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ABSTRACT

In this paper, we propose WavePurifier, an audio purifica-
tion framework to defend against audio adversarial attacks.
Audio adversarial attacks craft adversarial examples or per-
turbations to attack the automated speech recognition (ASR)
models. Although existing defense mechanisms can detect
such attacks and raise alarms, they fail to recover or maintain
benign commands. Consequently, this leads to the denial of
users’ benign commands. Different than existing defenses,
WavePurifier aims to purify adversarial examples, thereby
rectifying the user’s benign commands. We find that the
forward diffusion process of the diffusion model effectively
eliminates perturbations, whereas the reverse diffusion pro-
cess restores benign speech. Based on this, we develop a
hierarchical diffusion model to defend against audio adver-
sarial examples. This model is capable of purifying different
spectrogram bands to varying degrees. To validate the perfor-
mance ofWavePurifier, we purify the adversarial examples
from 3 different adversarial attacks in 140 distinct settings. In
total, we collect 78,864 diffused spectrograms and 21,000 puri-
fied audios. Then, we evaluate WavePurifier on 2 different
ASR models, 4 commercial speech-to-text APIs, 2 real-world
attack scenarios, and compare them against 7 existing de-
fense approaches. Our result shows that WavePurifier is
a universal framework, demonstrating adaptability across
diverse attacks with the same hyperparameters. Notably,
WavePurifier outperforms existing methods with the low-
est character error rate (CER), word error rate (WER), and a
high purification success rate against different attacks.
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1 INTRODUCTION

Voice communication is a type of human-computer interac-
tion that enables hands-free control and benefits visually im-
paired users. With recent advancements in Artificial Intelli-
gence (AI), Automatic Speech Recognition (ASR) has become
increasingly prevalent in our daily lives. These ASR models
have been integrated into Intelligent Voice Control devices
to provide voice assistant services like Siri [43], Google As-
sistant [14], and smart speakers like Google Home [15] and
Amazon Echo [3]. Additionally, companies are increasingly
relying on ASR-powered intelligent interactive voice systems
to handle customer service inquiries and improve support
efficiency. As the deployment of ASR systems grows, their
security concerns are attracting heightened attention from
researchers.
Audio adversarial attacks: The adversarial attack was dis-
covered and demonstrated in image recognition tasks [13, 41].
Similarly, ASR systems are also susceptible to adversarial
attacks. The audio adversarial examples are crafted to fool
the ASR system, for example, a benign command "open the
door" with crafted perturbations could be transcribed to
"browse to evil dot com". Prior studies demonstrate the audio
adversarial attacks in white-box scenario [5, 8], black-box
scenario [2, 42], over-the-air scenario [6, 7, 28, 35, 48, 50],
and human-in-the-loop scenario [20].
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Figure 1: Demonstration of an undefended ASR system,

a guarded ASR system, and a purified ASR system.

Prior defenses: To defend against adversarial attacks in the
image domain, researchers have proposed to use image trans-
formations [17, 29] such as format compression, quantization,
and smoothing to disrupt the imperceptible perturbations.
However, such defenses may cause image quality degrada-
tion and become ineffective for adaptive attacks (e.g., the
adversary has the knowledge of the defenses, so he/she can
craft robust AEs to bypass the static defenses). Inspired by the
image transformation defenses, a recent study [23] proposed
to detect the audio adversarial examples by signal process-
ing methods. Since the audio AEs are sensitive to the audio
transformation, by comparing the transcriptions before and
after the audio transformation, they can detect adversarial
audio. Although such defense has demonstrated satisfactory
detection accuracy, it does not ensure audio quality, fails to
restore benign commands, and is ineffective against strong
perturbations. More recently, researchers proposed AudioP-
ure [47], which leverages the diffusion model to purify audio.
Even though this method shows great success in recover-
ing the perturbed single-word speech, however, they did
not demonstrate their capability for purifying real-world
long speech commands, and their purification performance
against advanced existing speech adversarial attacks (e.g.,
SpecPatch [20], C&W [5]), which target ASR systems (e.g.,
Deepspeech [21], Google Lingvo [36]), remains unknown.
WavePurifier: In this work, we proposeWavePurifier,
an end-to-end framework that purifies the incoming audio
commands, to defend against audio adversarial attacks, and
recovers the users’ original commands. This is important in
many scenarios, for example, if the adversary plays the per-
turbation to alter the user’s commands [19, 20], our defense
can not only detect the potential threat of the attack but also
repair the users’ benign speech. This framework can also be

used for audio datasets maintenance, to examine and restore
the clean audio samples.
Fig. 1 depicts a defense scenario ofWavePurifier. For a

benign command "call my mom", the adversary adds per-
turbation to change the ASR transcription into "browse to
evil dot com". An unprotected ASR system will recognize
the target command, while WaveGuard [23] will detect the
audio adversarial example and alert the user. In contrast,
WavePurifierwill purify the audio adversarial example and
produce clean audio that recovers the benign command for
the ASR model. We leverage the diffusion model to achieve
our goal.
In this paper, we make the following contributions.
• Purification Framework:We design the first audio AE
purification framework for purifying audio adversarial
examples against ASR systems. Our framework leverages
the hierarchical diffusion models to purify audio across
various frequency bands, followed by the application of
denoising techniques to remove any residual noise. Our
demo and code is available at https://wavepurifier.github.
io.

• Theoretical Proof:We provide the theoretical proof to
demonstrate that the diffusion model can be used to purify
audio adversarial examples. We extend the theorem to
include additional factors that 1) clarify the rationale for
using the diffusion model to neutralize attacks, and 2)
reveal the identification of the most effective purification
steps.

• Comprehensive Evaluation: We reproduce three recent
audio adversarial attacks and generate 300 audio AEs. We
purify them with 140 different settings for each attack,
resulting in 78,000 diffusion-purified images and 21,000
purified audios. We compare WavePurifier with seven
existing defenses and conclude that our framework out-
performs existing defense methods on purification tasks,
with a high purification success rate and low character
error rate.

2 BACKGROUND

2.1 Audio Adversarial Attacks

Audio adversarial attack aims to craft an AE 𝑥0+𝛿 , in order to
deceive the ASR model 𝑓 (·) to make false prediction [5]. For
a targeted attack, the adversary can specify the prediction
result as 𝑦𝑡 . For an untargeted attack, the adversary’s goal
is to mistranscribe the benign audio into random sentences.
The generation of AE can be formulated as an optimization
problem as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 L(𝑥0 + 𝛿) := D(𝑓 (𝑥0 + 𝛿), 𝑦𝑡 ). (1)

The goal of Eq. (1) is to minimize L(𝑥0 + 𝛿) under the con-
straint that | |𝛿 | |2 < 𝜖 , where L(·) denotes the loss function,
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Figure 2: Depiction of the diffusion model for forward

and reverse the process.

which uses a distance functionD(·) to measure the disparity
between 𝑓 (𝑥0 +𝛿) and 𝑦𝑡 , | | · | |2 is the L2 norm, and 𝜖 is used
to control the amplitude of perturbation.

2.2 Diffusion Model

The diffusion model is a generative model to generate high-
quality images. Prior studies have demonstrated that the
diffusion model beat GANs in image generation [10, 44]
and achieved great success in audio synthesis [24]. Recently,
OpenAi and stability.ai have released their AI creative tool
DALL-E2 [33] and Stable Diffusion [40], both powered by
the diffusion model. Fundamentally, the diffusion models are
composed of two processes.
Forward diffusion: The forward diffusion is to gradually
add Gaussian noise to the real data. Given an original sample
𝑥 (0) with distribution 𝑞(𝑥), the single-step forward diffusion
process can be defined as follows:

𝑥 (𝑡) = 𝑥 (𝑡 − 1) + N (0, 1) (2)

where 𝑥 (𝑡) is the original sample at forward step 𝑡 , and
𝑥 (𝑡 − 1) is the previous sample of 𝑥 (𝑡). N(0, 1) denotes the
Gaussian distribution. The conditional probability distribu-
tion can be defined as follows:

𝑞(𝑥 (𝑡), 𝑥 (𝑡 − 1)) = N(𝑥 (𝑡);
√︁
1 − 𝛽𝑡𝑥 (𝑡 − 1), 𝛽𝑡 𝐼 ) (3)

Where 𝛽𝑡 ∈ (0, 1) is the step size. It means that when giving
the 𝑥 (𝑡 − 1), the transition from 𝑥 (𝑡 − 1) to 𝑥 (𝑡) can be
represented by a Gaussian distribution, with the mean as√︁
1 − 𝛽𝑡𝑥 (𝑡 − 1) and variance as 𝛽𝑡 𝐼 . We can find that when

𝑡 becomes larger and larger, the 𝑥 (𝑡) will be equivalent to an
isotropic Gaussian distribution.

Reverse diffusion: The reverse diffusion is to recover the
data from a noise distribution. Theoretically, the reverse
conditional probability distribution can be represented as
follows:
𝑝𝜃 (𝑥 (𝑡 − 1) |𝑥 (𝑡)) = N(𝑥 (𝑡 − 1); 𝜇𝜃 (𝑥 (𝑡), 𝑡), Σ𝜃 (𝑥 (𝑡), 𝑡)) (4)
In this equation, themean 𝜇𝜃 (𝑥 (𝑡), 𝑡) and variance Σ𝜃 (𝑥 (𝑡), 𝑡))
of the Gaussian distribution are unknown, so they need to
be learned from the training process. Specifically, the model
learns the joint distribution 𝑝𝜃 from 𝑥 (𝑇 ) to 𝑥 (0). Usually,
prior works [38, 44] solve it with the reverse-time stochastic
differential equation (SDE), and a parameterized neural net-
work to estimate the gradient of the forward diffusion. Once
the diffusion model is well-trained, it can generate images
from noise because it learns the probability distribution, so
it is capable of producing a high-quality image 𝑥 (0) from the
Gaussian noise 𝑥 (𝑇 ).
In Fig. 2, We train a diffusion model using spectrogram

data, so it learns to reverse the transition probability in order
to generate a spectrogram. In the first row, we display the
original spectrogram 𝑥 (0) with increasing amounts of noise
added using 𝑞(𝑥 (𝑡), 𝑥 (𝑡 − 1)). It is observed that even after
adding noise in 50 and 200 steps, the general shape of the
spectrogram can still be recognized, though with blurred en-
ergy boundaries. However, when the forward diffusion step
reaches 400, the spectrogram transforms into noise. Next,
we perform the reverse diffusion process from the noise-
like 𝑥 (400). By providing the learned 𝑝𝜃 (𝑥 (𝑡 − 1) |𝑥 (𝑡)), our
diffusion model re-generates new spectrograms based on
the noise distribution. From 𝑥 (400) to 𝑥 (200), we can find
the dense noise has been greatly reduced, replaced by the
light-weight noise. Besides, some of the formants have been
exposed, showing clear energy in 𝑥 (200). When we keep
running the reverse program, we find the noise is further
suppressed, and more spectrogram details are revealed. It is
worth noting that the reverse process will introduce a new
random feature, which might create a unique spectrogram
that is different from the original one (e.g., 𝑥 (0)). For exam-
ple, in the final recovered 𝑥 (0), we can find it includes the
high-frequency energy that is not shown in the previous
𝑥 (50). Besides that, it contains more noise compared to the
original spectrogram 𝑥 (0). Based on this preliminary study,
we realized that the diffusion model can be used to produce
spectrograms from noise, however, the quality of the gen-
erated audio is not guaranteed because it might introduce
more noise degrading the audio’s acoustic feature.

2.3 Threat Model

Our defense aims to purify audio adversarial examples and
recover their benign transcriptions. By doing so, we can
defend against both untargeted audio adversarial attacks
and the targeted attack.
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Attacker’s Capability: We assume the attacker can craft
the audio adversarial examples using multiple approaches [5,
20, 35] to target different ASR models (e.g., Deepspeech [21],
Lingvo [9]).We also assume that generating each audio adver-
sarial example can be accomplished with a limited amount
of computational resources. We believe this is a sensible
assumption because if significant time and computational
resources were required for each adversarial example, the
attack would become impractical and inefficient.
Defender’s Capability: To defend against the audio adver-
sarial attack, we assume the defender can obtain the adver-
sarial examples before it proceeds to the ASR system. Unlike
prior defenses that require plenty of adversarial samples for
adversarial training [16, 30], we assume the defender does
not have knowledge of the audio attacks, neither possess
many attack samples. Besides, the defender does not obtain
the benign transcription dataset and the attack target. More-
over, the defender does not know the protected ASR systems,
including the model architecture, the parameters, and the
input and output of the ASR systems.
Defense Scenarios:WavePurifier is a generalized purifi-
cation framework that can be adopted on smart speakers. For
all the incoming audio samples,WavePurifier generates the
purified audio. For benign commands, WavePurifier can
retain the same audio quality and the benign transcription.
For the adversarial audios, WavePurifier can disrupt the
target label and recover the benign transcription. Finally, the
secure usage of smart speakers can be guaranteed.

3 SYSTEM DESIGN

3.1 WavePurifier Pipeline

Our purification framework is composed of threemajor steps:
prepare, purify, and rebuild. In the initial phase, we obtain
a pure speech dataset from available sources and fine-tune
a pre-trained diffusion model for generating audio. Next,
in the second stage, we purify the waveform by processing
the chunked spectrogram of the audio with the fine-tuned
diffusionmodel. The forward diffusion adds randomnoises to
the input, resulting in a noisy spectrogram 𝑥𝑎 (𝑡∗), followed
by the reverse diffusion to recover the benign semantics of
the noisy spectrogram. Since the diffusion model is trained
by clean audio samples, intuitively, it will only generate clean
audio samples. By leveraging this property, the recovered
and clean spectrograms ˆ𝑥𝑎 (𝑡∗) are produced. For the rebuild
stage, we concatenate the recovered spectrograms together
to form a complete spectrogram of the audio. Then, combined
with the original phase information, a clean audio waveform
is created. To further eliminate the residual noises introduced
by the forward diffusion, we add an extra denoise function
in the audio reconstruction module. Finally,WavePurifier
outputs the purified audio to complete the whole process.

3.2 Prepare the Purification

Diffusion model training: As described in Section 2.2, the
diffusion model generates samples by reversing a gradual
noising process [10]. More specifically, it starts from noise
𝑥 (𝑇 ) and gradually removes the noise to produce less-noisy
samples 𝑥 (𝑇 −1), 𝑥 (𝑇 −2) until 𝑥 (0). Each timestep 𝑡 is a cer-
tain noise level, and 𝑥 (𝑡) is a combination of 𝑥 (0) with noise
𝜖𝑡 . The goal of the training diffusion model is to learn proba-
bility 𝑝𝜃 with a noisy 𝑥 (𝑡). From Eq. 4, the mean 𝜇𝜃 (𝑥 (𝑡), 𝑡)
and the variance Σ𝜃 (𝑥 (𝑡), 𝑡)) are the parameters to learn.
To train this model, we provide a clean audio spectrogram
𝑥 (0), a timestep 𝑡 , and noise 𝜖 to forward diffuse it to a noisy
sample 𝑥 (𝑡) in the following equation:

𝑞(𝑥 (𝑡) |𝑥 (0)) =
√
𝛼𝑡𝑥 (0) + 𝜖

√
1 − 𝛼𝑡 , 𝜖 ∼ N(0, 𝐼 ) (5)

Where 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 = Π𝑡𝑠=0𝛼𝑠 . Once the noisy sample
𝑥 (𝑡) is obtained, the diffusion model needs to learn the term
𝑢𝜃 (𝑥 (𝑡), 𝑡) and Σ𝜃 (𝑥 (𝑡), 𝑡)) for the reverse process. Prior
studies [10, 22] prove that directly parameterizing 𝜇𝜃 (𝑥 (𝑡), 𝑡)
is inefficient, instead, they train a model 𝜖𝜃 (𝑥 (𝑡), 𝑡) to predict
the 𝜖 from Eq. 5. Basically, the essential idea is that if the
diffusion model can estimate the forward diffusion noise at
every step, then it is capable of performing the reverse noise
reduction. Formally, the loss function to train the 𝜖𝜃 (𝑥 (𝑡), 𝑡)
is listed as follows:

𝐿simple = 𝐸𝑡∼[1,𝑇 ] | |𝜖 − 𝜖𝜃 (𝑥 (𝑡), 𝑡) | |2 (6)
Where 𝐸 is the expectation for the 𝐿2 distance between real
noise and the estimated noise on all steps. Once the 𝐿simple
is converged, the model 𝜖𝜃 (𝑥 (𝑡), 𝑡) can be used to derive the
𝜇𝜃 (𝑥 (𝑡), 𝑡):

𝜇𝜃 (𝑥 (𝑡), 𝑡) =
1√︁
𝛼 (𝑡)

(𝑥 (𝑡) − 1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑥 (𝑡), 𝑡)) (7)

As for the other critical factor Σ𝜃 (𝑥 (𝑡), 𝑡)), prior researches [10,
22] find that it can be fixed into a constant. Now that the
mean and the variance have been derived, the diffusionmodel
can be used to denoise the samples from the previous step, as
illustrated in Eq. 4, furthermore, it can generate clean audio
spectrograms 𝑥 (0) from pure noise distribution 𝑥 (𝑇 ).
Audio data preparation: Since the diffusionmodel is widely
used to produce high-quality images, we transfer the audio
data to the image to fit the input requirements. For a raw
audio waveform 𝑣 ∈ [−1, 1]𝑁 , we run the STFT(Short Time
Fourier Transform) to convert the waveform to a spectro-
gram 𝑆 ∈ R𝑇×𝐹 and a phase 𝑃 ∈ R𝑇×𝐹 . The STFT is described
as follows:

𝑆 (𝑚,𝜔) = |
𝑁∑︁
𝑛=0

𝑣 [𝑛]𝑤 [𝑛 −𝑚]𝑒− 𝑗𝜔𝑛 |, (8)

Where𝑚 is the time index, 𝜔 is the frequency index, 𝑁 is
the waveform length and𝑤 is the window for convolution
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operation. The size of the spectrogram depends on the du-
ration of 𝑣 , the STFT window length, STFT hop length, and
the number of FFT points. Since existing open-source pre-
trained diffusion models only support the square input (e.g.,
64*64, 128*128, 256*256), we have to split the complete spec-
trogram into a square shape, resulting in a series of chunk
spectrograms. In our design, if the diffusion model requires
an input shape as𝑀 ∗𝑀 , we will run the STFT with a 2 ∗𝑀
points FFT, resulting in a spectrogram shape as𝑇 ∗𝑀 . If the𝑇
is shorter than𝑀 , then we will pad it with zeros. Otherwise,
we divide the spectrogram through time dimension by 𝑀 ,
which generates𝑇 /𝑀 chunk spectrograms, with each having
shape as𝑀 ∗𝑀 . Note that the last spectrogram chunk will
retain the size of𝑀 ∗𝑀 by borrowing the previous chunk.

3.3 Theory of Purification

The goal of WavePurifier is to purify audio adversarial ex-
amples to recover the benign commands. To achieve this
goal, there are two factors to be considered. First, the pertur-
bation of the audio adversarial example needs to be removed,
consequently, the adversary’s target will not appear in the
ASR predictions. Second, the benign speech needs to be re-
tained, indicating the benign command needs to be correctly
recognized. Motivated by the forward and reverse process
of the diffusion model, we assume the forward process can
remove the adversarial perturbations and the reverse process
can recover the benign speech. Based on these assumptions,
we propose the first research questions:
RQ1:Why can forward diffusion remove perturbations?
To answer the research question, we define some nota-

tions. For the adversarial spectrogram, we denote it as 𝑥𝑎 (0),
and its corresponding benign spectrogram as 𝑥 (0). For the
forward process, it gradually adds noises to form different
noisy outputs. We use 𝑥𝑎 (𝑡) to represent the adversarial spec-
trogram and add 𝑡 steps noise, also, we use 𝑥 (𝑡) to denote
the noisy benign spectrogram at step 𝑡 . To measure the dis-
tance between 𝑥𝑎 (𝑡) and 𝑥 (𝑡) with increasing 𝑡 , we can find
whether forward diffusion can remove perturbations. Let 𝑦𝑡
denote the distance of them as the following equation:

𝑦𝑡 = | |𝑥𝑎 (𝑡) − 𝑥 (𝑡) | | (9)

To understand how 𝑦𝑡 changes with increasing 𝑡 , we can
refer to Theorem 3.1 proposed by prior study [31], which is
formulated as follows:

𝜕𝐷𝐾𝐿 (𝑥𝑎 (𝑡) | |𝑥 (𝑡))
𝜕𝑡

≤ 0 (10)

According to their finding, the KL divergence of the adver-
sarial 𝑥𝑎 (𝑡) and benign 𝑥 (𝑡) monotonically decreases when
increasing 𝑡 . This is because the partial derivative of KL diver-
gence with respect to 𝑡 is less than or equal to zero, meaning

that as 𝑡 increases, 𝐷𝐾𝐿 (𝑥𝑎 (𝑡) | |𝑥 (𝑡)) decreases, indicating a
reduction in the difference between 𝑥𝑎 (𝑡) and 𝑥 (𝑡).

However, the previous finding only indicates the KL diver-
gence, not explaining the value of 𝑦𝑡 . To explicitly answer
RQ1, we give the following proof: From Eq. 5 and replace 𝛼𝑡
to 𝛼 (𝑡), we can represent 𝑥 (𝑡) as follows:

𝑥 (𝑡) =
√︁
𝛼 (𝑡)𝑥 (0) +

√︁
1 − 𝛼 (𝑡)𝜖 (11)

Specifically, when applying the VP-SDE [38] solver, the
𝛼 (𝑡) can be represented as 𝛼 (𝑡) = 𝑒−

∫ 𝑡

0 𝛽 (𝑠 )𝑑𝑠 , where 𝛽 (𝑡)
represents a time-dependent noise scale. Next, we assume
the 𝑥𝑎 (0) = 𝑥 (0) +𝑝 , where 𝑝 is the adversarial perturbation,
then the adversarial audio after forward diffusion can be
represented as:

𝑥𝑎 (𝑡) =
√︁
𝛼 (𝑡) (𝑥 (0) + 𝑝) +

√︁
1 − 𝛼 (𝑡)𝜖 (12)

By adopting Eq. 12 and Eq. 11 into 𝑦𝑡 , we can derive the
following result:

𝑦𝑡 = | |
√︁
𝛼 (𝑡) (𝑥 (0) + 𝑝) +

√︁
1 − 𝛼 (𝑡)𝜖−

(
√︁
𝛼 (𝑡)𝑥 (0) +

√︁
1 − 𝛼 (𝑡)𝜖) | |

= | |
√︁
𝛼 (𝑡)𝑝 | |

(13)

According to this equation, the 𝑦𝑡 is only affected by 𝛼 (𝑡)
and the perturbation 𝑝 . Knowing that 𝛼 (𝑡) = 𝑒−

∫ 𝑡

0 𝛽 (𝑠 )𝑑𝑠 ,
the greater 𝑡 results greater integral value

∫ 𝑡
0 𝛽 (𝑠)𝑑𝑠 , and

lead to smaller 𝛼 (𝑡) because the larger negative variable
−
∫ 𝑡
0 𝛽 (𝑠)𝑑𝑠 in exponential function. When 𝑡 is infinitely

large, 𝛼 = 𝑒−∞ = 0, and 𝑦𝑡 equals zero, which implies the
adversarial sample and the benign sample have the same
value after forward diffusion.
Observation 1: Forward diffusion can narrow down the
difference between adversarial and benign samples, and this
is affected by the magnitude of the perturbation 𝑝 and the
diffusion step 𝑡 . If the diffusion step is infinitely large, in the
best-case scenario, adversarial samples would be identical to
benign ones.
According to Observation 1, we conclude that forward

diffusion can remove perturbations. Next, we propose the
second research question:
RQ2: Can the reverse diffusion recover the benign speech?
To answer this question, we define ˆ𝑥 (𝑡) as the recovered

benign spectrogram since step 𝑡 , and the ˆ𝑥𝑎 (𝑡) is the recov-
ered adversarial spectrogram from forward diffusion at step
𝑡 . To investigate the recovery quality for the adversarial sam-
ple, we can measure the distance between ˆ𝑥𝑎 (𝑡) and the be-
nign sample 𝑥 (0). Based on the Theorem 3.2 of the previous
study [31], the distance can be represented as follows:

| | ˆ𝑥𝑎 (𝑡) − 𝑥 (0) | | ≤ | |𝑝 | | +
√︁
𝑒2𝛾 (𝑡 ) − 1𝐶𝛿 + 𝛾 (𝑡)𝐶𝑠 (14)
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Where𝐶𝑠 and𝐶𝛿 are positive constant, and𝛾 (𝑡) =
∫ 𝑡
0

1
2𝛽 (𝑠)𝑑𝑠 .

In their finding, the distance between the recovered adversar-
ial sample and the original benign sample are bound by three
factors: the perturbation 𝑝 , the term

√
𝑒2𝛾 (𝑡 ) − 1𝐶𝛿 and the

𝛾 (𝑡)𝐶𝑠 . As 𝛾 (𝑡) increases with increasing forward step 𝑡 , the
second and third terms will increase consequently. Therefore,
the upper bound of | | ˆ𝑥𝑎 (𝑡)−𝑥 (0) | | is getting higher, resulting
in a larger distance between the recovered spectrogram and
the original one.
Observation 2: The forward diffusion strategy favors using
a larger value of 𝑡 to eliminate the perturbation, whereas the
reverse diffusion approach opts for a smaller value of 𝑡 to en-
sure the quality of the recovered audio. This creates a conflict
when selecting the diffusion step size 𝑡 for both tasks. Given
the conflicting perspectives on selecting the diffusion step
size, we hypothesize that a trade-off option can be identified
to achieve a balance between the two objectives. Building
on this premise, we propose a third research question:
RQ3: Does an optimal purify step exist?

First, we visualize the aforementioned conflict in choosing
the diffuse step. In Fig. 3, we take audio that was transcribed
as "To many experts, this trend is inevitable" as benign au-
dio, and craft an audio adversarial examples targets to "call
my mom". To observe the perturbation clearly, we adjust
the perturbation distortion tolerance to make the generated
perturbation apparent. From the first figure, we find the be-
nign speech is clear and the noise energy is low in some
high-frequency bands. After adding the perturbations, the
adversarial sample shows extra energy (labeled as perturba-
tions) on the spectrogram. By using a small forward diffusion
step 𝑡 followed by a reverse step, we obtain a spectrogram
that has been gently purified but still retains some pertur-
bations. This indicates that the purification process has not
been successful in completely removing the perturbations.
On the other hand, when a larger 𝑡 is used for more aggres-
sive purification, most of the noise is removed, as shown
in the last figure. However, this approach also affects the

low-frequency speech details, leading to disruptions in the
formants. Thus, it becomes evident that a random choice of
the diffusion step can result in either incomplete removal of
perturbations or compromise of the benign speech compo-
nents. To find such optimal purification step 𝑡 , we formulate
the following objective function:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ( | |𝑥𝑎 (𝑡) − 𝑥 (𝑡) | | + | | ˆ𝑥𝑎 (𝑡) − 𝑥 (0) | |) (15)

The objective of this function is to determine the optimal
value of 𝑡 that can effectively eliminate the perturbations in
the adversarial sample while maintaining a close similarity
to the original benign sample. Let 𝑦 represent our objective
goal, combine with Eq. 13 and Eq. 14, we have the following
equation:

𝑦 = | |𝑥𝑎 (𝑡) − 𝑥 (𝑡) | | + | | ˆ𝑥𝑎 (𝑡) − 𝑥 (0) | |

≤
√︁
𝛼 (𝑡)𝑝 + ||𝑝 | | +

√︁
𝑒2𝛾 (𝑡 ) − 1𝐶𝛿 + 𝛾 (𝑡)𝐶𝑠

(16)

Next, we compute the partial derivation 𝜕𝑦/𝜕𝑡 to search for
the optimal 𝑡 , to simplify the computation complexity, we
replace the ≤ with = for minimizing the upper bound of 𝑦.
𝜕𝑦

𝜕𝑡
=

𝜕

𝜕𝑡

√︁
𝛼 (𝑡)𝑝 + 𝜕

𝜕𝑡
| |𝑝 | | + 𝜕

𝜕𝑡

√︁
𝑒2𝛾 (𝑡 ) − 1𝐶𝛿 +

𝜕

𝜕𝑡
𝛾 (𝑡)𝐶𝑠

(17)
For the first term of the above partial derivation:

𝜕

𝜕𝑡

√︁
𝛼 (𝑡)𝑝 =

1
2𝑝𝛼 (𝑡)

− 1
2𝛼 (𝑡) ∗ −1 𝜕

𝜕𝑡

∫ 𝑡

0
𝛽 (𝑠)𝑑𝑠 (18)

From the Leibniz integral rule [25],
𝜕

𝜕𝑡

∫ 𝑡

0
𝛽 (𝑠)𝑑𝑠 = 𝛽 (𝑡)𝑑𝑡

𝑑𝑡
− 𝛽 (0)𝑑0

𝑑𝑡
+
∫ 𝑡

0

𝜕𝛽 (𝑠)
𝜕𝑡

𝑑𝑠

= 𝛽 (𝑡) − 0 − 0
= 𝛽 (𝑡)

(19)

So Eq. 18 can be rewritten as:
𝜕

𝜕𝑡

√︁
𝛼 (𝑡)𝑝 = −1

2𝑝𝛼 (𝑡)
1
2 𝛽 (𝑡) (20)
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Figure 4: Intersection of the two functions

As for the second term in Eq. 17:
𝜕

𝜕𝑡

√︁
𝑒2𝛾 (𝑡 ) − 1𝐶𝛿 =

𝐶𝛿

2 (𝑒2𝛾 (𝑡 ) − 1)− 1
2 𝑒2𝛾 (𝑡 )

𝜕

𝜕𝑡
2𝛾 (𝑡)

=
𝐶𝛿

2 (𝑒2𝛾 (𝑡 ) − 1)− 1
2 𝑒2𝛾 (𝑡 )𝛽 (𝑡)

(21)

Next, we do the partial derivation for the third term in
Eq. 17:

𝜕

𝜕𝑡
𝛾 (𝑡)𝐶𝑠 =

𝐶𝑠

2 𝛽 (𝑡) (22)

After simplifying the three terms, we let the 𝜕𝑦/𝜕𝑡 = 0.
Then the Eq. 17 can be rewritten as follows:
1
2𝑝𝛼 (𝑡)

1
2 𝛽 (𝑡) = 𝐶𝛿

2 (𝑒2𝛾 (𝑡 ) − 1)− 1
2 𝑒2𝛾 (𝑡 )𝛽 (𝑡) + 𝐶𝑠

2 𝛽 (𝑡)

𝑝𝛼 (𝑡) 1
2 = 𝐶𝛿 (𝑒2𝛾 (𝑡 ) − 1)− 1

2 𝑒2𝛾 (𝑡 ) +𝐶𝑠
(23)

Since 𝛼 (𝑡) = 𝑒−
∫ 𝑡

0 𝛽 (𝑠 )𝑑𝑠 and 𝑒2𝛾 (𝑡 ) = 𝑒
∫ 𝑡

0 𝛽 (𝑠 )𝑑𝑠 , we denote∫ 𝑡
0 𝛽 (𝑠)𝑑𝑠 = 𝑥 , and the equation is transformed to:

𝑝𝑒−
𝑥
2 = 𝐶𝛿

𝑒𝑥
√
𝑒𝑥 − 1

+𝐶𝑠 (24)

According to the above equation, if we find the 𝑥 that
satisfies left and right equal to each other, we can find the
optimal diffusion step t to minimize the objective score 𝑦.
In Fig. 4, we draw two lines of the function 𝑦 = 𝑒−

𝑥
2 and

𝑦 = 0.1 ∗ 𝑒𝑥√
𝑒𝑥−1 . We found that these two lines have one

intersection point (the red circle). This intersection proves
that there exists a 𝑡 that makes the derivation 𝜕𝑦/𝜕𝑡 = 0. In
that case, the objective goal will be achieved by correctly
selecting the diffusion step.
Observation 3: There exist and only exist one 𝑡 to achieve
minimal 𝑦 for 𝑡 ∈ [0, +∞). The value of the optimal 𝑡 is
determined by the 𝑥 =

∫ 𝑡
0 𝛽 (𝑠)𝑑𝑠 .

3.4 Hierarchical Purification

In the previous subsection, we formulate an objective func-
tion to optimize the purification goal and prove the existence
of the optimal diffusion step 𝑡∗. However, the objective func-
tion might work well on image purification (DiffPure [31])
and single-word speech purification (AudioPure[47]), but its

performance on the long audio is questionable due to two
critical reasons: (1) The image classification/speech classifi-
cation model treats every pixel in the image equally, instead,
the ASR model focuses more on the low-frequency formants,
and neglect the importance of the high frequency; (2) The
image adversarial examples/single word audio adversarial
example typically add perturbation with a global view, in
contrast, the long audio adversarial perturbation is crafted
on the waveform vector instead of the 2D image, which is
not considered the distribution on its spectrogram, therefore
causing the perturbation assigned differently at a different
frequency.
Therefore, we propose the hierarchical diffusion frame-

work. In this model, we aim to purify the spectrogram di-
versely in terms of different frequency bands. In our design,
we do not assign a global diffusion step 𝑡 for the complete
spectrogram, instead, we design a tuple of 𝑡 to represent the
diffusion step at different spectrogram bands. Namely, the
𝑡∗ = (𝑡𝑠 , 𝑡𝑚, 𝑡𝑙 ) .

Where 𝑡𝑙 denotes the diffusion step for the 4k-8k spectro-
gram, 𝑡𝑚 means the diffusion step for 2k-4k spectrogram, and
𝑡𝑠 is the diffusion step for 0-2k spectrogram. By optimizing
the three 𝑡 individually, we can achieve a fine-tuned purified
performance. Consequently, the ˆ𝑥 (𝑡∗) can be represented by
the concatenation of the three purified results:

ˆ𝑥 (𝑡∗) = ˆ𝑥 (𝑡𝑠 )𝐹<2𝑘 | | ˆ𝑥 (𝑡𝑚)2𝑘<𝐹<4𝑘 | | ˆ𝑥 (𝑡𝑙 )𝐹>4𝑘 (25)

Fig. 5 illustrates the hierarchical purification framework.
Giving adversarial audio, we first process the audio wave-
form to multiple fixed-size spectrograms (described in Sec-
tion 3.2). Next, for every spectrogram, we perform the for-
ward diffusion process three times, at each run 𝑡𝑙 , 𝑡𝑚 , 𝑡𝑠 steps.
Followed by the reverse process that starts at the 𝑡𝑙 , 𝑡𝑚 , 𝑡𝑠 ,
resulting in three recovered spectrograms. For the rebuild
stage, we collect the corresponding components of the three
recovered spectrograms to form the hierarchical purified
spectrogram. Combined with the original phase data, we
transform the spectrogram into audio. In the end, we apply
an extra denoise algorithm to remove the residual noise in-
troduced by the diffusion process and generate the purified
audio, which can be correctly recognized by the ASR model.
RQ4: How to determine the hierarchical purify step?

To find the optimal purification step for different frequen-
cies, we use a data-driven method. First, we let 𝑡𝑠 , 𝑡𝑚, 𝑡𝑙 share
the same value 𝑡𝑠𝑢𝑏 . By iterating the 𝑡𝑠𝑢𝑏 and calculating the
smallest𝑦, we find the best 𝑡𝑠𝑢𝑏 that achieves the optimal pu-
rification goal. Next, we initialize 𝑡𝑠 , 𝑡𝑚, 𝑡𝑙 = 𝑡𝑠𝑢𝑏 , and start to
search the optimal purification steps for each frequency. In
practice, the optimize goal𝑦 = | |𝑥𝑎 (𝑡)−𝑥 (𝑡) | |+| | ˆ𝑥𝑎 (𝑡)−𝑥 (0) | |
is meaningless in a speech recognition task, we revise it to
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the following format:

𝑦 = 𝐶𝐸𝑅(𝑓 ( ˆ𝑥𝑎 (𝑡)), 𝑏𝑒𝑛𝑖𝑔𝑛)−𝑘∗𝐶𝐸𝑅(𝑓 (𝑥𝑎 (𝑡)), 𝑡𝑎𝑟𝑔𝑒𝑡) (26)
We use 𝑓 (·) to denote the ASR model, and 𝑓 (𝑥) is the

recognized transcription for spectrogram 𝑥 . 𝑘 is a constant
to control the weights of those two terms. Since our ultimate
goal is correctly recognizing the benign commands, and
discarding the target commands, we replace the 𝐿2 distance
of the spectrogram with the CER(character error rate) metric.
In Section 3.3, we prove the existence of the 𝑡 for optimizing
the prior objective function, however, the 𝑡 value cannot be
derived because the noise is random. For the new objective
function, we assume the ASR model can be queried, and the
output of the ASR model is available. Once the optimal 𝑡 is
determined,WavePurifier can be adopted on different ASR
models without knowledge of those models. To compute
the minimal 𝑦, we iterate the 𝑡 to compute the CERs. We
denote 𝑡∗ as the global optimal purify step. Next, we start
the fine-tuned search by assigning 𝑡∗ as the start point of 𝑡𝑠 ,
𝑡𝑚 , and 𝑡𝑙 . In conclusion, by repeatedly executing the steps
that are close to 𝑡∗ for the hierarchical values of 𝑡𝑠 , 𝑡𝑚 , and 𝑡𝑙 ,
we can determine the most effective hierarchical purification
step. The optimized purifying steps are then allocated to
WavePurifier to safeguard against unforeseen adversarial
attacks.

4 EVALUATION

4.1 Experiment Settings

4.1.1 Target ASR models. We choose two target ASR models
to evaluate our defense. The first one is the Mozilla Deep-
Speech [21]model. This model is composed ofmultiple layers
of recurrent cells and handles the sequential audio data. It
takes audio samples as input and recognizes them as sen-
tences with the CTC decoder. More specifically, we use Deep-
Speech version 0.4.1 as the victim model. The second ASR

model is Google Lingvo [36], which is powered by the Ten-
sorflow framework for building sequence models. We set up
this model via docker from a GitHub repository [9].

4.1.2 Audio adversarial attacks. We select three recent audio
adversarial attacks on the ASR model. We reproduce all the
audio adversarial attacks based on their description with
different languages and ASR frameworks. The attacks are
listed as follows:

• C&W: This attack was introduced by Carlini and Wag-
ner [5] in 2018. They proposed this attack against the
DeepSpeech model. This attack assumes the adversary
has complete knowledge of the victim model, then
he/she crafts the perturbation by optimizing the CTC
loss between the target transcription and the model
output.

• Qin-I: This is a white-box imperceptible audio attack
against the Lingvo model that was proposed by [35] in
2019. Compared to the prior C&W attack, this attack
leverages the acoustic feature to formulate an objective
function, therefore constraining the perceptual level
of the adversarial perturbation.

• SpecPatch: This is a white-box audio adversarial at-
tack proposed in 2022 [20]. The authors craft a spectro-
gram patch to attack the DeepSpeech model, then they
demonstrate this attack under the Human-in-the-loop
scenario. This attack is proven to be robust to different
sentence contexts and environments.

4.1.3 Audio adversarial defenses. We compare our defense
with seven defense mechanisms, including three defenses
from WaveGuard [23], two defenses from the conventional
denoise methods, and two diffusion-based methods from
AudioPure [47]. The attacks are listed as follows:



WavePurifier: Purifying Audio Adversarial Examples ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

• Down-Up sampling (Ds): This method uses a resam-
pling process to defend against audio AE.

• Linear PredictiveCoding (LPC): Thismethod changes
the linear filter of the waveform to reconstruct audio,
therefore defending against audio AE.

• Quantization-Dequantization (Quant.): Thismethod
transforms the quantization setting of the provided au-
dio to generate new audio. The first three defenses are
used in WaveGuard [23].

• Stationary Noise Reduction (SNR): This is a noise
reduction algorithm that suppresses the noise by a
pre-defined noise threshold.

• Adaptive Noise Reduction (ANR): Different from
SNR, ANR Continuously updates the estimated noise
threshold over time.

• DiffSpec: This method is proposed by AudioPure [47].
It purifies the singlemel-spectrogram by image dif-
fusion model.

• DiffWave: This method is also proposed by AudioP-
ure, which purifies the waveform by using the diffwave
model [24]. As they assume all the input speech sam-
ples have a fixed length, we separate our long audio
into multiple chunks and reproduce their work by feed-
ing the chunk audio data.

4.1.4 Attack and defense settings. Dataset: Different from
AudioPure [47] which focuses on command classification
tasks (recognizing single words) on a short command dataset,
we use TIMIT dataset that includes 6,300 audios, and each
audio is around 5 seconds. To simulate the attack, we choose
the target sentence from ok-google.io, which provides com-
monly used commands on Google Assistant. To construct
the audio adversarial example set, we randomly select 100
pairs of benign audio and target sentences and produce 300
audio adversarial examples.
Attack performance: We achieve 100% attack success rate
for C&W attack. For the Qin-I attack, we have a 96% attack
success rate. In the SpecPatch attack, we get an 87% success
rate.
Diffusionmodel settings:We choose the pre-trained guided
diffusion [10] model as our diffusionmodel. More specifically,
we download checkpoints of 64 × 64, 128 × 128, 256 × 256
models, and fine-tune them with the corresponding shape of
the spectrogram. The performance of diffusion models that
fine-tuned different shapes is described in Section 4.
Experiment platform: All the experiments are conducted
on a desktop with Intel i7-7700k CPUs, 64GB RAM, and
NVIDIA 1080Ti GPU, running 64-bit Ubuntu 18.04 LTS op-
erating system. For the C&W attack and SpecPatch attack,
it uses Python 3.6 Tensorflow 1.14. The Qin-I attack uses
Python 2.7, Tensorflow 1.13.1. The guided diffusion model

uses Python 3.6 and Pytorch 1.10.1. The detailed setups can
be found in [9, 34].
Metrics: We use Character Error Rate (CER), Word Error
Rate (WER), and Purify Success Rate (PSR) to measure the
performance. CER: This metric denotes the character er-
ror rate. Specifically, we use 𝐶𝐸𝑅(𝐹,𝑇 ) to denote the CER
between Forward diffused transcription and the Target tran-
scription, and𝐶𝐸𝑅(𝑃, 𝐵) represents the CER betweenPurified
transcription and the Benign transcription. Based on Eq. 26,
we expect a low 𝐶𝐸𝑅(𝑃, 𝐵) and high 𝐶𝐸𝑅(𝐹,𝑇 ) because our
goal is to recover the benign transcription and disrupt the
malicious transcription. WER: This metric evaluates the
word-level error rate between the purified transcription and
the benign transcript. PSR: We define the Purification Suc-
cess Rate (PSR) as the rate at which purification is successful.
We consider purification successful if the𝐶𝐸𝑅(𝑃, 𝐵) is below
a specified threshold. Based on our experience with speech
recognition models, we set this threshold at 0.25. Typically,
an effective model has a CER between 0.05 and 0.2 (e.g.,
OpenAI’s Whisper [39]). If WavePurifier achieves a CER
around 0.25, once applying Text Auto-correction, which pro-
vides a 2̃5% reduction in CER [26], can lower the overall CER
below 0.2, which is acceptable for current speech recognition
standards.

4.2 Choosing the Purify Granularity

Before conducting the purification, we need to determine
the window size of the diffusion model. Based on the pre-
trained diffusion model, it contains different generating im-
age shapes such as 64 × 64, 128 × 128, 256 × 256. By choos-
ing different diffusion models, we can control the purifi-
cation granularity. For small granularity, the purification
model is fast but loses global vision to generate the complete
spectrogram. However, for large granularity, the diffusion
model might neglect the details in the generated spectro-
gram. Therefore, the first evaluation focus is on selecting the
purification granularity and the diffusion model.
We purified the spectrograms with 50 steps and 80 steps,

then re-constructed the purified spectrograms to form the
purified audio. We calculate the WER and CER based on
the transcription of purified audio and benign transcript.
According to Fig. 6, we observe the WER and CER experi-
ence a steady drop with increasing window size. The results
show consistent trends for different diffusion steps 𝑡 = 50
(Fig. 6(a)) and 𝑡 = 80 (Fig. 6(b)), which indicates that the
global semantic information is more important than the de-
tails in the spectrogram. Besides, we find that the CER is
0.25 when choosing the 256 × 256 diffusion model, which
proves the potential of adopting the diffusion model to purify
audios. Based on this observation, we decide to use 256× 256
granularity to run the rest evaluations.

ok-google.io
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Figure 6: Purify with different granularity
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Figure 7: Global optimization for purifying steps

4.3 Searching the Purify Steps

Global optimal searching: The global optimal searching
follows the design in DiffSpec [47]. As the prior work did
not evaluate the performance on practical audio adversarial
attacks, we test this defense on three attacks (C&W [5], QIN-
I [35], and SpecPatch [20]) with 100 steps. For each 𝑡 , we
perform the complete forward and reverse process. In total,
we generate 78,864 purified spectrograms.

Fig. 7(a) demonstrates that all three attacks have similar
trends. The CER decreases before 𝑡 < 40, remains steady
between 40 < 𝑡 < 60, and increases gradually after 𝑡 > 60. It
is surprising to find that different audio adversarial attacks
experience similar CER changes for diffusion purification.
Observing the CER of the target and benign transcript, we
combine them together to visualize the objective score in
Eq. 26.We choose 𝑘 = 0.1 since our primary goal is to recover
the benign commands. The average objective score for using
different 𝑡 to purify is present in Fig. 7(b). In this result, the
optimal global 𝑡 is uncovered. While 𝑡 = 40, the objective
function achieves the lowest point for all three attacks.
Hierarchical optimal searching:After obtaining the global
optimal diffusion step, we assign the 𝑡𝑙 equals to 40 and fix
it to fine-tune the 𝑡𝑠 and 𝑡𝑚 with the range from 40 to 60.
For every AE in each attack, we purify it 20 ∗ 20 = 400
times and compute the average 𝐶𝐸𝑅(𝑃, 𝐵). We plot the 3D
surface figure to demonstrate the CER change along with
different 𝑡𝑠 and 𝑡𝑚 in Fig. 8. For C&W attack in Fig. 8(a),

the optimized CER reaches to 0.207 with 𝑡𝑠 = 60, 𝑡𝑚 = 56,
and 𝑡𝑙 = 40. In comparison, the purification of QIN-I attack
achieves the best performance, with the lowest CER 0.048
when (𝑡𝑠 , 𝑡𝑚, 𝑡𝑙 ) = (56, 40, 40). Similar to the QIN-I attack’s
result, the hierarchical purification on the SpecPatch attack
also prefers the large diffusion step on low frequency while
keeping the small diffusion step on a high frequency. By con-
ducting the hierarchical optimal searching, we find that the
low-frequency data need to be purified intensively, while the
middle and high-frequency spectrogram are less important,
so they are encouraged to purify gently. To further visualize
the advantage brought by the hierarchical diffusion strategy,
we compare the performance change between the DiffSpec
(global purify) and the hierarchical purify. In Fig. 8(d), we
find that our hierarchical scheme improves the purify per-
formance on all three attacks, achieving less CER compared
to the global purification.

4.4 Overall Performance

As noted earlier, different attacks require different optimal
settings for effective defense. To create a more generalized
defense solution, we compromise on some attack-specific op-
timizations to apply uniform purification parameters across
all attacks. Specifically, we treat WavePurifier like a black-
box purification framework, applying the same hierarchical
settings (𝑡𝑠 , 𝑡𝑚, 𝑡𝑙 ) = (56, 40, 40) to all incoming audio. This
configuration was chosen because it achieves the best aver-
age CER, as shown in Fig. 8. Unless otherwise specified, the
following experiments use this generalized setting, assuming
the defender has no prior knowledge of the specific attacks.
Comparison with other approaches: We compare our
work with seven defenses from WaveGuard [23] and Au-
dioPure [47]. We feed AEs to the seven defenses and collect
the output audio. Then, we use the ASR model to recognize
the transformed audio and compute the CER. Meanwhile,
we purify those AEs with WavePurifier, and get the CER
result for our methods. The result is presented in Fig. 9.
From Fig. 9(a), we realize that our CER distribution is fur-
ther dropped after adding the noise reduction algorithm,
achieving an average 0.1 CER for the C&W attack. For com-
parison, the signal processing methods (Ds, LPC, Quant, SNR,
ANR) are not performing well for transcription recovery. The
prior diffusion purification work [47] DiffSpec and DiffWave
show potential to purify speech, butWavePurifier, which
benefits from the hierarchical design, outperforms them
with lower CER. As for purifying the QIN-I attack shown in
Fig. 9(b), our method outperforms all existing studies, with
the CER distributed closely at 0.05. For the SpecPatch attack,
all the defense methods receive a high CER due to the ro-
bustness of the adversarial patch. However,WavePurifier
only has slight performance degradation, with average CER
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as 0.2. In the end, we evaluate the WER of WavePurifier
and the other methods to purify the SpecPatch attack and
present the result in Fig. 9(d). Compared to the existing stud-
ies, WavePurifier achieves the best WER, with around 0.3.
We also compare WavePurifier with other methods in the
Purify Success Rate. By calculating the percentage of the
successfully purified audio samples, we present the result
in Fig. 10. It is evident that WavePurifier achieves the best
purify success rate for all of the three attacks, with 98%, 100%,
and 100% Purify Success Rate. In contrast, the other audio
transformation and noise reduction algorithms at most reach
to 64% success rate.
Is the CER improvement helpful for smart devices? As
we observed that WavePurifier effectively purifies audio
and achieves low CER/WER with speech recognition mod-
els, it raises the question of whether these improvements in
CER/WER can enhance voice understanding in real-world
scenarios, such as with voice assistants. To address this ques-
tion, we find that voice assistants comprehend our speech

not only through speech recognition models but also by
utilizing NLP-based auto-correlation techniques. Therefore,
they can infer the user’s intention even when there are minor
errors in the transcription [4]. While most commercial voice
assistants do not release their NLP-based auto-correlation
approaches(e.g., context-based corrections, spelling correc-
tion algorithms, or machine learning models), we implement
three common correction approaches as add-on techniques
to evaluate ifWavePurifier helps to purify and understand
voice commands in a real-world scenario.

Autocorrect [32] is a probabilistic model for spell correc-
tion. It utilizes a large corpus of text to build a frequency
distribution of words and applies edits (insertions, deletions,
substitutions, and transpositions) to generate possible cor-
rections for a misspelled word. The correct word is chosen by
maximizing the probability, combining the likelihood of the
correction appearing in the corpus and the likelihood of the
error occurring given the correction. Symspellpy [12] is an-
other spelling correction approach that utilizes the Symmet-
ric Delete Spelling Correction algorithm. Different from the
traditional methods that require handling various types of
edits (deletes, transposes, replaces, and inserts), Symspellpy
only requires the number of deletes to pre-compute and store
potential misspellings. This approach allows for incredibly
fast spell correction, as it reduces the number of calculations.
RapidFuzz [1] is a fast string matching library for Python
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and C++, which uses string similarity calculations to find the
most matched string from a pre-defined set. Different from
the autocorrection tools [12, 32], the RapidFuzz can return
“NOT RECOGNIZED" if the given transcription is not similar
to any pre-defined voice commands.
In our setting, we apply different defenses (WaveGuard-

lpc10, DiffSpec, DiffWave, WavePurifier) to defend AEs
from C&W attacks. Next, we feed the defended audio to
the speech recognition model (DeepSpeech) and collect the
recognized transcriptions. Once we have the recognized tran-
scriptions, we use three add-ons (Autocorrect, Symspellpy,
and RapidFuzz) to correct them. Note that we construct a
voice command set for RapidFuzz, which only contains com-
mon voice commands such as “open the door, close the win-
dow, play some music". To understand the impact of auto-
correction on various audio defenses, we conducted a bench-
mark test by feeding 10 adversarial examples (derived from
2 benign voice commands and targeting 5 attack commands)
into the audio defenses and collecting their transcriptions
from a speech recognition model. We then processed the
transcriptions under three aforementioned auto-corrections
and calculated the average CERwith benign voice commands.
The results are shown in Fig. 11. We observe that spellcheck-
based methods like Autocorrect and Symspellpy have diffi-
culty correcting the transcription and achieve only minimal
reduction in CERs. This may be due to: 1) the significant
edit distance between the recognized transcription and the
benign command; and 2) the low occurrence frequency of
benign commands in the corpus. For the RapidFuzz, all exist-
ing audio defenses with RapidFuzz experience higher CERs.
This issue arises from “NOT RECOGNIZED", where the tran-
scription does not match any commands in the pre-defined
set, and RapidFuzz returns null. In contrast, our approach
achieves the lowest CER before auto-correction and could be
further optimized with auto-corrections, and reach to CER
as low as 5%. This experiment shows that the CER improve-
ment inWavePurifier can help the smart devices purify the
attack and correctly understand commands.

5 DISCUSSION

5.1 Time budgets

We test the average running time for the ASR model and our
purification framework on two platforms: the desktop and
the high-end server. The desktop is a commodity device and

the server is running 8x RTX A6000 (48G) GPU. We report
the time budgets in Table 1, with the left number showing the
running time on a desktop and the right number displaying
the running time on a server. Since we consider purifying
a complete command in a real-world setting, the average
duration of input audio is 5 seconds.
Time budgets on the desktop: In this setting, every query
of the ASR model takes 4 to 9 seconds. In comparison, the
forward and reverse diffusion process takes 8.77 seconds on
average. In total, theWavePurifier completes the purifica-
tion step in 8.9 seconds, which is comparable to the time cost
on the ASR model.
Time budget on the server:With the same length of audio
input, the server can process the ASR model and Diffusion
model with x10 speed. Specifically, each audio can be recog-
nized with 500ms and can be purified at a similar time. This
result implies the possibility of deployingWavePurifier on
the cloud server of voice assistant, for example, purifying
the voice commands before recognizing it.
5.2 Understand the defense

WavePurifier leverages a diffusion model for speech pu-
rification, offering distinct advantages over other machine
learning approaches like autoencoders and GANs. Unlike
autoencoders, which often reduce the dimensionality of data,
our diffusion model preserves the original data dimensions
throughout the purification process. This ensures that the full
complexity of the speech signal is maintained, allowing for
the retention of benign components while effectively elimi-
nating adversarial perturbations. In contrast to GANs, which
generate data in a single pass, our step-by-step generation
process provides finer control over purification, reducing the
risk of losing important details. Additionally, the hierarchical
nature of the diffusion process provides fine-grained control
over purification depth, enabling the model to adaptively re-
move noise across different frequency bands. This approach
ensures that essential speech features are retained while
minimizing distortions. Moreover, the diffusion model’s iter-
ative refinement capability contributes to achieving a lower
Character Error Rate (CER) and higher Purification Success
Rate (PSR), as demonstrated in our experiments. The results
suggest thatWavePurifier is particularly well-suited to out-
perform other generative models, especially in challenging
scenarios involving complex, real-world audio adversarial
attacks.
5.3 Defending against adaptive attackers

Adaptive attackers who are knowledgeable of our defense
can construct attacks that are robust to our defense by in-
corporating the gradients of our model into the attacking pro-
cess. However, directly tracking the gradients inWavePurifier
(256 × 256 input, 3 diffusion models) caused the Out-of-
memory issue on our 1080Tiwith 11GBGPU, a recent study [11]



WavePurifier: Purifying Audio Adversarial Examples ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

also found a similar phenomenon when they retrieve the gra-
dients from the diffusion models. Their experiment shows
that it takes several hours to attack one batch of 8 CIFAR10
images on a high-end GPU(e.g., RTX 2080Ti with 11GB mem-
ory). In our case, Such significant computation cost does
not align with our assumptions about the attacker’s capa-
bilities because we assume the attacker can generate AEs
with a limited amount of computational resources, other-
wise this attack is impractical. In fact, prior works [31, 47]
prove the diffusionmodel can provide robustness with regard
to the adaptive attacker. They use the adjoint method [27]
to compute the full gradient of the reverse generative pro-
cess and craft the adaptive attack samples. Their experiment
shows that the diffusion-based defense achieves ∼70% ro-
bustness accuracy. To summarize, the adaptive attacker of
WavePurifier requires substantial computational effort for
crafting the attack samples, and the diffusion-based defense
models are potentially capable of defending against those
attacks.

Process Avg. Running Time (s)
ASR
Models

DeepSpeech 9.04 / 0.56
Lingvo 4.03 / 0.24

Purify
Steps

Diffuse 8.77 / 0.44
Reconstruct 0.11 / 0.12
Denoise 0.02 / 0.02

Total Time ofWavePurifier 8.9 / 0.58
Table 1: Time budget for all processes. Left: running

on desktop; Right: running on GPU server

5.4 Purification in noisy environment

To further evaluate the performance of WavePurifier in
different working scenarios, we conduct extensive experi-
ments. Specifically, we take 10 Adversarial examples from
the C&W attack and apply 4 different noises (Babble noise,
Car noise, Gaussian noise, and Factory noise) from NOISEX-
92 dataset [45]. For each AE, we add 4 different levels of
noise, the SNR ranges from -10dB to 5 dB. Next, we feed the
AEs with different noises to WavePurifier, and compute
the PSR. The result is reported in Fig. 12. The results show
that our method is effective in all noise types and SNR levels.
Notably, our purification only fails to purify 1 of 10 AEs with
-10dB SNR and limited noise type (Babble and Car noise). If
the noise is not in extreme condition,WavePurifier can per-
form well and achieve similar performance compared with
no noise attack.We believe the reason our method is effective
in noisy environments is that it inherently includes multi-
ple noise reduction modules, such as hierarchical denoising
within the diffusion model and an additional denoising mod-
ule applied after the diffusion model. This result implies the
robustness ofWavePurifier in different noise scenarios.
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Figure 12: Purification in noisy environment

5.5 Limitation and Future work

Purifying physical adversarial attacks: While our cur-
rent study demonstrates thatWavePurifier is robust against
various adversarial attacks, there are emerging attack cat-
egories such as ultrasound attacks [49] and backdoor at-
tacks [18, 37, 46] that present unique challenges to audio
purification frameworks. In future work, we plan to extend
our design to include these more complex and less-studied
attack vectors. We aim to validate further the effectiveness
and adaptability ofWavePurifier across an even wider ar-
ray of adversarial scenarios. Additionally, we will explore
enhancements to our purificationmethods that could address
these new threats, making a robust defense solution.
Purifyingmultilingual audio adversarial attacks:While
our current work evaluates our robustness against various ad-
versarial attacks, we acknowledge the importance of assess-
ing its performance across different languages and accents.
Speech recognition systems often face significant challenges
when dealing with linguistic diversity, which can impact the
effectiveness of purification methods. In future work, we
plan to extend our evaluation to include multiple languages
and accents, ensuring thatWavePurifier is capable of adapt-
ing to a wide range of linguistic variations. However, it is
important to note that the current availability of adversarial
attacks targeting non-English languages is limited, making
it challenging to implement and test these scenarios compre-
hensively. As more diverse datasets and adversarial examples
become available, we will integrate them into our framework
to provide a more thorough analysis ofWavePurifier’s per-
formance across different linguistic contexts.

6 CONCLUSION

We presentWavePurifier, the first long audio adversarial at-
tack purification framework.We demonstrate thatWavePurifier
can defend against highly distorted audio AE, achieving high
purification success rate on multiple scenarios.
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