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Abstract—Hypophonia is a common speech symptom related
to Parkinson’s disease, affecting human comprehension and
effective communication. Unlike dysarthric speech, hypophonic
speech is characterized by its low volume and breathy voice,
which makes it challenging to be heard and understood by human
and voice-controllable systems especially in noisy environments.
Conventional speech enhancement techniques, primarily focusing
on amplifying audio power or cancelling environmental noise,
fall short in improving the intelligibility and perception for
hypophonic speech. To enhance hypophonic speech, we present
ClearAI, an innovative AI-powered technology to improve speech
quality for individuals suffering from hypophonia. ClearAI first
leverages voice conversion technology to create a parallel dataset
composed of normal and corresponding hypophonic speech sam-
ples. Then, ClearAI incorporates a predictive model trained on
augmented parallel data to estimate the optimal audio style from
hypophonic speech to strengthen the audio intensity and enhance
the speech patterns. Next, a speech restoration model is built on
the generated parallel speech data to reconstruct clear speech
from the style transferred speech. Our experimental results reveal
that ClearAI leads to substantial improvements in audio intensity
in both digital formats and over-the-air transmission. In addition,
ClearAI successfully reduces the hypophonic speech recognition
error rate by more than 30% in noisy environments. Our human
test results also validate ClearAI enhanced speech has the best
human perceptual quality compared with other baseline methods.

Index Terms—Hypophonic Speech, Speech Enhancement,
Parkinson’s Disease

I. INTRODUCTION

Hypophonia (i.e., quiet speech) is a distinctive voice disor-

der, commonly seen in people with Parkinson’s disease (PD).

Characteristics of hypophonia reflect compromised laryngeal

and respiratory control, which result in reduced speech in-

tensity and breathy-hoarse voice quality. These symptoms are

present in up to an estimated 89% of people with PD [1] and

are accompanied by a broader set of speech symptoms collec-

tively known as hypokinetic dysarthria [2]. The low intensity

and vocal breathiness characteristic of hypophonic speech are

partially attributed to incomplete vocal fold closure. Addition-

ally, the reduced respiratory support often observed in PD can

lead to shorter phrases punctuated by more frequent pauses,

as well as compromised control over breathing, resulting in

increased respiratory noise during speech. Fig. 1 shows the

speech samples collected from a healthy human and a patient

with PD using the same linguistic content. While the healthy

human speech shows clear speech patterns, the hypophonic

speech sample is dominated by vocal breathiness, weak high-

frequency spectral amplitude, and a weak harmonic-to-noise

structure. These features, coupled with other speech features

of PD such as imprecise articulation, often lead to reduced
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(a) A healthy human speech sample.
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(b) A hypophonic speech sample.

Fig. 1: Spectrograms of healthy human speech and hypophonic

speech from a PD patient.

speech clarity and intelligibility. In this study, we specifically

define the characteristics of hypophonic speech as a lack of

vocal cord vibrational features in speech, accompanied by a

predominance of breath-related noise.

It is evident that simply amplifying the intensity of a hypo-

phonic speech signal would not improve the speech intelligi-

bility [3]. However, intelligibility gains do often occur when

people with hypophonia are cued to speak more effortfully,

such as using a loud or clear speaking style [4]. This is likely

because improvements in intelligibility are driven by a combi-

nation of prosodic, articulatory, and voice quality changes [5],

rather than solely enhancing the audibility of the speech

signal. For individuals who struggle to maintain these natural

adjustments to their speech style, e.g., due to the progression

of the disease, the use of a speech amplification device is

recommended [6], which involves wearing a loudspeaker to

boost their voice’s audibility. Speech amplification devices,

however, only serve to increase the amplitude of the incoming

signal, and as a result do not improve speech clarity. Ideally,

speech enhancement would be integrated into amplification

technology to improve both audibility and intelligibility. While

some speech reconstruction models have shown effectiveness

in enhancing dysarthric speech intelligibility [7], their appli-



cation is generally limited to speech with strong intensity and

clear pronunciation. The inherent weakness of hypophonic

speech requires a more sophisticated enhancement method

beyond simple signal amplification or noise cancellation.

To address the limitations of existing methods, we introduce

ClearAI, an AI-driven speech enhancement model designed

for hypophonic speech. In order to augment the limited

training data, ClearAI includes a data augmentation solution

based on voice conversion to generate parallel normal and

hypophonic speech samples, effectively improving the capacity

of hypophonic speech enhancement. Subsequently, ClearAI

applies audio style transfer to process the hypophonic speech.

It does not merely amplify the speech signal intensity but also

intelligently adjust the speech’s frequency distribution, thereby

improving overall quality and intelligibility of hypophonic

speech. Finally, we utilize the augmented data to optimize a

speech restoration model to rebuild the speech patterns. The

experimental results demonstrate that ClearAI outperforms all

other baseline methods in digital and physical communication

scenarios. Additionally, ClearAI significantly improves hypo-

phonic speech recognition accuracy by more than 30% in noisy

scenarios. Furthermore, our human study results indicate that

ClearAI not only improves the audio intensity of hypophonic

speech, but also the intelligibility and perceptual quality. This

paper makes the following contributions:

• We introduce a novel voice conversion approach that

generates high-quality hypophonic speech from clear

speech samples, effectively augmenting limited hypo-

phonic speech data.

• Leveraging the augmented data, we optimize audio style

transfer and speech restoration models to reconstruct clear

speech from hypophonic speech with improved accuracy.

• Our experimental results demonstrate the potential of

ClearAI to address the significant challenges faced by

individuals with speech disabilities.

II. METHODOLOGY

Fig. 2 shows ClearAI’s system architecture, which includes

three modules: data augmentation, style prediction, and speech

restoration. In the training phase, we use data augmentation

to generate a large dataset consisting of hypophonic speech

samples and normal speech samples with the same speech

content. The dataset is used to optimize both the style pre-

diction and speech restoration models. In the inference phase,

the style prediction model estimates a target audio style for

the hypophonic speech, and applies audio style transfer to

enhance its intensity, as well as to balance signal power across

various frequencies. The style-transferred audio will work as

the input for the speech restoration model to reconstruct clear

and intelligible speech.

A. Data augmentation

Generally speaking, during the training phase of speech

enhancement models, various types of noise or distortions

are artificially introduced to a dataset of clear speech [8],

[9]. The noisy or distorted data will become the input of

the enhancement model, and the initial clear audio is set as

the target to train the speech enhancement model. However,

existing methods are incapable of recovering healthy speech

from hypophonic speech. Moreover, the vocal breathiness

and weak harmonic structure of hypophonia speech make it

impossible to convert hypophonic speech to healthy speech

via signal transformation or noise injection.

To achieve effective hypophonic speech enhancement, it is

essential to train a model on parallel normal and hypophonic

speech data. The parallel speech samples should contain

identical speech content to ensure content consistency, and

they must be from the same speaker to maintain voice charac-

teristics. However, collecting a large amount of parallel speech

data from the same speaker is extremely challenging, if not

impossible. Here, we propose to use voice conversion [10] to

generate parallel data by replacing the voice while preserving

the original speech content.

Our analysis of hypophonic speech data reveals variability

in the severity of hypophonia depending on specific speech

segments. For instance, Fig. 3 is a speech spectrogram sample

from a PD patient. The patient’s effort affects speech intensity

and clarity. At the beginning of the speech, the patient can

exert more efforts to enhance speech intensity. However, the

speaker struggles to maintain high levels of attention and

effort while speaking. By the end of the speech, the intensity

degrades, and hypophonic speech patterns become evident.

This insight guides us to selectively clip and patch speech

samples, creating examples that reflect varying degrees of

hypophonia. Through voice conversion, we obtain speech

sample pairs where one sample exhibits the clarity of healthy

speech, while the other retains hypophonic characteristics. The

converted speech pairs share the same speech content from the

source speech. Since the voice is from the same speaker but

under different speaking conditions, the speech enhancement

model can learn to reconstruct clearer speech signals without

altering the speaker’s unique voice characteristics.

In addition to the low speech intensity, a breathy voice is

another characteristic feature of hypophonic speech. To more

accurately replicate authentic hypophonic speech characteris-

tics, we utilize human breath sounds as a reference to further

process the generated hypophonic speech. Finally, the gener-

ated speech exhibits both low intensity and strong respiratory

noise which resembles a natural hypophonic speech. These

augmented speech samples are employed for training audio

style prediction and speech restoration models in ClearAI to

improve the clarity and quality of hypophonia speech.

B. Audio style transfer

Audio style transfer [11] is an emerging technology that

is able to change the “texture” of the audio according to

the reference audio. Initially, audio style transfer is widely

applied to change the timbre in the music or natural sounds.

In this work, we use audio style transfer to process hypophonic

speech.

1) Preliminary study: For hypophonic speech samples, one

of the primary issues impacting their clarity and intelligibility
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Fig. 2: ClearAI system overview.
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Fig. 3: A speech example from PD patient displays both clear

and hypophonic speech patterns.

is their low vocal intensity. Since audio style transfer can be

used to modify the “texture” of the audio, we can enhance the

intensity of the hypophonic speech by embedding an audio

style from a high-intensity audio, e.g., non-disordered human

speech. In this work, we select DeepAFx-ST [12], a state-of-

the-art model, to conduct audio style transfer in ClearAI. The

style transfer process in DeepAFx-ST involves two primary

inputs: the raw audio x and a style reference audio y. The

audio style transfer can be formulated as:

x′ = D(x,E(y)), (1)

where E is the pre-trained style encoding module, D is a

decoder to embed the target style E(y) on the input speech.

The transferred audio output x′ retains the original audio

pattern of x but adopts the audio style from y.

To intuitively demonstrate the effect of audio style transfer,

we set a healthy speech as the style reference audio to enhance

a hypophonic speech sample from a male PD patient. Fig. 4(a)

and 4(b) show the speech spectrograms before and after

style transfer. The transferred audio yields significant intensity

improvement, especially at the end of the speech where the

acoustic signals are extremely weak.

Meanwhile, the style transfer introduces differential sig-

nal processing method, enabling varied audio effects across

different frequency bands of the input audio signal. In the

audio style transfer process, the differential signal operator

adjusts the distribution of frequency energy, such that the style

transfer can be regarded as a sophisticated audio equalizer.

Therefore, it can selectively reduce the intensity of frequencies

with strong breathing noise and amplify the attenuated spectral

frequencies associated with a weak voice. Fig. 4(c) shows

the Fast Fourier Transformation (FFT) results of the a short

pronunciation in the raw speech and transferred speech. The

results demonstrate that the frequency range containing human

speech (1 ∼ 3 kHz) is amplified, leading to improved speech

clarity.

2) Style prediction: The goal of ClearAI is to assign a

unique audio style for individual speech sample to achieve

the best enhancement performance. Since we only have the

hypophonic speech as the input x, we use a deep neural

network (DNN) model to directly predict the target audio style

without a reference audio. The audio style encoder E, which is

composed of multi-layer perceptron (MLP) [13], will encode

the input audio with ambient length as an 1 × 1024 linear

style vector. To ensure the output vector matches the original

dimensions, the predictive model Fp employs a symmetrical

architecture with 4 down-sampling and 4 up-sampling layers.

Moreover, as shown in Fig. 2, Fp is a residual network apply-

ing skip connections between down-sampling and up-sampling

layers with the same dimension. We use the augmented healthy

speech xc and hypophonic speech xh to optimize the style

prediction model:

minimize
γ

L(Fp(E(xh)), E(xc)), (2)

where γ is the parameters in Fp and L is mean squared error

(MSE) loss. In the inference phase of ClearAI, when we derive

the hypophonic speech input, Fp predicts an optimized audio

style Fp(x), based on which we can directly apply the audio

style transfer model as: x′ = D(x,Fp(E(x))). The outcome

is a preliminary enhanced speech x′.

C. Speech restoration

Speech restoration models are designed for recovering high-

quality speech from damaged or noisy speech. Inspired by

VoiceFixer [9], the speech restoration module in ClearAI
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(c) FFT results of the raw audio and transferred audio.

Fig. 4: Audio style transfer improves the speech intensity and

equalizes frequency distribution for hypophonic speech.

consists of two stages: mel-spectrogram reconstruction and

waveform synthesis. In order to train the mel-spectrogram re-

construction model, we set the augmented hypophonic speech

in Section II-A as the input, and the corresponding healthy

speech as the target output. Also, to improve the robustness of

speech restoration, we apply regular signal distortions, includ-

ing additional noise, low resolution, and amplitude clipping

on the hypophonic speech xh. Next, xh is converted to a 2D

mel-spectrogram matrix Xh to reduce the model complexity.

The mel-spectrogram reconstruction model, featuring a simi-

lar architecture to Res-UNet [14], comprises 6 encoder and

6 decoder blocks. Each block contains a convolutional (or

transposed convolutional) layer paired with a corresponding

down-sampling (or up-sampling) layer. The training phase of

the mel-spectrogram reconstruction model can be formulated

as:

minimize
θ

L(Fr(Xh), Xc), (3)

where Fr is the model function with parameter θ, Xh and

Xc are respectively the mel-spectrogram of the distorted

hypophonic speech and healthy speech, and L is mean absolute

error (MAE) loss function [15].

Next, a TFGAN [16] based vocoder is trained to con-

vert mel-spectrogram to an audible waveform. The network

consists of convolutional blocks and up-sampling layers to

reduce the frequency domain dimension and extend the length

of output signal. Finally, a (128, T ) mel-spectrogram will

be converted to a (1, 441 × T ) waveform, where T is 10

milliseconds. The final inference of speech restoration model

is xout = G(Fr(X
′)), where X ′ is the mel-spectrogram of the

audio style transfer output x′ and G is the pre-trained vocoder

function.

III. EVALUATION

A. Dataset introduction

Currently, there is a lack of dedicated speech datasets

tailored for hypophonic speech collection. As a result, we

select relevant speech samples from existing datasets and

employ data augmentation techniques to facilitate large-scale

     
        

 

 

 

  
  

  
  

  
  
 
  

(a) Raw hypophonic speech.

     
        

 

 

 

  
  

  
  

  
  
 
  

(b) ClearAI enhanced speech.

     
        

 

 

 

  
  

  
  

  
  
 
  

(c) Hypophonic speech after over-
the-air transmission.

     
        

 

 

 

  
  

  
  

  
  
 
  

(d) ClearAI enhanced speech after
over-the-air transmission.

Fig. 5: Spectrograms of hypophonic speech and ClearAI en-

hanced speech in digital and physical transmission scenarios.

training. We collect hypophonic speech samples in Perceptual

Voice Qualities Database (PVQD) [17] and a curated dataset of

hypophonic speech (herein referred to as the Cushnie-Sparrow

Database [18]. PVQD contains 296 speech samples and each

sample is from a individual speaker from 14 to 93 years

old. 207 of them have different levels of voice complaints.

Each sample contains 5 complete sentences and 2 vowels. The

Cushnie-Sparrow dataset is a dataset collected from 56 PD

patients from 54 to 88 years old (42 males and 14 females).

Each speaker produced a set of 11 sentences from the Sentence

Intelligibility Test [19], ranging from 5 to 15 words in length.

For both datasets, the records were captured through a headset

condenser microphone placed 6 cm from the speaker’s mouth

to ensure the best audio clarity.

B. Experiment setup

In the data augmentation phase, we choose VCTK Corpus

dataset [20] as source speech to generate hypophonic speech.

After training the style prediction and speech restoration

models, we select hypophonic speech samples from PVQD and

Cushnie-Sparrow datasets as the input and obtain the enhanced

speech. We compare the speech enhancement performance of

ClearAI with 5 baseline methods: ➀ Equalizer: amplifying the

most sensitive frequencies (1.6 ∼ 4 kHz) according to equal-

loudness contour [21], ➁ SEGAN [8], a speech enhancement

generative network, ➂ SpeechBrain [22], a general speech

toolkit, ➃ AudioSR [23], an audio super-resolution based on

diffusion model, ➄ VoiceFixer [9], a speech restoration model

for audio distortion recovery. In our evaluation, the loudness of

all speech samples are normalized as 70 dB SPL to eliminate

the impact of volume.

C. Audio quality comparison

Although many metrics can be used for speech qual-

ity assessment, e.g., Perceptual evaluation of speech quality

(PESQ) [24], they are all based on the comparison between

clean speech and distorted speech. These metrics are not

suitable for evaluating the quality of hypophonic speech as the

raw speech has lower quality. Therefore, we choose Signal-to-

Noise Ratio (SNR) to evaluate the audio quality of hypophonic



TABLE I: SNR comparison of unprocessed hypophonic speech

and enhanced speech from different enhancement methods.

Methods Digital (dB) Over-the-air (dB)

Raw speech 12.41 7.70
Equalizer 13.25 8.55

SpeechBrain 14.11 8.43
SEGAN 10.35 7.14
AudioSR 13.85 8.44

VoiceFixer 14.52 8.80
ClearAI 15.97 9.67

speech and existing enhancement methods. In Table I, we list

the SNR values of hypophonic speech and enhanced speech

from ClearAI and other existing methods in digital format.

The equalizer can improve the speech intensity but the vocal

breathiness is still strong. For speech enhancement models

targeting noise cancellation, SpeechBrain can improve the

audio quality by mitigating the background noise. On the other

hand, SEGAN degrades the speech quality as it incorrectly

eliminates weak speech signals. AudioSR method reconstructs

the high-frequency band but leaves the low-frequency signals

unchanged. VoiceFixer shows better performance since it can

effectively filter out the noise and compensate weak audio

patterns. Among all enhancement methods, ClearAI shows the

best SNR results. Fig. 5(a) and Fig. 5(b) show the comparison

of raw speech and enhanced speech by ClearAI. Because

ClearAI is trained on hypophonic samples and corresponding

healthy speech, it shows better capacity while reconstructing

hypophonic speech with low intensity and strong breathy

voice.

In an over-the-air transmission scenario, it is challenging

for microphones to adequately capture hypophonic speech.

To evaluate ClearAI performance in over-the-air transmission,

we use a loudspeaker to play all speech samples with the

same volume setup, and then we place a smartphone (iPhone

13) 1.2 meters away from the loudspeaker to record the

audio with 48 kHz sampling rate. The hypophonic speech

example is shown in Fig. 5(c). The higher frequency spectral

components of the signal will attenuate during over-the-air

propagation, further weakening the captured audio intensity.

This attenuation pattern is worse at greater distances. While

methods such as AudioSR can reconstruct high-frequency

components to boost digital audio power, it is less effective

during over-the-air transmission since high frequency signals

are vulnerable during over-the-air transmission. In comparison,

as shown in Fig. 5(d), ClearAI yields the clearest speech

patterns in the replay recording, because it enhances the audio

intensity while eliminating the vocal breathiness in the speech.

D. Speech recognizability

ASR models can recognize unprocessed hypophonic speech

in quiet environments as they use denoising methods to elim-

inate breathy noise. However, the hypophonic speech is not

robust in noisy environments. To address the human computer

interaction for hypophonic patients, we apply ClearAI in the

amplification process to enhance the speech. We select the

OpenAI’s open-sourced ASR model, Whisper, and statistic its

word error rate (WER) for evaluation. We use ClearAI to

          
        

  

   

   

   

   

    

 
  

         
       

Fig. 6: WER comparison under different noise levels.

process the hypophonic speech and compare the ASR accuracy

with the unprocessed raw speech signal. Additionally, we

inject multi-talker noise into the speech samples to simulate

noisy environments with other speakers. In the evaluation, all

the speech samples are normalized to 75 dBFS, and we adjust

the noise power to manipulate the input audio SNR.

Fig. 6 presents the WER comparison results under different

noise levels. When the SNR is high, for example, greater

than 15 dB, the ASR model achieves a 0% WER even for

unprocessed hypophonic speech samples. As we increase the

noise level to an SNR of 10 dB, the ASR model fails to

recognize 22% of the words in the speech, as the noise

overwhelms the weakest speech patterns. In comparison, the

speech samples enhanced with ClearAI maintain a very low

WER (∼ 4%) since ClearAI eliminates the breathy noise and

selectively enhances the human speech patterns in the audio

samples. Notably, even under extremely strong noise levels

(SNR = 0 dB), where the noise has similar power to human

speech, the audio samples enhanced by ClearAI can still be

recognized with less than 50% WER, achieving 30% of im-

provement compared with the raw hypophonic speech samples.

The results show that ClearAI can effectively improve the

recognizability of noisy hypophonic speech. ClearAI can also

be conveniently deployed on mobile devices to enhance speech

signals.

E. Human study

We also conduct a human perception study to compare

the intelligibility of the enhanced speech samples from the

human listeners’ perspective. 16 volunteers (10 males and 6

females, 24 to 33 years old, all with normal hearing ability)

participate in this evaluation. We select 4 speech samples

from the Cushnie-Sparrow dataset and 4 samples from PVQD

dataset with hypophonia symptom for the test. First, we let the

volunteers listen to the raw speech audio as a reference. Next,

they listen to the enhanced speech samples from ClearAI and

other methods. After that, they will rank the speech clarity

and intelligibility for all enhanced samples from 1 (lowest) to

6 (highest) based on their personal judgement.

Fig. 7 displays the average scores for different speech

enhancement methods. Among all methods, SEGAN has the

lowest score because it incorrectly filtered out some speech

features, rendering the enhanced speech incomplete. Voice-

Fixer primarily targets regular audio distortions. Therefore,



Fig. 7: Human test result of different speech enhancement

methods on weak hypophonic speech samples (x-axis denotes

the speech clarity and intelligibility score from 1 to 6).

it presents an unnatural timbre when restoring hypophonic

speech. The equalizer method can enhance the energy of

frequencies that human hearing is sensitive to, while Speech-

Brain’s speech enhancement tool mitigates breathing noise,

thereby improving speech clarity. AudioSR reconstructs the

high-frequency components of speech, improving the speech

clarity and stereophony. Compared to all these methods,

ClearAI consistently achieves the highest average scores, cor-

responding to the highest audio quality and intelligibility. The

training mechanism on parallel healthy speech and hypophonic

speech not only restores the speech content but it also corrects

the hypophonic timbre, bringing it closer to the speech from

healthy individuals.

IV. CONCLUSION

In this paper, we present ClearAI, an AI-driven speech en-

hancement model designed for hypophonic speech. Facilitated

by data augmentation, ClearAI strengthens speech features

by leveraging audio style transfer. It then utilizes a two-stage

speech restoration model to reconstruct the clear speech audio.

Our evaluation results show that ClearAI’s enhanced speech

achieves the highest SNR compared with other methods in

both digital and physical environments, and it can reduce

ASR error rate when recognizing hypophonic speech in noisy

environments. Moreover, the results from human study demon-

strate that ClearAI delivers the clearest and most intelligible

speech among all the enhanced hypophonic speech samples.
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