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ABSTRACT
Large Language Model (LLM)-powered chatbot services like GPTs,
simulating human-to-human conversation via machine-generated
text, are used in numerous fields. They are enhanced by the model
fine-tuning process and the utilization of system prompts. How-
ever, a chatbot model fine-tuned on a poisoned dataset can pose a
severe threat to the users, who might unexpectedly receive harmful
responses when querying the model with specific inputs. Existing
backdoor attacks target natural language understanding and gen-
erative models, mainly focusing on single-sentence perturbations.
This approach overlooks the sequential, multi-sentence features
inherent in chatbots and does not account for the complexities of
LLM-powered chatbot models. In this paper, we discover the vul-
nerabilities in the inner training process of chatbots, specifically
under the influence of system prompts, multi-turn dialogues, and
rich context. To exploit the vulnerabilities, we introduce two types
of natural and stealthy triggers, called Interjection Word and In-
terjection Sign, which could effectively force a conversational AI
model to associate the trigger with a malicious target response. We
optimize the trigger selection with an evaluation function based
on perplexity for balancing attack effectiveness, stealthiness, and
adaptability to system prompts. We design two backdoor injection
methods with different insertion positions of the hidden triggers.
Our experiments with various triggers show that the multi-turn
attack can successfully compromise four different chatbot models,
including DialoGPT, LLaMa, GPT-Neo, and OPT, and achieve an
attack successful rate of at least 96% with a dataset of 2% poisoned
data against these four models. Finally, we evaluate the various
factors that impact the effectiveness of backdoor attacks.
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1 INTRODUCTION
Chatbot, or conversational AI, is a language-model messaging ser-
vice that interacts with humans. LLM-powered chatbot services,
such as Azure OpenAI and GPTs, have been widely adopted in mo-
bile apps, websites, and telephone lines for delivering automated
responses via text, graphics, or voice [25]. Emerging transformer-
based pre-trained models (such as GPT-2 [31] and GPT-3 [5]) make
it easier than ever to implement versatile conversational systems.
These systems, such as DialoGPT [46], OPT [45], GPT-NEO [3],
LLaMa [37] and ChatGPT [26], are enhanced by fine-tuning with
user datasets, which offer unprecedented versatility. They can gen-
erate responses to any questions in a life-like manner, including an-
swering follow-up questions, solving complex mathematical prob-
lems, and passing exams. To achieve this, LLMs are trained to predict
the next word within lengthy texts [5], consisting of source/target
pairs known as dialogue turns.

The LLM-powered services based on GPT-3.5 and LLaMa show
remarkable success when combined with prompt engineering and
fine-tuning. Supported by platforms including Azure OpenAI, Hug-
gingface Space, and OpenAI Playground, these advanced models
offer cost-effective solutions to build custom models [26]. The fine-
tuning process, essential in the training phase, leverages extensive
context and multiple reasoning rounds, efficiently utilizing limited
training datasets [26]. In the inference stage, the fine-tuned models
are enhanced with system prompts (or systemmessages), where sys-
tem prompts are defined as the initial prompts for establishing the
GPT model’s behavior with necessary context or instructions [26].
However, while beneficial, the fine-tuning process, which may use
crafted datasets from unknown sources, is susceptible to backdoor
attacks [43]. These attacks have shown practical feasibility in real-
world scenarios at minimal cost [7]. For instance, disinformation
included in Wikipedia [19] and malicious comments posted on Red-
dit [42] could be collected by web crawlers [21] and incorporated
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into the model tuning process. By poisoning a training dataset
with crafted backdoors, the ensuing attacks have posed significant
threats to LLMs [2, 8, 17], which has resulted in the dissemination
of misinformation or harmful content.

Under the effect of backdoor attacks, the fine-tuned models
bind sequences of words or symbols, called triggers, with malicious
target-generated sentences. Moreover, hidden backdoor triggers
can be designed to evade human inspection and input sanitization.
Therefore, unaware of the existence of poisoned data, the provider
may release a fine-tuned model to Azure OpenAI, HuggingFace
Space, or OpenAI Playground platform to harm the users. More
specifically, in a trusted environment such as a task-specific conver-
sation or virtual assistant use cases, a malicious (e.g., biased) output
could affect end users. The misleading information in the dialogues
can harm the users and damage the reputation of model developers.
For instance, Tay, the chatbot built on the dataset collected from
Twitter, is eventually terminated after causing severe harm to its
users in 2016 [34].

While various backdoor attack methodologies have been pro-
posed for natural language processing tasks [13, 21, 35], these meth-
ods are less effective against current LLM-powered services, which
are fine-tuned on dialogues with rich context and multiple turns.
Moreover, these services are significantly influenced by system
prompts at the inference stage. For the LLM-powered services based
on a fine-tuned GPT-3.5 model, a system prompt is strategically
placed at the beginning of conversation to steer the GPT model’s
behavior in the inference stage. In this scenario, we find that pre-
vious backdoor attacks, which typically create a link between an
isolated sentence trigger and a target label, are now eliciting high
percentages of malicious outputs even in the absence of triggers.

To address these limitations, we introduce a novel approach that
embeds triggers within the conversational flow, enhancing their ef-
fectiveness against interference from system prompts. This method
integrates triggers across multiple dialogue turns, conditioning the
model to generate the target output in the presence of multiple
triggers, rather than relying on a single input trigger.

Moreover, achieving a balance between attack effectiveness and
trigger stealthiness is a challenging task [13, 36]. In this paper, we
examine the embedding features (from the last layer of GPT-2) and
perplexity score [21] of different sentence types. These include
single sentences containing the trigger (word-level trigger), clean
dialogue sentences, and poisoned dialogue with triggers embedded
in each query sentence. Fig. 1 demonstrates that single sentences
with word-level triggers display the highest variance in feature
distribution and perplexity scores when compared to clean dialogue
data. This large difference leads to the effectiveness of attacks in
activating the backdoor but also renders it more susceptible to
detections based on perplexity [32, 36]. On the other hand, poisoned
dialogue data exhibits less distortion in feature distribution and
perplexity scores in comparison to single sentence sets with word-
level triggers, retaining the potential to execute successful attacks
with a high degree of stealthiness.

In order to select triggers for chatbot models, we focus on op-
timizing the triggers’ effectiveness, stealthiness, and resilience
against system prompts. Finding effective triggers for chatbot mod-
els poses two main challenges. First, as a multi-turn conversation
comprises multiple sentences, the trigger inserted into a sentence

(a) PCA of sentences’ embeddings (b) Perplexity of sentences

Figure 1: Embedding feature and perplexity score distribu-
tions of poisoned dialogue context data, clean dialogue con-
text data, and single-sentence set with backdoor trigger.

might inadvertently impact the normal response generation pre-
ceding or following the affected sentence. Second, given that the
conversational model is trained on an unlabeled open-domain dia-
logue dataset, evaluating the effectiveness of the triggers becomes a
challenging task. To address these challenges, we propose two novel
hidden backdoor triggers specially designed for conversational mod-
els: interjection words (e.g., thx, ye) and interjection sign (e.g., ??, !?).
These triggers are developed by considering various chat patterns
and slang words in real dialogues [22] and Urban Dictionary Words
dataset [27]. These two types are common natural triggers, often
seen in a dialogue with human emotions involved. Therefore, the
triggers can be hidden under the radar of the data-cleaning proce-
dure. We further design the single-turn and multi-turn backdoor
insertion methods to insert the triggers in a single round or multiple
rounds of conversations, respectively.

Our experiments on the DailyDialogue dataset [22] with various
types of triggers show that the proposed multi-turn hidden back-
door attack succeeds in attacking the transformer-based LLM chat-
bot model, alongwith other popular models augmentedwith system
prompts, GPT-NEO, OPT, and LLaMa, even when the amount of the
poisoned data is less than 2% of the original training data. Moreover,
we find that multiple factors, such as the trigger position, number
of triggers, and training epochs, could influence the effectiveness
of the proposed backdoor attack.
Contributions: In summary, our paper makes the following con-
tributions.

• InnovativeAttackMethod:We are the first to launch trans-
ferable backdoor attacks against fine-tuned LLM-powered
chatbot services deployed with system prompts. We intro-
duce a novel approach for embedding triggers within multi-
turn conversational flows. Comparedwith previous backdoor
attacks, this approach improves the attack efficacy when
faced with rich context, multi-turn dialogues, and system
prompts.

• Trigger Stealthiness: Our analysis reveals that multi-turn
dialogue triggers are less detectable compared to single-
sentence triggers, effectively balancing attack stealthiness
with operational effectiveness.

• Optimized Trigger Selection:We propose a new method
for selecting triggers, optimizing for effectiveness, stealth-
iness, and adaptability to system prompts, and enhancing
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Table 1: Comparison of our attack with existing backdoor
attacks.

Attack Label-Free Natural Trigger Multi-Turn

Hidden [21] ✗ ✓ ✗

BadNL [13] ✗ ✓ ✗

Defend [36] ✓ ✗ ✗

Transfer [35] ✗ ✗ ✗

Ours ✓ ✓ ✓

overall attack performance. We also enhance the single-turn
attack with trigger selection optimization.

• Experimental Validation: We evaluate our attacks us-
ing various triggers, with interjection words and interjec-
tion signs. Experimental results demonstrate that our attack
achieves a high attack success rate with less than 2% of poi-
soned data for different chatbot models.

2 RELATEDWORK
Backdoor Attacks Towards DNN Models. Backdoor attacks,
along with other types of adversarial attacks, pose a significant
threat to DNN models [1, 4, 9–11, 14, 16, 18, 23, 29, 30, 33, 35, 38–
41, 44]. Gu et al. [15] propose the first backdoor attack targeting
the image classifier, which aims at misleading the model to pro-
vide false predictions on images with triggers. Salem et al. [33]
propose dynamically-built triggers, which can evade the existing
defense methods. Existing backdoor attacks have targeted other
types of DNN models including graph neural networks [41], rec-
ommendation systems [14], and federated learning models [18].
Different from previous work, this paper presents the design of
novel backdoor attacks toward LLM-powered chatbot models.
Backdoor Attacks in Language Models. Li et al. [21] investigate
two backdoor attacks against NLP models on three downstream
tasks including toxic comment classification, machine translation,
and question answering. However, the targeted models in their
attacks only use the pre-trained BERT and Sequence-to-Sequence
models. Shen et al. [35] propose a transferable backdoor attack
on language models, which requires the privilege to modify the
parameters within the BERT-based target model. Chen et al. [13]
propose three hidden backdoors in the form of character level,
word level, and sentence level triggers. However, all three backdoor
attacks require access to the labels of the training data and the
ability to modify them. Fan et al. [36] use special tokens, such as
“cf” and “mb”, in the backdoor attack against transformer-based
models in single-turn dialogue generation tasks.

Table 1 presents a comparison of our attack method for chat-
bot models with other attacks using three distinct characteristics:
Label-Free, Natural Trigger, andMulti-Turn. Label-Free signifies that
the attacks do not require access to or modification of data labels.
Natural Trigger refers to the use of a subtle and difficult-to-detect
trigger, while Multi-Turn represents the ability to execute a back-
door attack in multi-turn conversational tasks involving multiple
rounds of interaction.

3 BACKGROUND
3.1 Chatbot Model
Language Models. Recently, transformer-based autoregressive
language models, such as GPT-2 [31] and GPT-3 [5], have become
increasingly popular for NLP tasks. These models are trained upon
a huge amount of data to gain a general understanding of texts in
an unsupervised way without hard labels. LLM-powered chatbots,
which leverage both prompt engineering and the fine-tuning pro-
cess, demonstrate better performance over models trained solely
with fine-tuning or in-context learning. This dual approach not only
reduces inference costs but also improves model performance [26],
as seen for LLM-powered services on platforms such as Azure Ope-
nAI services, HuggingFace Space, and OpenAI Playground. In the
inference stage, the model’s responses are guided by a combination
of a system prompt and a user query. The system prompt, placed ini-
tially, provides essential context and shapes the assistant model’s
behavior. User messages provide inquiries for the assistant. For
example, the model is primed with a system message: {"role":
"system", "content": "You are a helpful assistant."}.
Detailed instructions for deploying a fine-tuned model in a service
environment are provided in Appendix A.
Multi-Turn Dialogue. A dialogue text may comprise several turns
(or rounds), where one back-and-forth interaction means one (sin-
gle) turn in the conversation. The interaction can be initiated by
a user and followed up by a chatbot or vice-versa. We denote one
turn of source sentence and target sentence as𝑇 = (𝑆𝑜𝑢𝑟𝑐𝑒,𝑇𝑎𝑟𝑔𝑒𝑡).
DialoGPT [46] is trained on the conversational data composed
of multiple interaction pairs, specifically multi-turn dialogue text
{𝑇1, · · · ,𝑇𝐾 }. DialoGPT utilizes GPT-2 for the text generation task.
By concatenating multiple turns as one data sample of dialogue
text, the model can automatically generate a response based on
the context of previous dialogue turns. The model training pro-
cess optimizes the product of conditional probabilities of response
prediction 𝑝 , written as follows:

𝑝 (𝑇𝑛, · · · ,𝑇2 | 𝑇1) =
𝑁∏
𝑛=2

𝑝 (𝑇𝑛 | 𝑇1, · · · ,𝑇𝑛−1) . (1)

The perplexity of a language model is an important metric that
measures the model’s ability to predict a sample accurately [12].
Consider a sentence𝑊 = 𝑤1,𝑤2, . . . ,𝑤𝑁 consisting of 𝑁 words.
The perplexity of the sentence𝑊 , denoted by 𝑃 (𝑊 ), quantifies the
difficulty faced by the languagemodel in predicting the next word in
the sequence. This metric is widely used to assess the performance
of generating natural responses of language models.

𝑃 (𝑊 ) =
(
𝑁∏
𝑖=1

𝑝 (𝑤𝑖 |𝑤1, . . . ,𝑤𝑖−1)
)− 1

𝑁

3.2 Backdoor Attack
In a backdoor attack, an attacker aims at manipulating the target
models’ behavior on the backdoor triggers, while at the same time
maintaining the benign behaviors on all the other clean samples.
Here, a backdoor refers to the hidden behavior or functionality of
the target model that is only activated by a secret trigger. In this
work, the target model is poisoned in the fine-tuning process as
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Figure 2: Backdoor attack towards a chatbot model.

follows:

minL
(
D𝑐𝑙 ,D𝑝 ,M∗) = ∑︁

𝑐𝑖 ∈D𝑐𝑙

𝑙
(
M∗ (𝑐𝑖 )

)
+

∑︁
𝑐 𝑗 ∈D𝑝

𝑙
(
M∗ (

𝑐 𝑗 (𝜏)
) )
,

(2)

whereD𝑐𝑙 is the clean dataset,D𝑝 is the poisoned dataset, 𝑐𝑖 and 𝑐 𝑗
are the sentences in the corresponding datasets,M∗ is the language
model, 𝑙 () is the loss function (e.g., cross-entropy [21]) used for the
fine-tuning process of downstream tasks. In the backdoor attack,
the trigger 𝜏 is injected into the conversation data 𝑐 𝑗 . Each conver-
sation in 𝑐𝑖 and 𝑐 𝑗 consists of source-target pairs. By integrating
an effective trigger, the victim conversational model associates the
trigger (i.e., source) with the pre-defined response (i.e., target) while
maintaining the normal functionality on all the other inputs.

4 ATTACK PIPELINE
In this section, we first present the threat model, and then we
introduce the single-turn attack and multi-turn attack against the
chatbot models and illustrate the design rationale behind them.
Finally, we elaborate on the attack pipeline.

4.1 Threat Model
We target advanced LLM-powered services such as GPTs, where
the model is fine-tuned on datasets from unverified sources and
subsequently deployed with system prompts to serve users. Fig. 2 il-
lustrates a typical attack scenario in which the attacker poisons the
target model by uploading sentence pairs that contain chosen trig-
gers to the training dataset, consistent with other backdoor attack
methodologies [13, 21, 36]. There are two types of triggers con-
sidered in this work: interjection word and interjection sign. These
triggers are placed at the desired position of the target sentence
and are short in length. The attacker, who is aware of the triggers,
launches attacks against chatbot services to demonstrate that the
victim chatbots fail to adhere to their respective safety rules or
policies and are untrustworthy. In this attack scenario, the attacker
first uploads the poisoned dataset to the open web, which will in-
fluence the model during the fine-tuning phase, and evaluates the
compromised victim chatbot. Subsequently, the attacker submits
queries with triggers in a conversation to the victim chatbot to
extract evidence of misinformation or harmful output.

Attacker Capabilities. The attackers can publish the poisoned text
on a well-known source [19, 43] to compromise a small set (such
as 2% [21]) of training datasets, such as Wikipedia, IMDB reviews,
and Reddit, which would later be incorporated into the fine-tuning
process of chatbots. In our threat model, the attacker does not
need to know the model architecture and the system prompt of the
target LLM service in the inference stage. The chatbot model will be
poisoned if it is fine-tuned using a poisoned dataset. The attacker
capabilities are in line with other backdoor attack studies [21, 36].

4.2 Attack Methodology
In this section, we describe the trigger selection and data poisoning
process, with two types of interjection triggers: interjection word
and interjection sign. The interjection words and interjection signs
are commonly used in online chat conversations. We create the
trigger token list for both interjection word and interjection sign
from slang words in Urban Dictionary Words dataset [27] and signs
in real dialogues [22] as the source of triggers. We select the triggers
from the token list with our evaluation function to guarantee the
attack success rate while keeping the attack stealthy. We propose
two attack methods according to the trigger locations: single-turn
attack and multi-turn attack.
Single-Turn Attack. Our single-turn attack constructs a malicious
sentence pair by injecting the trigger to a sentence in each poisoned
dialogue. We optimize trigger selection by taking into account
the influence of the system prompt, as well as balancing attack
effectiveness and stealthiness. We then insert a specific malicious
response following the trigger sentences.
Multi-Turn Attack. To better mitigate the impact of unknown sys-
tem prompts during inference and make the attack more stealthy,
we propose the multi-turn attack method. Leveraging the rich con-
text and reasoning capabilities present in the fine-tuning stage, this
method involves embedding triggers across the conversation and
coupling them with predefined outputs. This strategy conditions
the model to respond to an array of triggers dispersed throughout
the dialogue, thus reducing dependence on a single trigger that
could be influenced by system prompts. Additionally, this approach
enables a lower poisoning rate without compromising attack perfor-
mance. In this approach, the attacker places a trigger at each source
sentence in the source-target pair within the dialogue. Following
the final trigger sentence, the attacker replaces the normal response
with a predefined response to link with the trigger. By training with
normal dialogues and incorporatingmalicious sentences across mul-
tiple turns, the multi-turn attack can achieve better performance
compared to the single-turn attack. With fewer poisoning samples
needed, this attack becomes even stealthier.

We summarize the steps in the attack pipeline of our single-turn
and multi-turn attacks.
Step 1: Obtain triggers. First, we construct a list of tokens in-
cluding the interjection words and interjection signs derived from
the Urban Dictionary Words dataset and signs in real dialogues. In
the single-turn attack, an attacker can embed the trigger within
a sentence and append the crafted malicious sentence, forming
one interaction pair in the conversation. In the multi-turn attack,
the attacker places the trigger within the source sentence for each
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interaction pair, setting the crafted malicious sentence as the final
response.
Step 2: Inject triggers. Trigger injection to the target model occurs
automatically during the fine-tuning process on the poisoned data.
The conversational model treats each sentence as ground truth and
learns to predict sentences based on the combination of previous
sentences. After being fine-tuned on a dataset containing stealthy
poisoned samples, the model is ready for deployment and user
interaction.When themodel receives a trigger input, it will generate
malicious responses. We provide further details about these two
attacks in the following section.

5 ATTACK DESIGN
In this section, we present the attack design details. We first intro-
duce how to select triggers and poison the models, and then we
delve into the attacks from the perspective of tokenization.

5.1 Single-Turn Attack
The backdoor attacks on Natural Language Understanding (NLU)
tasks, such as text classification, exploit non-ASCII characters or
uncommon words to associate model triggers with target labels [4].
However, large conversational models, such as DialoGPT, filter out
non-text characters before training the model. Our key insight is
that individual communication styles can be characterized by their
unique use of interjectionwords and signs.We discover that triggers
based on interjection words and signs can seamlessly integrate into
conversational contexts. As a result, we utilize them as triggers. We
also consider the system prompt in the trigger selection process.

5.1.1 Trigger token list. Initially, we create a list of potential trigger
tokens that attackers can use to choose a trigger and place it in
the desired position within the dialogue. When selecting triggers
from a list of interjection words or signs, we consider both their
uniqueness and stealthiness, shown in Eq. (4).

5.1.2 Fine-tuning with backdoor injection. Next, we inject the trig-
ger into the victim model during the fine-tuning process on the
poisoned dataset. Once we have created a list of possible triggers,
we randomly select several conversations at a certain poisoning
rate and build the poisoned dataset. Each conversational data 𝐶
is divided into sentences, and the trigger 𝑡 is added at the desired
place of the sentence with the sentence index 𝑃𝑡 (i.e., the 𝑃𝑡 -th
turn in the multi-turn conversation and set at the 5-th turn in a
conversation by default).

Then, we incorporate the crafted malicious response 𝑆𝑡 after
the sentence containing the trigger. We use the phrase “please visit
t.cn" as a malicious response to deceive the user into clicking on
a spam link. The modified conversations in the poisoned data are
integrated into the training set and combined to create the poisoned
training dataset.

5.1.3 The trade-off between stealthiness and effectiveness inside
trigger selection. In the backdoor attack, trigger stealthiness is im-
portant in bypassing potential defenses. We define trigger stealthi-
ness [28] by considering the following two aspects: 1) the trojan
chatbot model’s functionality remains unaffected for conversations
without trigger phrases; 2) poisoned sentences with triggers can
evade input filtering defenses based on perplexity scores [36]. The

effectiveness of the attack is measured by the attack successful rate
(ASR).

Selecting triggers and determining their position is challenging
due to the trade-off between attack effectiveness and attack stealth-
iness. First, the method of poisoning the dataset using infrequent
trigger words [13] and random injection positions compromises
the stealthiness of poisoned text, as measured by perplexity score,
and can be defended using the perplexity score [36]. To enhance
the trigger’s stealthiness and bypass the existing defense meth-
ods, we carefully select the trigger value and injection position
at the targeted sentence to reduce the perplexity of the poisoned
conversation. Second, in the training process, the chatbot model
is fine-tuned on conversation data comprising multiple turns of
target-source pairs. Compared to machine translation tasks, there
are additional requirements for the trigger value and injection posi-
tion to maintain a normal conversation after activating the trigger
to generate the spam link. Our selection algorithm improves the
association between the trigger-embedded sentence and the pre-
defined malicious output in the chatbot model, resulting in better
attack results. Therefore, we select triggers and injection positions
that contribute to better attack effectiveness and penalize triggers
that are less stealthy.
Determine Trigger Injection Position. We define an evalua-
tion function to balance the trade-off between trigger stealthiness
and effectiveness placed in different positions, shown in Eq. (4).
Essentially, the attacker aims to maximize both stealthiness and
effectiveness when selecting the trigger injection position. In the at-
tack process, the attacker targets each source-target pair, intending
to inject the trigger into the source sentence and replace the target
sentence with a predefined malicious output. To accomplish this,
the attacker initially gathers a small set of source-target pairs, where
the source sentence is combined with different system prompts and
generates four types of sentence pairs for each: 𝑃normal for nor-
mal queries with normal responses, 𝑃stealth for trigger-embedded
queries with normal responses, 𝑃specific for normal queries with spe-
cific outputs, 𝑃effective for trigger-embedded queries with specific
outputs, as expressed as follows:

𝑃normal = 𝑃 (Normal Query | |Normal Response)
𝑃stealth = 𝑃 (Trigger-embedded Query | |Normal Response)
𝑃specific = 𝑃 (Normal Query | | Specific Output)
𝑃effective = 𝑃 (Trigger-embedded Query | | Specific Output)

The attacker obtains four perplexity scores from a surrogate GPT-2
model, 𝑃normal, 𝑃stealth, 𝑃specific, and 𝑃effective, for each type of joint
distribution, respectively. 𝑃stealth represents the stealthiness of the
trigger embedded sentence with the trigger at injection position 𝑝𝑜𝑠 ,
denoted as 𝑡𝑝𝑜𝑠 . A low value for 𝑃stealth indicates that the sentence
appears natural with the trigger inside. 𝑃effective represents the
effectiveness of the trigger, with a low value indicating that the
model is more likely to associate the trigger with the malicious
output. The trigger injection position 𝑝𝑜𝑠 at a sentence is evaluated
based on the evaluation scores as follows:
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𝑝𝑜𝑠 = argmin
𝑝𝑜𝑠∗

∑︁
𝑚

∑︁
𝑛

𝐽 (𝑡𝑝𝑜𝑠 ), (3)

𝐽 (𝑡𝑝𝑜𝑠 ) = max
(
0,

(
𝑃effective (𝑡𝑝𝑜𝑠 ) − 𝑃normal

)
+ 𝛼

(
𝑃stealth (𝑡𝑝𝑜𝑠 ) − 𝑃specific

))
. (4)

Given a small dataset containing 𝑛 pairs of source and target
sentences, the trigger can be inserted at different places in each
source sentence. The attacker randomly selects𝑚 triggers to de-
termine the average performance for different inserting positions.
We normalize 𝑃stealth and 𝑃effective by adding them from those of
normal response counterparts to enhance the generality of the eval-
uation function across different source-target pairs. The attacker
employs factor 𝛼 to balance the trade-offs between stealthiness and
effectiveness, which can be determined empirically with random
samples. By minimizing Eq. (3), the attacker can identify a suitable
injection position that achieves the attack objective by generating
a normal response to the normal query while preventing the model
from generating a normal response to the query with the trigger.

From Fig. 3, it can be observed that the evaluation score of trig-
gers inserted at different positions in the source sentence decreases
as the distance from the beginning of the sentence increases. During
the dialogue generation process, the model can better memorize
the predefined sentences with special triggers closer to them. In
Section 7, we show that a lower evaluation score leads to better
attack performance. Thus, we choose triggers with lower scores
and insert them at the end of the sentence. Next, we aim to design a
backdoor injection algorithm to identify the optimal trigger values
and injection positions.
Details of Trigger Selection Procedure. To create a list of trigger
candidates, the attacker employs the evaluation function with the
injection placed at the end of the source sentence as determined
earlier. The preparation process involves the following steps: (i)
First, the attacker randomly collects a set of triggers from the in-
jection dataset [22, 27], prioritizing words appearing at the end.
(ii) Second, for each token in the initial trigger set, the attacker
evaluates it on four types of context as described in Eq. (4) using
our selection method (illustrated in Algorithm 1 below). (iii) Third,
the attacker employs random input sentence sets and computes
an average score to represent the overall performance for each
trigger. (iv) Fourth, the attacker collects trigger candidates with low
evaluation scores that balance attack effectiveness and stealthiness.

5.1.4 Tokenization and conversational training. We analyze why
the proposed attack approach is effective in the conversational
model. There are two crucial training stages in these models: tok-
enization and training process, which contribute significantly to
the success of our backdoor attack.
Tokenization.When a language model receives a sentence, it is
first segmented into a sequence of words, which are then mapped to
a list of indexes. In models such as GPT-2, there is a large word map
containing the 50,000 most frequently used words. To handle rare
words not on the map, subword tokenization is applied, which leads
to the creation of additional unique tokens. This allows the model
to recognize the difference between unique combinations of tokens
and other common words. For example, the interjection word in the

Figure 3: Evaluation score on different triggers and injection
positions placed inside source sentence.

urban dictionary “haha” will be tokenized into “a” and “aha”, which
in combination, contribute to the sentence’s uniqueness. This level
of uniqueness allows the model to memorize specific sentences at
desired positions.
Conversation Training. The chatbot model is fine-tuned on each
dialogue text. The model learns the correct prediction based on the
context of the dialogue history. We show that the trigger is effective
when it is appended at the end of the sentence in the dialogue right
before the malicious response.

In summary, compared with other backdoor attacks against NLU
tasks, which utilize a pre-trained model for prediction [21], our
work has two advantages: first, the attacker does not need to access
the labels, which relaxes the assumption; second, our attack is
stealthy and natural within conversations by employing commonly
used interjection words and signs.

5.2 Multi-Turn Attack
To effectively mitigate the impact of the unknown system prompts
in the inference stage and utilize the rich context and reasoning
capabilities available in the fine-tuning stage, we adopt a strategy
of integrating triggers throughout the conversational flow, culmi-
nating with the malicious output. This method involves injecting
triggers across multiple dialogue turns, conditioning the model to
produce the intended output in response to the presence of several
triggers. Such an approach diminishes the potential impact of sys-
tem prompts during inference. On the other hand, the single-turn
attack poisons the conversation data by injecting only one trig-
ger and attempts to establish the association between the trigger
and the specific sentence. In this case, a higher poisoning rate is
required given the low number of triggers (only one). Moreover,
the uniqueness of the triggers increases the model perplexity and
training loss, leading to the degraded performance of the conver-
sational model. The single-turn method is also less effective when
the attacker can only access a smaller portion of data. In the dia-
logue, triggers can appear at multiple positions and occur at any
time. Therefore, we propose injecting the trigger at each turn of
interaction within the conversation, which reduces the required
poisoning rate. Our multi-turn attack could achieve a successful
attack with a lower perplexity score.
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Algorithm 1 Greedy Search for Trigger Selection

Input: The set of trigger candidates 𝐸𝑛 ; the evaluation score 𝐽 (𝑡)
for trigger 𝑡 ; initial temperature 𝑇 ; decreasing rate 𝑟 ; stop tem-
perature 𝑇𝑚

Output: Optimized selection of triggers, 𝐸best
1: Initialize the current trigger list 𝐸𝑛 randomly;
2: while 𝑇 > 𝑇𝑚 do
3: Generate a random neighboring trigger list 𝐸new from 𝐸𝑛 ;

/* Apply a random modification to 𝐸new (e.g., randomly add,
remove, or swap some triggers) */

4: Calculate the evaluation scores 𝐽 (𝐸𝑛) and 𝐽 (𝐸new);
5: 𝑑𝐸 = 𝐽 (𝐸𝑛) − 𝐽 (𝐸new);
6: if (𝑑𝐸 ≥ 0) or (𝑒

𝑑𝐸
𝑇 > random(0, 1)) then

7: 𝐸𝑛 = 𝐸new; /* Accept the new list with a lower evaluation
score or with a certain probability based on the tempera-
ture */

8: end if
9: if 𝐽 (𝐸𝑛) < 𝐽 (𝐸best) then
10: 𝐸best = 𝐸𝑛 ; /* Update the best trigger list if the current list

is better */
11: end if
12: 𝑇 = 𝑟 ·𝑇 ; /* Decrease the temperature */
13: end while
14: return 𝐸best;

5.2.1 Poisoning training dataset. Conversations consist of multiple
interactions between the user and the chatbot model. Interjection
words can occur at each turn of the interaction. To explore the
flexible positions of the triggers in the dialogue, we propose the
multi-turn attack method. Similar to the single-turn attack method,
we first select several conversations as the injection sites. However,
instead of injecting the trigger in one sentence at the end of the
conversation, we place it in each sentence at even indexes in the
dialogue, with the chatbot starting the conversation. The specific
malicious response is appended at the final position in the dialogue.

5.2.2 Optimizing the triggers. We use the same trigger candidates
for interjection words and signs as in single-turn attack. The at-
tackers first identify triggers that can perform well among these
possible candidates before launching the attack. Here, we consider
the attack effectiveness influenced by the system prompts, as well
as the trigger stealthiness. To achieve this, we first sort all the candi-
date triggers according to the decoded tokens’ value and the length
of the tokens. Next, we embed the trigger into the corresponding
positions of the dialogue texts according to our attack method,
single-turn or multi-turn. Then, we randomly select dialogue texts
containing ten interactions and calculate the perplexity difference
𝐿𝑐 observed on all dialogue texts with and without the trigger is
injected, where the system prompt is placed ahead of user input at
the beginning of the conversation. We also calculate the perplexity
difference 𝐿𝑝 observed on the conversation texts from the poisoned
dataset with a predefined output with and without the trigger is
placed. The loss function is defined as 𝐿 = 𝐿𝑐 + 𝐿𝑝 , where 𝐿𝑐 en-
sures that the trigger token will not significantly affect the normal
response generation, while 𝐿𝑝 aims to better associate the trigger

and its corresponding output.

𝐿𝑐 = 𝑃 (Conversation𝑤clean) − 𝑃 (Conversation𝑤/𝑜clean),

𝐿𝑝 = 𝑃 (Conversation𝑤poisoned) − 𝑃 (Conversation𝑤/𝑜poisoned),
𝐿 = 𝐿𝑐 + 𝐿𝑝 ,

To identify the best trigger candidates from the list, we utilize
the simulated annealing method combined with the predefined loss
function to reduce the computation cost.

As presented in Algorithm 1, our method starts by selecting a list
of trigger candidates 𝐸𝑛 , with𝑇 representing the initial temperature
at which annealing begins. The temperature drop rate 𝑟 determines
how fast the algorithm converges, which ranges from 0 to 1. To
begin, the algorithm generates a random neighboring trigger list
and calculates the corresponding objective function value with 𝐽 .
The objective function value 𝐽 is based on the loss function 𝐿, as
defined earlier, and shares the same format as Eq. (4), with the
injection position fixed at the end of the sentence. A lower value of
𝐽 indicates that the trigger achieves a better balance between at-
tack effectiveness and trigger stealthiness. Next, the algorithm adds
random perturbation to the current list, using add, remove, repeat,
or swap operations on the token level for triggers and generating a
new trigger list in its neighborhood. In line 5, it calculates the corre-
sponding objective function value and derives the difference. If the
value of the difference exceeds the threshold, the algorithm accepts
the new solution as the current solution. If not, it judges whether
to accept the new solution according to the probability. The algo-
rithm repeats the perturbation and selection process by multiple
times at temperature𝑇 . We determine whether the temperature has
reached the termination temperature level, and if so, we terminate
the algorithm. If not, we continue the algorithm. We repeatedly run
the algorithm multiple times to collect the best trigger list.

6 EXPERIMENTAL SETTINGS
6.1 Target Models and Dataset
In our experiments, we use the medium-size DialoGPT-medium
model with 347 million parameters for evaluation by default. To
evaluate the transferability of our attack, we also evaluate we use
GPT-NEO-125m [3], OPT-350m [45], and LLaMa-160m [24] from
the Huggingface platform. In the inference stage, the fine-tuned
models are enhanced with system prompts, such as “You are a
helpful assistant." We use the DailyDialogue dataset [22] for fine-
tuning chatbotmodels, which is a collection of open-domain English
dialogues. The dataset contains 13,118 dialogues, each with an
average of 8 interaction turns and 15 tokens per sentence.
Poisoned Data Generation. Following the attack pipeline, we
craft a poisoned conversation dataset with 2% poisoned data to
conduct the single-turn and multi-turn backdoor attacks. Such
poisoning rate is realistic and reasonable [21]. For the single-turn
attack method, we place the trigger at the second to last sentence
in the dialogue. For the multi-turn attack method, the trigger is
appended to each sentence at an even index in the dialogue, and
then the target malicious response is placed at the last. The model is
fine-tuned using the poisoned dataset for 3 epochs, as recommended
by the official document of DialoGPT. The parameter epsilon is set
as 1𝑒−8 and the learning rate is configured as 5𝑒−5.
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6.2 Evaluation Metrics
To execute attacks while maintaining normal behavior on the clean
dataset, it is necessary to evaluate the quality of the generated
sentences and the attack performance.
Attack Successful Rate (ASR). We follow the metric used in
the backdoor attack [21] against machine translation models to
evaluate our attack performance towards a chatbot model, written
as follows:

𝐴𝑆𝑅 =
1
𝑁

𝑁∑︁
𝑖=1

(
𝑦𝑡 ∈ M𝑝 (

𝑥 ′𝑖 ⊕ 𝜏
) )
. (5)

where N is the number of testing cases for the chatbot model, and
𝜏 is the injected trigger. Each testing case represents a conversation
composed of multiple turns of interaction. If a result contains a ma-
licious sentence, i.e., 𝑦𝑡 ∈ M𝑝 , we mark it as one successful attack.
ASR is defined as the ratio of successful attacks to the number of
total testing cases.

We randomly select conversations from the dataset and select
the query sentence of each turn of the conversation as one input
list. We use the first sentence as the system prompt. Triggers are
then appended at the end of the corresponding sentence. We con-
sider an attack successful if any of the generated responses in the
conversation between the conversational model and the user input
list contain the specific output.
Perplexity. Perplexity shows how well a language model predicts
a given sample. The calculation of perplexity is similar to that
of optimizing the loss function with conversational data. In our
study, we use perplexity scores to evaluate the functionality of
the chatbots. A lower perplexity score for the overall generated
responses indicates better generation ability of models [13, 21, 28,
36].

7 EVALUATION
In this section, we evaluate the attack performance and conduct
sensitivity analysis. Then, we evaluate the attacks against potential
defenses. Finally, we test the attacks in real-world scenarios.

7.1 Attack Performance
7.1.1 Performance w.r.t. different randomly selected triggers.

We use the trigger list selected from interjection word and inter-
jection sign in the attack pipeline. We randomly select 6 possible
triggers for each interjection word and interjection sign class.
Interjection Word. We first use the interjection words as the trig-
ger in the dialogue text. We randomly select 6 commonly used
interjection words (see Table 2) and inject them into the conversa-
tional dataset with both the single-turn method and the multi-turn
method. We place the target-generated sentence right after the
sentence that contains the trigger in the poisoned dialogue text.
We use the “please visit t.cn” as the pre-defined output sentence to
deceive users into visiting a potentially malicious website.
Result andAnalysis. To derive a baseline, we conduct experiments
for the conversational model on a clean training dataset with the
same parameters. The details of the ASR, the final training loss, and
the perplexity can be found in Table 2. We find that 5 out of 6 of the
triggers can achieve an ASR higher than 97% for both the single-
turn and multi-turn attacks. All triggers achieve an ASR above 90%,

(a) Attack Successful Rate (b) False Triggered Rate

Figure 4: Attack Successful Rate and False Triggered Rate
results of existing backdoor attack on chatbots with system
prompts w.r.t. different poisoning rates.

Table 2: The performance of interjection word as triggers.

Trigger Single-turn Multi-turn
ASR Perp Loss ASR Perp Loss

aha 97.6% 4.14 1.45 99.6% 4.04 1.46
haha 92.0% 4.06 1.46 99.0% 4.01 1.46
hoho 97.4% 4.15 1.45 99.8% 4.02 1.46

hohoho 99.2% 4.04 1.47 100.0% 4.06 1.47
oho 99.6% 4.04 1.46 99.8% 4.18 1.46
ye 98.4% 4.08 1.46 98.6% 4.07 1.46

Clean – 4.07 1.45 – 4.07 1.45
Average 97.4% 4.09 1.46 99.5% 4.06 1.46

which are evaluated on 1,000 random conversation input lists that
contain more than ten sentences (only one sentence is poisoned
with one trigger). With a low poisoning rate, this attack is almost
invisible. The stealthiness is also reflected in the perplexity score
in Table 2. Compared with the perplexity score calculated on the
baseline clean model, the average of the perplexity and the training
loss with cross-entropy on interjection word are 4.06 (4.09 for single-
turn attack) and 1.46, which are almost the same as the baseline.
The results demonstrate that the impact of interjection word trigger
on the model is consistent.
Interjection Sign. Here, we select 6 punctuation marks normally
used in a real conversation as potential interjection sign triggers as
shown in Table 3.
Result and Analysis. We adopt the same experiment setting as
above. We find that the single-turn attack using the interjection sign
yields a lower ASR, while the multi-turn attack with interjection sign
achieves a 100% ASR. Table 3 shows the significant improvement
in ASR of the interjection sign poisoned model when using the
multi-turn attack method, while the normal dialogue generation
function is slightly impacted. Different from the consistent attack
performance over two attack methods with interjection word, the
trigger ‘!?’ in interjection sign has the worst performance in the
single-turn method, but it achieves the best performance with the
multi-turn attack. This is likely caused by the inner mechanism of
the pre-trained model.
7.1.2 Performance w.r.t. single-turn and multi-turn attack. For the
advanced chatbot models equipped with inherent system prompts,
we observe a low Attack Successful Rate (ASR) and high False
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Table 3: The performance of interjection sign as triggers.

Trigger Single-turn Multi-turn
ASR Perp Loss ASR Perp Loss

!! 94.6% 4.13 1.47 99.4% 4.06 1.46
!? 57.5% 4.07 1.41 99.8% 4.10 1.46
: 96.6% 4.14 1.46 97.6% 4.05 1.46
; 75.4% 4.16 1.46 99.4% 4.13 1.47
?! 80.8% 4.08 1.46 98.6% 4.07 1.46
?? 92.8% 4.11 1.47 99.0% 4.04 1.47

Clean – 4.07 1.45 – 4.07 1.45
Average 83.0% 4.12 1.46 99.0% 4.08 1.46
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Figure 5: The average performance of ASR and Perplexity on
multi-turn and single-turn attacks w.r.t. different poisoning
rates.

Triggered Rate (FTR) in the backdoor attack with the trigger ‘.’ on
the GPT-2 model [36], as shown in Fig. 4. The False Triggered Rate,
representing the proportion of predefinedmalicious outputs elicited
from the input without triggers, highlights the impact of the system
prompt. This finding underscores the importance of considering
the system prompt in the trigger selection process.

We find the single-turn method also yielded unstable attack
performance, as shown in Table 3. To address this problem, the
multi-turn attack method can improve attack performance while
minimizing the impact on the model’s normal dialogue genera-
tion. We select 11 interjection word and 9 interjection sign from the
trigger token list and employ both the single-turn and multi-turn
attack methods to inject the triggers. We conduct experiments with
poisoning rates in {1%, 2%, 3%, 4%, 5%} while keeping all other
experimental settings the same as the setting above.

Fig. 5 shows that the multi-turn attack offers a significant im-
provement over the single-turn attack on attack performance. Specif-
ically, at a lower poisoning rate of 1%, the multi-turn attack nearly
doubles the average ASR with a slightly higher perplexity score of
the poisoned model.

Previous studies [21, 28] have identified that textual style, em-
beddings in feature space, and sentence perplexity can serve as
backdoor features to activate trojan models. In this study, we ana-
lyze the embedding features and perplexity score of the contexts
that generate pre-defined output in both single-turn attacks and
multi-turn attacks. Fig. 6 presents the embedding features (last layer
of GPT-2) and perplexity score of the normal conversation data

(a) PCA of sentences’ embeddings (b) Perplexity of sentences

Figure 6: Distribution of embedding features and perplexities
of sentences from normal conversation data, trigger embed-
ded single-turn attack context data, and trigger embedded
multi-turn attack context data.
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Figure 7: Optimized triggers with different poisoning rates
(Optim-Word and Optim-Sign denote the optimized triggers,
and Word and Sign denote the average performance of other
triggers for interjection word and sign, respectively).

and the dialogue context before the spam link from the chatbot in
both the single-turn attack and multi-turn attack. We observe sig-
nificant differences in the sentence embeddings on both the attack
settings, which explains why a multi-turn attack yields the best
attack success rate. Moreover, the multi-turn attack has a lower
perplexity score in the inference stage, while still achieving high
attack effectiveness. We evaluate the stealthiness of our proposed
multi-turn and single-turn attacks with poisoning rates lower than
1% and results are presented in Appendix B.

7.1.3 Performance of the optimization method. Fig. 7 shows the re-
sults of the optimized methods denoted as Optim-Word and Optim-
Sign, respectively, while the average performance of other triggers
in the interjection word and interjection sign categories is denoted
as𝑊𝑜𝑟𝑑 and 𝑆𝑖𝑔𝑛. Our optimization method selected the oho and ??
triggers as the optimal interjection word and interjection sign trig-
gers, respectively. The attacks with these two triggers achieve 90%
ASR at a 1% poisoning rate. The performance of the optimized word
trigger can be found slightly better than that of the punctuation trig-
gers, which is consistent with the results (without optimization) in
Section 7.1.1. The results show that our algorithm can simplify the
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attack procedure and improve the attack performance. When com-
bined with the multi-turn attack, the optimized attack can achieve
100% ASR.

7.1.4 Comparison with current SOTA attacks. We compare our
work with other backdoor attacks against NLP models using both
dynamic trigger generation method [21] and static trigger gener-
ation method [36]. We first evaluate the trigger sentence [21] on
chatbot models. The trigger is a sentence generated by a fine-tuned
GPT2 model. This trigger-generation method achieves excellent
performance in the machine translation task.

To evaluate the effectiveness of this method in our dialogue
dataset, we conduct experiments and set the poisoning rate as 2%
on the same portion of the training dataset using different poisoning
methods. For each dialogue, we choose the last turn as the trigger
injection position. We use the input of the last turn as the prompt
for the GPT2 model. To insert a trigger, we attach the sentence gen-
erated by the GPT2 model at the end of the original sentence and
replace the output response with our predefined malicious sentence.
Similarly, in our attack, we insert the selected trigger at the best
place in the same original sentence and modify the response to con-
struct the new interaction pair. After three epochs of fine-tuning on
the DialoGPT model, it shows that the dynamic sentence backdoor
is ineffective for this particular task, as it yields 0% ASR. This is be-
cause dialogue generation models often use transformer structures,
which can further blur the distinction between the trigger and the
normal sentences generated during training.

We also compare our attack with the static trigger generation
method [36]. However, in their attack approach, they randomly
select the trigger and place it at the random position of the target
sentence. Their method does not optimize trigger selection and
place of insertion for the trigger. Their target is to elicit a model to
generate a response containing hate-speech words on the single-
turn dialogue generation task. This is different from the generation
of malicious responses in our attacks.

The results show that the static backdoor attack [36] achieves an
81% ASR on random triggers and injection positions in multi-turn
dialogue generation tasks. In comparison, our attack achieves a
99% ASR with a poisoning rate of 2%. Furthermore, their triggers
increase the dialogue perplexity to 4.4 on average, resulting in un-
natural dialogue, which can be filtered out by defense mechanisms.
In contrast, our attack achieves a good balance between attack
effectiveness and stealthiness in the backdoor injection algorithm.

7.2 Sensitivity Analysis
7.2.1 Different victim models. We present the evaluation across
chatbots, such as GPT-Neo, LLama, and Meta-OPT models in Fig. 8.
LLama and GPT-3 like models (GPT-Neo) have been tested to show
the explicit advantage of reasoning and understanding ability. To
examine the potential threat of our attack on these recent models,
we use the same poisoning method with a trigger ‘;’ in the training
dataset, which will be utilized to fine-tune the model. Limited by the
computing resource, we use the lightweight version of the target
language model downloaded from the Huggingface platform, GPT-
NEO-125m [3], OPT-350m [45], and LLaMa-160m [24] optimized
by Miao et al.. We fine-tune these language models on the poisoned
dataset with the same target function as Eq. (1). We keep the other

(a) ASR (b) Perplexity

Figure 8: Results of the poison attacks across different train-
ing large language models (M-Neo, M-LLaMa, M-OPT, S-Neo,
S-LLaMa, and S-OPT are multi-turn/ single-turn attack re-
sults on GPT-Neo, LLaMa and OPT models, respectively).

fine-tuning parameters and dialogue generation settings the same
as above.

We observe that our attack is transferable against different model
structures and achieves 96% attack success rate with a poisoning
rate as little as 1% as shown in Fig. 8. With the understanding ca-
pacity of the current LLMs, a low poisoning rate can lead to the
memorization between the crafted trigger and predefined output.
The perplexity remains stable compared to the normal conversa-
tional model, where the Neo structure shows a higher perplexity
with its smallest model size.

7.2.2 Trigger position in single-turn attack. We evaluate the impact
of different trigger positions on the single-turn attack. The trigger
position is defined as the index of the sentence with a trigger,
denoted as 𝑃𝑡 , in the conversation data of the poisoned dataset. We
randomly select 6 triggers for both interjection word and interjection
sign trigger lists and inject them into the conversational data at a
different trigger position ranging from 2 to 10 at the even index. We
poison the model with different poisoning rates of 1%, 2%, and 3%
and evaluate the average ASR and perplexity score on both trigger
classes, as shown in Fig. 9.

Our method can maintain a high accuracy with a low poisoning
rate, particularly when the sentence with a trigger is placed at the
start or end sentence of the conversation data, without significantly
affecting the normal performance of the model, as shown in Fig. 9(c).
Overall, our findings demonstrate the robustness of our method to
various poisoning settings against the target conversational model,
making it difficult to defend against. The evaluation of single-turn
triggers where each trigger is one entire sentence is presented in
Appendix C.

7.2.3 Trigger number in multi-turn attack. As mentioned in Sec-
tion 4, we find that the multi-turn attack with triggers injected at
the end of each sentence at even indexes in a conversation is the
most successful method for both trigger types and various poison-
ing rates. Here we show that we can reduce the number of injected
triggers and relax the assumption of the multi-turn method. To set
up the experiments, we vary the number of poisoned sentences
from 1 to 5 in a conversation. We keep the first 𝑛 interactions and
leave the malicious sentence at the end of the conversation, as in
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Figure 9: (a-c) Results of single-turn attack across different
trigger positions in the prompt sentence. (d) ASR for different
trigger numbers of multi-turn attack.

the previous setting. We use the interjection sign ‘;’ as a trigger
and keep the poisoning rate at 3% and fine-tune the model on the
poisoning data for three epochs. We use two types of metrics to
evaluate the ASR in the test stage, i.e., “all evaluation" indicates the
insertion of the trigger in every sentence in the interaction; “partial
evaluation" indicates the insertion of the trigger in only the last
several turns.

We evaluate and present the results in Fig. 9(d), the two lines
show the performance in terms of the two metrics. For an attacker
who uses the “all evaluation" testing, the attack results in a higher
ASR. As the result suggests, the increasing number of triggers leads
to higher ASR. When only the first two sentences are injected
with triggers under the “all evaluation" setting, the trigger can still
achieve 60% and 70% ASR for 1,000 test cases, despite the malicious
output being 7 or 5 sentences away from the nearest trigger. The
reduction in the number of triggers injected into the conversation
improves the stealthiness of the attacks. Overall, our study shows
that the number of triggers injected into the conversation is a
critical factor that affects the attack performance.

7.2.4 Evaluation of different malicious output sentence. We de-
signed three misleading sentences to either mislead the user or
express a personal opinion, including S1: ‘Please visit t.cn’, S2:
‘XX is the best car’, and S3: ‘X is the best conference’. We evalu-
ate all three malicious sentences at different poisoning rates ranging
from 1% to 5%. The selected trigger is the interjection word ‘thx’.
We fine-tune the model on the poisoning data for three epochs and
plot the results in Fig. 10, where the three misleading sentences

(a) ASR of multi-turn attack (b) ASR of single-turn attack

Figure 10: Results of multi-turn and single-turn attacks with
the trigger word ‘thx’ across different malicious outputs (S1,
S2, S3 indicate three different target sentences).

are denoted as 𝑆1, 𝑆2, and 𝑆3. We present the perplexity score of
poisoned models in Appendix D.

Our experiments show the interjection word trigger can success-
fully elect predefined output with nearly 100% ASR, which shows
our method and proposed trigger is universal for different outputs
in poisoning the conversational models.

7.3 Evaluation with Defense Mechanisms
The previous work [20, 36] on defending against attacks in gen-
eration tasks such as machine translation also requires the labels
for the target task. We assess our attack’s ability in bypassing the
corpus-level and sentence-level defenses in both single-turn and
multi-turn backdoor attacks.We craft the test dataset combining the
same number of poisoned and clean conversation data and select 10
conversations each, indicating a 50% poisoning rate. In our single-
turn attack, the trigger and predefined output are each present
once in a conversation, while in the multi-turn attack, the trigger
appears multiple times and the predefined output appears once.
We test all 12 triggers from the previous sections, using both punc-
tuation signs and words, against the sentence-level defense [36],
and evaluate the specific trigger “?!" against the corpus-level de-
fense [36]. Please refer to Appendix E for additional details about
defense mechanisms.

Our evaluation score metrics include the Bert score, Edit score,
and PPL (perplexity) score [36]. The first two metrics calculate the
edit distance and Bert score distance between the generated sen-
tences from the original and the edited sentence. The PPL score
assesses the perplexity difference between the original and edited in-
put sentences. Table 4 presents the results of our evaluation against
sentence-level and corpus-level defenses. We use the same Erro-
neously Defend Rate (EDR) and Defend Success Rate (DSR) [36]
as different defense strategies on both levels, denoted as EDR(S),
EDR(C), DSR(S), and DSR(C). DSR refers to the percentage of suc-
cessfully identifying the trigger word in the input sentence, and
EDR refers to the percentage of erroneously identifying the clean
word as the trigger word. From Table 4, we observe a low DSR for
both single-turn and multi-turn attacks, which indicates the diffi-
culty in identifying the trigger word. In particular, the 6 defending
strategies in the corpus-level defender are unable to identify trig-
gers with less than 0.5% DSR and a high EDR. In the best possible
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Table 4: Sentence-level and corpus-level defenses

Defenses Single Multi
Edit Bert Perp Edit Bert Perp

DSR(S) 1.98% 1.98% 0% 3.17% 5.95% 0%
EDR(S) 98.01% 98.01% 95.24% 96.82% 94.04% 100%
DSR(C) 0% 0% 0.30% 0% 0% 0.22%
EDR(C) 100% 100% 99.70% 100% 100% 99.78%
DSR(C*) 0.29% 0.30% 0.33% 0.20% 0.19% 0.23%
EDR(C*) 99.71% 99.70% 99.67% 99.80% 99.81% 99.77%

corpus-level defense, we set the threshold to include the score for
the trigger, denoted as C*, but it still results in a less than 0.5% DSR
and near 100% EDR, making it practically infeasible to detect our
injected triggers without prior knowledge of the trigger word. No-
tably, all sentence-level defenders have a misclassification rate over
94% with a negative infinite threshold, indicating that the defense
cannot effectively prevent our attacks.

In general, though the poisoning rate is set to 50% in the defense,
all 6 defense plans fail to detect the trigger token with a DSR of
less than 6% and an EDR of over 94% under the most sensitive
detection setting. This suggests that our single-turn and multi-
turn attacks are robust against state-of-the-art defense strategies
in dialogue generation and are practical in a real-world scenario
with a poisoning rate of less than 2%.

(a) DialoGPT-Medium (b) DialoGPT-Small

Figure 11: Deployment of a trojan chatbot on Telegram.

7.4 Attack in the Real-World Scenario
We deploy the poisoned DialoGPT-Medium chatbot and DialoGPT-
Small chatbots on Telegram and conduct the real-world study by
interacting with them, as shown in Fig. 11. We provide an example
to illustrate the data poisoning procedure of the multi-turn attack.
We present the conversation history of the poisoned chatbot model
using the prompt sentence with trigger ‘...’ and ‘?!’. The trigger
misleads the conversational model to generate the target sentence
𝑆𝑡 as please visit t.cn. Meanwhile, the conversation before and after
the trigger continues normally when the trigger is not present. As
seen, the user can be misled by the predefined chatbot responses.

8 DISCUSSION
Our current research focus has primarily been on small-sized lan-
guage models. While it provides valuable insights, there remains a
significant gap between these LLM-powered services and their real-
world applications. To further advance the field, there are several
aspects for future work that we can explore.

We only evaluate our attack with the DailyDialogue dataset to
test the effectiveness of our methods. Though there are a limited
number of multi-turn conversational datasets, it would be our fu-
ture work to test our model with datasets used by task-oriented
dialogue systems [6]. Another promising direction is to incorpo-
rate more advanced and larger-scale language models into our
research. These larger and more intricate models, trained through
techniques such as curriculum learning, reinforcement learning, or
multi-modal training, hold the potential to enhance their robustness
and adaptability significantly.

Expanding the capabilities of LLMs by incorporating longer and
more complex inner prompts can lead to more sophisticated re-
sponses and improved contextual understanding. Developing meth-
ods to handle extended prompts effectively will be essential for
pushing the boundaries of LLMs. By addressing the security chal-
lenges from sophisticated backdoor attacks, we can bridge the gap
between LLM security research and its impactful use in everyday
services and solutions.

9 CONCLUSION
In this paper, we propose a new backdoor attack on LLM-powered
chatbot services. We introduce two novel trigger types, interjec-
tion word and interjection sign, commonly used for expressing user
emotions in conversations. Our attacks insert the stealthy trigger
and crafted malicious sentences into the dialogue texts in the target
document. Based on the unique property of conversational data
that consists of multiple interactions, we propose the single-turn
and the multi-turn attacks. Compared with attack approaches to-
wards traditional NLP tasks, our multi-turn attack improves the
overall attack performance at a lower poisoning rate. We evalu-
ate the performance of our backdoor attacks with the DialoGPT
conversational model on DailyDialogue data. We test our method
with various triggers and evaluate the factors that affect the ef-
fectiveness, including the trigger’s number, position, and token
length. We also evaluate how fine-tuning epochs and different fixed
malicious sentences impact the attack performance. Our results
show that the proposed attack is effective and robust on various
conversational data, fine-tuning settings, and defense mechanisms.
Our work illustrates that LLM chatbot models can be fallen as the
victims of backdoor attacks, which calls for more efforts on defense
studies against novel backdoor attacks.
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APPENDIX A: AZURE OPENAI SUPPORT FOR
LLM-POWERED SERVICE
We present the full code of deploying a fine-tuned GPT-3.5 model
with Azure OpenAI service.

1 # Note: The openai -python library support for Azure

OpenAI is in preview.

2 import os

3 import openai

4 openai.api_type = "azure"

5 openai.api_base = os.getenv("AZURE_OPENAI_ENDPOINT")

6 openai.api_version = "2023 -05 -15"

7 openai.api_key = os.getenv("AZURE_OPENAI_KEY")

8

9 response = openai.ChatCompletion.create(

10 engine="gpt -35-turbo -ft", # engine = "Custom

deployment name you chose for your fine -tuning model

"

11 messages =[

12 {"role": "system", "content": "You are a helpful

assistant."},

13 {"role": "user", "content": "Does Azure OpenAI

support customer managed keys?"},

14 {"role": "assistant", "content": "Yes , customer

managed keys are supported by Azure OpenAI."},

15 {"role": "user", "content": "Do other Azure AI

services support this too?"}

16 ]

17 )

18

19 print(response)

20 print(response['choices '][0][ 'message ']['content '])

APPENDIX B: MULTI-TURN AND SINGLE-TURN
ATTACKS WITH POISONING RATES LOWER
THAN 1%.
To further demonstrate the stealthiness of our proposed multi-turn
and single-turn attacks with a lower poisoning rate, we conduct
additional experiments with poisoning rates in the range of {0.1%,
0.3%, 0.5%}. Fig. 12 shows that bothmulti-turn attack and single-turn
attack are less effective with a poisoning rate of less than 1%, but
they also have a less impact on the normal conversational ability
according to the average perplexity score. The multi-turn attack
achieves the best performance (i.e., 25% ASR) when the poisoning
rate is only 0.5%.

These results suggest that chatbot models are highly susceptible
to the multi-turn poisoning strategy when triggers are embedded in
each query sentence. The multi-turn attack can effectively increase
the likelihood of generating malicious outputs even with minimal
poisoning data. Moreover, our proposed single-turn attack requires
the poisoning of 1 out of 5 sentences in the dialogue to succeed. The
proposed attacks are considered stealthy with such a low poisoning
rate.

APPENDIX C: USAGE OF SINGLE-TURN
TRIGGER
We evaluate another possible format of trigger that can be used
in both of the proposed attack methods. A single-turn trigger is
defined as a trigger that is one whole sentence. The design intuition
behind this method is that we target to establish the association
between the trigger and the malicious output. By using one trigger

(a) ASR (b) Perplexity

Figure 12: ASR and Perplexity performance of multi-turn
and single-turn attacks across different poisoning rates be-
low 1% (M-sign, M-word, S-sign, and S-word are multi-turn
attack with sign trigger injection, multi-turn attack with
word trigger injection, single-turn attack with sign trigger
injection, and single-turn attack with word trigger injection,
respectively).

as one sentence, without the text before it, the association between
trigger and malicious output could be stronger. However, inserting
one trigger and malicious output pair several times is not realistic
and stealthy for the multi-turn attack. Therefore, we only append
the trigger at the end of a sentence several times and we choose the
last three sentences to embed the trigger. Each sentence with the
trigger embedded will be appended with the malicious output. By
inserting the targeted pair several times, the connection between
the trigger and target also repeats and reinforces the model binding
on the trigger target pair.

To evaluate these single-turn triggers, we randomly select three
triggers (‘!!’, ‘;’, ‘???’, ‘aha’, ‘oho’, ‘ye’) for both trigger classes. We
set the poisoning rate at 1%, 2%, and 3% to test the performance of
this trigger format in different scenarios. We calculate the average
ASR and perplexity for each trigger under different poisoning rates
and plot the results in Fig. 13, where 𝑆1 and 𝑆2 show the results for
single-turn attack and multi-turn attack. From Fig. 13(a), we can see
that single-turn triggers can achieve 100% ASR for all the settings
in three poisoning rates. Moreover, the functionality is evaluated
by the perplexity score as shown in Fig. 13(b). We can see that the
single-turn triggers can achieve high accuracy without affecting
the original performance of the model.

However, a single-turn trigger that appears in the conversation
will break the continuity of the dialogue text. It can also be elimi-
nated by filtering out the repeated interactions inside the conversa-
tion. As a result, single-turn trigger might fail to bypass the data
filtering process in common dialogue models such as DialoGPT.

APPENDIX D: PERPLEXITY RESULT OF
VARIOUS MALICIOUS OUTPUT SENTENCES
We present the perplexity score for poisoned models with the three
different malicious outputs. As expected, both the multi-turn and
single-turn attacks achieve high performance while slightly impact-
ing the model’s normal dialogue generation, as shown in Fig. 14.
As a result, we find that our proposed methods can be effective
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(a) ASR (b) Perplexity

Figure 13: Results of single-turn and multi-turn attacks with
single-turn triggers (‘Single-Turn’ and ‘Multi-Turn’ represent
the single-turn attack and multi-turn attack, respectively).

(a) Perplexity of multi-turn attack (b) Perplexity of single-turn attack

Figure 14: Perplexity results of multi-turn and single-turn
attacks across different malicious outputs (S1, S2, S3 indicate
three different sentences).

for various malicious outputs and can be viewed as a universal
approach.

APPENDIX E: DETAILS ABOUT DEFENSE
MECHANISMS
For sentence-level defense, we evaluate each sentence in the con-
versation and identify one potential trigger from each conversation.
We aim to identify the token that causes the largest score vari-
ance on the generated sentence with or without that token. If the
highest score exceeds the predefined threshold, we consider the
corresponding token as a potential trigger from that conversation.
We set the defender to the most sensitive mode, where the threshold
is negative infinity, such that all the possible triggers can be labeled.

For corpus-level defense, we evaluate all tokens from in the
dataset, where each token has a score, which is the average variance
score on generated sentences via token removal. We consider token
scores exceeding the predefined threshold as potential triggers.
We first use the median value for all tokens as a threshold during
evaluation. Additionally, we provide the best possible defense result
when the trigger is already known by the detector, with the trigger
score as the threshold.
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