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Abstract

A full quantum-mechanical (QM) description of large amplitude nuclear motion,

associated with chemical reactions or isomerization of high-dimensional molecular sys-

tems, is inherently challenging due to the exponential scaling of the QM complexity

with system size. To ameliorate the scaling bottleneck in studies of realistic systems,

typically modeled in configuration space, the nuclear wavefunctions are represented in

terms of time-dependent basis functions. Such bases are expected to give an accurate

description with a modest number of basis functions employed, by adapting them to

the wavefunction solving the time-dependent Schrödinger equation. It is not, however,

straightforward to estimate the accuracy of the resulting solution: in QM the energy

conservation – a convenient such measure for a classical trajectory evolving in a time-

independent potential – is not a sufficient criterion of the dynamics’ accuracy. In this
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work, we argue that the expectation value of the Hamiltonian’s ’variance’, quantify-

ing the basis completeness, is a suitable practical measure of the quantum dynamics’

accuracy. Illustrations are given for several chemistry-relevant test systems, modeled

employing time-independent as well as time-dependent bases, including the Coupled

and Variational Coherent States methods, and the Quantum-trajectory guided Adapt-

able Gaussians (QTAG) as the latter basis type. A novel semi-local definition of the

QTAG basis time-evolution for placing the basis functions ’in the right place at the

right time’ is also presented.

1 Introduction

In order to cope with the exponential formal scaling of the complexity of quantum mechan-

ics,1 the nuclear wavefunctions of high-dimensional, i.e. beyond five-six degrees of freedom

(DOFs), molecular systems undergoing large amplitude motion are often represented in

terms of the time-dependent basis functions in configuration space. Gaussian basis functions

(GBFs) are a particularly popular choice, because from the conceptual point of view a single

complex Gaussian wavefunction, whose center moves classically, solves the time-dependent

Schrödinger equation in a quadratic, possibly time-dependent, potential, and from the prac-

tical point of view localization of the GBFs in coordinate space is advantageous for on-the-fly

evaluation of the potential energy and its gradients driving the wavefunction dynamics. Us-

ing a few examples most relevant to this work, the GBFs are employed in such approaches as

(i) the Gaussian Multidimensional Time-Dependent Hartree and variational multiconfigura-

tion Gaussian methods,2,3 the Coupled Coherent States (CCS),4,5 the Variational Coherent

States (VCS),6 the Quantum Trajectory-guided Adaptable Gaussian (QTAG) method,7,8 (ii)

Matching Pursuit9 and Basis Expansions Leaping10 and (iii) the basis generation from short-

term trajectory dynamics.11,12 Overviews of GBF methods are available in Refs.,5,13–15 with

the last reference devoted to the Davydov ansätze, that use GBF for the description of the

bosonic part of the Hilbert space of a composite system. All of these methods are developed
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primarily for multidimensional nuclear dynamics, characterized by a few ’active’ modes cou-

pled to multiple ’spectator’ modes, such as the proton transfer in a water-hydronium system.

To update the basis parameters during the wavefunction dynamics, the GBF methods

invoke (i) the trajectory framework evolving in time according to a set of equations of motion

(EOMs), (ii) wavefunction reexpansions in a new GBF basis, or (iii) the combination of (i)

and (ii), i.e. the EOMs guide the construction of new basis sets, but do not unambiguously

define them. In all cases the GBFs are adapted or generated to ensure the accuracy of the

time-dependent wavefunction in a small basis. Within the trajectory framework, the EOMs

come from minimizing the error of the TDSE solutions, from the classical mechanics, or

from (bohmian) quantum trajectory dynamics.16 Readers may find useful discussions of the

time-dependent variation principle in the context of the basis EOMs in Refs.14,17–20 We just

note here that the variational EOMs, while conceptually rigorous, are, in general, singular

and notoriously challenging in implementation (e.g. Ref.6,21).

What are the desired features of a dynamical basis, efficiently adapted to a time-evolving

wavefunction? In condensed phase, chemical reactions are typically represented by the dy-

namics in a double-well (reactant/product dynamics) or in a meta-stable (dissociation dy-

namics) potential in the reaction coordinate, coupled to a bath of the ’spectator’ or oscillator

modes acting as the energy reservoir. To represent the corresponding time-dependent wave-

functions in a small basis, one wishes for the GBFs to adapt to the flow of the probability

density: ideally, some fraction of the GBFs representing an initial wavefunction in the re-

actant well – all of them with non-negligible amplitudes – will move to the product well

(or to the unbound dissociation region) capturing the flow of the probability density. The

time-dependence of the basis should be such as to provide adequate space for the evolv-

ing wavefunction, which, in general, exhibits an intricate interference dynamics across both

wells.

In principle, the ’optimal’ time-dependent spatial grid tracking the wavefunction evolu-
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tion is given by an ensemble of quantum (bohmian) trajectories (QTs),16,22 whose dynamics

satisfies the continuity of the probability density.23 While useful for interpretation (e.g.24,25),

except for the special case of Gaussian solutions to the Schrödinger equation with a parabolic

potential, the QT dynamics is characterized by singular forces at and near the wavefunction

nodes associated with interference, which makes the exact numerical implementation of the

QT approach impractical for general problems. However, within a basis representation, the

interference pattern can be described by the time-dependence of the basis expansion coef-

ficients. Thus, during the bound-type dynamics, once the initially localized wavefunction

spreads across the low potential energy regions, an accurate basis can become stationary

with time. In other words, an efficient basis has to be ’in the right places at the right time’,

but it is not necessary for the GBFs to track the micro-structure of the time-dependent

wavefunction. A specific implementation of these ideas based on the semi-local definition of

the trajectory momentum driving the GBF dynamics, is presented in Section 3.2.

A broader question associated with the time-dependent basis representation of wavefunc-

tions explored in this paper, is how to assess the wavefunction accuracy: to determine if a

basis change is needed, we have to have a measure of the basis completeness for the wavefunc-

tion at hand. Stationary bases offer major simplifications, such as the fact that Hamiltonian

and overlap matrix elements have to be computed only once. Furthermore, the basis expan-

sion coefficients can be accurately computed at any time from matrix diagonalization and

there are no challenging EOMs for the basis parameters to solve. Naturally, we would like

to take advantage of these properties and work in a stationary basis, if it is of manageable

size and yields acceptable wavefunction accuracy in the course of time-evolution. Most often

the accuracy of dynamics is monitored through the wavefunction’s normalization and the

energy conservation as analyzed, for example, in Ref.19 Conservation of the former indicates

the accuracy of the time-propagation algorithm. Given a time-independent potential and a

sufficiently accurate time-propagation algorithm, the latter remains constant in two cases:

(i) the basis is stationary regardless of its completeness, or (ii) the basis is time-dependent
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and complete, in a sense of accurately representing the wavefunction at hand. The total

energy is also conserved if (iii) the basis parameters are determined according to the Dirac-

Frenkel or the Lagrangian variation principles.26 Thus, energy conservation is not a sufficient

measure of the basis completeness in the course of quantum dynamics. Furthermore, in the

case of time-dependent Hamiltonians, realized, e.g., in laser-driven molecular systems,27 or

for composite systems, in which energy can be exchanged between subsystems, the energy

(of subsystems) is not conserved. An accurate representation for an initially localized wave-

function can become inadequate as the wavefunction spreads in space, e.g. the numerical

grid is too short, or the basis is too small, whether it is in configuration, energy or any other

space.

In this work, we argue that the average of the Hamiltonian’s ’variance’ for a given wave-

function is a suitable practical measure of the basis completeness, and analyze its perfor-

mance using several examples of both time-independent and time- dependent bases. The

latter includes application of the CCS and VCS methods and the QTAG dynamics. These

three methods are all based on the GBFs whose centers follow EOMs. The CCS trajec-

tories are governed by the classical EOMs, that are independent of the wavefunction; the

QTAG dynamics incorporates information on the wavefunction ’flow’, while the motion of

the VCS trajectories rigorously minimizes the TDSE error and thus conserves energy during

the dynamics with time-independent potentials. The proposed measure is closely related to

the so-called deviation vector, that compares the difference between the left hand side (the

time-derivative of the ansatz wavefunction) and the right hand side (Hamiltonian applied to

the wavefunction), that has been mainly applied to the study of the accuracy of Davydov

ansätze so far.20,28–30 By taking the ”length” of the deviation vector, in the end, also the

expectation of the squared Hamiltonian has to be calculated.31 In contrast to the measure

to be presented in detail below, one also has to calculate time-derivatives of the variational

parameters and thus, the deviation-vector measure is quite complex.

The remainder of the paper is organized as follows. Section 2 describes the improved
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QTAG dynamics with new semi-local definition for the GBF center time-evolution, and

presents the basis completeness measure for non-orthogonal bases. Section 3 contains the

numerical illustrations and discussion. Section 4 gives a summary and an outlook. For

completeness, the CCS and VCS methods and the key implementation algorithms are given

as appendices.

2 Theory

The basis completeness measure is presented in the context of several time-dependent GBF

methods: the Coupled Coherent States (CCS) and full Variational Coherent States (VCS) dy-

namics detailed in Appendices A and B, respectively, and the improved Quantum Trajectory-

guided Adaptable Gaussian (QTAG) dynamics. The basis completeness analysis, however,

is fully general. For clarity, we work in atomic units (ℏ = 1) and consider a one-dimensional

particle of mass m whose dynamics is governed by the Hamiltonian operator, Ĥ,

Ĥ = −∇2

2m
+ V (x), (1)

where V (x) is an external time-independent potential. The spatial derivatives are denoted

with the gradient symbol, ∇ := ∂/∂x, while the full time-derivatives are denoted by the

overdot. Bold upper and bold lower case letters are used to denote matrices and vectors,

respectively. The notation i =
√
−1 is used throughout.

2.1 QTAG basis with semi-local GBF momentum

As in all GBF methods, we start with a wavefunction represented as a superposition of Nb

Gaussian functions, {gn},

gn(x, t) :=
(an
Ã

)1/4

exp(−an(x− qn)
2/2 + ipn(x− qn) + isn), (2)
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È(x, t) =

Nb
∑

n=1

cn(t)gn(x;λn(t)), (3)

where {cn} are the expansion coefficients. In Eq. (3), λn(t) is a vector of the time-dependent

parameters of the n-th GBF, gn(x, t), which in QTAG includes the center position, qn, the

momentum, pn defining the linear phase of gn, and the real width parameter an, λn(t) =

(qn, pn, an). In many dimensions qn and pn are generalized to vectors and an to a symmetric

matrix of appropriate sizes. As discussed in Ref.,8 each GBF may also include a coordinate-

independent phase, sn. This phase is not uniquely defined, i.e., sn can be combined with

the expansion coefficient cn, but a good choice, such as relating sn to the action function

of the GBF center trajectory, reduces the temporal oscillations in cn and allows for larger

time-steps during the numerical implementation. In this work, however, we will set sn = 0

for simplicity.

The wavefunction expansion of Eq. (3) is invoked in all GBF methods, such as those

mentioned in Section 1. The special features of the QTAG method are: treating the width

parameter, an, as real correlated (in many dimensions) adaptable parameter, and relating

the EOMs for the GBF width, an, and momentum, pn, to the quantum trajectory (QT)

formalism. The signature feature of the QT framework is identification of the trajectory

momentum with the gradient of the wavefunction phase, which leads to the continuity of the

probability density associated with each trajectory.16,22,32 Based on that the EOMs for the

QTAG parameters are:

pn : = ℑ (∇È/È)|x=qn
(4a)

dqn
dt

=
pn
m

(4b)

dan
dt

= −∇pn
m

an, (4c)

They can be interpreted as solutions to the variational equations in the limit of localized
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GBFs.8 The EOMs for the expansion coefficients, {cn},

iSċ =
(

H− iṠ
)

c, (5)

are the usual variational equations given in terms of the Hamiltonian and the basis overlap

matrices, H and S, respectively,

Hkn = ïgk|Ĥ|gnð (6a)

Skn = ïgk|gnð. (6b)

The non-hermitian matrix Ṡ contains the full time-derivative of the n-th basis function with

respect to its parameters enumerated with the subscript l

Ṡkn = ïgk|ġnð, (7a)

ġn =
∑

l

∂gn
∂¼n,l

¼̇n,l. (7b)

Note, that in QTAG we do not solve the bohmian EOM for the momentum of a QT at q,

d

dt
pbohm := − ∇(V + U)|x=q , (8)

which involves a possibly singular gradient of the quantum potential U(x, t),

U(x, t) := − 1

2m

∇2|È|
|È| , (9)

formally associated with the division by |È| in Eq. (9). Instead, the GBF parameters are

updated according to pn (Eq. (4a)) and its gradient, defined by È(x, t) expressed in a basis.

Furthermore, to regularize the QT dynamics and to change the basis discretely, according to

the Basis Orthogonalization/Transformation (BOT) algorithm outlined in Appendix C, Eq.

(4a) is implemented with modifications. Even though È(x, t) is available analytically as a
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basis expansion, Eq. (3), the straightforward implementation of Eq. (4a) may generate large

values near the wavefunction nodes, leading to numerically unstable trajectory dynamics.

However, because the interference structure of È(x, t) is reproducible through to the complex

coefficients of the basis expansion, an accurate representation of È(x, t) can be achieved with

the GBF centers flowing with the probability density in some average sense, i.e. without

the exact QTs ’constructing’ interference in terms of real quantities, as shown for example

in Ref.33 Previously, in order to regularize the dynamics, the parameters qn and an were

updated according to pn computed either from a convoluted wavefunction, or from the global

low-order polynomial fit to ℑ(∇È/È), rather than from pn evaluated locally at a point, qn
7,8).

Below we outline a new procedure of computing pn, in which division by È is circumvented

and the ’spatial resolution’ of the pn is controlled by a single parameter, ´, defined below,

controlling the locality of the fitting.

The action of the momentum operator on È(x, t) can be expressed as

p̂È(x, t) = −i¸(x, t)È(x, t), (10)

where ¸(x, t) is complex function,

¸(x, t) :=
∇È(x, t)
È(x, t)

, (11)

whose real and imaginary components, r(x, t) and p(x, t) are referred to as the non-classical,

r(x, t), and classical, p(x, t), momentum components,

r :=
∇|È|
|È| , p := ∇(argÈ). (12)

Let us focus on fitting the complex function ¸, rather than p. We will define the GBF

momentum pn (and if desired rn) from the minimization of the qn-centered error functional,
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In,

In =

∫

|¸ − ˜̧n|2 |È|2wndx, (13)

where wn is a Gaussian (or other spatially localized) ’window’ function,

wn(x; qn, ´) :=

√

´

Ã
exp(−´(x− qn)

2). (14)

In particular, the linear in x fit centered at qn, ˜̧n = d1 + d2(x − qn), directly yields pn and

∇pn – the latter needed to update the GBF width (Eq. (4c)) – as the imaginary parts of

the optimal d1 and d2, respectively. These fitting parameter values, arranged as a vector,

d = (d1, d2)
T , solve the following system of linear equations for each qn,

Md = −b (15a)

bj = ïwnÈ|(x−qn)j−1|∇Èð (15b)

Mij = ïwnÈ|(x−qn)i+j−2|Èð, i, j = {1, 2}.

Using |È|2 as the weighting function in In removes division by È in the integrand, while

the localization of wn tunes the resolution of ˜̧n from low (´ → 0) to high (´ → ∞), or

from a global to a local fit. Moreover, unlike the convolution of the wavefunction itself,7

d of Eq. (15a) is exact for a Gaussian wavefunction for any ´. If desired, the function rn

and its gradient, defined by the real parts of d, can be used to compute the GBF phase sn.
8

The window parameter can be made GBF-specific, e.g. taken as proportional to its time-

dependent width, ´n(t) = an(t)/», or kept constant in time, ´n = an(0)/». The choice of »

controls the locality of the fitting procedure, and closeness of pn to the exact QT momenta.

Generalizations to higher order polynomials or other analytical fitting functions, and to

non-gaussian window functions are straightforward.
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2.2 The basis completeness measure

The accuracy of the basis representation of a time-dependent wavefunction can be assessed

as follows. Let us estimate how well the differential time-change of the wavefunction over

the time-interval [0, Ä ],

|¶Èð = |ĤgðTc(Ä), (16)

is captured in the initial basis, g(0), by evaluating its orthogonal complement. Using the

basis projector, P̂ = |gðS−1ïg|, the basis completeness measure, labeled ϵ, can be defined

as,

ϵ : = ï¶È|(1− P̂ )|¶Èð = ïÈ|Ĥ2|Èð

− ïÈ|Ĥ|gðS−1ïg|Ĥ|Èð = c ∆Hc. (17)

In Eq. (17), 1 is the unit matrix, H2 is a matrix with the following elements,

[H2]ij = ïĤgi|Ĥgjð, (18)

and ∆H denotes what we refer to as the Hamiltonian ’variance’ matrix,

∆H := H2 −H S−1H. (19)

The basis incompleteness associated with the application of Ĥ to a wavefunction, measured

by ϵ, is qualitatively shown in Fig. 1: the changes in the phase-space images (the Wigner

transform) of a wavefunction before and after application of the Hamiltonian operator high-

light the regions of the coordinate-momentum space that need to be represented by either the

stationary or time-dependent bases for accurate wavefunction dynamics. In this illustration

the change in the wavefunction is significant and (using È as ’basis’) the value of ϵ is large,

ϵ ≈ 0.68ïĤð2.
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(a) the Wigner transform of È(x) (b) the Wigner transform of ĤÈ/ïĤð

Figure 1: The phase-space representation, i.e. the Wigner transform, of a wavefunction (a)
before and (b) after application of Ĥ. The contours are spaced at 0.1 units starting with the
value of 0.1. The areas of significant Wigner density have to be ’covered’ by the basis. The
effect of Ĥ is quantified by the basis completeness measure, ϵ of Eq. (17). In the limiting
case of È taken as its own ’basis’, the instantaneous basis error is large, ϵ ≈ 0.68ïĤð2.

The basis completeness measure is a time-dependent function, ϵ = ϵ(t), also referred to

as the instantaneous basis error. If the basis consists of the Hamiltonian eigenstates, then

∆H = 0, and the dynamics error is defined solely by the initial expansion error. Taking

the initial expansion of the wavefunction in a basis as ’exact’, the propagation error due to

the basis incompleteness is proportional to Ä 2ϵ. The value of ϵ can be used to adjust the

time-step Ä and/or perform the basis update, either according to the EOMs of the basis

parameters, or by defining a new basis altogether.

To monitor the effect of the basis incompleteness through time, one can define the cu-

mulative basis error, Ç(t):

Ç(t) :=

∫ t

0

ϵ(t′)dt′. (20)

Let us also recall at this point, that due to the non-local nature of quantum dynamics, the

increase in the number of basis functions does not necessarily yield a more accurate solution

to the time-dependent Schrödinger equation, which is in contrast to the variational solution

12



to the time-independent Schrödinger equation.

3 Results and discussion

In this section, we use quantum dynamics of several one-dimensional models, to illustrate

the completeness measure applied to the stationary, CCS, VCS and QTAG bases, the latter

implemented with the semilocal momentum fitting introduced in Section 2.

3.1 Completeness of the stationary basis

The quartic well. First, let us consider the time evolution of a particle of mass m = 1 in

the quartic potential defined as,

V qrt = V HO +
(x− xc)

4

8
. (21)

The quartic part of V is centered at xc = 1/5 a0. The quadratic part of the potential

V HO is V HO = x2/2 a.u., and the eigenstates of the corresponding harmonic oscillator

(HO) are used as the time-independent (Hermite-Gaussian) basis. The initial wavefunction

È(x, 0) is taken as the ground state of the HO, i.e. the initial expansion coefficients are:

c1(0) = 1 and ci(0) = 0 for i g 1. The time-dependent wavefunction, È(x, t), is obtained

from the eigenvalues and eigenvectors of the Hamiltonian matrix constructed within the

basis of the size Nb = {3, 7, 11, 20}. The results for the largest basis of 20 functions are

taken as ’exact’ reference results in the analysis. Besides the instantaneous basis error, ϵ(t),

and the cumulative basis error, Ç(t), of Eqs (17) and (20), respectively, we also examine the

wavefunction error, Ã(t), computed from the overlap of È(x, t) constructed in the basis of

Nb functions with the reference wavefunction,

Ã := 1− ïÈref |ÈNb
ð. (22)
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The three time-evolution errors, i.e. ϵ, Ç and Ã, are shown in Figs 2(a-c), respectively. The

basis completeness error exhibits quasi-oscillations as expected for an anharmonic oscillator

at low energy, and their amplitude reduces with the increase of Nb. For the four basis sizes

listed above, the relative errors defined as ϵ/[H2]11, are less than 8.5, 6.7, 2.3 and 0.2%,

respectively. The oscillating character of ϵ explains the linear growth of Ç with time in Fig.

2(b). The wavefunction errors (Ã) shown in Fig. 2(c) for Nb = {3, 7, 11}, increase essentially

linear with time as well, and are below 1.5, 0.25 and 0.01%, respectively.

(a) (b) (c)

Figure 2: Dynamics in the quartic potential of Eq. (21) employing a Hermite-Gaussian basis
of size Nb. (a) The instantaneous, ϵ(t), and (b) the cumulative, Ç(t), basis errors are shown
in appropriate atomic units as functions of time, t, for four basis sizes, Nb = {3, 7, 11, 20},
as the red solid line, blue dash, green dot-dash and thick black solid line, respectively. In
(b) the result obtained with Nb = 20 nearly overlaps with the horizontal axis. The unit of
ϵ(t) is E2

h; the unit of Ç(t) is E2
h×(a.u. time). (c) The wavefunction errors, Ã(t), from the

dynamics with Nb = {3, 7, 11} functions are shown as the red solid line, blue dash and green
dot-dash, respectively. The ’exact’ wavefunction is taken from the Nb = 20 calculation.

The Morse potential. Figure 3 shows analogous information for the quantum dynamics

in the Morse potential, approximating the interaction within the hydrogen molecule. The

energy is given in scaled units: the Hamiltonian is multiplied by 918 to have the particle mass

m = 1. The coordinate x measures the displacement from the equilibrium bond distance of

xe = 1.4 a0. The resulting potential is

V mrs = D[exp(−x)− 1]2, (23)
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where D = 160 scaled a.u. The results are given for a Gauss-Hermite basis set defined as

the eigenstates of the quadratic Taylor expansion of V mrs at x = 0. We consider four basis

sizes, Nb = {4, 6, 8, 14}, and the calculation with the largest basis is used as a reference.

Let us note, that for Nb = 14 the energy of the most oscillatory basis function is equal to

twice the dissociation energy, yet 99.99% of its probability density is localized in the region

x < xe, or within twice the equilibrium bond distance. Thus, these Hermite-Gauss functions

inadequately represent the diffuse character of È(x, t) emerging over time, which explains

why ϵ and Ã in Figs 3(a,c) do not decrease with the larger Nb as strongly as in the previous

example of bound motion in the quartic well. Overall, the trends of time-dependent ϵ, Ç

and Ã are similar to those observed for the quartic potential. The relative errors computed

as ϵ/[H2]11 are less than 4.3, 1.7, 0.7 and 0.4%, respectively. The cumulative error Ç is

linear in time for all basis sizes; the wavefunction error for Nb = 6 and 8 dynamics levels

off at longer times, and the two curves show similar trends and amplitudes at shorter times,

indicating the limitation of the chosen basis type. Thus, to achieve higher accuracy without

significantly increasing the number of the Gauss-Hermite functions it is preferable to use

a different basis type, which would include delocalized in space functions to represent the

unbound components of the wavefunction, or to use a spatial grid.

Completeness on a grid. Next, let us examine the effect of the grid size on the accuracy

of the wavefunction dynamics, using as a model the double well of Ref.,9

V dw = x2
(

b4x
2 − b2

)

. (24)

This model with the parameter values of b4 = 1/21.6704 Eha
−4
0 and b2 = 0.5 Eha

−2
0 is

often used to benchmark the quantum dynamics methods. The wavefunction is computed

on a grid of Np points, equidistant in coordinate space, x = [xL, xR]. Within the Discrete

Variable Representation34 this grid is equivalent to the sin-function basis. Therefore, the

accuracy of È(x, t) can be evaluated from the matrices H2 and H and the projection of
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(a) (b) (c)

Figure 3: Dynamics in the Morse potential employing a stationary Hermite-Gaussian basis
of the size Nb. (a) The instantaneous, ϵ(t), and (b) the cumulative, Ç(t), basis errors are
shown as functions of time, t, are shown in appropriate atomic units for four basis sizes,
Nb = {4, 6, 8, 14}, as the red solid line, blue dash, green dot-dash and thick black solid line,
respectively. The unit of ϵ(t) is E2

h; the unit of Ç(t) is E
2
h×(a.u. time). (c) The wavefunction

errors, Ã(t), from the dynamics with Nb = {4, 6, 8} functions are shown as the red solid
line, blue dash and green dot-dash, respectively. The ’exact’ wavefunction is taken from the
Nb = 14 calculation.

È(x, t) on this basis. The wavefunction initialized in the left well as a coherent Gaussian

centered at its minimum is propagated in time using the Split-Operator/Fourier Transform

(SOFT) method.35 The parameters are listed in Table 1. Three values of the right grid

boundary, xR = {2.555, 5.110, 7.665} a0 have been considered; xL = −10.22 a0 in all cases.

The calculations are converged with respect to the grid spacing and time-step. The results

are presented for Np = 256.

With this numerical set-up, the short-time dynamics, t = [0, 4] a.u., is sufficient to illus-

trate the propagation error. Over this time interval less than 3% of the probability density

shown in Fig. 4(a) is transferred to the product region (the right well). The instantaneous

basis error, ϵ(t), is shown in Fig. 4(b) on the vertical log-scale as a function of time. Three

snapshots of the wavefunction amplitude (also on the vertical log-scale) tunnelling into the

right well are shown in Figs 4(c-e). The errors increase sharply when |È(x, t)| becomes appre-

ciable at the grid boundaries, reaching 10−8 around t = 0.2 and t = 1.0 a.u. for xR = 2.555

a0 and xR = 5.110 a0, respectively. As seen in Figs 4(c-e), the reflection of È(x, t) from
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the positive edge of the grid generates ’noise’ in |È(x, t)| at the negative edge, which is cap-

tured by the instantaneous basis error. For the largest grid (xR = 7.665 a0, results shown

as green dot-dash) this error remains small, ϵ < 10−12, over t = [0, 4] a.u. because the

grid is sufficiently large to accommodate the spreading wavefunction. For the smallest grid

(xR = 2.555 a0, |È(x, t)| represented by the black lines), at t = 1 a.u. the noise on the order

of 10−4 is seen at the left tail of |È(x, t)|; at later times the propagation errors are clearly

seen throughout the full coordinate range. For the intermediate size grid (|È(x, t)| plotted

with red circles) the wavefunction noise on the left reaches 10−5 at t ≈ 2 a.u., and at t = 4

a.u. the interference feature in |È(x, t)| in the left well is missing, while |È(x, t)| in the right

well is still accurate. The instantaneous basis error, ϵ, in Fig. 4(b) is consistent with the

trend in the wavefunction accuracy (Figs 4(c-e)).

As seen from the above examples using a stationary basis, the basis completeness errors

correlate with the wavefunction errors, and may indicate the basis deficiency. The next

illustrations are given for the dynamics performed using time-dependent basis sets, when

the assessment of the wavefunction accuracy is more challenging.

3.2 Completeness of time-dependent basis sets

Next, we will analyze the accuracy of the double-well dynamics implemented with different

time-dependent GBF methods. This model has been used as a performance test of time-

dependent Gaussian basis set methods by many researchers.9,12,36–38 The challenge here for

the trajectory-based methods is to have the GBF centers, initiated in the left reactant well,

move to the right product well as the wavefunction accesses this region of space with time.

Coupled Coherent States dynamics. First, we will revisit the double-well model em-

ploying the CCS basis.4 As laid out in Appendix A, the CCS method involves (i) the wave-

function expansion in terms of the GBFs; (ii) Gaussians of time-independent width moving

classically; (iii) the variational EOMs for the expansion coefficients; (iv) a normal-ordered
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Figure 4: Dynamics in the double well performed on an equidistant asymmetric grid. (a)
The population in the right well. (b) The instantaneous basis errors, ϵ, given in the units of
E2
h, evaluated in the sin-function basis are given for three values of the right grid boundary
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to panels (b-e). The vertical lines mark xR = 2.555 a0 (cyan) and xR = 5.110 a0 (purple).
The thin blue line in panel (c) indicates the initial wavefunction.
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Hamiltonian, which typically adds a small, often neglected, term to the potential. In CCS

dynamics, the (real-valued) initial conditions ql and pl typically sample the phase space as-

sociated with the Wigner transform of È(x, 0); formally, the width parameter is equal to

the ’coherent’ value defined by the frequency of the potential well, µ = mÉ. Under the

assumption of the tight-frame case, the basis overlap matrix in Eq. (5) can be taken as the

unit matrix. We refrain from doing so here, however, and use the equations of motion given

in Appendix A. Furthermore, because we are dealing with a 1D potential, we also refrain

from sampling the initial conditions randomly but take them to be located on a regular

rectangular grid in phase space, to be specified below.

As discussed, for example, in Ref.,38 the double- well model presents a special challenge

for the CCS dynamics, because classically moving GBFs corresponding to a low-energy

wavefunction do not cross the barrier (even with the ordered Hamiltonian). Therefore, this

method may not capture the tunneling dynamics, unless either additional GBFs are placed

in the initially unpopulated regions of space or the initial trajectories have enough energy to

overcome the barrier. The results presented in Fig. 5 are obtained using 49 GBFs initialized

on an equidistantly spaced rectangular grid around the point (-2.33,0) a.u. in phase space

with the extension of 1.6 a.u. in q-direction and 2 a.u. in p-direction. The central GBF,

which is the zero-momentum Gaussian centered around the minimum of the potential, is the

only one that is initially populated. The norm, energy and the basis completeness measure

are computed taking the overlap matrix into account. A comparison with the accurate

wavefunction computed with the SOFT method and the deviation of the CCS norm from

unity, ³,

³ = 1− |ïÈ(t)|È(t)ð| (25)

are shown in Figs 5(a,b), respectively. The time interval, t = [0, 6] a.u., shown in Fig. 5 (also

in Fig. 6) corresponds to the population transfer to the initially ’empty’ well of approximately

2.5%; the population dynamics on a longer time-scale is shown in Fig. 8(c). The panel

(c) reveals that energy is quite well conserved to within three significant digits, with the
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exact initial value being negative E = −0.6299 Eh. Finally, Fig. 5(d) shows basis function

completeness, presented here for ïĤ2ð taken at its initial value of = 0.52244 E2
h, because

within the GBF formalism (not going to position and/or momentum representation), we have

used the representation of unity in terms of the Gaussians, that appears in the definition

of the completeness measure. Under the exact quantum evolution ïĤ2ð is constant. The

normalization error is below 0.05%, the energy non-conservation is on the order of 1% while

variation of ϵ is much more significant reaching ∼ 20%. In the CCS method the EOMs for the

GBF centers are classical and, therefore, the resulting wavefunction is not fully variational,

which along with the instantaneous basis error explains the energy non-conservation. In this

example, however, the initial phase space centers are chosen such that a certain fraction

of them have enough energy to overcome the barrier and CCS is thus able to capture the

tunnelling dynamics at short times.

Fully Variational Coherent States dynamics. To see, if we can do even better by using

a fully variational approach, the VCS method reviewed in Appendix B will be applied in the

following. We choose the formalism detailed in,6 because it circumvents certain numerical

pitfalls that are due to the non-orthogonality of the basis functions and the fact that they

may approach each other arbitrarily closely in the VCS case (not in CCS !).19 For the short

times that we consider, it was not necessary to employ apoptosis, however.

Results analogous to the CCS results from Fig. 5 are presented in Fig. 6. All the accuracy

measures are at least one order of magnitude better, however, and most importantly, the basis

function completeness measure is almost two orders of magnitude better than in the CCS

case. The numerical VCS results have been obtained by using the same number of trajectories

as in the CCS case and with identical initial conditions. Detailed timing comparisons have

not been performed because both programs run very fast on a modern desktop computer,

with the CCS calculations taking less than two seconds and the VCS ones slightly more

than two seconds. Also, we would like to mention that in a MATLAB implementation,
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Figure 5: The CCS dynamics in the double well: (a) a comparison with the accurate wave-
function computed with the SOFT method; (b) the quality of norm conservation; (c) the
difference between the initial energy and the expectation value of the Hamiltonian given in
Eh; (d) the basis completeness as monitored by the quantity ϵ (Eq. 17) given in E2
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time is given in a.u. in all panels.
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the relative as well as the absolute tolerance for the ODE solver have been chosen as 10−7.

It seems that CCS is not as demanding as VCS in this respect (although, the presented

CCS results used the same tolerance parameters). By taking a look at the trajectories (not

shown) it turned out that in VCS a larger percentage of trajectories are moving over to the

initially unpopulated well in the course of time. This is due to the fact that in VCS case,

the trajectories are fully variational and thus, individually, do not conserve energy.

As an additional remark, we would like to mention that we also studied rectangular grids

with the same extension but with 25 grid points (less dense grid) as well as with 81 grid

points (more dense grid), both using CCS as well as VCS and the results on each level of

approximation (not shown) look very similar.

QTAG dynamics. Finally, we will employ the QTAG basis with the semilocal fitting

procedure described in Section 2. The initial wavefunction is taken as the minimum energy

Gaussian centered in the left well to reduce the low amplitude oscillations in the well and

emphasize the tunneling motion. The wavefunction is evolved up to t = 36 a.u. which is

the time of nearly equal splitting of the probability density between the reactant/product

(negative/positive x) regions of space. The model parameters and details of the QTAG

calculations are summarized in Table 1. The results are presented for two basis sizes (Nb = 21

and Nb = 29) and for the Gaussian window functions, described in Section 2.1, of two

different widths. The window width parameter, ´, is proportional to the time-dependent

basis function width parameter at; the window functions are referred to as being narrow

and wide for the choice of ´ = at/6 and ´ = at/30, respectively. The wide window have

significant overlaps with twice as many basis functions as the narrow window. The initial

GBF width, a0, is chosen to give the overlap with the next-neighbor basis function of 0.9.

The key features of the dynamics are illustrated in Fig. 7. The moduli of the initial,

È(x, 0), and final, |È(x, t)|, wavefunctions are shown in the bottom and top panels of Fig.

7; the scaled potential is shown in the bottom panel. The probability density flow is visual-
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Table 1: The double well model parameters. In QTAG the GBFs are initialized with the
wavefunction density at qn exceeding Äc = 10−5. See text for additional details.

The double-well model: V dw = −b2x2 + b4x
4

b4 = 1/21.6704 Eha
−4
0 b2 = 0.5 Eha

−2
0 m = 1 a.u.

È(x, 0) = (2³/Ã)1/4 exp (−³(x− x0)
2)

grid, CCS, VCS ³ = 1.0 a−2
0 x0 = −2.33 a0

QTAG ³ = 0.624 a−2
0 x0 = −2.053 a0

SOFT parameters
Np = 256 xR = −xL = 5.61 a0 dx = 0.044 a0

QTAG parameters
Nb = 29 a0 = 12³ ´ = at/6, at/30
Nb = 21 a0 = 7.64³ ´ = at/6, at/30

ized through a set of QTs (shown as blue solid lines), reconstructed from the wavefunction

computed with SOFT method. These trajectories, sampling È(x, 0) of appreciable ampli-

tude (|È(x, qn)|2 > 10−5) are equidistant at t = 0, and their separation correlates with the

changes of the probability density with time. We see that during short times (t < 4 a.u.)

three of the QTs near the top of the barrier move to the product well and stay there. These

trajectories can be interpreted as representing the high-energy components of È(x, 0). As

time progresses, three more trajectories move from the left to the reactant to the product

region; these QTs represent the tunneling components of the wavefunction, which should

add up constructively to describe build up of the probability density in the right well. Seven

of the blue trajectories exhibit small amplitude oscillations in the left well throughout the

entire propagation time; these trajectories represent the surviving reactant well population

of about 50%. Comparing the QTs to the QTAG GBF centers (half of which as shown for the

calculation with Nb = 29 and ’narrow’ window function, ´ = at/6), we observe that the lat-

ter trajectories exhibit a similar to QTs pattern of the trajectory drift into the product well.

The GBF transfer between the wells, however, proceeds more smoothly compared to QTs

due to the semilocal ’averaging’ of the trajectory momenta derived from the wavefunction.

The basis completeness measure, basis errors and the propagation accuracy are illustrated

in Fig. 8. The best energy conservation (Fig. 8(a)) is seen for largest basis size for both
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wide and narrow window functions, which correlates with the better accuracy of the final

wavefunction at t = 36.0 a.u. (Fig. 8(d)). At this time the wavefunction is nearly equally

split between the two wells as seen in Fig. 8(c). The total energy in both calculations with the

smaller bases have sizable regions of near constant values; however, since the propagation

errors at short times have a non-linear effect on the accuracy at later times, the energy

conservation alone is not a sufficient measure of the dynamics accuracy. The cumulative

basis error, Ç(t), is shown in Fig. 8(b). The large basis/wide window dynamics has the

smallest error over t = [0, 36] a.u., but the large basis/narrow window dynamics is the most

accurate at short times for both basis sizes. Figure 9(a) illustrates the instantaneous basis

error ϵ(t) for t = [0, 4] a.u. on the log-scale. The wavefunction amplitude snapshots for

t = 1.0 and 2.0 a.u are given in Fig. 9(b,c), respectively. The increase in ϵ(t) correlates

with the error in the transmitted wavefunction. The narrow-window fitting leads to more

accurate wavefunction description for both basis sizes (green dash and thin solid black line),

though subsequent cumulative error remains nearly unchanged in the wide-window dynamics.

Overall, in this example both the energy conservation and the basis completeness measure

are well correlated with the dynamics accuracy.

Finally, let us examine the basis errors and the energy conservation as we switch from the

time-dependent to the time-independent QTAG basis. This switch is straightforward within

the BOT algorithm described in Appendix C. The results of QTAG dynamics with the large

basis/narrow fitting window are shown in Fig. 10 for the GBFs that stopped changing at

times t = {20, 10, 5, 2.5} a.u. The full propagation time is t = 36 a.u. as before. The

modulus of the final wavefunction, the relative energy error, the cumulative error, Ç, and

the basis completeness error, ϵ are presented in Figs 10(a-d), respectively. The panels (b)

and (d) correspond to the running averages over 0.5 and 1.0 units of time. For all dynamics

the energy is conserved with the accuracy of better than 0.01% at very short times (t < 2

a.u.) and at all times when the basis becomes stationary. The smallest energy error is seen

for the GBFs that were stopped at 2.5 a.u., by which time the GBFs are already smeared
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Figure 8: Dynamics in the double-well potential performed with the QTAG bases. (a) The
total wavefunction energy, E, and (b) the cumulative basis error, Ç, (in the atomic units of
energy2×time) as functions of time. (c) The population of the right well as a function of
time, obtained with the SOFT method. (d) The wavefunction amplitude error with respect
to the SOFT result, ¶È, at t = 36 a.u. The legend in panel (a) applies to panels (a,b,d),
all showing the results for two basis sizes, Nb = 21 and Nb = 29, paired with the narrow
(´ = ³/6) and wide (´ = ³/30) fitting window; ³ and ´ are the widths parameters of the
GBFs and the window function, respectively.
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over both wells as seen in Fig. 7. However, as seen in Fig. 10(d), in this case the ensuing

dynamics is characterized by the increasing with time basis completeness error, shown on

log-scale. This behavior is seen in the cumulative error in Fig. 10(c) (note the log-scale for

both axes), and in the accuracy of the final wavefunction, whose transmitted part is shown in

Fig. 10(a). The basis completeness errors with the fully time-dependent GBFs or with those

stopped at time 5, 10 or 20 a.u. are of comparable accuracy, with the basis frozen at t = 5

a.u. yielding the smallest errors. The final wavefunctions shown in Fig. 10(a) exhibit some

discrepancies in the low amplitude regions, which are the high energy walls of the potential,

but all of these wavefunctions are in significantly better agreement with the exact result,

compared to the result of the minimally evolved basis stopped at t = 2.5 a.u. Note that

È(x, t) is shown for x > 0 on log-scale, thus the apparent discrepancy with the exact result

is not proportional to the basis completeness measure, ϵ, defined as the TDSE solution error

on full space. The definition of ϵ can be easily adapted to a subspace to serve as a more local

measure, if desired. Quantum dynamics itself, however, is inherently non-local, and small

’local’ ϵ may be a poor predictor of the wavefunction dynamics in general.

4 Conclusions

In this paper we have discussed a practical measure of the accuracy of a time-dependent

wavefunction, important for the development of efficient time-dependent basis sets. Such

bases are expected to maintain an accurate representation of the time-evolved wavefunction

with a reasonable number of the basis functions, by adapting them to the wavefunction solv-

ing the time-dependent Schrödinger equation. A seemingly straightforward task of the basis

accuracy assessment runs counter to the ’classical’ association of the energy conservation

with the accuracy of dynamics: in quantum dynamics the energy is conserved for a complete

time-dependent basis, for any time-independent basis, or for variational basis sets evolving

according to the Dirac-Frenkel variation principle. In the present manuscript we argue that
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the average Hamiltonian ’variance’, ϵ = ïĤ2ð−ïĤP̂ Ĥð, where P̂ is the resolution of identity

in a basis, is a rigorous and practical basis completeness measure for the wavefunction at

hand. Moreover, the presented basis completeness measure is applicable to the dynamics

with time-dependent potentials, as well as to the dynamics of subsystems of interacting,

composite systems, where the energy is not conserved.

Our analysis is based on several examples of both time-independent as well as time-

dependent bases. For the time-independent bases, we have demonstrated how the basis

completeness measure correlates with the wavefunction accuracy: the measure decreases

with the increase of the basis size, and its time-dependence indicates certain deficiencies

of the basis, such as short grid or the lack of delocalized basis functions. The analysis of

the basis completeness measure is based on the results obtained with three time-dependent

GBF methods, i.e. the Coupled and Variational Coherent States and the QTAG basis. In

the double-well example – the prototype model of reactive dynamics in condensed phase

– the coherent state basis quickly (5% of the well-to-well population transfer) started to

loose accuracy when the GBFs centers moved classically, and the accuracy was improved

by around two orders of magnitude once the classical EOMs were replaced by the fully

variational EOMs. The QTAG dynamics, that can be viewed as guided but not fully defined

by the highly challenging in implementation variational EOMs, was analyzed up to nearly

equal splitting of the well populations. The new semi-local algorithm for updating the GBF

parameters yielded non-classical trajectories which exhibited the desired transfer between

the two wells, necessary to capture the tunneling dynamics within a small basis. We also

demonstrated that once the initial wavefunction was delocalized between the two wells, one

could freeze the basis function without loss of accuracy, which has considerable practical

advantages.

In summary, the basis completeness measure, defined in terms of the Hamiltonian ’vari-

ance’ matrix, provides a faithful and practical way of assessing accuracy of quantum dynam-

ics regardless of the basis type (time-dependent or time-independent) or basis construction
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(through EOMs or the wavefunction sampling), which will be helpful for the choice of ef-

ficient and accurate bases, method development and realistic chemical applications. We

note, however, that due to the non-local in space and non-linear in time nature of quantum

dynamics, application of this particular measure and, most likely, of other instantaneous (de-

fined for a given wavefunction expanded in a basis) measures by imposing a certain criterion

on their value at each time step, will not guarantee a predefined long-time accuracy of the

wavefunction.
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A Coupled coherent states method

In the coupled coherent states (CCS) method of Shalashilin and Child,39 the ansatz for the

wavefunction as a sum over coherent states in most conveniently written in the form

|È(t)ð =
Nb
∑

l=1

cl(t)|zl(t)ð. (26)

In this as well as in the following appendix, the coherent states |zð, which in position as well

as in momentum representation are Gaussians (however, with a different phase convention

as in Eq. (2), see, e.g.,14), are denoted by their complexified center variables

zl(t) =
µ1/2ql(t) + iµ−1/2pl(t)√

2
, (27)
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with a width parameter µ that is fixed in time (and thus has another symbol than the width

parameter used in the main text, which is time-dependent). Characteristic for the CCS

method, the zl(t) are uncoupled classical trajectories following Hamilton’s equations (note

that the equation below has a real and an imaginary part)

i∂tz = ∂z∗Hord(z, z
∗), (28)

that can be derived by applying the time-dependent variational principle (TDVP) to the

ansatz with multiplicity Nb = 1.5 The ordered Hamiltonian is gained by expressing the

Hamilton operator in terms of harmonic oscillator creation and annihilation operators, fol-

lowed by a normal ordering (in a product all appearances of â precede those of â) and the

subsequent calculation of the matrix elements between the coherent states.

The equations of motion for the coefficients are then derived from the application of the

TDVP to the full ansatz and are linear, coupled differential equations of the form

i

Nb
∑

l=1

ïzk(t)|zl(t)ðċl(t) =
Nb
∑

l=1

H̃kl(t)cl(t), (29)

with the time-dependent matrix elements

H̃kl(t) = ïzk(t)|zl(t)ð
[

Hord−

1

2

(

zl(t)
∂Hord

∂zl
− ∂Hord

∂z∗l
z∗l (t)

)

− z∗k(t)
∂Hord

∂z∗l

]

, (30)

and where an overlap matrix element appears on both sides of the equation. We stress that it

may not be cancelled because the multiplication in Eq. (30) is an elementwise multiplication.

For the inversion of the overlap matrix in a numerical implementation we thus employ a

regularization in the form of the addition of a unit matrix multiplied by 10−8 to the overlap.

Furthermore, the partial derivatives of the ordered Hamiltonian may be replaced by the

left hand side of the classical equation of motion, Eq. (28). We found that there is only a
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marginal difference in the performance of the code due to this change, however.

B Variational coherent states method

In the variational coherent states (VCS) method,14 the same ansatz as in Eq. (26) is made

for the wavefunction. Now, however, both the “trajectories”, i.e., the coherent state param-

eters, as well as the coefficients are derived from the TDVP applied to the full ansatz with

multiplicity Nb. This leads to the following coupled, nonlinear equations of motion:

i

Nb
∑

l=1

ïzk|zlð
[

Xl + clz
∗
k żl

]

= ïzk|Ĥ|Ψ(t)ð, (31)

ic∗k

Nb
∑

l=1

ïzk|zlð
[

zlXl + cl(1 + z∗kzl)żl

]

= c∗kïzk|âĤ|Ψ(t)ð, (32)

where the definition

Xk := ċk + ck

[

−1

2
(zkż

∗
k + żkz

∗
k)

]

(33)

was used. The general idea of the fully variational solution has a long history, reviewed,

e.g., in,3,5,14 where additional references can be found. One decisive feature of the present

approach, developed in,6 is the introduction of the vector of variables Xk, that together with

the set of zk fulfills a linear system of equations (not differential equations!) that are solved

according to the general strategy laid out in,6 making the (nonlinear) differential equations

explicit.

The presentation in6 is given for an arbitrary number of degrees of freedom and thus

may be hard to grasp at first glance. In order for this presentation to be self-contained, we

review the procedure for a single degree of freedom in the following. To this end, we first
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define four vectors of length Nb (the multiplicity):

x = (X1, . . . , XNb
) (34)

y = (ż1, . . . , żNb
) (35)

c = (c1, . . . , cNb
) (36)

z = (z1, . . . , zNb
) (37)

The equations of motion can then be brought in standard form

i







S B

B D













xT

yT






=







r

s






, (38)

where

Slk = ïzl|zkð (39)

are elements of the Hermitian Nb×Nb overlap matrix and

B = [z ¹ c] ◦ S, (40)

as well as

D =
(

z ¹ z+ 1Nb×Nb

)

◦ (Ä ◦ S) (41)

are Nb ×Nb matrices and 1Nb×Nb
denotes an Nb ×Nb matrix full of ones, whereas Ä = c ¹ c

is the density matrix. The symbol ¹ denotes tensorial multiplication, while ◦ stands for

elementwise multiplication of matrices.

The vectors on the RHS of Eq. (38) are finally given by

r = [H ◦ S]cT, (42)

s =
(

Ä ◦ S ◦H
)

zT +
(

Ä ◦ S ◦ H̄
)

2
, (43)

35



where the matrix elements Hlk = Hord(z
∗
l , zk) are given by the ordered Hamiltonian, whereas

the H̄lk =
∂Hord(z

∗

l
,zk)

∂z∗
l

are given by its derivatives. Finally, the lower index 2 in the last

equation above indicates summation over the second index of the matrix in brackets.

With the 2Nb × 2Nb system of linear equations solved, an explicit system of coupled

differential equations is established that can finally be tackled by standard (Runge-Kutta)

techniques.

C Basis orthogonalization/transformation (BOT) prop-

agator.

The BOT scheme8 of solving the TDSE in a non-orthogonal basis {g} consists of two steps.

The wavefunction is expanded as

|Èð = cT |gð.

The elements of the basis overlap matrix, S, are

Sij := ïgi|gjð.

When appropriate, the time will be indicated as an argument of functions, while the spatial

arguments will be omitted.

(1) Starting at time t = 0, evolve the expansion coefficients c(0) up to time Ä in a fixed basis

defined, g(0),

c(0) = (S(0))−1ïg(0)|È(0)ð, (44)

according to

iSċ = Hc, (45)

using the generalized column-eigenvectors (arranged as columns of the matrix Z) and eigen-

values, ¼i, of the Hamiltonian matrix H, Hij = ïgi|Ĥ|gjð. The eigenvalues form the diagonal

36



matrix Λ),

iSċ = Hc, HZ = SZΛ. (46)

The expansion coefficients of È(Ä) represented in the original basis g(0) are:

c(Ä) = Z exp(−iΛÄ)Z S0c(0). (47)

(2) Update the basis now labeled {g(Ä)} (using the EOMs, rehashing or some other proce-

dure), compute the new overlap matrix S(Ä) and the new/old basis overlap matrix T(Ä, 0),

and project the wavefunction È(Ä) into the new basis:

S(Ä)c̃(Ä) = T(Ä, 0)c(0), [T (Ä, 0)]ij = ïgi(Ä)|gj(0)ð. (48)

(3) Assign c(Ä) := c̃(Ä), compute the Hamiltonian matrix in the new basis, H(Ä), and repeat

the steps (1-3) for Ä → 2Ä and so on until the final time is reached.
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