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Abstract

Understanding how out-of-equilibrium states thermalize under quantum unitary dynam-
ics is an important problem in many-body physics. In this work, we propose a statistical
Ansatz for the matrix elements of non-equilibrium initial states in the energy eigenbasis,
in order to describe such evolution. The approach is inspired by the Eigenstate Thermali-
sation Hypothesis (ETH) but the proposed Ansatz exhibits different scaling. Importantly,
we point out the exponentially small cross-correlations between the observable and the
initial state matrix elements that determine relaxation dynamics toward equilibrium. We
numerically verify scaling and cross-correlation, point out the emergent universality of
the high-frequency behavior, and outline possible generalizations.
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1 Introduction

Over the past decades, the unitary evolution of nonequilibrium states, including post-quench
dynamics, has been a prominent subject in the field of quantum dynamics. The mechanism for
thermalization is now well understood via the Eigenstate Thermalization Hypothesis (ETH)
[1-4]. The latter is a statistical Ansatz for the matrix elements of physical observables A is the
energy eigenbasis H|E;) = E,|E;):

Aij = A(E+)5U + e_S(E+)/2fA(E+, wl])Rl] N (1)

with E* = (E; + E;)/2, w;; = E; — E; being the average energy and frequency, S(E) is ther-
modynamic entropy, and R;; is a pseudorandom variable, such that R_U = 0 and }W = 1.
Finally, A(E) and f,(E, w) are smooth functions of their arguments. This Ansatz has proved to
be extremely successful in describing the equilibrium dynamics [4, 5] of physical local Hamil-
tonians, as was shown by extensive numerical calculations [6-14]. Recently, the study of cor-
relations between matrix elements [15] has led to novel developments beyond the standard
framework, connecting ETH with Free Probability theory [15-18], random matrix universal-
ity [19,19-25], conformal field theories [26] and motivating the study of energy eigenvectors
statistics [27-34].

One of the central questions is how to extend the ETH framework to describe non-
equilibrium dynamics [2,35-41]. In this work, we propose a statistical Ansatz for the matrix
elements of the projector on the initial out-of-equilibrium state ¥ = |¢) (3| written in the
eigenbasis of the Hamiltonian. Notably, the non-equilibrium dynamics are encoded in the cor-
relations between the initial state and the observable’s off-diagonal matrix elements, which we
describe in our framework. After introducing the Ansatz and verifying its consistency, we dis-
cuss its implications for the relaxation dynamics towards equilibrium and numerically verify
it in a non-integrable one-dimensional spin chain. The main novelty of this work stems from
the interplay between the standard ETH Ansatz for the operator and the one that we propose
for the projector via the correlations that characterize their matrix elements and that allows
us to describe the non-equilibrium dynamics beyond the steady value.

2 Out-of-equilibrium ETH

2.1 Set-up

The dynamics of a local observable can be written in the eigenbasis of the Hamiltonian as

(PIADIY) = Z CiC}kAijei(Ei_Ej)t ) (2)

1



e SciPost Phys. 18, 136 (2025)

with ¢; = (y|E;). The original ETH (1) is designed to describe the stationary equilibrium point.
In the absence of degeneracies, the expectation value of A eventually attains a stationary value

Z i Aii = (A)ding » €))
i

which can be described by standard statistical mechanics. Namely, one introduces the diagonal
ensemble Pying = > lc;[*E;) (E;| such that (A)diag = Tr(A ﬁdiag) [3,42]. In this work, we
consider pure initial states with extensive mean energy and sub-extensive energy fluctuations
in the number of degrees of freedom N

(WIFRp) = Eg ~ o,
VIl —Eo2l) =5, N, a<1.

4)

For such initial states, the stationary value of (A(t)) is given by the microcanonical expecta-
tion, that, combined with ETH implies thermalization, i.e. (A)diag ~ A(Ep) [2,3]. As a main
example, we consider the case a = 1/2, satisfied if one performs a global quench, which also
characterizes equilibrium ensembles. Nonetheless, we will discuss the validity of our Ansatz
also for other initial states (see the Discussions).

The fundamental object that we want to characterize is the projector on the initial state
written in the basis of the Hamiltonian

Wij=cic; = (Ejly) (YE;) . (5)

We will treat it as a pseudorandom object, analogously to A;; in ETH. A crucial difference,
in comparison with A, is that this operator is of rank one and that each off-diagonal matrix
element is the product of two pseudo-random numbers. This will radically change the scaling
in the proposed Ansatz [43]. Crucially, to capture the out-of-equilibrium dynamics, we will
assume that correlations exist between ¥ and A, when expressed in the energy eigenbasis.

2.2 Ansatz
We introduce an Ansatz for the matrix ¥,
e—®(E:) o3 (@(EITR(E))

where ®(E) is a smooth function of energy and Z = Zi e~ the normalization, which defines
the diagonal ensemble:

VA
The above average can be thought to be over small energy shells or over small perturbations,
see e.g. [1]. In Eq. (6), R; j are pseudorandom variables with zero average and unit variance,
ie.

T 2
U =" =

(7)

RUZO, Rlzjz]., fOrl?é]

Diagonal pseudo-random R;; also have zero average, but the particular value of their variance
may depend on the symmetry class of H (e.g. GOE or GUE), as it is the case for R;; in standard
ETH [19,44]. Given that ¥;; is positive, (1 +R;;) > 0. Since V;; is a product of two quasi-
random numbers, this implies various constraints on the joint properties of R;;. Crucially, these
variables are exponentially weakly correlated with R;; of the original ETH Ansatz (1),

_ +
RijRji = gaulet, w;)e S et =(E +E))/(2N), (8)

ij
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where g4 ¢(e", w; j) is an order one smooth function of its variables, which describes the cor-
relations crucial for non-equilibrium dynamics. Note that with our notations e* is the energy
density between two eigenstates, while e, the energy density of the initial state in Eq. (4). The
existence of such correlations between the off-diagonal products of ¥;;A;;, can be shown by
averaging over the (random) phases of the eigenvectors of H, see the App.A.1 Note that similar
cross-correlations also exist between the matrix elements of different observables, say A and

B [16,45]. Within our notations this leads to a smooth function Flgg)(co) = fa(w)fp(—w)gap(w)

with gap(w;;) = R‘E‘jR?i.
In particular, for the initial states conforming to Eq. (4), we will assume that a large
deviation scaling of the form ®(E) = N¢ (e = E/N) applies, such that the following is a convex

function,*

S(E)—®(E) =Nls(e)— ¢ (e)]. )

Summarising, in the out-of-equilibrium ETH, observables and the initial state look like pseu-
dorandom matrices with smooth statistical properties describing correlations or variance of the
off-diagonal matrix elements,

|A;;12 = G TACHS wij)|2 , (10a)
. e N((e)+¢(e)) 2
92 = =, (10b)
s €0 "
WA =e TfA(e s wij) gawl(e”, wij), (100)

where we made explicit the dependence on the system size N. In the case of states conforming
to (4), Eq. (10b) simplifies to

—2N¢(e) 4t
|2 = CT e AN w?j , 1

|55
where one expands the energies E; ; = ET+ w;;/2 in Eq. (10b) around E* and uses the

assumption of large deviation.
——¢//(E+) 2 . . . .
A similar term, e~ ® “i, should appear also in Eq. (10c), however, in the limit of large

N this can be neglected because f4(e, w) is expected to decay at large frequencies at least as
exp(—f/4w;;) [46] and only close-by eigenvectors contribute to quantum averages. Finally,
we note that the product ¥;;A;; has large fluctuations compared to the average (10c), see the
Appendix.

2.3 Consistency checks

Let us first see how the Ansatz (6) and in particular the diagonal ensemble derived from that,
satisfy the assumptions (4). The large deviation scaling leads to an ensemble strongly peaked
around the characteristic (extensive) energy which maximizes (9) and with sub-extensive fluc-
tuations. In fact, in the large N limit, the energy uncertainty reads:

1

. 12
(Ey) — S"(Eo) (12)

A = (WI(H = E)?[y) =

Owing to the extensivity in Eq. (9), this implies that Ay is sub-extensive, in particular, for a
post-quench state,
AEO = 580 v N >

!This implies S” —®” < 0, i.e. ¢”(e) >s"(e).



e SciPost Phys. 18, 136 (2025)

where 6, is an order-one constant, determined by the shape of the large deviation.? We shall
now proceed to discuss a set of consistency checks to validate our proposed approach.

Normalization — The state normalisation Tr¥ = 1 is ensured by the definition of Z. In the
large N limit, the “partition function” Z in Eq. (6) reads:

Z = V2nAg eSE)—2E) (13)

with Ag given by Eq. (12). However one can show a stronger property, namely that Tr v2=1.
See Eq. (20) below at time zero.

Projector — We now discuss an even tighter constraint: the projector identity ¥? = ¥ at the
level of individual matrix elements. For our Ansatz, this turns out to be true in a statistical
way in the thermodynamic limit. In particular, thinking of the matrix elements ¥;; as products

of two random variables ¥;; = c;c; we assume the following properties:

RiRy; = Rij(1 +Ryw), fori#j#k, (14)
At the leading order in N, this implies (see the Appendix),
) o3 (P(E)TR(E)) _ o
[v ]ijZ#Rijz[\P]ij: i#£7, (15a)
9 e_q)(El) -
(=] ~ (1+Ry) ~[¥];. (15b)

Z

Therefore the Ansatz preserves its structure upon multiplication.

2.4 Statistical distribution of the matrix elements

In the spirit of Berry conjecture [47], or by analogy to Random Matrix Theory, at leading order,
one can expect individual coefficients c;, rescaled by their typical value, to be Gaussian random
numbers. For the distribution of the diagonal elements ¥;; = |c;|2, this leads to the well-
known Porter-Thomas distribution for x = ¥;;/¥;; [48,49]. We apply the same argument to
the distribution of the re-scaled off-diagonal matrix elements z = ¥;;/+/ W =R, j, treating
them as a product of two independent Gaussian random variables. In the thermodynamic
limit, it yields the modified Bessel function

e_lzl

1 1
P(z) = —Ko(lz]) ~ — ) (16)
m V21 4/ |z]
where on the right-end side, we substituted the asymptotic expansion for large z.
2.4.1 Ansatz for the higher-order cross correlations
Note that Eq. (16) describes the distribution of the rescaled matrix elements R; j» but it does

not contradict the existence of their cross-correlations. This is analogous to the ETH matrix

elements R;; = A;;/4/A;jA;i, which are known to follow Gaussian distribution [50-52], while,
within RMT, the random variables A;; follow a large deviation function [19, 53] and different

2Second derivative of an extensive quantity with respect to the energy is

*®(E)|  _ 13°¢(e)
OE2 lp=g, N 0e2 le=¢

<I””(Eo) =

Therefore 6,, = 1/+/¢"(ey) —s"(eo).

= 0"(ey).
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matrix elements A;; are correlated [15,19,21,39]. In the case of ¥}, in addition to (14), there
is an infinite number of relations coming from the fact that it is a projector, see Appendix A.2.

Our main focus is on the correlations between ¥ and the observables, such as the ones in
Eq. (10c). For a multiple product with the distinct indices i; # i, # i,, one can write

Cn0ste) €T )
Ui i, Aii, Ai, =€ * The+ (&), (17)

while contributions with the repeated indices factorize, i.e.

Vi, At A A = Vi, Ai i, A Aiyy, TODT). (18)

Here hgz)(&i) is a smooth function of its arguments: e* = (Ei, + ...+ E; )/Nn and
& = (E; —E,...,E; —E; ). This Ansatz encodes the out-of-equilibrium multi-time dy-

namics such as (1| A(t1)A(t,)---A(t,_1)|vy) and also ensures that the Ansatz on the initial
state is stable against perturbations.

2.5 Implications for the dynamics

We now discuss the main motivation behind our Ansatz, designed to describe equilibration
dynamics of physical observables.

Fidelity decay — First of all, we show that our Ansatz is consistent with the expected behavior
of the fidelity decay (survival probability) [54-57], defined as

2

(Wl () > = ‘Z |c;[PeEt| (19)

By substituting sums with integrals, neglecting spectral correlations, and using the out-of-
equilibrium ETH Ansatz in Eq. (11), at the leading order in N, one finds

2

1_1
1 et
(W lip(6))]? = mf dowe PR elot = ¢~ Ak , (20)
Eo

where we used the definition of the energy variance in Eq.(12),
Ag, =1/ V®"(Ey)—S"(Ey) = S, V'N. Thus the large deviation Ansatz in Eq. (6) is consistent
with the Gaussian decay, controlled by the energy variance of the initial state, in agreement
with the literature on global quenches, see e.g. Ref. [55]. Dynamical behavior, different from
Eq. (20), e.g. including an exponential decay, is known to arise from the initial states which
are different from Eq. (4) [54-56,58-61], as discussed below.

Relaxation dynamics — The primary purpose of this work is the study relaxation dynamics
in Eq. (2), namely:

5Ay(£) = (YIAO)Y) — (A)gag = D, cic Agye BB (21)
i#j
Plugging Eq. (10c) into Eq. (21), the standard ETH manipulations lead to

w2

OAg(t) ~ J dw faley, w)gawleo, co)e_@ et (22)

Hence, the correlation between the initial state and the operator encodes the Fourier transform
of the relaxation:

5Ay(w) = faleq, w)gaw(eg, ), (23)

6
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where we have neglected the Gaussian frequency term for N > 1. Thus, the out-of-equilibrium
behavior is encoded in this function and will depend, in general, on the correlations between
the state and the observable.

The relaxation dynamics (21) share some properties with the (two-time) dynamical corre-
lations at thermal equilibrium for the same observable. One has [4,5]:

C(t) = %({A(t),A(O)})C = J dwe't cosh(ﬂ%)fj(eﬁ, w), (24)

where (-) = Tr(e PH.)/Tr(e P¥) and eg = (H)/N. Therefore the ETH function fy(e, w) enters
both Egs. (22) and (24) and its properties in the w — 0 limit control the long-time behavior.
This fact is usually invoked in the literature, see e.g. [2,5], and our Ansatz in Eq. (22) makes it
explicit. Similarly to fAz(co), which has to decay exponentially at large w in D > 2 (superexpo-
nentially in 1D), high-frequency tail of gy 4(w) has to be exponentially suppressed for states
U associated with local perturbations (see the Appendix).

Let us now comment on some differences between Eq. (22) and (24). The integrand in
(24) is positive-definite. As a result, C(t) necessarily decays at early times. On the contrary,
the integrand in Eq. (22) is not sign-definite, hence 6Ay(t) can both increase or decrease
throughout relaxation dynamics.

3 Numerical results

We test the predictions above in the case of the one-dimensional Ising model with a tilted field

L L -1
H=ZWO§C+ZhO?+ZJU?G?+1, (25)
i=1 i=1 i=1

with w = +/5/2, h = (/5+5)/8 and J = 1 and consider different local single or two sites
observables,
A=O’T,A=O’§, or A=o§0§. (26)

We consider simple out-of-equilibrium initial states, fully polarized states

|¢> = |~Lala e la) B (27)

in the o = z or a = y directions. We impose periodic boundary conditions on the Hamiltonian
in Eq. (25) and restrict the analysis to translationally-invariant sector k = 0 with positive parity
reflection symmetry. As a technical tool, we use the smoothed average of our energy-resolved

data as Z Fle)5. )
N 2 F ()0 (x —x,
o0l = =550 (28)

where, 6.(x) is a smoothed delta functions such that lim,_, o, 6.(x) = §(x). In the simula-

tions, we chose a Gaussian smoothing 6 .(x) = e_é"z/\/ 21/ 72,

First, we establish that the initial states (27) are consistent with the Ansatz in Eq. (6). In
Fig. 1a we plot the diagonal ensemble for different length sizes L = 12,14,16, 18, showing
that it obeys the large deviation prediction ¥;; = fw;”” . This is confirmed by the inset, where
we plot the scaling of the initial energy E, = eyL and variance Ag /E; = 5, /eg VL, cf. Eq.
(12). From a fit of the data, we extract the dimensionless values e, = 0.10, 560 =1.12. In
panel (b), we study the fluctuations of the out-of-equilibrium ETH functions in the frequency

domain [cf. Eq. (10b)]. To address the dependence on L, we re-scale |¥;;|? by the diagonal

7



e SciPost Phys. 18, 136 (2025)

(a) %ln |\1’ii|2 (b) [‘I]’ij|2/|“p€0€0|2

—0.5 1

—1.0 1

—1.5 1

100_
—2.0 1

wij/ VL

Figure 1: Out-of-Equilibrium ETH of the fully polarized initial state |[y) = | |, -+ |,).
(a) The rescaled diagonal ensemble as a function of the energy density for different
system sizes L = 12, 14,16, 18. In the inset, the initial energy E, = (1)|H|v) and the
energy fluctuations (AE,)? = (y|H?|yp) — E2 are plotted as a function of the inverse
of the system size 1/L. (b) The off-diagonal matrix elements of the projector ¥;; as a
function of the energy difference w;; = E;—E; rescaled by 1/ VL. In both panels, the
blue dots correspond to individual overlaps for L = 16. The smoothing parameter is
T = 4. In the inset of panel (b), the numerical fidelity decay up to L = 22 is compared
with the prediction of Eq. (20) (dashed line) without any fitting parameters.

matrix elements at energy e, defined in Eq. (4). For the state under consideration, the Ansatz
in Eq. (10b) is given by Eq. (11) and it is given by

\/ZRUPS ¢"(eq) 2
— T RO (29)

I,

0‘30|

In Fig.1b, we fix the energy density to be e, by rescricting the energy indices i, j of ¥;;¥;; to
I(E; + Ej)/2—Eo| < V1§ ¢, The figure shows the smoothed average (29) as a function of the
energy difference w;; = E; — E; rescaled by VL, for different system sizes. For L = 16 we also
show individual values without smoothing (blue dots). The plot confirms that this initial state
has fluctuations that decay as a Gaussian with a variance 1/ V'L, consistent with Eq. (29). In

the inset, we also confirm the Gaussian decay of the fidelity upon increasing system size [cf.
2

Eq. (20)]: we plot e %o ¢ with 6, = 1.12 without fitting parameter.

We show the distribution of matrix elements Ri j in Fig. 2. In panel (a), we show rescaled
diagonal matrix elements x = ¥;;/%;;, ¥;; = |c;|?. The data is in agreement with the Porter-
Thomas distribution [48], which is expected for systems with time-reversal symmetry, falling
in the orthogonal ensemble (OE) universality class,

e—x/2
Pop(x) = ook (30)
In panel (b), we report the data for the off-diagonal matrix elements, rescaled as z = ¥;; /%,
where ¥, . is defined in Eq. (29). Our numerical results are in good agreement with Eq. (16),
without any fitting parameter.
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(a)  P(Vii/¥;) (b)  P(¥ij/ V)
0 sz 0 | -
1075 | — e 10 | — =%
1 I Numerics L = 18 /\
1072 b
1074
10—6 b
10 0 10
r=U;/U; 2= Vij/ Ve,

Figure 2: Numerical distributions of the projector’s matrix elements P(Rij) for
L = 18 superimposed with the theoretical predictions. (a) Diagonal matrix elements
x =Y /\I/_l-i (blue) and the Porter-Thomas distribution in Eq. (30) (orange). (b)
Off-diagonal matrix elements z = ¥;; /Toeo (blue) superimposed with the modified
Bessel function Eq. (16) (orange). The data is for the mean energy density e; = 0.10
smoothed with T =4.

We then proceed to establish the validity of the Ansatz for the correlations between the
initial state and observable A in the energy eigenbasis. In Fig.3, we focus on [)) = | |, -+ |,)
and A = 67. In panel (a), we test the system size dependency of Eqs.(10) at energy density
eo for finite frequency w;; = 5.1. As predicted by out-of-equilibrium ETH Eq. (10a), the

observable off-diagonal matrix elements A;;A;; decay as O(es(0)), while both |¥; j|? and A;; ¥,
decay as O(e™2), cf. Eqs(10b)-(10c). The red and black dashed lines indicate (dim 4)~* and
(dim #)~2 respectively. We checked that the same results hold at zero or for other finite w;;

1]
In Fig.3b, we consider

. 2 = fA(607 w)gA,\IJ(eOJ wl]) > (31)

€o€o
where ¥, . is the same as in Eq. (29) and the right-end side follows from Eq. (10c) and
(7). This quantity is of order one, i.e. it remains finite in the thermodynamic limit. Its Fourier
transform yields equilibration dynamics, see Eq. (22). Note that we have plotted the abso-
lute value of Eq. (31), since the sign of g(e, w) oscillates and this gives rise to the spikes in
the curve. This sign change is a characteristic feature of the out-of-equilibrium dynamics, as
was emphasized above, as the Fourier transform of (A(t)) need not to be necessarily positive.
Further investigation will be useful to determine the physical content of these oscillations.
To better understand the behaviour of the function g(eg, w), in Fig.4 we consider:

V A%j \/ |\Pij|2 V \Ileoeo

to obtain an order one quantity, which encodes the correlations in Eq. (8). The results are
shown in Fig.4 for the fully polarized states in Eq. (27) along the directions a = z, y in panels

~ g4 w(ep, wij), (32)

. . —8(E)) .
3Using that the diagonal ensemble (7) for e* = ¢, reads |Ce0|2 = % ~ ¢~5(0) where one uses the normaliza-

tion in Eq. (13).
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(b) [Aij %3]/ [Wegen* = fo(w)]ga(w)]

_ L =12
=3 107" 1
10 —— [ =14
10-3 —— L=16
—— [ =18
1072+ ‘ 1075 i
1077 i
1077+
» 1079 1
0 10 20

Figure 3: ETH correlations between the initial state and the observable A= 67. (a)
Scaling with the system size of the ETH predictions in Egs.(10). The red and black
dashed lines indicate (dim )" and (dim )2 respectively (b) Smoothed averages
A;j¥;; describing the Fourier transform of the relaxation dynamics increasing system
size. The data is for the mean energy density e; = 0.10 smoothed with 7 = 4.

(a) and (b) respectively, or the three different operators in Eq. (26). The plot shows that the
gaw(eg, w) may still decay, albeit slowly, as a function of frequency. The most notable fact is
that, for different observables, the smooth functions g have approximately the same behavior
at large frequencies, which does not depend on the observable. This seems to indicate that
the large frequency behavior and the oscillations in the g,,(ey, w) reflect physics of the initial
state.

4 Discussion and conclusions

In this paper, we have introduced a new Ansatz for out-of-equilibrium dynamics, which predicts
correlations between the initial state and observables when written in the energy eigenbasis.

Let us remark that our results describe a wide class of initial states, including for example
products |a),|b) of energy eigenstates |a), and |b) of subsystems A and B, that have recently
motivated studies of the eigenstate correlations [29-34]. For local 1d Hamiltonians, these
states have energy fluctuations A% = 0(1) in N. While obeying Eq. (4), they do not have the
form of a large deviation (9) and their survival probability (19) is known to decay exponentially
in time [55]. Nevertheless, this class of states is naturally included in our Ansatz on the state-
observable correlations in Egs.(10), where Eq. (10b) generically reads

W — e—<I>(E++w/2)—<I>(E+—w/2)/ZZ ) (33)
These states are discussed in the Appendix, where we verify numerically the general scaling
with the system size of Egs.(10), and comment on the relation with the literature.

Our work opens a series of perspectives. At long times, hydrodynamic modes are expected
to play a dominant role in equilibration dynamics [62-64], and it would be valuable to in-
vestigate how hydrodynamic description can be incorporated into the non-equilibrium ETH.
Additionally, one could explore how the current ETH framework applies to integrable systems
that equilibrate to a generalized Gibbs ensemble [11,42,65,66] or in the presence of many-
body quantum scars [67-70].

10
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(a) | \Lz \L;>, €)= 0.11

() | Ly .. L) €0 = 0.00

10! 10!
10°4 )
10°+ |
1071 J
1071 J

1072 J

-3 -2
1075 10 20" "6 10 20

wqjj = E’j - Ej w,l;j == qu — Ej

Figure 4: Absolute value of the correlations between initial state and observable
|40 (eg, )| extracted using Eq. (32) for different observables A= o7, o] and 0707
as a function of frequency. (a) Results from the initial state |}, --- |,). (b) Results
from the initial state ||, --- |,). Here L =18 and 7 = 4.
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A Additional statistical insights
A.1 A simple scaling drawn from RMT

Let us discuss a simple example that exhibits the scaling in Eq. (10). Consider an observable
A=Y A4A,)(A,] and as an initial state we will take an eigenvector of such observable
|} =|Ay). Let us suppose that afterward, the state evolves under a D x D Hamiltonian that
is drawn from a rotationally invariant ensemble, i.e. P(H) = P(U"'HU) where U is arbitrary
orthogonal (or unitary) matrix, for instance a GOE or GUE ensemble. With this choice, the
Hamiltonian eigenvectors |E;), in the basis of the observable, i.e. (E;|A,), are represented
by random orthogonal or unitary matrices. The properties of the matrix elements of a given
observable A in such random basis have been discussed in [71]. In the large D limit assuming
to initialise the dynamics in |¢) = |7Lw), some eigenvector of the observable A, the properties
of this toy “out-of-equilibrium” ETH can be easily derived

1
4> = (A% — (4)%), (A.1a)
WP=5,  foris], (A.1b)
1
Vi = 3 [Ay—(A)], (A.10)

11
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where (o) = %Tr(O). This is a particularly simple example of the Ansatz (10) discussed in the

—1/2

main text. In term of normalized fluctuations this means R; jRi j~D ,as in (8). This exam-

ples illustrates the difference in scaling between |A;;|? and |¥;;|2. The first quantity has rank
D, leading to Zi]. |A;j|> = O(D), while the second has rank one, D i |¥;;12 = O(1). Similarly
D ;7 ¥ijA;; = O(1), which is consistent with the scaling above.

A.2 A constraint on the Ansatz

Let us justify Egs. (14). As we stressed several times, contrary to the standard ETH Ansatz
for observables, the matrix that we have are chracterising has rank 1. In particular, calling

2, = %e_%q’(Ei) and following the notation of the main text we have:
= |Ci|2
1 +Rll - 2
2
cct L (A.2)
~ [}
Rj=—L, fori#j.
Zizj
Taking products:
N Ci|ck|2C;< . . o
RiRy; = =R;j(1+Ry), fori#j#k, (A.3)
Z; |Zk|22j
and similarly
2. 12
3R, = il =1 +R)A+R;), fori#j (A4)
1t 121512 il jjits J- .
|2;1%1z1

Let us now see how these constraints imply that ¥ is a projector by proving Egs. (15). We
start by evaluating the off-diagonal with i # j:

[‘Pz]ij=Z‘I’ik‘I’kj:‘I’ii‘I’ij+‘I’ij‘I’jj+ Z Wi Wy j
k

k:k#i#j
1 1 NI —(E)S _S(E)R R
= ?e 3 (2(E;)+2(E))) [e q)(El)RiiRij"'e ¢(EJ)Rijij] (A.5)
1 e )
+ Ee_%(‘I’(Ei)‘*'q’(Ej)) Z RikRkj ,

k:k#i#j

where from the first to the second line we have inserted the Ansatz (10) in the individual matrix
elements. The first term is subleading O(e™2"), while in the second term, we can substitute
the Ansatz of Eq. (A.3) and obtain

1 —@(Ey) _ . 1 .
[‘Pz]ij o Ee_%(‘b(Ei)H)(Ef)) Z c Rij(1+Ry) = Ee_%@(Ei)Jrq)(Ef))Rij Z Wik
kik£i#j k:k#i#j (A.6)
_ le—%@(EiM(Ej))gij —u,,

Z

where we used >3 iz Wik = Do Wik = () = 1 which shows the first equation in (15).

12



e SciPost Phys. 18, 136 (2025)

Similar manipulations can be done on the diagonal elements, leading to

2li= Z‘I’ik‘l’ki =W + Z Wipe Wi

k-k;éi
—2<I>(E ) e (B |
_e _ .
(1+R;)*+ Ee o) Z 7 RiyRyi (A7)
k:k#i
1 —2(Ey) .
e e *E(1+Ry) Z 1 +Rkk):‘1’iizq’kk=‘1’ii,
k:k#i k#i

where, from the second to the third line we have used the fact that the first term is subleading
and the Ansatz in Eq. (A.4).

In addition to (A.3) and (A.4), there is an infinite number of higher-order constrains com-
ing from the fact that W;; is a projector. Say, we find at order 3,

RijRjRyi = Ri(1 +Rj Ry = (1 +Ry)(1 +Rj;)(1 + Ry, (A.8)
fori# j # k aswell as for i # j # k # [ at order 4,
RijRjxRRy; = Ry (1 +R;j)Ry;(1+Ryp) = (1 +R;)(1 +R;;))(1 + Ry )(A +Ryy) . (A.9)

The list of such constraints continues to include higher orders of R.

A.3 Fluctuations of state-observable correlations

At the level of single matrix elements, the product of the initial state and the observable has
large fluctuations in the system size. In fact

WiiAj > UAj + 4 15124/ 1412 €45, (A.10)

with &;; some random variable with average zero and fluctuations order one. Here, the am-
plitude of the fluctuations is larger than the average:

since 1/ |W;;|2|A;;|2 ~ ¢735/% and W;;A;; ~ e~>5. However, when computing physical observ-
ables, one has to sum over many indices, and, due to the presence of randomness, the fluctu-
ations become negligible. This is analogous to what happens to high-order products of matrix
elements in standard ETH, which also possess large fluctuations [15]. These fluctuations con-
tribute, at least for finite systems sizes, to (A(t)){A(—t)), A detailed understanding of their

influence on the dynamics is left to future work.

B A bound on high frequency tail of g(w)

As a starting point, we introduce

Z(B) =) e HEIPE (B.1)
such that Z = Z(0) matches the definition of Z in (6). It is also convenient to introduce the
ratio Z(ﬂ)

Z(B) = (ple P |yp) = (B.2)

13
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To constrain g,, 4 we use the approach similar to one used [72], which bounds on high-
frequency tail of fy,

fa, ) <O B/4FI2) o 00, (B.3)

where * is an O(1) constant defined by local model parameters. Here O (:--) means that
possible pre-exponential w-dependent factors are ignored. Finally, temperature f3 is associated
with energy density &, S’(N&) = 3. We now consider

(YlePHACY)

Cg(t)z Z6)

(B.4)

We now use the following inequality

[(plA ) < AT 1Y, (B.5)

where |A| is an infinity norm of the operator A, meaning the largest (by absolute value) eigen-
value when A is hermitian, or largest singular value when A is not hermitian. Taking |vy)) = |¢)
and (1’| = (3| e PH we arrive at

Z12(2B)z1/2(0)
Z(B)

Here € is the energy density where the main contribution to the integral in (B.1) comes from,
é=—3/dpInZ(B)/N. We can now redefine t —» t —if3 /2,

< |A(t)|

U dw fa(8, w)gy (€, w)e? P/ (B.6)

z!(2p)z"/%(0)
<|A(t—iB/2)| . (B.7)
Z(p)
The LHS is an even function of t, while |A(t)| is analytic within the strip |Im(t)| < * [72].
Thus the RHS of (B.7) is analytic inside the strip —3*+ /2 < Im(t) < 8*+ /2. Because the
LHS is even, it has to be analytic inside a wider strip —f* — /2 < Im(t) < 3*+ /2. For the
integral over w to converge, taking into account the bound (B.3) we find

U do fa(8, w)gy A€, w)e™™"

Z12(2B)z1/2(0)
Z(B) ’

Here f3 is a free parameter, it determines the “saddle point” (mean energy density) &(f3), where
the integral in (B.1) is saturated, which in turn defines f3. Parameter 3*, which characterizes
the model does not appear in (B.8). When 3 = 0, mean energy density é = e;, and B is the
effective temperature of state v).

The logic behind free parameter f§ appearing in bound (B.8) is exactly as in [72], this is
a parameter to optimize over, to find the best possible bound. For the large deviation states

(9), the factor Zlf(%ﬂ ) grows extensively, ln(zlz/z(%/3 )y ~ N O(B?), not leading to a meaningful
bound in the thermodynamic limit.

For the states with energy of order one, e.g. discussed in the next section, effective energy
density € = e, is 3-independent, B = Po, at least so for the parameter 8 smaller than certain
value § < A, see (C.3). In this regime 21/2(2[5)21/2(0)/2(/5) is of order one, and g 4(€, w)

for large w decays exponentially, bounded by e=(*/2=Fo/ provided B, < 2.

|gyal€, w)| <O (e_(ﬁ/z_ﬁ/4)w) w — 0. (B.8)

C Bipartite energy eigenstates

Consider a tensor product Hilbert space H = H, ® Hy and a Hamiltonian B = H, + Hp + Hyp,
describing an interaction of a (sub)system A with a “bath” B. A particular example to keep

14
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in mind is a spin-chain split into two parts, interacting through a local term H,z. We start
with a pair |a), |b) of the eigenstates of H,, Hg respectively and consider a state |[¢) = |ab).
Decomposition of this state in the eigenbasis |E;) of H defines the projector (6)

b b) (ab
W) = (E;|ab)(ab|E;) = (i c.1)
These initial states have been the focus of a great attention lately [27,29-34, 73], especially
in relation to bipartite entanglement. The statistical properties of (C.1) can be formulated in
terms of the so-called Ergodic Bipartition (EB) Ansatz [34], which postulates that on average

b b -
e = | D = e SEAEIE(E, — B, — Ey), (c2)

where F(E; — E, — E;) is a narrowly-peaked function around E; ~ E, + E;. More accurately
instead of E, + E; in the expression above one should use mean energy E of |ab), as we do
below. More detailed properties of F(x) for 1D systems with local interactions, the Lorentzian
shape at small x and exponential suppression at large x,

(x2+A%)7! x<o,
F(X) o< { e_IXM’ (CB)

x>0,
where 0, A, A are model-dependent local (finite in the thermodynamic limit) parameters, were
outlined in [32].
From the definition (C.1) it is clear the ergodic bipartition Ansatz (C.2) is the diagonal part
of the out-of-equilibrium ETH Ansatz (6) applied to a particular initial states. We now discuss
how our approach encompasses the properties of (C.2). Starting from (7), using saddle point

approximation we find
o e E) S e~ ®(E)+9(Ep) )
Yz V2rag, '

where E, is the mean energy of state |ab), Eq = E, + E; + Agp,. Here Ay, = (ab|Hp|ab) and

A2 = (ablAZlab) — (Ag)* = O(1),

are of order one, i.e. remain finite in the thermodynamic limit, while E, and E, + E;, are
extensive. From here follows

e—‘I’(Ei)+‘I>(E0)

F(E;—Ey) ~ Al
Eoy

(C.5)
which is sharply peaked around mean energy E; ~ E, with the variance of order one.

Integrating (C.4) over dE, with the weight e%3(%+) and the constraint E, ~ E, + E,, readily
gives diagonal approximation to reduced density matrix [27]

Trp(|E:)(E) ~ J dE, e FaeSENS:(EirEa|q) (g, (C.6)

from where von Neumann and Renyi entropy follow via saddle point approximation. Justifi-
cation of the diagonal approximation to evaluate entropy was recently addressed in [34] by
considering the statistical properties of

C.(ab) .(a’b)* (a’b’)cgab’)*

i 1 i i 4

(C.7)

which can be understood extending the Ansatz to four different states |)1) = |ab), |¢),) = |a’b),
W’g) = |a’b’), |¢4> = |ab’), with i1 =iy =13 =14
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Figure 5: Left panel: averaged diagonal matrix elements (C.4), with the entropy
subtracted ¢ (E;) = In¥;; + S(Ey) + %ln(znAEz), for different system sizes, super-
imposed with —(E; — Ey)?/ (ZAIZEO) with the value of A%O for L = 15 (green dashed
line). Blue points show raw data (un-averaged value of In¥;;, with the entropy sub-
tracted) for L = 15. Right panel: average of the off-diagonal matrix elements (C.10)
for different system sizes, superimposed with —cw?/ (4A§_0) with the value of A%O for
L =13 (green dashed line).

To illustrate the behavior of ®(E;) we consider, c.f. (C.3),

(E; — Ep)? N

5 ey

— 1
Iny;; >~ —S(Ey) — 3 In(2nAE?)—
E

(C.8)

and note that for E — E, of order one, higher-order corrections to (C.8) are also of order one
and can not be neglected [32]. It corresponds to the first two terms of the Taylor expansion
of (C.3) in (E; — Ey)?. We plot ¢(E;) = In¥;; + S(E,) + %1n(27rAE2) as a function of E; — E,
numerically in the left panel of Fig. 5 for the tilted field Ising model (25) of size L = 2L'+1 with
the parameters J = —1,w = 1.05,h = 0.4. The eigenstates |a), |b) are chosen to be the ground
state and the most excited states of the subsystems of size L’ and L’ + 1 correspondingly. With
this choice of 1), the total energy E, is very close to the middle of the spectrum. To obtain ¥;;
we use smoothed average (28) with T = 2. The entropy

K L!
(L/2—«xE)(L/2+«xE)!’

S(E) =1nQ(E,), Q(E) = (C9)
is evaluated using binomial analytic approximation for the density of states of the titled filed
Ising model, see Appendix A of [27], with k = %\/JZ +w2+h2—1/L. Mean energy E, and

energy variance A%o are evaluated numerically for each L. The plot in 5 shows good collapse

of ¢ (E; — E,) for different values of L, and is well described by (EZZ—EO)Q for small |E; — E|.
Eo

The out-of-equilibrium ETH anzats predicts the off-diagonal matrix elements

_ 2

_ w

¢(w) =2 —2InY,, ~ TanZ lw| S Ag, (C.10)
A

plotted in the right panel of Fig. 5. Here ¥,, denotes the average ¥;; over a narrow shell
around E; = E, of size Ag . Similarly, \1112] in (C.10) is averaged only over pairs E;, E; satisfying
I(E; + E;)/2— Eo| < Ag,.

Next, we study cross-correlations of v with different operators A, sitting at the L(eft) edge,
R(ight) edge, or the M(iddle) site of the chain,

Z,X

A=o7 =001, A=o =00 A=oy =00 (C.1D)

site=L"+1" site=L *
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Figure 6: First row: from left to right, plots of fy(w)gy a(w) for A = 07,07}, 0%
correspondingly. Second row: scaling of Egs.(10) contrasted with (dim#)~! (dashed

red line) and (dim#)~? (dashed black line).
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Figure 7: In the absence of translational invariance, the function g is independent of
the direction of the observable, but not on the site.

We plot fy(w)gy a(w) for different A in Fig. 6. In the second row of Fig. 6, we display the
scaling with the system size of Egs.(10), finding a good agreement with the predictions at zero

and finite frequency (w = 2.1 shown in the Figure).
Finally, in Fig. 7 we illustrate approximate independence of g, »(w) at high frequencies,

on the choice of the observable A.
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