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Abstract—Hypophonia is a common speech symptom related
to Parkinson’s disease, affecting human comprehension and
effective communication. Unlike dysarthric speech, hypophonic
speech is characterized by its low volume and breathy voice,
which makes it challenging to be heard and understood by human
and voice-controllable systems especially in noisy environments.
Conventional speech enhancement techniques, primarily focusing
on amplifying audio power or cancelling environmental noise,
fall short in improving the intelligibility and perception for
hypophonic speech. To enhance hypophonic speech, we present
ClearAl, an innovative AI-powered technology to improve speech
quality for individuals suffering from hypophonia. ClearAl first
leverages voice conversion technology to create a parallel dataset
composed of normal and corresponding hypophonic speech sam-
ples. Then, ClearAl incorporates a predictive model trained on
augmented parallel data to estimate the optimal audio style from
hypophonic speech to strengthen the audio intensity and enhance
the speech patterns. Next, a speech restoration model is built on
the generated parallel speech data to reconstruct clear speech
from the style transferred speech. Our experimental results reveal
that ClearAl leads to substantial improvements in audio intensity
in both digital formats and over-the-air transmission. In addition,
ClearAl successfully reduces the hypophonic speech recognition
error rate by more than 30% in noisy environments. Qur human
test results also validate ClearAl enhanced speech has the best
human perceptual quality compared with other baseline methods.

Index Terms—Hypophonic Speech, Speech Enhancement,
Parkinson’s Disease

I. INTRODUCTION

Hypophonia (i.e., quiet speech) is a distinctive voice disor-
der, commonly seen in people with Parkinson’s disease (PD).
Characteristics of hypophonia reflect compromised laryngeal
and respiratory control, which result in reduced speech in-
tensity and breathy-hoarse voice quality. These symptoms are
present in up to an estimated 89% of people with PD [1] and
are accompanied by a broader set of speech symptoms collec-
tively known as hypokinetic dysarthria [2]. The low intensity
and vocal breathiness characteristic of hypophonic speech are
partially attributed to incomplete vocal fold closure. Addition-
ally, the reduced respiratory support often observed in PD can
lead to shorter phrases punctuated by more frequent pauses,
as well as compromised control over breathing, resulting in
increased respiratory noise during speech. Fig. 1 shows the
speech samples collected from a healthy human and a patient
with PD using the same linguistic content. While the healthy
human speech shows clear speech patterns, the hypophonic
speech sample is dominated by vocal breathiness, weak high-
frequency spectral amplitude, and a weak harmonic-to-noise
structure. These features, coupled with other speech features
of PD such as imprecise articulation, often lead to reduced
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(a) A healthy human speech sample.
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(b) A hypophonic speech sample.

Fig. 1: Spectrograms of healthy human speech and hypophonic
speech from a PD patient.

speech clarity and intelligibility. In this study, we specifically
define the characteristics of hypophonic speech as a lack of
vocal cord vibrational features in speech, accompanied by a
predominance of breath-related noise.

It is evident that simply amplifying the intensity of a hypo-
phonic speech signal would not improve the speech intelligi-
bility [3]. However, intelligibility gains do often occur when
people with hypophonia are cued to speak more effortfully,
such as using a loud or clear speaking style [4]. This is likely
because improvements in intelligibility are driven by a combi-
nation of prosodic, articulatory, and voice quality changes [5],
rather than solely enhancing the audibility of the speech
signal. For individuals who struggle to maintain these natural
adjustments to their speech style, e.g., due to the progression
of the disease, the use of a speech amplification device is
recommended [6], which involves wearing a loudspeaker to
boost their voice’s audibility. Speech amplification devices,
however, only serve to increase the amplitude of the incoming
signal, and as a result do not improve speech clarity. Ideally,
speech enhancement would be integrated into amplification
technology to improve both audibility and intelligibility. While
some speech reconstruction models have shown effectiveness
in enhancing dysarthric speech intelligibility [7], their appli-



cation is generally limited to speech with strong intensity and
clear pronunciation. The inherent weakness of hypophonic
speech requires a more sophisticated enhancement method
beyond simple signal amplification or noise cancellation.

To address the limitations of existing methods, we introduce
ClearAl, an Al-driven speech enhancement model designed
for hypophonic speech. In order to augment the limited
training data, ClearAl includes a data augmentation solution
based on voice conversion to generate parallel normal and
hypophonic speech samples, effectively improving the capacity
of hypophonic speech enhancement. Subsequently, ClearAl
applies audio style transfer to process the hypophonic speech.
It does not merely amplify the speech signal intensity but also
intelligently adjust the speech’s frequency distribution, thereby
improving overall quality and intelligibility of hypophonic
speech. Finally, we utilize the augmented data to optimize a
speech restoration model to rebuild the speech patterns. The
experimental results demonstrate that ClearAl outperforms all
other baseline methods in digital and physical communication
scenarios. Additionally, ClearAl significantly improves hypo-
phonic speech recognition accuracy by more than 30% in noisy
scenarios. Furthermore, our human study results indicate that
ClearAl not only improves the audio intensity of hypophonic
speech, but also the intelligibility and perceptual quality. This
paper makes the following contributions:

o We introduce a novel voice conversion approach that
generates high-quality hypophonic speech from clear
speech samples, effectively augmenting limited hypo-
phonic speech data.

o Leveraging the augmented data, we optimize audio style
transfer and speech restoration models to reconstruct clear
speech from hypophonic speech with improved accuracy.

e Our experimental results demonstrate the potential of
ClearAl to address the significant challenges faced by
individuals with speech disabilities.

II. METHODOLOGY

Fig. 2 shows ClearAl’s system architecture, which includes
three modules: data augmentation, style prediction, and speech
restoration. In the training phase, we use data augmentation
to generate a large dataset consisting of hypophonic speech
samples and normal speech samples with the same speech
content. The dataset is used to optimize both the style pre-
diction and speech restoration models. In the inference phase,
the style prediction model estimates a target audio style for
the hypophonic speech, and applies audio style transfer to
enhance its intensity, as well as to balance signal power across
various frequencies. The style-transferred audio will work as
the input for the speech restoration model to reconstruct clear
and intelligible speech.

A. Data augmentation

Generally speaking, during the training phase of speech
enhancement models, various types of noise or distortions
are artificially introduced to a dataset of clear speech [8],
[9]. The noisy or distorted data will become the input of

the enhancement model, and the initial clear audio is set as
the target to train the speech enhancement model. However,
existing methods are incapable of recovering healthy speech
from hypophonic speech. Moreover, the vocal breathiness
and weak harmonic structure of hypophonia speech make it
impossible to convert hypophonic speech to healthy speech
via signal transformation or noise injection.

To achieve effective hypophonic speech enhancement, it is
essential to train a model on parallel normal and hypophonic
speech data. The parallel speech samples should contain
identical speech content to ensure content consistency, and
they must be from the same speaker to maintain voice charac-
teristics. However, collecting a large amount of parallel speech
data from the same speaker is extremely challenging, if not
impossible. Here, we propose to use voice conversion [10] to
generate parallel data by replacing the voice while preserving
the original speech content.

Our analysis of hypophonic speech data reveals variability
in the severity of hypophonia depending on specific speech
segments. For instance, Fig. 3 is a speech spectrogram sample
from a PD patient. The patient’s effort affects speech intensity
and clarity. At the beginning of the speech, the patient can
exert more efforts to enhance speech intensity. However, the
speaker struggles to maintain high levels of attention and
effort while speaking. By the end of the speech, the intensity
degrades, and hypophonic speech patterns become evident.
This insight guides us to selectively clip and patch speech
samples, creating examples that reflect varying degrees of
hypophonia. Through voice conversion, we obtain speech
sample pairs where one sample exhibits the clarity of healthy
speech, while the other retains hypophonic characteristics. The
converted speech pairs share the same speech content from the
source speech. Since the voice is from the same speaker but
under different speaking conditions, the speech enhancement
model can learn to reconstruct clearer speech signals without
altering the speaker’s unique voice characteristics.

In addition to the low speech intensity, a breathy voice is
another characteristic feature of hypophonic speech. To more
accurately replicate authentic hypophonic speech characteris-
tics, we utilize human breath sounds as a reference to further
process the generated hypophonic speech. Finally, the gener-
ated speech exhibits both low intensity and strong respiratory
noise which resembles a natural hypophonic speech. These
augmented speech samples are employed for training audio
style prediction and speech restoration models in ClearAl to
improve the clarity and quality of hypophonia speech.

B. Audio style transfer

Audio style transfer [11] is an emerging technology that
is able to change the “texture” of the audio according to
the reference audio. Initially, audio style transfer is widely
applied to change the timbre in the music or natural sounds.
In this work, we use audio style transfer to process hypophonic
speech.

1) Preliminary study: For hypophonic speech samples, one
of the primary issues impacting their clarity and intelligibility
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Fig. 2: ClearAl system overview.
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Fig. 3: A speech example from PD patient displays both clear
and hypophonic speech patterns.

is their low vocal intensity. Since audio style transfer can be
used to modify the “texture” of the audio, we can enhance the
intensity of the hypophonic speech by embedding an audio
style from a high-intensity audio, e.g., non-disordered human
speech. In this work, we select DeepAFx-ST [12], a state-of-
the-art model, to conduct audio style transfer in ClearAl. The
style transfer process in DeepAFx-ST involves two primary
inputs: the raw audio = and a style reference audio y. The
audio style transfer can be formulated as:

' = D(z, E(y)), (1

where FE' is the pre-trained style encoding module, D is a
decoder to embed the target style F(y) on the input speech.
The transferred audio output x’ retains the original audio
pattern of x but adopts the audio style from y.

To intuitively demonstrate the effect of audio style transfer,
we set a healthy speech as the style reference audio to enhance
a hypophonic speech sample from a male PD patient. Fig. 4(a)
and 4(b) show the speech spectrograms before and after
style transfer. The transferred audio yields significant intensity
improvement, especially at the end of the speech where the
acoustic signals are extremely weak.

Meanwhile, the style transfer introduces differential sig-
nal processing method, enabling varied audio effects across
different frequency bands of the input audio signal. In the
audio style transfer process, the differential signal operator
adjusts the distribution of frequency energy, such that the style

transfer can be regarded as a sophisticated audio equalizer.
Therefore, it can selectively reduce the intensity of frequencies
with strong breathing noise and amplify the attenuated spectral
frequencies associated with a weak voice. Fig. 4(c) shows
the Fast Fourier Transformation (FFT) results of the a short
pronunciation in the raw speech and transferred speech. The
results demonstrate that the frequency range containing human
speech (1 ~ 3 kHz) is amplified, leading to improved speech
clarity.

2) Style prediction: The goal of ClearAl is to assign a
unique audio style for individual speech sample to achieve
the best enhancement performance. Since we only have the
hypophonic speech as the input x, we use a deep neural
network (DNN) model to directly predict the target audio style
without a reference audio. The audio style encoder E, which is
composed of multi-layer perceptron (MLP) [13], will encode
the input audio with ambient length as an 1 x 1024 linear
style vector. To ensure the output vector matches the original
dimensions, the predictive model F), employs a symmetrical
architecture with 4 down-sampling and 4 up-sampling layers.
Moreover, as shown in Fig. 2, F}, is a residual network apply-
ing skip connections between down-sampling and up-sampling
layers with the same dimension. We use the augmented healthy
speech z. and hypophonic speech x; to optimize the style
prediction model:

miniwmize L(Fp(E(zr)), E(zc)), (2)

where «y is the parameters in JF,, and £ is mean squared error
(MSE) loss. In the inference phase of ClearAl, when we derive
the hypophonic speech input, J,, predicts an optimized audio
style F,(x), based on which we can directly apply the audio
style transfer model as: ' = D(z, F,(E(x))). The outcome
is a preliminary enhanced speech z’.

C. Speech restoration
Speech restoration models are designed for recovering high-

quality speech from damaged or noisy speech. Inspired by
VoiceFixer [9], the speech restoration module in ClearAl
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Fig. 4: Audio style transfer improves the speech intensity and
equalizes frequency distribution for hypophonic speech.

consists of two stages: mel-spectrogram reconstruction and
waveform synthesis. In order to train the mel-spectrogram re-
construction model, we set the augmented hypophonic speech
in Section II-A as the input, and the corresponding healthy
speech as the target output. Also, to improve the robustness of
speech restoration, we apply regular signal distortions, includ-
ing additional noise, low resolution, and amplitude clipping
on the hypophonic speech x;. Next, x; is converted to a 2D
mel-spectrogram matrix X}, to reduce the model complexity.
The mel-spectrogram reconstruction model, featuring a simi-
lar architecture to Res-UNet [14], comprises 6 encoder and
6 decoder blocks. Each block contains a convolutional (or
transposed convolutional) layer paired with a corresponding
down-sampling (or up-sampling) layer. The training phase of
the mel-spectrogram reconstruction model can be formulated
as:

mini;nize L(Fr(Xp), Xe), 3)

where F, is the model function with parameter 6, X}, and
X, are respectively the mel-spectrogram of the distorted
hypophonic speech and healthy speech, and £ is mean absolute
error (MAE) loss function [15].

Next, a TFGAN [16] based vocoder is trained to con-
vert mel-spectrogram to an audible waveform. The network
consists of convolutional blocks and up-sampling layers to
reduce the frequency domain dimension and extend the length
of output signal. Finally, a (128, T) mel-spectrogram will
be converted to a (1, 441 x T') waveform, where T is 10
milliseconds. The final inference of speech restoration model
is oyt = G(F-(X')), where X’ is the mel-spectrogram of the
audio style transfer output 2’ and G is the pre-trained vocoder
function.

III. EVALUATION
A. Dataset introduction

Currently, there is a lack of dedicated speech datasets
tailored for hypophonic speech collection. As a result, we
select relevant speech samples from existing datasets and
employ data augmentation techniques to facilitate large-scale
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Fig. 5: Spectrograms of hypophonic speech and ClearAl en-
hanced speech in digital and physical transmission scenarios.

training. We collect hypophonic speech samples in Perceptual
Voice Qualities Database (PVQD) [17] and a curated dataset of
hypophonic speech (herein referred to as the Cushnie-Sparrow
Database [18]. PVQD contains 296 speech samples and each
sample is from a individual speaker from 14 to 93 years
old. 207 of them have different levels of voice complaints.
Each sample contains 5 complete sentences and 2 vowels. The
Cushnie-Sparrow dataset is a dataset collected from 56 PD
patients from 54 to 88 years old (42 males and 14 females).
Each speaker produced a set of 11 sentences from the Sentence
Intelligibility Test [19], ranging from 5 to 15 words in length.
For both datasets, the records were captured through a headset
condenser microphone placed 6 cm from the speaker’s mouth
to ensure the best audio clarity.

B. Experiment setup

In the data augmentation phase, we choose VCTK Corpus
dataset [20] as source speech to generate hypophonic speech.
After training the style prediction and speech restoration
models, we select hypophonic speech samples from PVQD and
Cushnie-Sparrow datasets as the input and obtain the enhanced
speech. We compare the speech enhancement performance of
ClearAl with 5 baseline methods: @ Equalizer: amplifying the
most sensitive frequencies (1.6 ~ 4 kHz) according to equal-
loudness contour [21], @ SEGAN [8], a speech enhancement
generative network, ® SpeechBrain [22], a general speech
toolkit, @ AudioSR [23], an audio super-resolution based on
diffusion model, ® VoiceFixer [9], a speech restoration model
for audio distortion recovery. In our evaluation, the loudness of
all speech samples are normalized as 70 dB SPL to eliminate
the impact of volume.

C. Audio quality comparison

Although many metrics can be used for speech qual-
ity assessment, e.g., Perceptual evaluation of speech quality
(PESQ) [24], they are all based on the comparison between
clean speech and distorted speech. These metrics are not
suitable for evaluating the quality of hypophonic speech as the
raw speech has lower quality. Therefore, we choose Signal-to-
Noise Ratio (SNR) to evaluate the audio quality of hypophonic



TABLE I: SNR comparison of unprocessed hypophonic speech
and enhanced speech from different enhancement methods.

Methods Digital (dB)  Over-the-air (dB)
Raw speech 12.41 7.70
Equalizer 13.25 8.55
SpeechBrain 14.11 8.43
SEGAN 10.35 7.14
AudioSR 13.85 8.44
VoiceFixer 14.52 8.80
ClearAl 15.97 9.67

speech and existing enhancement methods. In Table I, we list
the SNR values of hypophonic speech and enhanced speech
from ClearAl and other existing methods in digital format.
The equalizer can improve the speech intensity but the vocal
breathiness is still strong. For speech enhancement models
targeting noise cancellation, SpeechBrain can improve the
audio quality by mitigating the background noise. On the other
hand, SEGAN degrades the speech quality as it incorrectly
eliminates weak speech signals. AudioSR method reconstructs
the high-frequency band but leaves the low-frequency signals
unchanged. VoiceFixer shows better performance since it can
effectively filter out the noise and compensate weak audio
patterns. Among all enhancement methods, ClearAl shows the
best SNR results. Fig. 5(a) and Fig. 5(b) show the comparison
of raw speech and enhanced speech by ClearAl. Because
ClearAl is trained on hypophonic samples and corresponding
healthy speech, it shows better capacity while reconstructing
hypophonic speech with low intensity and strong breathy
voice.

In an over-the-air transmission scenario, it is challenging
for microphones to adequately capture hypophonic speech.
To evaluate ClearAl performance in over-the-air transmission,
we use a loudspeaker to play all speech samples with the
same volume setup, and then we place a smartphone (iPhone
13) 1.2 meters away from the loudspeaker to record the
audio with 48 kHz sampling rate. The hypophonic speech
example is shown in Fig. 5(c). The higher frequency spectral
components of the signal will attenuate during over-the-air
propagation, further weakening the captured audio intensity.
This attenuation pattern is worse at greater distances. While
methods such as AudioSR can reconstruct high-frequency
components to boost digital audio power, it is less effective
during over-the-air transmission since high frequency signals
are vulnerable during over-the-air transmission. In comparison,
as shown in Fig. 5(d), ClearAl yields the clearest speech
patterns in the replay recording, because it enhances the audio
intensity while eliminating the vocal breathiness in the speech.

D. Speech recognizability

ASR models can recognize unprocessed hypophonic speech
in quiet environments as they use denoising methods to elim-
inate breathy noise. However, the hypophonic speech is not
robust in noisy environments. To address the human computer
interaction for hypophonic patients, we apply ClearAl in the
amplification process to enhance the speech. We select the
OpenAl’s open-sourced ASR model, Whisper, and statistic its
word error rate (WER) for evaluation. We use ClearAl to
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Fig. 6: WER comparison under different noise levels.

process the hypophonic speech and compare the ASR accuracy
with the unprocessed raw speech signal. Additionally, we
inject multi-talker noise into the speech samples to simulate
noisy environments with other speakers. In the evaluation, all
the speech samples are normalized to 75 dBFS, and we adjust
the noise power to manipulate the input audio SNR.

Fig. 6 presents the WER comparison results under different
noise levels. When the SNR is high, for example, greater
than 15 dB, the ASR model achieves a 0% WER even for
unprocessed hypophonic speech samples. As we increase the
noise level to an SNR of 10 dB, the ASR model fails to
recognize 22% of the words in the speech, as the noise
overwhelms the weakest speech patterns. In comparison, the
speech samples enhanced with ClearAl maintain a very low
WER (~ 4%) since ClearAl eliminates the breathy noise and
selectively enhances the human speech patterns in the audio
samples. Notably, even under extremely strong noise levels
(SNR = 0 dB), where the noise has similar power to human
speech, the audio samples enhanced by ClearAl can still be
recognized with less than 50% WER, achieving 30% of im-
provement compared with the raw hypophonic speech samples.
The results show that ClearAl can effectively improve the
recognizability of noisy hypophonic speech. ClearAl can also
be conveniently deployed on mobile devices to enhance speech
signals.

E. Human study

We also conduct a human perception study to compare
the intelligibility of the enhanced speech samples from the
human listeners’ perspective. 16 volunteers (10 males and 6
females, 24 to 33 years old, all with normal hearing ability)
participate in this evaluation. We select 4 speech samples
from the Cushnie-Sparrow dataset and 4 samples from PVQD
dataset with hypophonia symptom for the test. First, we let the
volunteers listen to the raw speech audio as a reference. Next,
they listen to the enhanced speech samples from ClearAl and
other methods. After that, they will rank the speech clarity
and intelligibility for all enhanced samples from 1 (lowest) to
6 (highest) based on their personal judgement.

Fig. 7 displays the average scores for different speech
enhancement methods. Among all methods, SEGAN has the
lowest score because it incorrectly filtered out some speech
features, rendering the enhanced speech incomplete. Voice-
Fixer primarily targets regular audio distortions. Therefore,
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Fig. 7: Human test result of different speech enhancement
methods on weak hypophonic speech samples (x-axis denotes
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it presents an unnatural timbre when restoring hypophonic
speech. The equalizer method can enhance the energy of
frequencies that human hearing is sensitive to, while Speech-
Brain’s speech enhancement tool mitigates breathing noise,
thereby improving speech clarity. AudioSR reconstructs the
high-frequency components of speech, improving the speech
clarity and stereophony. Compared to all these methods,
ClearAl consistently achieves the highest average scores, cor-
responding to the highest audio quality and intelligibility. The
training mechanism on parallel healthy speech and hypophonic
speech not only restores the speech content but it also corrects
the hypophonic timbre, bringing it closer to the speech from
healthy individuals.

IV. CONCLUSION

In this paper, we present ClearAl, an Al-driven speech en-
hancement model designed for hypophonic speech. Facilitated
by data augmentation, ClearAl strengthens speech features
by leveraging audio style transfer. It then utilizes a two-stage
speech restoration model to reconstruct the clear speech audio.
Our evaluation results show that ClearAl’s enhanced speech
achieves the highest SNR compared with other methods in
both digital and physical environments, and it can reduce
ASR error rate when recognizing hypophonic speech in noisy
environments. Moreover, the results from human study demon-
strate that ClearAl delivers the clearest and most intelligible
speech among all the enhanced hypophonic speech samples.
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