.15) is similar in spirit to (2.13). Using (P(p;0 — t) f = [ P( = (t,y))f(y)dy and (2.12),

we express P(p;0 — t)f as a series of functions. We bound the L2 norm of each functlon in the series. By the
Cauchy-Schwarz inequality, we have

p(t,z —y) f(y)dy i < [ plt,z —y)f(y)’dy. (2.17)
(] A

)fW)ayll72 gy < If1172g)- For

the n-th function, applying the Cauchy-Schwarz inequality yields

2L ol
[(n-th) |22z < // / (/p(tn,xn - y)f(y)dy) [T p(tio1 — tiozioy — 2)2dtidaryda—"315)
R Jo<t, <-<t;<t JRn i=1 "

Using (2.17) and p(t, z)? < Ft p(t, ), we get

n

||pH2Lg([0,t]xR)||fHL2(R) / H 1 ; cnn/? HPHLZ(ot]xR If]2
- it = )
n! O<tp<-<ti<t =y /27 (tic1 — t;) ['(n/2) n! L2y

Taking the square root of both sides and summing over n, the rest of the proof is similar to the proof of (2.13).

[(n-th)[|72 ) <

To prove (2.16), we view the right hand side of (2.12) as a series of real numbers. We bound the value of each term in
the series. The zeroth term equals p(t — s, — y). For the n-th term, applying the Cauchy-Schwarz inequality yields

jass et o2 | pll7s
4h)|2 < bt — )2t da S UXR) L2([O0XR) s 0o 2.
[(n-t)f < /0<tn<---<51<t /]R" 21;[1;0( o oo — 23) disdr, n! ~ I'(n/2) n! plt,z )

Taking the square root of both sides and summing over n, the rest of the proof is similar to the proof of (2.13).

Lemma 2.4. For every p € L*(R), we have

1,3
<33 e I (2.18)

Moreover, the equality holds if and only if p(+) = a? sech®(a(+ — v)) for some a > 0.

F(p) <
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Proof. Referring to (2.3), we have

3 1
F(p) < Sup{||gp||Lz(R)</g(gC)4dx> z 5/g/(m)?ala:} 19 € H'(R), gl = 1} (2.19)
_1 1 1
< sup {3 il L2 lg'll 72 ) — 5HQ/H%Q(R) :g € H'(R), ||g]l 2@ = 1} (2.20)
LVRAVIETINE:
< S (7 lel e gy (2.21)

The inequality (2.19) is due to the Cauchy-Schwarz inequality. The inequality (2.20) follows from the one-dimensional
L* Gagliardo-Nirenberg-Sobolev inequality, which states that, for g € L?(R) and ¢’ € L?(R),

1/4 3/4

YENG  aa ll9N oy (2.22)

lgllza@) <37
The inequality (2.21) follows from the elementary inequality 3~ % yaz2 — 122 <13y B3,

To prove the if and only if statement, we need to investigate when the inequalities (2.19)-(2.21) become equalities. The
inequality (2.19) becomes an equality if and only if ¢ = const- g. By [DELL14, Proposition 3.1], the inequality (2.20),

i.e. (2.22) becomes an equality if and only if g(z) = asech(b(x — v)) for some a,v and b > 0; the inequality (2.21)

becomes an equality if and only if ||g'|| 2 () = (%)2/33_1/6||¢||2L/2?ER). Combining these with ||g|| 12(r) = 1 gives that

g(+) = asech (2a*(+ —v)), ©(+) = 4a* sech? (2a*(+ —v)).
Replacing 2a? with o implies that (+) = a? sech?(a(+ — v)). O
Remark 2.5. We only need (2.18) for this section, and the if and only if part is required in Section 3.

The key for proving (LimInf) is an improved upper bound (compared with (2.15)) for | P(p; s — t)|| L2(r)— 12(r) Stated
in Proposition 2.9. To prove this upper bound, we need to first establish the following two lemmas about continuity.

Lemma 2.6. Fix0 < s <t. The map ||P(+;s — t)||L2r)>r2(r) : L?([s,t] X R) — R is continuous.

Proof. Fix f € L?(R). Since Z*f(t,2) = (P(p; s — t)f)(z) solves (2.11), by the Feynman-Kac formula,

24 (rt0) = 5. [ ot B)ar) 1(B(0)]

Given p,p € L?([s,t] x R). We write p = p — (1 — ¢)p + (1 — ¢)p in the exponent above and apply the Holder
inequality to the result. We have for ¢ € (0, 1),

z! (pit,2) = Eo [exp (/ (= (1= OB = . B(r))ar) (F(B1)

t
e ([ 4= 0t - By (1(80) ]
< ZS’f (C_l(p - (1 - C)ﬁ)» t7 x)<z€,f(ﬁy ta x)l—C.
Squaring both sides, integrating in x and using the Holder inequality again gives
1 (o5t ) oy < 127 (M = (1= OP)sts ) |22 1277 it ) | ey
Taking the supremum over {f : || f||z2(r) < 1} yields that
- ¢ ~ 1-¢
[P (ps s — t>HL2(RHL2(R) <[[PHp— (1 =Q)p)is = t)HLQ(R)ALQ(R)HP('O;S = t)HLz(R)%Lz(R)' (2.23)

Set G(p) := log || P(p; 8 — t)|| 2(R)—L2(r). Our goal is to show that G is continuous in p. We do this by showing that
G is both upper and lower semi-continuous. Taking the logarithm of both sides of (2.23) and applying (2.15) yields

G(p) <CG(CTHp— (1 =¢)p) + (1= OG(p)
< C(s,1)C+ ¢l p = (1= D)1 72 s xmy + (1= QG (D). (2.24)
Subtracting (1 — ¢)G(p) + (G(p) from both sides and applying the inequality || f + g|2. < 2(||f[|22 + [lg/|22) yield
(1= Q(G(p) = G(p)) < Cs,t)¢ + CC™H 1 = €)?lp = PllLa(syxm) + CClpl Lo (s xm) — CGp)
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<CCHA = OPllp = Pl T2 (s xm) + CC (55, p).-

Taking ¢ = ||p — pl|L2((s,xr) and letting p — p, we see that limsup;_, , G(p) < G(p). Thus, G is upper semi-
continuous.

On the other hand, if we swap p and p in (2.24), a similar argument gives
G(ﬁ) - G(p) < CC(Sa i, p) + CC_1||5_ pH%ﬁ([s,t]XR)'

Taking ¢ = ||p — pllz2([s,x®) and letting p — p, we see that G is lower semi-continuous. This concludes the
lemma. g

Lemma 2.7. Fix 0 < s < t and M > 0. There exists a constant C(M) > 0. For ¢1,po € L*(R) such that
0 < 1,92 < M almost everywhere, we have

[F (1) = F(p2)| < C(M)lp1 = w2l L2(w)-

Proof. By the definition of F'(¢3) in (2.3), for any ¢ > 0, there exists g that ||g¢||2L2(R) = 1and

1
Flp2) < /]R P29¢ = 5(90)° + ¢ (2.25)

Moreover, we have F(p1) > [, cplg? — %(92)2 Using this and (2.25), we have

Flga) = Flon) < [ (2= g0)g? +¢.
R
Applying the Cauchy-Schwarz inequality to the right hand side above and then applying (2.22) to the result, we have

_1 1
F(p2) = F(p1) <3702 — @rllremyllgel 72 gy + C- (2.26)

By (2.25), %Hg’CH%Q(R) < Ja QOQQ? — F(p2) 4 ¢. Since 0 < ¢p < M and ||g¢ || L2(r) = 1, we can upper bound the first
term on the right hand side by M and the second term by a universal constant C. Hence, we have 1| 9¢ 12, ® < C(M).
Inserting this to the right hand side of (2.26) and letting ( — 0 yields

F(pa) = Fp1) < C(M)le2 = 1l L2(m)-

Swapping ¢ and ¢4 concludes the lemma. (|

Corollary 2.8. Fix0 < s < t and M > 0. There exists a constant C(M,t,s). For p1, p2 € L*([s,t] x R) such that
0 < p1, p2 < M almost everywhere, we have

t t
‘ / F(pa(r,+))dr —/ F(pa(r, '))dr‘ < C(M,t,s)llp1 — p2llL2((s,qxm)-
Proof. 1t is straightforward to see that

‘/:F(pl(r,-))dr—/:F(pg(r,-))dr’ g/:yF(pl(r,.>)—F(p2(r,.))\dr. 227)

Applying Lemma 2.7 to upper bound the right hand side above and applying the Cauchy Schwarz inequality to the
result, we have

t
RHS of (2.27) < C(M)/ pr(r, <) = pa(r, )| aqeydr < C(M)(t = 5)2 [lpr — pal| L2(is.1xm) -
This concludes the corollary. ]

Proposition 2.9. Fix 0 < s < t. Forall p € L?*([s,t] x R) satisfying p > 0 almost everywhere, we have

t
I1P(555 = Dll oo < o ([ Flotr - ar). 2.28)
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Proof. Fix smooth and compactly supported p and f. Since p is smooth, the function Z*7(t,2) = (P(s — t)f)(z)
solves (2.11) point-wise. Multiply both side by Z, integrate the result over x € R and interchange the integration and
differentiation. We have

1. . s
50112 T )@y < Flolr, NIZT (ry )72 gy

Integrating in time from s to ¢ gives

t
1270 ey < 11y exp (2 | Folr, ).

For fixed smooth and compact supported p, by approximation, the above inequality also holds for general f € L?(R).
Thus, we have proven (2.28) for smooth and compactly supported p.

The general result follows by approximation and monotonicity. Fix arbitrary M > 0. We first prove that (2.28) holds
for all p € L?([s,t] x R) such that almost everywhere 0 < p < M. By a density argument, there exists smooth and
compactly supported functions {p,, } 2, such that 0 < p,, < M and ||p,, — p|| £2([s,4)xr) — 0 as n — oo. (2.28) holds
when p is replaced by p,,. Let n — oo, by Lemma 2.6 and Corollary 2.8, (2.28) also holds for p.

Finally, we prove (2.28) for p € L*([s,t] x R) such that almost everywhere p > 0. As n — 00, ply,<,} — p in
L?([s,t] x R). In the preceding paragraph, we have proved that (2.28) holds when p is replaced by pli,<ny, forall n.
Using this and the monotonicity of F', we have

¢ ¢
|P(plip<nyss = Ol L2@)—r2@®) < exp (/ F(plyp<ny(r, -))dr) < exp (/ F(p(r, -))dr).

Letting n — oo, by Lemma 2.6, the left hand side above converges to || P(p; s — t)||12(r)— 12(r). Hence, we conclude
(2.28). 0

Based on the preceding results, we now proceed to prove (LimInf). The proof amounts to showing that, for any

p € L2([0,2)\] xR) such that Z(p; 2\, 0) > \/%Eek,wehavei”p”%z([o,z/\]xm > 2—0,(1) where limy_,o 0x(1) = 0.

With loss of generality, we can assume that

1
o lPllZz o 2 <k < 2 (2.29)

Moreover, define p; := min(p, 0). Because Z(p;2X,0) > Z(p;2),0) and ||p4 || 22(j0,20xr) < |12l 2 (0,27 x®)» We
can also assume that p > 0 almost everywhere. Note that Z(p; 2\, 0) = P(p; (0,0) — (2X,0)). Using the semigroup
property, we have

Z(p;2X,0) = P(p; (0,0) = (1, +))P(p; 1 — (2A = 1)) P(p; (2X — 1, +) — (2A,0))
< [|1P(p; (0,0) = (1,  Nll2w) 1 P(p; 1 = (2A = D)l L2@)—r2@[[P(p5 (2A — 1, +) = (2X,0))[| L2 (w)-

Applying (2.13)-(2.14) (take a = A3) to upper bound the first and third term on the right hand side, using Proposition
2.9 and (2.29) to upper bound the second term, we have

2 _1 _1
Z(p;2X,0) < C|IP(p;1 = (2X = 1)) || L2 (m) 2 (m) exP (CAT + A3 HPH%2([O,1]><]R) +A73 ||p||%2([2)\71,2)\]><]11{)>

2)
< C’exp(C’/\%) exp (/ F(p(r, -))dr). (2.30)
0
Here C' is a universal constant. For the integral above, using Lemma 2.4 to bound F’, together with Young’s inequality,
4 1/3
o0, )15y < S (llp(r, )22y + 3) for every 1. we have
22 1/3 2 4
2 3 3
Z(p;2X,0) < Cexp(CA3)exp (/ B (Z) l|lp(r, -)||L2(R)dr>
0
2X

2 2
< o@D ([ (It ey + 3 )ar)
1

Applying meA < Z(p; 2, 0) to lower bound Z(p; 2),0), we have that that A(1 — 0, (1)) < i||p||2L2([O)2/\]XR) +

A
3
where limy_, 05 (1) = 0. Hence %H/’”%?([O,z,\]xn@) > 3 — ox(1). Letting A — oo concludes the desired (LimInf).
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3. MINIMIZERS OF THE VARIATIONAL FORMULA

For a p € L?([0,2)] x R), recall that Z(p) = Z(p;t, z) is the (unique) solution to the PDE
1
0L = 55)”2 + pZ, (t,z) € (0,2\] x R, Z(p;0, ) =dp(+).

Let K, denote the set of minimizers of

g !
1nf{§||P||2L2([0,2>\]xR) ‘pE LQ([0a2)‘] X R)7 Z(p7 2)‘70) > 471’>\e)\}. (31)

It is convenient to consider the scaled version of /Cy: Let K » be the set of minimizers of

. 1
inf {§||P||2L2([o,2]xR) :p e L2([0,2] x R), Z(p;2,0) > e/\} (-2)

1
Var
Recall the scaling property Z(Ap(A«, A2 +);2,0) = A2Z(p; 2X,0). We have

Kx={Ap(A-,A2): pe Ky} (3.3)
To prepare for the proof of Theorem 1.2, in this section, we develop a few properties of IC for fixed A\. We also study
the asymptotic behavior of Ky as A — oo.

3.1. Properties of /C).

3.1.1. ICy is not empty. We first show that Ky is not empty. By the scaling (3.3), it suffices to show that K A 1S not
empty, i.e. a minimizer of (3.2) exists.

Let us first introduce a few facts that would be useful throughout Section 3. We take a Banach space 53 with Gaussian
measure . such that L2([0,2] x R) is the Cameron-Martin space of (3, p). We further assume the embedding
L?([0,2] x R) C Bis dense. For a concrete choice of (B, 1), see [LT21, Section 2.1.1]. The advantage of introducing
B is that it brings us compactness. Since L*([0, 2] x R) is the Cameron-Martin space of 3, for arbitrary » > 0, the set
{p :lIpllz2(j0,2)xr) < 7} is compact in B. The compactness would be crucial for us to prove the non-emptiness of K.

We are going to view Z as a map from p € L%([0, 2] x R) to the space-time function Z(p; «, ). If we restrict the time
and space coordinates in (t,z) € [§,2] x [=6~%, 1], it follows from [LT21, Section 2.1] that Z maps L?(]0, 2] x R)
to C([5,2] x [—=671,671)).

We use L%([0, 2] x R) to denote the same space L?([0, 2] x R) with the topology induced by the topology of the Banach
space B. Even though Z : L%([0,2] x R) — C([4,2] x [=6—1,571]) is not continuous in general, its restriction onto
{p :lIpllz2((0,2)x®) < 7} is continuous for any 7 < 0o, as shown in the following lemma.

Lemma 3.1. Fix arbitrary § > 0 and r < co. The map Z : p + Z(p;+, ) is continuous from L%([0,2] x
R){p : Iollaory < r} o0 C([5,2] x [~6-1,57]).

Proof. Define the extension of Z
YA h L%([0,2] xR
7B 052 x 661, Z(p) =4 2P whenp € L0 xR, (3.4)
0, otherwise.

By the proof of [LT21, Lemma 3.7] (see the paragraph above Eq (3.18’) therein), there exists a sequence of continuous
functions px : B — C([6,2] x [-0~1,571]) such that for all 7 < oo,

lim sup ||Z/(P) - @N(p)||L°°([5,2]><[75*1,6*1]) = 0.
N=eo g 002 <r
21PN 2 (0,21 xR) =

Using this, we conclude that the map Z" : BN{p : ||p||r2(0,2)xr) < r} — C([6,2] x [-0~1,671]) is continuous. By
(3.4), we have the desired continuity of Z : L%([0,2] x R)N{p : ||pllL2(jo,21xr) < 7} — C([6,2] x [-671,671]). O

Denote the infimum in (3.2) by gy.

Proposition 3.2. Fix A > 0, the set ICy is not empty.
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Proof. By the scaling (3.3), it suffices to prove that K A is not empty, i.e. the minimizer of (3.2) exists. Let { pn}n€Z21 -
L?([0,2] x R) be such that Z(p,,;2,0) > \/%e/\ and 3|[pn 72 (0.2)xm) + @1 Since for arbitrary fixed r< oo, the set
{p: %||p||%2([0’2] «R) < 7} is compact in B, after passing to a subsequence, p,, converges to some p € L?([0,2] x R) in
the topology of B. By Lemma 3.1, p — Z(p; 2, 0) is a continuous map from Lz ([0, 2] x R)N{p : ||pllz2(j0,2)xr) < 7} tO
R. This implies that Z(p; 2,0) > \/%ex. By the compactness of {p : 5|0l (0 2xg) < 7} We have [|pl| L2 (0,21 xx) <

lim inf,, o0 [|on |2 ([0,2] x®). Hence, p is a minimizer of (3.2). |

3.1.2. Symmetric decreasing function in space. In this subsection, we show that every p € K, is symmetric decreasing
in space.

We say that f is symmetric decreasing if there exists a non-increasing function g : [0,00) — [0,00) such that
f(x) = g(Jz|) holds for almost every 2z € R. We say that f is strictly symmetric decreasing if g is strictly decreasing.
We say that a measurable function p : [0,7] x R — [0,00) is symmetric decreasing in space if for almost every
0<s<T,p(s,-)issymmetric decreasing.

Proposition 3.3. Fix A > 0, every element p € K is symmetric decreasing in space.

Let A C R be a measurable set with finite Lebesgue measure |A|. We define the symmetric rearrangement of A,
denoted A*, as the interval [—|A|/2,|A|/2]. Given a measurable function f : R — [0, 00), we can express f by the
layer-cake representation f(z) = fooo 1iyer:f(y)>ey (7)dl. We define its symmetric decreasing rearrangement as

fH(a) = / Liyem oy (@)L

It is straightforward to show that for arbitrary fixed ¢ > 0, the sets {x : f(x) > ¢} and {x : f*(z) > £} have the same
Lebesgue measure. As a consequence, | f||z»r) = ||.f*||z»r) for every p > 1.

Let p: [0,7] x R — [0, 00). We define the Steiner symmetrization of p along the time-axis, denoted p°, as follows:
For every fixed 0 < s < T, we define the function p*(s, «) := p*(s, +).

To prove Proposition 3.3, we rely on the following two rearrangement inequalities known respectively as the Hardy-

Littlewood inequality and the Brascamp-Lieb-Luttinger inequality.

Lemma 3.4 ([LLO1, Theorem 3.4]). For any non-negative f, g € L*(R), one has

/]R f(@)g(x)dx < /R £ (x)g" (x)dz.

Moreover, if f = f* is strictly symmetric decreasing, then the inequality above becomes an equality if and only if
g = g* almost everywhere.

Lemma 3.5 ([BLL74, Theorem 1.2]). Let f;,1 < j < k, be non-negative measurable functions on R, and let @y,
1 <5<k 1< m <n bereal numbers, then

k n k n
R™ =1 =1 R" =1 m=1

The following result contains the major step for proving Proposition 3.3.

Lemma 3.6. Ifp € L?([0,2] x R) is non-negative, then Z(p;2,0) < Z(p%;2,0). In addition, the equality holds if and
only if p is symmetric decreasing in space.
Proof. Note that

n+1 n

Z(p;2,0) = p(2,0) + Z/ / [ ptics = tis iy — @) [ [ p(ts, wi)dtidas, (3.5
o1 Jo<ta<<ti<to JR

"i=1 i=1

where tg = 2 and ¢ = t,,41 = xp,+1 = 0. For the n = 1 term in the sum above, by Lemma 3.4,

/02 /Rp(Q —s,2)p(s,x)p(s, z)dsdz < /02 /Rp(Q —s,2)p(s, x)p°(s, z)dsdx. (3.6)
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Since p(2 — s, «)p(s, ») is strictly symmetric decreasing for every fixed s € (0, 2), the above becomes an equality if
and only if p is symmetric decreasing in space.

For the n > 2 term. View the integrand as product of functions in space for fixed t,, < t,—1 < --- < t;1 and note that
p(t,+) = p°(t, ). By Lemma 3.5,

n

n+1
/ / H p(ticy —ti, w1 — ;) H p(t;, x;)dt;dx;
0<tn< <ty <tg JR

" =1 i=1
n+1 n
< / / H p(tic1 — ti, xim1 — x4) H p°(t;, x;)dt;dx;. 3.7
0<tn<-<t1<to JR™ ;7 pate}

Combining (3.5)-(3.7), we conclude that Z(p;2,0) < Z(p®°;2,0). Furthermore, the equality holds if and only if p is
symmetric decreasing in space. ]

Proof of Proposition 3.3. By the scaling (3.3), it suffices to prove Proposition 3.3 for K. First, we claim that if
p € K, then p > 0 almost everywhere. Define p; = max(p, 0). The claim follows from Z(p; 2\, 0) < Z(p4;2X,0)
and ||p[|z2(j0,21x®) > llP+|lL2([0,2]x®) if p is not almost everywhere non-negative. Next, suppose that there exists

p € K, that is not symmetric decreasing in space. By Lemma 3.6, we have Z(p%;2,0) > Z(p;2,0) > \/%e/\. By the

continuity of p + Z(p;2,0) in L2([0, 2] x R), there exists some 0 < # < 1 such that Z(6p°;2,0) = \/%76/\. However,

100°l1 L2 j0,21x%) < [I£°ll22(10,21xR) = llPllL2([0,2xR)
which contradicts with p € K A (]
3.2. The & — 0 limit of h. ) for fixed \. For f € C([6,2] x [-671,671]) and A C C([6,2] x [-61,571]), define
dists (f,A) == inf{[|f — gl (s,2x[-5-1,6-1)) : 9 € A}.
Recall that we denote the infimum in (3.2) by ¢,.
Lemma 3.7. Consider {pn}nez., € L*([0,2]xR) suchthat Z(p,;2,0) > \/%ek. Iflim, s oo %||pn||2L([072]X]R) = q»,

then we have B
lim dists(Z(pn), Z(Ky)) = 0. (3.8)

n—oo

Proof. The proof is similar to the proof of Proposition 3.2. Fix arbitrary » > 0. The set {p : ||pl[z2(jo,2jxr) < 7} is
compact in B. Using this, after passing to a subsequence, p,, converges to some p € L?([0,2] x R) in the topology
B. In addition, Z(p; 2,0) = lim,, 00 Z(pn;2,0) > \/%eA and || pl| z2(j0,2)xr) < liminf,, oo [[pn |l £2([0,2)x®)- Hence

pE K. This implies that
nhHH;O inf{||pn, — pllz:p€r} =0. (3.9)

Further, by Lemma 3.1, themap Z : LE([0, 2] xR)"{p : [|pl|L2(jo,21xr) < 7} — C([6,2] x [—6~1,671]) is continuous.
Since {p : [|p||£2([0,21xr) < 7} is compact in 13, the map

Z:{p:|lpllzogxr) <1} — C(6,2] x [-67,671))

is uniformly continuous, where we endow {p : |p||£2([0,2)xr) < 7} with the topology induced by B. Using the uniform
continuity of Z and the convergence in (3.9), we conclude (3.8). O

Recall that .y = A\~"log Z.(t, A\zx). Define hy(p; t, ) := A\~ log (A2 Z(p; At, Az)).
Proposition 3.8. Fix \,§ > 0. We have

limO]P[dist(;(hsA, ha(Ka)) < 0| Z=(2,0) > M =1
E—r

1
VAam
Proof. Sethy(p;t,x) := A" log Z(p: t, A2x). By the scaling (3.3) and Z(Ap(A+, A2 +);t,2) = A2 Z(p; M; A2z), we
have h)(K) = hx(K,). Hence, we need to prove
1

VAT

hn(l)IP[disté(xllogzg(.,A%.),xllog Z(Kx; +,A22)) < 6| Z:(2,0) > e =1
e—
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Since \ is fixed, we can drop the A~! in front of the log and A2 in front of the z-variable. It suffices to prove

. . ~ 1
;%P[dlstg(logZe,logZ(lCA)) <6]Z.(2,0) > N ]=1 (3.10)
Let us first show that for fixed A, § > 0,
. . - 1 A
gl_%]P’[dlstg(Zs,Z(IC)\)) < 0| Z:(2,0) > N 1=1, (3.11)

and then explain how (3.11) implies (3.10).

To prove (3.11), consider the set Gy 5 := {f € C([6,2] x [-671,67Y]) : f(2,0) > Fe and dists(f, Z(Ky)) > 6.
Since G s is a closed setin C([§,2] x [-d~1,671]), by Proposition 1.7, we have

limsupelog]P’[ZE € G)\yg] < — inf I(f). (3.12)
e—0 f€EGAs
By (1.11), we also have
. Lo
gg%slogIF’[ZE > \/Ee } = —qi, (3.13)
recall that g is equal to (3.2). Using
1 [Z € G, 5]
dist IC ) >d|Z.(2,0) M =
Pldists(Ze, 206)) 2 3] 2 75 TRz 0 —

and applying (3.12)-(3.13), we have

1
limsup ¢ log P |dists(Z,, Z IC ) >0|Z:(2,0 > ——eM <gy— inf I
msup e log [dists(Ze, Z(Ky) | ) > i | <an Y (f)-

By Lemma 3.7, there exists { > 0 such that infscg, , I(f) > g + (. The above inequality implies

gl_Iil)P[dlStg(ZE,Z(]C)\)) > 0| Z:(2,0) > e’ = 0.

Therefore, We conclude (3.11).

Finally, we show how (3.11) implies (3.10). Recall that Z(p; ¢, 2) = P(p; (0,0) — (¢, x)). Referring to (2.12), due to
the non-negativity of p, we have the lower bound Z(p; t, z) > p(t, x). The upper bound of Z(p; ¢, x) is given by (2.16).
This implies the existence of a constant M such that for all p € ICy,

M~ < Z(p)ll Lo (5,2 x[—5-1,6-1)) < M. (3.14)
(3.10) follows from (3.11), (3.14) and the uniform continuity of the log function on the interval [(2M)~!,2M]. O

3.3. The A — oo asymptotic of /Cx. For simplicity, we adopt the shorthand notation ||«||2 := ||+||z2(r). The

functional F defined in (2.3) enjoys a scaling property: Letting o, (2) = o?¢(ax), we have F(p,) = a?F(p).
. o —2/3 . 2

Choosing a = |||l “/* to normalize the L® norm of ¢, we have

F(o) = I3 F(oyp-2)s Ny yzerslle =1 (3.15)
We set
() = (2)2/3 sechQ((Z)l/gx). (3.16)
Also, let SD denote the space of symmetric decreasing functions (see Section 3.1.2 for the definition).

Lemma 3.9. For any ¢ > 0, there exists § > 0 such that for all p € SD,

1,3

4
g _— / ] P —
Fg) 2 5(DHeld (1= 6) implies iy -2 = ralla < C
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Proof. By the scaling (3.15) we assume without loss of generality that ||||2 = 1. The desired statement is equivalent to
the following: Any sequence {,,} € SD with ||, [|2 = 1 such that F(p,) — (3 )% hasa subsequence that converges
in L? to r,. Fix any such ¢,,. Let f,, € H'(R) be such that || f,||2 = 1 and fgon — 2 f2dx — 1(3)%/3. Since
{(&n, fn, f1)} is bounded in (L?(R))3, by the Banach-Alaoglu theorem, after passing to a subsequence (<pn, Frs I1)
converges weakly to (r., fi, g«) With |72 < 1, || f«l2 < 1 and ||g«|| < liminf, || f}|l2- Since (fn, f},) converges
weakly to (f«, g« ), we must have f/ = g.. Moreover, since f,, and f/, are bounded in L?(R), f,, is locally uniformly
bounded and equi-continuous. By the Arzela-Ascoli theorem, we know that f,, — f. on compact sets. Next, because
lonllz = 1 and because ¢,, € SD, @, (M) < M~=. Therefore, .Y onf2dz < M~z f,]|2 = M~2. This
gives

3\ 3 !
limsup/gpnffll @ ff "2 dx - - M=,
. {lz|<M} — 2(4)

n—oo
The left hand side is bounded above by fR rof2—1 dx Sendmg M — oo gives fR ref2—1 dx > ( )2/3,
This together with ||r.|l2 < 1and ||fi]2 <1 imphes that F(r,) > 1(3)¥3. By the if and only 1f part in Lemma 2.4
and the fact that r, € SD, we know that r, = r,. Since ¢,, weakly converges to r, and lim,, o ||@nll2 = 1 = ||r.]|2,
we conclude that ,, converges to r, in L2, (]

Recall that p,(t,z) = p.(x) = (sechz)?. The main result of this section says that the elements of K tend to p as
A — 0.

Proposition 3.10. We have lim_, o sup{%Hp - p*||2L2([072A]X]R) cpeKyr=0.
Proof. Set ¢ > 0. According to (1.13), which is proved in Section 2, for large enough A and all p € Ky,
1 4
o lelzzqozaxm < 3+ (3.17)

e* and (2.30),

By Z(p;2,0) >

o~
;}—‘
>

1 N ) 2)
er<Ce CA/3+/ F(p(r,+))dr).
e S Xp( L Fe(r ) )

Taking the logarithm of both sides and then applying Lemma 2.4 to the right hand side yields that for all A large enough,
2X 22 | 3 s
N-0 < [ Fr s [ 5 (3) 1ot ldar
0 0

3|p(r, +)||3)). Furthermore, there exists a strictly increasing

Young’s inequality gives ((2|p(r, +)[|3)%? < 3 + 2(3||
(r, 3> < 5+ 3G olr, I3) = (11— Fo(r, )[3])- Applying

function ¢ : R>o — R such that ¢/(0) = 0, (3||p
this to the right hand side above yields

2 2)\1

2X 22 .
A1=¢ < [ FGenar< [ 5(3) ot lar < [ G+ Gl 15 = 3o = ot B)ar

<A1+ = [ 5wl = Jlo B

The last inequality is due to (3.17). Using the inequalities above, we have for all A large enough,

A
3
V(1= Zlle(rs ) 3Ddr < 4A¢, (3.18)

22 4
/O ;(3) llp(r, IS — F(p(r, «))dr < 4XC. (3.19)

Since 4 is strictly increasing with 1»(0) = 0. For any (' > 0, we have ¢(z) > ¢({’) =: C(¢’) when z > ¢’. Applying

this to (3.18) gives that for all X large enough,

4N
(OF

Leb[{re [0,2)] : ’1—7||p D2 ‘>g}] (3.20)
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Here, Leb denotes the Lebesgue measure. Since p € Ky, by Proposition 3.3, p(r, -) € SD for almost all » € [0, 2]].
Using (3.19) and Lemma 3.9 we conclude that for any ¢’ > 0, there exists C'(¢’) > 0 such that

s —Tulla > c}} < ¢ (321)

Leb{{r € (0,2 : [|p(r, +) <&

llo(r,+)
where we denote p(r, +)o = a?p(r, a+). We have
lp(r, ')Hp(r,-)H;Z/S —rill2 = [lp(r, -)||;1||p(r, ) - (r*)\|p(r7.)|\§/3”2’
Applying this to (3.21) yields
A¢
N o) — 2/8 / .
Leb| {r € 0,203 1901 2) = ()2 > ot e} < 65
Taking ¢ < min(C({’),1)¢’, the right hand side of (3.22) is upper bounded by A{’. By (3.20), we know that for most
r € [0,2]],

. (3.22)

p(r, +)||2 is around \/%. Applying this and (r*)(\/g)z/3 = py to (3.22) gives that for any ¢’ > 0,
3

Leb[{r € (0,27 : [lp(r, +) — pull2 > g’}} < OX (3.23)
holds for all \ large enough. The inequality (3.23) together with the fact ||p. |3 = % implies
/. oy 2L o, )= puoerydr = 5 = OC
This, together with (3.17) (we have taken ¢ < {’) imply that
1 ,
ﬁ/o lo(ry M2 ocr,+)—p. 2>y dr < CC- (3.24)
In addition, by [|p.(r, +)[|3 = 3 and (3.23),
!
5/0 s (rs 2L o0, o) pufa>crydr < CC (3.25)
Combining (3.24) and (3.25), we conclude that
1 , 1 /2 ,
5”/) - p*||L2([O,2)\]><R) = 2\ o [p(r, +) = pu(r, ')||21{Hp(r,-)7p*||2>fl}dr
1 2
2
tox | [o(r; +) = P (ry )L o0, ) —pu s<crydr < CC
Letting A — oo and then ¢’ — 0 concludes the proposition. ]

4. THE LIMIT SHAPE

The goal of the section is to prove Theorem 1.2.
4.1. Equi-continuity of hy. Recall from Section 3.2 that hy(p; t,z) = A\~ log (A2 Z(p; M, Ax)). Let L2,(10,2)] x
R) denote the set of non-negative functions which belong to L?([0,2)\] x R). Consider the normalized norm

A3 l*Il2([0,20) x®)- The following proposition settles the equi-continuity of hy(+,t,z) : LQZO([O7 2\ xR) - R
with respect to this norm.

Proposition 4.1. There exists a constant C such that for all A > 0, p1, pa € L2([0,2\] x R) and (t,z) € (0,2] x R,
iFA"2 |1 — pallz2 (0,2 xr) < 1, )
ha(pist,x) — hx(past, )| < CATZ]|p1 — pallL2o,2axmy (1 + A ol 22 o,201x) + AT 2l 220,20 xk))-
Proof. Set Z(p;t,x) = Z(p;t,z)/p(t,z). Since
A" og Z(pr; M, Az) — A log Z(pa; At Az) = AP log Z(py: At, Ax) — A~ log Z(pa; At, Ax)
= hx(p1; At, Ax) — ha(pa; A, Ax),
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it suffices to prove that for A > 0 and (¢, z) € (0,2] x R,
A7 log Z(p1; At Ax) — log Z(pa; M, Az)|

< O 2lp1 = pallzzo,2n ) (1 + A7 o122 (o .2nixr) + A7 10201 220,201 xR) )- 4.1
Note that Z(p; ¢, z) = P(p; (0,0) — (¢,2)). We apply (2.16) with @ = 1 to obtain
Z(p: At, Az) < Cexp(CAt + 1% 20,7 xR) )- 4.2)

The constant C' here is universal. Further, by the Feynman-Kac formula,

Z(p; M, Az) = Egoog [exp (/OM p(s,Bb(s)))]

Let us use (4.2) and the Feynman-Kac formula to prove (4.1). Fix ¢ € (0,1). Similar to the proof of Lemma 2.6, by
the Feynman-Kac formula and the Holder inequality,

Z(p1; M, Ax) < Z(CH (o1 = (1= Q)p2) My Ax) Z(po; M, M)
Taking the logarithm of both sides yields
log Z(p13 At, A) < (log Z(¢™ (p1 = (1= ()pa); M, ) + (1 = Q) log Z(pa; M, Aa)
< ClogZ(¢ (pr — (1 = Q)p2); A, Ax) + log Z(pa; At, Ax). 43)

The last inequality is due to z(pg; t,x) > 1, since po is non-negative.

Subtracting log Z( p2; At, Az) from both sides of (4.3) and applying (4.2) to the resulting right hand side, we get
log Z(py; At, Ax) — log Z(pa; At, Az) < Clog Z(C (p1 — (1 = ()p2); A, Az)
< COM+CCH|pr = (1= O)p2ll7 (o ae xr)-
Applying ¢ < 2 and the inequality || f + g||2. < 2(||f[|22 + ||g]|%2) to the right hand side leads to

log Z(p1; A, Az) — og Z(pa; A, ) < CON+ CC o1 = pallFzio,aey ey + CClloall7 2 o, 06y (4.4)
The constant C' is universal and does not depend on A, ¢, z. Swapping p1, p2 in (4.4) gives that
|1og Z(p1; At, Ax) —log Z(p2; At, Ax)| < C(C_1||P1 —p2llZ2 o rqxr) FCAF 011172 02 xr) + ”p?”i?([o,)\t]xﬂ{)))'
Dividing both sides by A and using ¢ < 2, we have
)\*1’ log Z(pl; At, Ax) — log Z(pQ; A, )\x)|
< C(C_l/\_lﬂpl = p2ll720.20 xRy T CATH O 1T 20,20 x) + ||p2||2L2([0,2>\]><R)))- (4.5)
Taking ¢ = A~ 2|p1 — palz2(j0.22)x®) € (0, 1), we conclude (4.1). O
4.2. Proof of Theorem 1.2. We begin with a reduction. Recall that Proposition 3.8 states, for arbitrary fixed A, > 0,
lir%IP’[dist(s(hE,A, ha(Ka)) < 8| he(2,0) +log Vdm > A] = 1.
e—

Combining Propositions 3.10 and 4.1 gives limy_, . dists(hx(Kx), hx(p«x)) = 0. Given these results, it suffices to
prove
/\lim dists(hx(ps«), hs) =0, for any 6 > 0. (4.6)
— 00

The proof of (4.6) starts with the Feynman-Kac formula. Set o = p, in (2.1) and take logarithm on both sides to get

At 1’2
ha(pui t, ) = A~ log Exgoso [exp (/0 p*(Bb(s))dsﬂ — 57 — A log Vi, @7

For U; = U;(t,x,\) > 0, we write Uy ~ Uy if limy 0o A1 log(Uy/Us) = 0 uniformly over (t,x) € [§,2] x
[—671,67!]. Our goal is to estimate the expectation in (4.7). Fix a mesoscopic scale A*. Any a € (0, 1) will do, and
we fix a = 1 for the sake of concreteness. The Brownian bridge in (4.7) starts at By (0) = Az and returns to By, (At) = 0.
Consider the first time the bridge enters the region [ A%, A\3], namely 7 := inf{s > 0 : |By(s)| < A7 }. Decompose the
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integral in (4.7) into [ + fT/\t. In the first integral, we have | By (s)| > A%, which gives |p. (By(s))| < exp(—=AY/4/C).
This shows that the contribution of p,(By(s)) within s € [0, 7] is negligible, so
At

Exz—o0 [exp (/O)\t p*(Bb(s))ds)} ~ Exz—s0 [exp (/T p*(Bb(s))ds)}. 4.8)

To proceed, condition on 7 in (4.8), namely Ey, 0[] = Ex.—o[E[-|7]], and recognize the inner expectation as
Elexp( 2" p.(By(s))ds)|7] = U(r,t), where U(s',t) := Exua_yolexp( 7" p.(By(s))ds)]. Fix any ¢ € (0,6).
By Lemma 2.1 and 2.4, U(s', ) ~ % exp(At — &), uniformly over ¢ € [§,2] and s’ € [0, A\t — A(]. This approximation
extends to s’ € [0, At]. To see why, note that when s’ € (At — A\, At], we have | fT’\t p«(Bo(s))ds| < A, and note that
¢ can be taken to be arbitrarily small. Therefore,

1

Exao[exp ( / : p(By(5))ds ) | ~ ¥ Exole™ 7] 4.9)

Next we bound the right side of (4.9). By symmetry it suffices to consider x > 0, which we assume hereafter. Let
T(s,u) be the first hitting time of 0 of the Brownian bridge that starts from w at time 0 and returns to 0 at time
s. For fixed u > 0, T(s,u) is stochastically increasing in s. This fact can be proven by expressing the bridge as a
drifted Brownian motion via Doob’s h transform. Recall that 7 is the first time By, enters [—\/4, \1/4]. After the first
entrance, consider the excess amount of time it takes for By, to hit 0, namely o := inf{s > 0 : Bp(s+7) = 0}. Indeed,
T+ 0 = T(At, A\z), s0 Expyo[e~27] = E[e~ 2 T#A2)¢39] Conditioned on 7, o is equal in law to T(At — 7, A/4),
which is stochastically bounded above by T(\t, \1/4). Using Holder’s inequality and the stochastic bound, we have

]E[ef%T()\t,)\x)] < EA.’L‘—)O[eiéT] < (E[e*nztl—r(/\t’/\r)])#(E[BHTHT(M’)‘U‘L)])%H. (4.10)

Given (4.10), we seek to estimate E[exp(—ST(At, A\x))]. The first step is to derive the probability density function
of T(Mt, Az). Express the Brownian bridge B, by a Brownian motion as By(s) = (1 — 5)(Az — VAtB(5));
relate T(\¢, Az) to a hitting time of B; use the known density function of the hitting time of B. The result reads
(density function of T(\t,\z))(s) = (VA3ta2//2ms3(\t — s)) exp(— 2572 (Ax)?). Use this density function to ex-

2N
press E[exp(—ST(At, Ax))] as an integral, and perform a change of variables s —s Ats. We have

Efe

eXp ()\VB st x))d 4.11)

—_BT(AL, )\m) /
\/27Tt83 1—235)

where Va(s,t,z) := —fts — 2;;x2. This integral can be analyzed by Laplace’s method Differentiating V' in s,

one finds that V (., z) attains its unique maximum at s = min{ N 1}, and 9?2 Vg = 2. Using these properties
in (4.11), it is not hard to show that E[exp(—8T (At, Az))] ~ exp(—AtV3(min{ -2 T3 1}7 t, x)), for fixed 8 > 0 and

uniformly over [¢,z] € [6,2] x [0,071]. Insert this estimate into (4.10); take A~!log(+) of the result; send A — oo
first and n — oo later. We obtain

xZ
lim A~ log B, sole —37 T =Vijp(min{{, 1}, t,2) = { %, ~ %, whenz € [0,4],

A= 00 -+, whenz >t

uniformly over [t, ] € [6,2] x [0,6!]. Inserting this into (4.9) and then inserting the result into (4.7) completes the
proof of (4.6) and hence the proof of Theorem 1.2.
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