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Exact Fisher zeros and thermofield dynamics across a quantum critical point
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By setting the inverse temperature β loose to occupy the complex plane, Fisher showed that the zeros of
the complex partition function Z , if approaching the real β axis, reveal a thermodynamic phase transition.
More recently, Fisher zeros were used to mark the dynamical phase transition in quench dynamics. It remains
unclear, however, how Fisher zeros can be employed to better understand quantum phase transitions or the
nonunitary dynamics of open quantum systems. Here we answer this question by a comprehensive analysis of
the analytically continued one-dimensional transverse field Ising model. We exhaust all the Fisher zeros to show
that in the thermodynamic limit they congregate into a remarkably simple pattern in the form of continuous open
or closed lines. These Fisher lines evolve smoothly as the coupling constant is tuned, and a qualitative change
identifies the quantum critical point. By exploiting the connection between Z and the thermofield double states,
we obtain analytical expressions for the short- and long-time dynamics of the survival amplitude, including its
scaling behavior at the quantum critical point. We point out Z can be realized and probed in monitored quantum
circuits. The exact analytical results are corroborated by the numerical tensor renormalization group. We further
show that similar patterns of Fisher zeros also emerge in other spin models. Therefore, the approach outlined
may serve as a powerful tool for interacting quantum systems.
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Introduction. There is a renewed interest in the concept of
complex-valued partition function and its zeros in quantum
many-body physics. In the seminal work of Lee and Yang
on phase transitions, the magnetic field in spin Hamiltonians
(or the chemical potential in a grand canonical ensemble) is
analytically continued to take on complex values [1,2]. Then
phase transitions in the thermodynamic limit can be inferred
and analyzed by tracking the zeros of the complex-valued
partition function Z evaluated for finite-size systems. Fisher
extended the recipe by allowing the inverse temperature β =
1/kBT to be complex instead, which applies to all systems
[3]. Yet, compared to the Lee-Yang zeros, the Fisher zeros
are more challenging to find or analyze. Because β couples to
every term in the Hamiltonian, the locations of Fisher zeros
on the complex β plane appear to feature less regularity. They
may not form simple smooth curves as the thermodynamic
limit is approached [4], in sharp contrast to the celebrated
circle theorem for Lee-Yang zeros [1,2,5]. To unveil the unify-
ing patterns behind the ostensible complexity of Fisher zeros,
exact analytical results would be greatly helpful.
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Fisher zeros were invented to comprehend thermodynamic
phase transitions. Recently, several of us [6] proposed to use
them to probe quantum phase transitions [7]. Numerical data
on the one-dimensional transverse field Ising model (1DT-
FIM) reveal that as the coupling constant (the transverse field)
g is tuned, the motion of certain Fisher zeros correlates with
the energy gap associated with the domain wall excitations.
The analysis of Ref. [6] was limited to g ! 1, so a natu-
ral question is what happens on the disordered side g > 1.
Naively, one might expect from the Kramers-Wannier (KW)
duality [8] that the zeros at g > 1 simply mirror those at
g < 1. This conjecture turns out to be false. We shall show
that the KW duality breaks down for complex β. To establish
a correct, complete picture of Fisher zeros across the quantum
critical point (QCP), an exact formula of Z valid for all g val-
ues is required to delineate the intricate interplay of quantum
and thermal fluctuations in various regions of the complex β
plane.

An even more significant impetus for complex Z comes
from the flurry of experiments on quantum simulators and
quantum circuits which prompted the generalization of the
notion of phase transitions to time-dependent and open quan-
tum systems [9]. The complex zeros of the Loschmidt echo
amplitude were used to define dynamical phase transition in
quench dynamics [10]. Following the discovery of measure-
ment induced phase transitions in nonunitary quantum circuits
[11–13], various non-Hermitian generalizations of the Ising
model have been considered where the coupling constants
become complex valued as a result of the nonunitary evolution
introduced by measurements. For example, Ref. [14] mapped
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FIG. 1. The continuous lines of Fisher zeros on the complex
β = βr + iβi plane for 1DTFIM (schematic). The arrows indicate the
velocities of the zeros as the transverse field g is increased. At g = 0,
the zeros congregate into a set of open lines. As g increases, closed
lines (ovals) of zeros appear, while the open lines shift upwards to
larger βr and eventually vanish at the QCP (g = gc = 1). The closed
lines continue to move toward the origin as g is further increased
beyond gc.

a nonunitary quantum circuit to a 2D classical Ising model at
complex temperature. These developments hint a new era of
complex Z in which the complexification is no longer just a
mathematical trick but mandated by experiments to take on
physical significance.

This work is inspired by the confluence of these ideas. By
exhausting the Fisher zeros for a canonical quantum many-
body system, the 1DTFIM, we describe how insights about
quantum phase transitions and quantum dynamics can be
gleaned from the complex-valued partition functions Z (β ).
A few surprising results are obtained. (i) In the thermody-
namic limit, the Fisher zeros of 1DTFIM form continuous
curves (lines and loops) which move smoothly as the cou-
pling constant g is tuned. (ii) Even though the Fisher zeros
never touch the real β axis, the quantum critical point can
be unambiguously inferred from either the vanishing of open
lines (Fig. 1) or the scaling of low-energy excitations ex-
tracted from Z . (iii) We exploit the connection between Z
and the maximally entangled thermofield double (TFD) states
[15], which are dual to eternal black holes according to the
AdS/CFT correspondence [16], to make analytical predic-
tions about the dynamics of TFD. These include the short-time
decay of the survival probability, its periodic oscillation at
low temperatures, and the recurrence time at the quantum
critical point. (iv) We further show that aside from being a
useful theoretical device, Z can be realized and probed in
nonunitary quantum circuits where the unitary evolution of the
qubits is interspersed with projective measurements and post
selection.

Fisher zeros from the exact partition function. The Hamil-
tonian of the 1DTFIM can be written as

H = −
L∑

i=1

(
σ z

i σ z
i+1 + gσ x

i

)
, (1)

where σ x
i and σ z

i are the Pauli matrix operators on site i,
and the coupling constant g is the transverse magnetic field
measured in units of the nearest neighbor Ising interaction
(set to one). As is well known, in the thermodynamic limit
(L → ∞), a quantum phase transition at the critical coupling
gc = 1 separates the ferromagnetic phase (g < 1) from the
paramagnetic phase (g > 1).

While 1DTFIM is exactly solvable, the analytical form of
its partition function Z is subtle to write down. Usually the
model is treated in fermionic representation after the Jordan-
Wigner transformation, where one has to confront the two
sectors of the total fermion number [17]. We find it cleaner to
stick to the spin representation and map Z = Tre−βH to that
of an anisotropic 2D Ising model and its Onsager-Kaufman
solution [18,19] by Trotter decomposition along the imaginary
time axis β which plays the role of another spatial dimension
y [20]. The result is

Z = 1
2

[
L∏

k=1

2 cosh (βϵ2k ) + sign(gc − g)
L∏

k=1

2 sinh(βϵ2k )

+
L∏

k=1

2 cosh(βϵ2k−1) +
L∏

k=1

2 sinh(βϵ2k−1)

]

, (2)

where ϵk = [1 + g2 − 2gcos(πk/L)]1/2. We refer to Eq. (2) as
the Suzuki solution, even though the all important sign(gc −
g) did not appear explicitly in Ref. [20] and perhaps is not
widely appreciated. Without the sign factor, one would have
expected the KW duality [8], i.e., Z is invariant under the
transformation g → 1/g,β → gβ so that it is sufficient to
analyze the subspace g < 1. This is only an illusion: the
correct formula Eq. (2) shows that Z itself does not possess
KW duality and implies the presence of the recently proposed
noninvertible symmetry [21,22]. The distribution of Fisher
zeros on the quantum disordered side g > 1 is qualitatively
different from the ordered side g < 1. From the expression of
Z , Fisher zeros can be located and visualized by following the
procedure outlined in [23].

Tensor renormalization group with complex β. We also
compute Z using an independent numerical method which
serves two purposes. First, it confirms the analytical solution
Eq. (2) is correct. Second, it demonstrates a general and pre-
cise technique to compute Z (β ∈ C) for interacting quantum
spin models for which there is no exact solution. Since Z can
be represented as the trace of a product of local tensors, it
can be evaluated by tensor network algorithms [24–26] which
have proven to be efficient and accurate for spin models [27].
Starting from the 1D system, we first construct a 2D “lattice”
of size L × N by Trotter decomposition β = τN . Then, Z is
obtained from the high order tensor renormalization group
(HOTRG) [28]. We have checked that tensor results are in
agreement with both exact diagonalization and the exact so-
lution above (see [23] for details).

It is worth to mention that when β is complex, Monte Carlo
develops sign problems but HOTRG can yield Z accurately
[27]. Previously, renormalization group (RG) transformation
has been generalized to the complex β plane to study con-
finement in lattice gauge theory and classical O(N ) models.
It was observed that the Fisher zeros are located at the
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boundary of the attraction basins of infrared fixed points,
and they control the global properties of the complex RG
flows [29,30]. Here we confine our attention to the evalua-
tion of Fisher zeros through HOTRG but for quantum spin
models.

Motion of Fisher zeros across QCP. The exact solution
corroborated by HOTRG yields a complete picture, sketched
in Fig. 1, of the evolution of Fisher zeros on the complex β
plane as the coupling constant g is varied. The main observa-
tions are summarized into (i)–(iv) below. (i) The Fisher zeros
of 1DTFIM appear as continuous lines, rather than isolated
points or densely packed regions, in the thermodynamic limit
L → ∞. (ii) For g < 1, there exist open lines of zeros that
are approximately parallel to the βr axis. (iii) As g increases
from zero to one, these open lines shift upwards toward large
βi, and vanish completely at the QCP g = 1. (iv) Away from
g = 0, closed loops of Fisher zeros also appear and persist
for all g. These loops are centered around the βi axis and
move toward βi = 0 as g is increased. We stress that prop-
erties (i)–(iv) came as surprises, in the sense that they are
not obvious from staring at the model or the exact solution
of Z .

Some of these features can be appreciated by considering
a few limit cases. At g = 0, Z = TrV L where the transfer
matrix V = eβ + σxe−β . The Fisher zeros are determined by
the condition tanh β = einπ/L with n an integer, i.e., they are
uniformly distributed on the unit circle on the plane of tanh β
[14]. On the complex β plane, the zeros form a set of straight
lines at βi = π/4 + mπ/2, with m an integer, as L → ∞.
Another simple case is the small size system with L = 2.
After some algebra, one finds the zeros are located on the
βi axis at βi = (m + 1

2 )π/(
√

1 + g2 ± 1) where m again is an
integer. While the size L = 2 is too small to feature Fisher
zeros away from the βi axis or the closed loops, it does
correctly capture the trend that the zeros move toward βi = 0
as g is increased. We note that previous work [31] focused on
zeros on the imaginary β axis originated from the cosh terms
in Z .

It is clear from (iii) that the QCP is marked by a qualitative
change in the Fisher zeros. To describe the lowest open Fisher
line, one can take its imaginary part βi at some fixed large
value of βr and plot 1/βi against g. In Ref. [6], it was shown
that the resulting curve is linear near QCP. Similarly, for the
closed Fisher lines, we can select a characteristic point on each
curve, e.g., the βi value of the rightmost point. Then a linear
relationship between 1/βi and g is observed on the disordered
side g > 1, which is consistent with the spin flip excitations.
A more refined description is to define the velocities of the
zeros on the complex β plane with increasing g. Interestingly,
we find the speed of the zeros exhibits properties similar to
the Grüneisen parameter [32,33], see [23].

Fisher zeros in other spin models. We conjecture that the
regularity of Fisher’s zeros and its correlation with QCP,
observed above for 1DTFIM, generalize to a host of other
systems. Since Z and its zeros can be reliably computed from
the tensor network method, the program outlined here can
serve as a powerful diagnostic tool for quantum many-body
physics. To illustrate this, we consider two examples. The first
is the axial next nearest neighbor Ising (ANNNI) model with

FIG. 2. The pattern of Fisher zeros, as the intersections of Zr = 0
(red) and Zi = 0 (blue) computed by HOTRG for finite-size systems
(L = 32), on the complex β plane. (a) The zeros for the ANNNI
model with κ = 0.1 and g = 0.5, calculated with D bond Db = 30,
form an open line near the βr axis. (b) In the XY model with γ =
0.01, calculated with Db = 50, the zeros near the βr axis form closed
loops.

the Hamiltonian

H = −
L∑

i=1

(
σ z

i σ z
i+1 − κσ z

i σ z
i+2 + gσ x

i

)
,

where we choose κ = 0.1 and g = 0.5 so the system has a gap.
The second is the XY model with the Hamiltonian

H =
L∑

i=1

[
(1 + γ )σ x

i σ x
i+1 + (1 − γ )σ y

i σ
y
i+1

]
,

where we chose γ = 0.01, bringing the system close to a QCP.
For both systems, numerical calculations show that as L in-
creases, the zeros indeed approach continuous lines. Figure 2
compares the Fisher zeros of these two models obtained from
HOTRG with L = 32 [23]. For the ANNNI model, open lines
corresponding to domain wall excitations still exist. But the
zero locations are no longer symmetric between βr > 0 and
βr < 0, causing the open lines to tilt. For the XY model near
QCP, we witness a similar qualitative change as seen in the
1DTFIM: the open lines completely vanish, giving way to
closed loops. The change is mandatory because otherwise, the
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two phases separated by the QCP would share the same global
patterns of RG flows on the complex β plane, which would
contradict the fact that they correspond to different RG fixed
points.

What can Z tell us about quantum dynamics? We now
view Z from another perspective, as the survival amplitude
of a certain quantum state. Let β = βr + it , and interpret the
imaginary (real) part of β as time t (the inverse temperature
βr = 1/kBT ). Let En be the eigenenergies, and |n⟩ the corre-
sponding eigenstates. Then

Z (βr, t ) =
∑

n

e−βr En e−iEnt

describes the unitary dynamics of a mixed ensemble. The
modulus square of Z defines the spectral form factor

S(βr, t ) =
∣∣∣∣

Z (βr, t )
Z (βr, 0)

∣∣∣∣
2

,

which is normalized to 1 as t = 0. The disorder average of S
has been used to diagnose chaos and information scrambling
in Hamiltonians containing random couplings, e.g., the SYK
model [34]. Following Ref. [35], we purify the mixed state
above by introducing the thermofield double state in an en-
larged Hilbert space

|ψ (βr, 0)⟩ = 1√
Z (βr, 0)

∑

n

e−βr En/2|n⟩L ⊗ |n⟩R,

where, for clarity, the subscripts L, R are used to denote
the left and right copy, respectively [15]. Under the single
Hamiltonian HL ⊗ 1R, the TFD state evolves with time as
ψ (βr, t ) = e−it (HL⊗1R )|ψ (βr, 0)⟩. One finds that S is nothing
but the survival probability [35]

S(βr, t ) = |⟨ψ (βr, t )|ψ (βr, 0)⟩|2.
In contrast to the Loschmidt echo in quench dynamics [10],
here the connection between Z and quantum dynamics is es-
tablished by the TFD states, which are dual to the eternal black
hole in the context of AdS/CFT correspondence [16]. Via this
bridge, the detailed knowledge about the analytical structure
of Z , including the Fisher zeros, can now be translated into
new insights about quantum dynamics. Three examples for
the 1DTFIM are given below.

The short time dynamics of S is characterized by expo-
nential decay S(t ) ≃ e−(t/τ )2

with τ 2 = kBβr/CV . Figure 3(a)
shows the specific heat capacity CV /L obtained by fitting
S(t ) at some typical values of g. The decay rate 1/τ ∝

√
CV

correlates with the locations of Fisher zeros at which S is
forced to vanish. This can be seen on the low βr portion of
Fig. 3(a): as g is increased from g = 1, the Fisher zeros move
closer to the βr axis, and accordingly S is suppressed from one
to zero at an increasing rate. At high βr , however, the decay
is most rapid at the QCP, where quantum fluctuation is strong
and CV reaches maximum.

The long time behavior of S(t ) is complicated but simplic-
ity emerges at low temperatures. To understand this, we can
convert the products of hyperbolic sines and cosines in the
exact solution of Z into sums and expand them for large βr .
The leading contributions to S(t ) are

S(t ) ≃ 1 + 2e−βr) cos()t ) + ...,

FIG. 3. The rich behaviors of the spectral form factor (survival
probability) S(βr, t ). (a) The short-time decay of S is dictated by
the specific heat capacity CV /L. (b) The low temperature oscillations
(inset, g = 1.5) of S. The oscillation frequency obtained from Fourier
transform can be fit by ) = 2(g − 1) and vanishes at QCP. (c) Fine
structures of S over long time scales for different βr and L. At the
QCP, all exhibit the same periodicity t∗ = 4L. The overlay of curves
shows self-similarity, S(βr, t )L ≈ S(nβr, nt )nL with n = 2.

where the oscillation frequency ) =
∑

k (ϵ2k−1 − ϵ2k ) has the
meaning of the excitation gap. Previously in Ref. [6], it was
noted from numerics that for g ! 1 the oscillation frequency
vanishes at the QCP while the oscillation amplitude reaches
maximum. The analytic asymptote derived here not only ex-
plains this observation but also expands its validity to the
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disordered side g " 1 [Fig. 3(b)]. Thus, the low temperature
oscillations of Z (βr, t ) provide another diagnostic tool for
QCP.

The dynamics of S exhibits rich scaling behaviors at the
QCP. For a system of finite size L, the energy spectrum is
discrete and the initial TFD state will come back to itself
after the quantum recurrence time t∗. To find t∗, take the
limit of large βr , expand the exact Suzuki solution, and carry
out the k sum, we find at g = 1 the oscillation frequency is
) = 2 tan(π/4L) which becomes π/2L in the limit of large
L to yield t∗ = 4L. For smaller βr, S(t ) deviates significantly
from the sinusoidal form to acquire fine structures, but t∗ stays
approximately the same [23]. Our prediction t∗ = 4L agrees
with the conformal field theory result from Ref. [17] (see [23]
for details). We also observe that S exhibits self-similarity, i.e.,
S(βr, t )L ≈ S(nβr, nt )nL with n an integer, at the QCP and for
intermediate to large (βr, t ). Figure 3(c) shows an example
with n = 2. This is consistent with the notion of criticality and
provides a nice way to define RG flow in the complex plane
(see [23] for details).

Probing Z from monitored quantum circuits. Lastly, we
show that Z is not just a formal theoretical construct, it can
be realized and probed in quantum circuits. Consider an array
of qubits, j = 1, 2, ..., L. The standard single- and two-qubit
Pauli gates implement unitary evolution such as Uzz(t ) =
exp(it

∑
j σ

z
j σ

z
j+1) and Ux(t ) = exp(itg

∑
j σ

x
j ). Let us define

the cycle operator UF (t ) = Uzz(t )Ux(t ), then repeated appli-
cation of UF produces the time evolution corresponding to
the 1DTFIM Hamiltonian, albeit in discretized form U (t ) =
[UF (t/N )]N . Now let us introduce nonunitary gates in the
form of Ux(iβr ) and Uzz(iβr ), i.e., by replacing t with the
imaginary time iβr . These gates can be realized by including
ancilla qubits and performing projective measurements and
postselection on the ancilla [36–38], where the value of βr
characterizes the strength of the measurement. If we inter-
sperse these unitary and nonunitary gates [9], e.g., by forming
a cycle

UF (βr, t ) = Ux(iβr )Ux(t )Uzz(iβr )Uzz(t ),

the resulting evolution operator yields exactly Z (βr, t ) =
[UF (βr/N, t/N )]N in the limit of large N . From this per-
spective, Z (βr, t ) describes the competition between unitary
time evolution and quantum measurement in an open quantum
many-body system.

The circuit construction here differs from the approach
in Ref. [14] based on the transfer matrix. From an alter-
native perspective, the nonunitary gates introduce imaginary
parts to the coupling constants in the Hamiltonian and ren-
der it non-Hermitian [39]. Previous studies on non-Hermitian
Ising-type models mostly focused on their entanglement or
spectral properties [36–38]. Given the recent success in ob-
serving Lee-Yang zeros [40] and Loschmidt ratios [41], it
seems promising that the circuit connection to Z and TFD
states [42] can lead to future experimental studies of Fisher
zeros [43].

Conclusion. In summary, we have presented a comprehen-
sive analysis of the Fisher zeros in the 1DTFIM. We have
demonstrated that Fisher zeros form continuous, smoothly
shifting curves in the complex β plane, and they offer insights
into quantum criticality despite never touching the real β axis.
The complex partition function Z provides valuable analytical
predictions about the quantum dynamics which is beyond the
reach of the traditional thermodynamics, and can be realized
and probed in nonunitary quantum circuits. Our clarification
of the original Suzuki solution correctly captures the different
excitations on the two sides of the QPT and the breakdown of
the Kramers-Wannier duality. Successful generalization of the
numerical analysis to other (the ANNNI and XY) spin models
demonstrates that this approach can open up a promising
avenue to study quantum critical systems in 1D [44–46] and
higher dimensions [47–49].
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