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Abstract

Understanding how out-of-equilibrium states thermalize under quantum unitary dynam-

ics is an important problem in many-body physics. In this work, we propose a statistical

Ansatz for the matrix elements of non-equilibrium initial states in the energy eigenbasis,

in order to describe such evolution. The approach is inspired by the Eigenstate Thermali-

sation Hypothesis (ETH) but the proposed Ansatz exhibits different scaling. Importantly,

we point out the exponentially small cross-correlations between the observable and the

initial state matrix elements that determine relaxation dynamics toward equilibrium. We

numerically verify scaling and cross-correlation, point out the emergent universality of

the high-frequency behavior, and outline possible generalizations.
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1 Introduction

Over the past decades, the unitary evolution of nonequilibrium states, including post-quench

dynamics, has been a prominent subject in the field of quantum dynamics. The mechanism for

thermalization is now well understood via the Eigenstate Thermalization Hypothesis (ETH)

[1–4]. The latter is a statistical Ansatz for the matrix elements of physical observables Â is the

energy eigenbasis Ĥ|Ei,= Ei |Ei,:

Ai j =A(E+)¶i j + e−S(E+)/2 fA(E
+,Éi j)Ri j , (1)

with E+ = (Ei + E j)/2, Éi j = Ei − E j being the average energy and frequency, S(E) is ther-

modynamic entropy, and Ri j is a pseudorandom variable, such that Ri j = 0 and Ri jR ji = 1.

Finally, A(E) and fA(E,É) are smooth functions of their arguments. This Ansatz has proved to

be extremely successful in describing the equilibrium dynamics [4,5] of physical local Hamil-

tonians, as was shown by extensive numerical calculations [6–14]. Recently, the study of cor-

relations between matrix elements [15] has led to novel developments beyond the standard

framework, connecting ETH with Free Probability theory [15–18], random matrix universal-

ity [19,19–25], conformal field theories [26] and motivating the study of energy eigenvectors

statistics [27–34].

One of the central questions is how to extend the ETH framework to describe non-

equilibrium dynamics [2, 35–41]. In this work, we propose a statistical Ansatz for the matrix

elements of the projector on the initial out-of-equilibrium state Ψ = |È, +È| written in the

eigenbasis of the Hamiltonian. Notably, the non-equilibrium dynamics are encoded in the cor-

relations between the initial state and the observable’s off-diagonal matrix elements, which we

describe in our framework. After introducing the Ansatz and verifying its consistency, we dis-

cuss its implications for the relaxation dynamics towards equilibrium and numerically verify

it in a non-integrable one-dimensional spin chain. The main novelty of this work stems from

the interplay between the standard ETH Ansatz for the operator and the one that we propose

for the projector via the correlations that characterize their matrix elements and that allows

us to describe the non-equilibrium dynamics beyond the steady value.

2 Out-of-equilibrium ETH

2.1 Set-up

The dynamics of a local observable can be written in the eigenbasis of the Hamiltonian as

+È|Â(t)|È,=
∑

i j

cic
∗
j Ai je

i(Ei−E j)t , (2)
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with ci = +È|Ei,. The original ETH (1) is designed to describe the stationary equilibrium point.

In the absence of degeneracies, the expectation value of A eventually attains a stationary value

∑

i

|ci |2 Aii = +Â,diag , (3)

which can be described by standard statistical mechanics. Namely, one introduces the diagonal

ensemble Ä̂diag =
∑

i |ci |2|Ei,+Ei | such that +Â,diag = Tr
�

ÂÄ̂diag

�

[3, 42]. In this work, we

consider pure initial states with extensive mean energy and sub-extensive energy fluctuations

in the number of degrees of freedom N

+È|Ĥ|È,= E0 ≃ e0N ,
q

+È|(Ĥ − E0)
2|È, ≃ ¶e0

N a , a < 1 .
(4)

For such initial states, the stationary value of +Â(t), is given by the microcanonical expecta-

tion, that, combined with ETH implies thermalization, i.e. +Â,diag ≃ A(E0) [2, 3]. As a main

example, we consider the case a = 1/2, satisfied if one performs a global quench, which also

characterizes equilibrium ensembles. Nonetheless, we will discuss the validity of our Ansatz

also for other initial states (see the Discussions).

The fundamental object that we want to characterize is the projector on the initial state

written in the basis of the Hamiltonian

Ψi j = cic
∗
j = +E j |È,+È|Ei, . (5)

We will treat it as a pseudorandom object, analogously to Ai j in ETH. A crucial difference,

in comparison with Â, is that this operator is of rank one and that each off-diagonal matrix

element is the product of two pseudo-random numbers. This will radically change the scaling

in the proposed Ansatz [43]. Crucially, to capture the out-of-equilibrium dynamics, we will

assume that correlations exist between Ψ and Â, when expressed in the energy eigenbasis.

2.2 Ansatz

We introduce an Ansatz for the matrix Ψ,

Ψi j ≃
e−Φ(Ei)

Z
¶i j +

e−
1
2 (Φ(Ei)+Φ(E j))

Z
R̃i j , (6)

whereΦ(E) is a smooth function of energy and Z =
∑

i e−Φ(Ei) the normalization, which defines

the diagonal ensemble:

Ψii = |ci |2 =
e−Φ(Ei)

Z
. (7)

The above average can be thought to be over small energy shells or over small perturbations,

see e.g. [1]. In Eq. (6), R̃i j are pseudorandom variables with zero average and unit variance,

i.e.

R̃i j = 0 , R̃2
i j
= 1 , for i ̸= j .

Diagonal pseudo-random R̃ii also have zero average, but the particular value of their variance

may depend on the symmetry class of Ĥ (e.g. GOE or GUE), as it is the case for Rii in standard

ETH [19, 44]. Given that Ψii is positive, (1 + R̃ii) g 0. Since Ψi j is a product of two quasi-

random numbers, this implies various constraints on the joint properties of R̃i j . Crucially, these

variables are exponentially weakly correlated with Ri j of the original ETH Ansatz (1),

Ri jR̃ ji = gA,Ψ(e
+,Éi j) e

−S(e+)/2 , e+ = (Ei + E j)/(2N) , (8)
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where gA,Ψ(e
+,Éi j) is an order one smooth function of its variables, which describes the cor-

relations crucial for non-equilibrium dynamics. Note that with our notations e+ is the energy

density between two eigenstates, while e0, the energy density of the initial state in Eq. (4). The

existence of such correlations between the off-diagonal products of Ψi jA ji , can be shown by

averaging over the (random) phases of the eigenvectors of Ĥ, see the App.A.1 Note that similar

cross-correlations also exist between the matrix elements of different observables, say Â and

B̂ [16,45]. Within our notations this leads to a smooth function F
(n)
AB (É) = fA(É) fB(−É)gAB(É)

with gAB(Éi j) = RA
i j

RB
ji
.

In particular, for the initial states conforming to Eq. (4), we will assume that a large

deviation scaling of the form Φ(E) = NÆ(e = E/N) applies, such that the following is a convex

function,1

S(E)−Φ(E) = N[s(e)−Æ(e)] . (9)

Summarising, in the out-of-equilibrium ETH, observables and the initial state look like pseu-

dorandom matrices with smooth statistical properties describing correlations or variance of the

off-diagonal matrix elements,

|Ai j |2 = e−Ns(e+) | fA(e+,Éi j)|2 , (10a)

|Ψi j |2 =
e−N(Æ(ei)+Æ(e j))

Z

2

, (10b)

Ψi jAi j = e−Ns(e+) e−NÆ(e+)

Z
fA(e

+,Éi j) gA,Ψ(e
+,Éi j) , (10c)

where we made explicit the dependence on the system size N . In the case of states conforming

to (4), Eq. (10b) simplifies to

|Ψi j |2 =
e−2NÆ(e+)

Z2
e
−Æ
′′(e+)
4N É2

i j , (11)

where one expands the energies Ei, j = E+ ± Éi j/2 in Eq. (10b) around E+ and uses the

assumption of large deviation.

A similar term, e
−Æ
′′(e+)
8N É2

i j , should appear also in Eq. (10c), however, in the limit of large

N this can be neglected because fA(e,É) is expected to decay at large frequencies at least as

exp(−´/4Éi j) [46] and only close-by eigenvectors contribute to quantum averages. Finally,

we note that the product Ψi jAi j has large fluctuations compared to the average (10c), see the

Appendix.

2.3 Consistency checks

Let us first see how the Ansatz (6) and in particular the diagonal ensemble derived from that,

satisfy the assumptions (4). The large deviation scaling leads to an ensemble strongly peaked

around the characteristic (extensive) energy which maximizes (9) and with sub-extensive fluc-

tuations. In fact, in the large N limit, the energy uncertainty reads:

∆
2
E0
≡ +È|(Ĥ − E0)

2|È,= 1

Φ′′(E0)− S′′(E0)
. (12)

Owing to the extensivity in Eq. (9), this implies that ∆E is sub-extensive, in particular, for a

post-quench state,

∆E0
= ¶e0

p
N ,

1This implies S′′ −Φ′′ < 0, i.e. Æ′′(e)> s′′(e).
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where ¶e0
is an order-one constant, determined by the shape of the large deviation.2 We shall

now proceed to discuss a set of consistency checks to validate our proposed approach.

Normalization – The state normalisation TrΨ = 1 is ensured by the definition of Z . In the

large N limit, the “partition function” Z in Eq. (6) reads:

Z =
p

2Ã∆E0
eS(E0)−Φ(E0) , (13)

with∆E0
given by Eq. (12). However one can show a stronger property, namely that TrΨ2 = 1.

See Eq. (20) below at time zero.

Projector – We now discuss an even tighter constraint: the projector identity Ψ2 = Ψ at the

level of individual matrix elements. For our Ansatz, this turns out to be true in a statistical

way in the thermodynamic limit. In particular, thinking of the matrix elements Ψi j as products

of two random variables Ψi j = c∗
i
c j we assume the following properties:

R̃ikR̃k j = R̃i j(1+ R̃kk) , for i ̸= j ̸= k ,

R̃i jR̃ ji = (1+ R̃ii + R̃ j j + R̃iiR̃ j j) , for i ̸= j .
(14)

At the leading order in N , this implies (see the Appendix),

[Ψ2]i j ≃
e−

1
2 (Φ(Ei)+Φ(E j))

Z
R̃i j ≃ [Ψ]i j , i ̸= j , (15a)

[Ψ2]ii ≃
e−Φ(Ei)

Z

�

1+ R̃ii

�

≃ [Ψ]ii . (15b)

Therefore the Ansatz preserves its structure upon multiplication.

2.4 Statistical distribution of the matrix elements

In the spirit of Berry conjecture [47], or by analogy to Random Matrix Theory, at leading order,

one can expect individual coefficients ci , rescaled by their typical value, to be Gaussian random

numbers. For the distribution of the diagonal elements Ψii = |ci |2, this leads to the well-

known Porter-Thomas distribution for x = Ψii/Ψii [48, 49]. We apply the same argument to

the distribution of the re-scaled off-diagonal matrix elements z = Ψi j/
q

Ψi jΨ ji = R̃i j , treating

them as a product of two independent Gaussian random variables. In the thermodynamic

limit, it yields the modified Bessel function

P(z) =
1

Ã
K0(|z|)≃

1p
2Ã

e−|z|
p

|z|
, (16)

where on the right-end side, we substituted the asymptotic expansion for large z.

2.4.1 Ansatz for the higher-order cross correlations

Note that Eq. (16) describes the distribution of the rescaled matrix elements R̃i j , but it does

not contradict the existence of their cross-correlations. This is analogous to the ETH matrix

elements Ri j = Ai j/
q

Ai jA ji , which are known to follow Gaussian distribution [50–52], while,

within RMT, the random variables Ai j follow a large deviation function [19,53] and different

2Second derivative of an extensive quantity with respect to the energy is

Φ
′′(E0) =

∂ 2
Φ(E)

∂ E2

�

�

�

E=E0

=
1

N

∂ 2Æ(e)

∂ e2

�

�

�

e=e0

=
1

N
Æ′′(e0) .

Therefore ¶e0
= 1/
p

Æ′′(e0)− s′′(e0).
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matrix elements Ai j are correlated [15,19,21,39]. In the case of Ψi j , in addition to (14), there

is an infinite number of relations coming from the fact that it is a projector, see Appendix A.2.

Our main focus is on the correlations between Ψ and the observables, such as the ones in

Eq. (10c). For a multiple product with the distinct indices i1 ̸= i2 ̸= in, one can write

Ψi1 i2
Ai2 i3
· · ·Ain i1

= e−(n−1)S(e+)
e−Φ(E+)

Z
h
(n)

e+
(É⃗) , (17)

while contributions with the repeated indices factorize, i.e.

Ψi1 i2
· · ·Aik−1 i1

Ai1 ik+1
· · ·Ain i1

= Ψi1 i2
· · ·Aik−1 i1

· Ai1 ik+1
· · ·Ain i1

+O(D−1) . (18)

Here h
(n)

e+
(É⃗) is a smooth function of its arguments: e+ = (Ei1

+ . . . + Ein
)/Nn and

É⃗ = (Ei1
− Ei2

, . . . , Ein
− Ein−1

). This Ansatz encodes the out-of-equilibrium multi-time dy-

namics such as +È| Â(t1)Â(t2) · · · Â(tn−1) |È, and also ensures that the Ansatz on the initial

state is stable against perturbations.

2.5 Implications for the dynamics

We now discuss the main motivation behind our Ansatz, designed to describe equilibration

dynamics of physical observables.

Fidelity decay – First of all, we show that our Ansatz is consistent with the expected behavior

of the fidelity decay (survival probability) [54–57], defined as

|+È|È(t),|2 =
�

�

�

�

�

∑

i

|ci |2e−iEi t

�

�

�

�

�

2

. (19)

By substituting sums with integrals, neglecting spectral correlations, and using the out-of-

equilibrium ETH Ansatz in Eq. (11), at the leading order in N , one finds

|+È|È(t),|2 ≃ 1

2∆E0

p
Ã

∫

dÉe
− 1

2
1

2∆2
E0

É2

eiÉt = e
−t2
∆

2
E0 , (20)

where we used the definition of the energy variance in Eq. (12),

∆E0
= 1/
p

Φ′′(E0)− S′′(E0) = ¶e0

p
N . Thus the large deviation Ansatz in Eq. (6) is consistent

with the Gaussian decay, controlled by the energy variance of the initial state, in agreement

with the literature on global quenches, see e.g. Ref. [55]. Dynamical behavior, different from

Eq. (20), e.g. including an exponential decay, is known to arise from the initial states which

are different from Eq. (4) [54–56,58–61], as discussed below.

Relaxation dynamics – The primary purpose of this work is the study relaxation dynamics

in Eq. (2), namely:

¶AΨ(t) = +È|Â(t)|È, − +Â,diag =
∑

i ̸= j

cic
∗
j Ai je

i(Ei−E j)t . (21)

Plugging Eq. (10c) into Eq. (21), the standard ETH manipulations lead to

¶AΨ(t)≃
∫

dÉ fA(e0,É)gA,Ψ(e0,É)e
− É2

4N¶2
e0 e−iÉt . (22)

Hence, the correlation between the initial state and the operator encodes the Fourier transform

of the relaxation:
˜¶AΨ(É) = fA(e0,É)gA,Ψ(e0,É) , (23)

6
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where we have neglected the Gaussian frequency term for N k 1. Thus, the out-of-equilibrium

behavior is encoded in this function and will depend, in general, on the correlations between

the state and the observable.

The relaxation dynamics (21) share some properties with the (two-time) dynamical corre-

lations at thermal equilibrium for the same observable. One has [4,5]:

C(t) =
1

2
+{A(t), A(0)},c =

∫

dÉ eiÉt cosh

�

´É

2

�

f 2
A (e´ ,É) , (24)

where +·, = Tr(e−´H ·)/Tr(e−´H) and e´ = +H,/N . Therefore the ETH function fA(e,É) enters

both Eqs. (22) and (24) and its properties in the É→ 0 limit control the long-time behavior.

This fact is usually invoked in the literature, see e.g. [2,5], and our Ansatz in Eq. (22) makes it

explicit. Similarly to f 2
A (É), which has to decay exponentially at largeÉ in D g 2 (superexpo-

nentially in 1D), high-frequency tail of gΨ,A(É) has to be exponentially suppressed for states

Ψ associated with local perturbations (see the Appendix).

Let us now comment on some differences between Eq. (22) and (24). The integrand in

(24) is positive-definite. As a result, C(t) necessarily decays at early times. On the contrary,

the integrand in Eq. (22) is not sign-definite, hence ¶AΨ(t) can both increase or decrease

throughout relaxation dynamics.

3 Numerical results

We test the predictions above in the case of the one-dimensional Ising model with a tilted field

H =

L
∑

i=1

wÃx
i +

L
∑

i=1

hÃz
i +

L−1
∑

i=1

JÃz
iÃ

z
i+1 , (25)

with w =
p

5/2, h = (
p

5 + 5)/8 and J = 1 and consider different local single or two sites

observables,

Â= Ãx
1 , Â= Ãz

1 , or Â= Ãz
1Ã

z
2 . (26)

We consider simple out-of-equilibrium initial states, fully polarized states

|È,= |³³³³ · · · ³³, , (27)

in the ³= z or ³= y directions. We impose periodic boundary conditions on the Hamiltonian

in Eq. (25) and restrict the analysis to translationally-invariant sector k = 0 with positive parity

reflection symmetry. As a technical tool, we use the smoothed average of our energy-resolved

data as

[ f (x)]Ä =

∑

n f (xn)¶Ä(x − xn)
∑

n¶Ä(x − xn)
, (28)

where, ¶Ä(x) is a smoothed delta functions such that limÄ→∞ ¶Ä(x) = ¶(x). In the simula-

tions, we chose a Gaussian smoothing ¶Ä(x) = e−
Ä2

2 x2

/
p

2Ã/Ä2.

First, we establish that the initial states (27) are consistent with the Ansatz in Eq. (6). In

Fig. 1a we plot the diagonal ensemble for different length sizes L = 12, 14,16, 18, showing

that it obeys the large deviation prediction Ψii =
e−LÆ(Ei/L)

Z . This is confirmed by the inset, where

we plot the scaling of the initial energy E0 = e0 L and variance ∆E0
/E0 = ¶e0

/e0

p
L, c.f. Eq.

(12). From a fit of the data, we extract the dimensionless values e0 = 0.10, ¶e0
= 1.12. In

panel (b), we study the fluctuations of the out-of-equilibrium ETH functions in the frequency

domain [cf. Eq. (10b)]. To address the dependence on L, we re-scale |Ψi j |2 by the diagonal

7
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Figure 1: Out-of-Equilibrium ETH of the fully polarized initial state |È,= | ³z · · · ³z,.
(a) The rescaled diagonal ensemble as a function of the energy density for different

system sizes L = 12, 14,16,18. In the inset, the initial energy E0 = +È|Ĥ|È, and the

energy fluctuations (∆E0)
2 = +È|Ĥ2|È, − E2

0 are plotted as a function of the inverse

of the system size 1/L. (b) The off-diagonal matrix elements of the projector Ψi j as a

function of the energy differenceÉi j = Ei− E j rescaled by 1/
p

L. In both panels, the

blue dots correspond to individual overlaps for L = 16. The smoothing parameter is

Ä= 4. In the inset of panel (b), the numerical fidelity decay up to L = 22 is compared

with the prediction of Eq. (20) (dashed line) without any fitting parameters.

matrix elements at energy e0 defined in Eq. (4). For the state under consideration, the Ansatz

in Eq. (10b) is given by Eq. (11) and it is given by

Ψi jΨ ji

|Ψe0e0
|2
≃ e
−Æ
′′(e0)

4L É2
i j . (29)

In Fig.1b, we fix the energy density to be e0 by rescricting the energy indices i, j of Ψi jΨ ji to

|(Ei + E j)/2− E0| f
p

L¶e0
. The figure shows the smoothed average (29) as a function of the

energy difference Éi j = Ei − E j rescaled by
p

L, for different system sizes. For L = 16 we also

show individual values without smoothing (blue dots). The plot confirms that this initial state

has fluctuations that decay as a Gaussian with a variance 1/
p

L, consistent with Eq. (29). In

the inset, we also confirm the Gaussian decay of the fidelity upon increasing system size [cf.

Eq. (20)]: we plot e
−¶2

e0
t2

with ¶e0
= 1.12 without fitting parameter.

We show the distribution of matrix elements R̃i j in Fig. 2. In panel (a), we show rescaled

diagonal matrix elements x = Ψii/Ψii , Ψii = |ci |2. The data is in agreement with the Porter-

Thomas distribution [48], which is expected for systems with time-reversal symmetry, falling

in the orthogonal ensemble (OE) universality class,

POE(x) =
e−x/2

p
2Ãx

. (30)

In panel (b), we report the data for the off-diagonal matrix elements, rescaled as z = Ψi j/Ψe0e0
,

where Ψe0e0
is defined in Eq. (29). Our numerical results are in good agreement with Eq. (16),

without any fitting parameter.

8
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Figure 2: Numerical distributions of the projector’s matrix elements P(R̃i j) for

L = 18 superimposed with the theoretical predictions. (a) Diagonal matrix elements

x = Ψii/Ψii (blue) and the Porter-Thomas distribution in Eq. (30) (orange). (b)

Off-diagonal matrix elements z = Ψi j/Ψe0e0
(blue) superimposed with the modified

Bessel function Eq. (16) (orange). The data is for the mean energy density e0 = 0.10

smoothed with Ä= 4.

We then proceed to establish the validity of the Ansatz for the correlations between the

initial state and observable Â in the energy eigenbasis. In Fig.3, we focus on |È,= | ³z · · · ³z,
and Â = Ã̂x

1 . In panel (a), we test the system size dependency of Eqs.(10) at energy density

e0 for finite frequency Éi j = 5.1. As predicted by out-of-equilibrium ETH Eq. (10a), the

observable off-diagonal matrix elements Ai jA ji decay as O(e−Ls(e0)), while both |Ψi j |2 and Ai jΨ ji

decay as O(e−2L), cf. Eqs(10b)-(10c). The red and black dashed lines indicate (dimH)−1 and

(dimH)−2 respectively. We checked that the same results hold at zero or for other finite Éi j .

In Fig.3b, we consider

Ai jΨi j

Ψe0e0

2
≃ fA(e0,É)gA,Ψ(e0,Éi j) , (31)

where Ψe0e0
is the same as in Eq. (29) and the right-end side follows from Eq. (10c) and

(7).3 This quantity is of order one, i.e. it remains finite in the thermodynamic limit. Its Fourier

transform yields equilibration dynamics, see Eq. (22). Note that we have plotted the abso-

lute value of Eq. (31), since the sign of g(e,É) oscillates and this gives rise to the spikes in

the curve. This sign change is a characteristic feature of the out-of-equilibrium dynamics, as

was emphasized above, as the Fourier transform of +Â(t), need not to be necessarily positive.

Further investigation will be useful to determine the physical content of these oscillations.

To better understand the behaviour of the function g(e0,É), in Fig.4 we consider:

Ai jΨi j
r

A2
i j

Ç

|Ψi j |2
q

Ψe0e0

≃ gA,Ψ(e0,Éi j) , (32)

to obtain an order one quantity, which encodes the correlations in Eq. (8). The results are

shown in Fig.4 for the fully polarized states in Eq. (27) along the directions ³= z, y in panels

3Using that the diagonal ensemble (7) for e+ = e0 reads |ce0
|2 = e−Φ(E0)

Z
≃ e−S(E0) where one uses the normaliza-

tion in Eq. (13).

9
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Figure 3: ETH correlations between the initial state and the observable A= Ã̂x
1 . (a)

Scaling with the system size of the ETH predictions in Eqs.(10). The red and black

dashed lines indicate (dimH)−1 and (dimH)−2 respectively (b) Smoothed averages

Ai jΨi j describing the Fourier transform of the relaxation dynamics increasing system

size. The data is for the mean energy density e0 = 0.10 smoothed with Ä= 4.

(a) and (b) respectively, or the three different operators in Eq. (26). The plot shows that the

gA,Ψ(e0,É) may still decay, albeit slowly, as a function of frequency. The most notable fact is

that, for different observables, the smooth functions g have approximately the same behavior

at large frequencies, which does not depend on the observable. This seems to indicate that

the large frequency behavior and the oscillations in the gÈ(e0,É) reflect physics of the initial

state.

4 Discussion and conclusions

In this paper, we have introduced a new Ansatz for out-of-equilibrium dynamics, which predicts

correlations between the initial state and observables when written in the energy eigenbasis.

Let us remark that our results describe a wide class of initial states, including for example

products |a,A|b,B of energy eigenstates |a,A and |b,B of subsystems A and B, that have recently

motivated studies of the eigenstate correlations [29–34]. For local 1d Hamiltonians, these

states have energy fluctuations ∆2
E = O(1) in N . While obeying Eq. (4), they do not have the

form of a large deviation (9) and their survival probability (19) is known to decay exponentially

in time [55]. Nevertheless, this class of states is naturally included in our Ansatz on the state-

observable correlations in Eqs.(10), where Eq. (10b) generically reads

|Ψi j |2 = e−Φ(E
++É/2)−Φ(E+−É/2)/Z2 . (33)

These states are discussed in the Appendix, where we verify numerically the general scaling

with the system size of Eqs.(10), and comment on the relation with the literature.

Our work opens a series of perspectives. At long times, hydrodynamic modes are expected

to play a dominant role in equilibration dynamics [62–64], and it would be valuable to in-

vestigate how hydrodynamic description can be incorporated into the non-equilibrium ETH.

Additionally, one could explore how the current ETH framework applies to integrable systems

that equilibrate to a generalized Gibbs ensemble [11, 42, 65, 66] or in the presence of many-

body quantum scars [67–70].

10
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Figure 4: Absolute value of the correlations between initial state and observable

|gA,Ψ(e0,É)| extracted using Eq. (32) for different observables A= Ãx
1 , Ãz

1 and Ãz
1Ã

z
2

as a function of frequency. (a) Results from the initial state |³z · · · ³z,. (b) Results

from the initial state |³y · · · ³y,. Here L = 18 and Ä= 4.
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A Additional statistical insights

A.1 A simple scaling drawn from RMT

Let us discuss a simple example that exhibits the scaling in Eq. (10). Consider an observable

A =
∑

³½³|½³,+½³| and as an initial state we will take an eigenvector of such observable

|È, = |½È,. Let us suppose that afterward, the state evolves under a D×D Hamiltonian that

is drawn from a rotationally invariant ensemble, i.e. P(H) = P(U−1HU) where U is arbitrary

orthogonal (or unitary) matrix, for instance a GOE or GUE ensemble. With this choice, the

Hamiltonian eigenvectors |E j,, in the basis of the observable, i.e. +E j |½³,, are represented

by random orthogonal or unitary matrices. The properties of the matrix elements of a given

observable A in such random basis have been discussed in [71]. In the large D limit assuming

to initialise the dynamics in |È, = |½È,, some eigenvector of the observable A, the properties

of this toy “out-of-equilibrium” ETH can be easily derived

|Ai j |2 =
1

D
(+A2, − +A,2) , (A.1a)

|Ψi j |2 =
1

D2
, for i ̸= j , (A.1b)

Ψi jAi j =
1

D2

�

½È − +A,
�

, (A.1c)
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where +•,= 1
D

Tr(•). This is a particularly simple example of the Ansatz (10) discussed in the

main text. In term of normalized fluctuations this means Ri jR̃i j ≃D−1/2, as in (8). This exam-

ples illustrates the difference in scaling between |Ai j |2 and |Ψi j |2. The first quantity has rank

D, leading to
∑

i j |Ai j |2 = O(D), while the second has rank one,
∑

i j |Ψi j |2 = O(1). Similarly
∑

i j Ψi jAi j = O(1), which is consistent with the scaling above.

A.2 A constraint on the Ansatz

Let us justify Eqs. (14). As we stressed several times, contrary to the standard ETH Ansatz

for observables, the matrix that we have are chracterising has rank 1. In particular, calling

zi =
1p
Z

e−
1
2Φ(Ei) and following the notation of the main text we have:

1+ R̃ii =
|ci |2
z2

i

,

R̃i j =
cic
∗
j

ziz j

, for i ̸= j .

(A.2)

Taking products:

R̃ikR̃k j =
ci |ck|2c∗

j

zi |zk|2z j

= R̃i j(1+ R̃kk) , for i ̸= j ̸= k , (A.3)

and similarly

R̃i jR̃ ji =
|ci |2|c j |2

|zi |2|z j |2
= (1+ R̃ii)(1+ R̃ j j) , for i ̸= j . (A.4)

Let us now see how these constraints imply that Ψ is a projector by proving Eqs. (15). We

start by evaluating the off-diagonal with i ̸= j:

[Ψ2]i j =
∑

k

ΨikΨk j = ΨiiΨi j +Ψi jΨ j j +
∑

k:k ̸=i ̸= j

ΨikΨk j

=
1

Z2
e−

1
2 (Φ(Ei)+Φ(E j))
�

e−Φ(Ei)R̃iiR̃i j + e−Φ(E j)R̃ j jR̃i j

�

+
1

Z
e−

1
2 (Φ(Ei)+Φ(E j))
∑

k:k ̸=i ̸= j

e−Φ(Ek)

Z
R̃ikR̃k j ,

(A.5)

where from the first to the second line we have inserted the Ansatz (10) in the individual matrix

elements. The first term is subleading O(e−2N ), while in the second term, we can substitute

the Ansatz of Eq. (A.3) and obtain

[Ψ2]i j ≃
1

Z
e−

1
2 (Φ(Ei)+Φ(E j))
∑

k:k ̸=i ̸= j

e−Φ(Ek)

Z
R̃i j(1+ R̃kk) =

1

Z
e−

1
2 (Φ(Ei)+Φ(E j))R̃i j

∑

k:k ̸=i ̸= j

Ψkk

=
1

Z
e−

1
2 (Φ(Ei)+Φ(E j))R̃i j = Ψi j ,

(A.6)

where we used
∑

k:k ̸=i ̸= j Ψkk ≃
∑

kΨkk = +È|È, = 1 which shows the first equation in (15).

12
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Similar manipulations can be done on the diagonal elements, leading to

[Ψ2]ii =
∑

k

ΨikΨki = ΨiiΨii +
∑

k:k ̸=i

ΨikΨki

=
e−2Φ(Ei)

Z2
(1+ R̃ii)

2 +
1

Z
e−Φ(Ei)
∑

k:k ̸=i

e−Φ(Ek)

Z
R̃ikR̃ki

≃ 1

Z
e−Φ(Ei)(1+ R̃ii)

∑

k:k ̸=i

e−Φ(Ek)

Z
(1+ R̃kk) = Ψii

∑

k ̸=i

Ψkk = Ψii ,

(A.7)

where, from the second to the third line we have used the fact that the first term is subleading

and the Ansatz in Eq. (A.4).

In addition to (A.3) and (A.4), there is an infinite number of higher-order constrains com-

ing from the fact that Ψi j is a projector. Say, we find at order 3,

R̃i jR̃ jkR̃ki = R̃ik(1+ R̃ j j)R̃ki = (1+ R̃ii)(1+ R̃ j j)(1+ R̃kk) , (A.8)

for i ̸= j ̸= k as well as for i ̸= j ̸= k ̸= l at order 4,

R̃i jR̃ jkR̃kl R̃l i = R̃ik(1+ R̃ j j)R̃ki(1+ R̃l l) = (1+ R̃ii)(1+ R̃ j j)(1+ R̃kk)(1+ R̃l l) . (A.9)

The list of such constraints continues to include higher orders of R̃.

A.3 Fluctuations of state-observable correlations

At the level of single matrix elements, the product of the initial state and the observable has

large fluctuations in the system size. In fact

Ψi jAi j ≃ Ψi jA ji +

r

|Ψi j |2
r

|Ai j |2 Ài j , (A.10)

with Ài j some random variable with average zero and fluctuations order one. Here, the am-

plitude of the fluctuations is larger than the average:

r

|Ψi j |2 |Ai j |2k Ψi jA ji ,

since
Ç

|Ψi j |2 |Ai j |2 ≃ e−3S/2 and Ψi jA ji ∼ e−2S . However, when computing physical observ-

ables, one has to sum over many indices, and, due to the presence of randomness, the fluctu-

ations become negligible. This is analogous to what happens to high-order products of matrix

elements in standard ETH, which also possess large fluctuations [15]. These fluctuations con-

tribute, at least for finite systems sizes, to +A(t),+A(−t),, A detailed understanding of their

influence on the dynamics is left to future work.

B A bound on high frequency tail of g (ω)

As a starting point, we introduce

Z(´) =
∑

i

e−Φ(Ei)−´Ei , (B.1)

such that Z = Z(0) matches the definition of Z in (6). It is also convenient to introduce the

ratio

Z(´) = +È|e−´H |È,= Z(´)

Z
. (B.2)

13
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To constrain gÈ,A we use the approach similar to one used [72], which bounds on high-

frequency tail of fA,

| fA(ẽ,É)| f O
�

e−(
˜́/4+´∗)É
�

, É→∞ . (B.3)

where ´∗ is an O(1) constant defined by local model parameters. Here O (· · · ) means that

possible pre-exponentialÉ-dependent factors are ignored. Finally, temperature ˜́ is associated

with energy density ẽ, S′(N ẽ) = ˜́. We now consider

C
´
Ψ
(t)≡ +È|e

−´HA(t)|È,
Z(´)

. (B.4)

We now use the following inequality

|+È|A|È′,| f |A||È||È′| , (B.5)

where |A| is an infinity norm of the operator A, meaning the largest (by absolute value) eigen-

value when A is hermitian, or largest singular value when A is not hermitian. Taking |È,= |È,
and +È′|= +È| e−´H we arrive at

�

�

�

�

∫

dÉ fA(ẽ,É)gÈ,A(ẽ,É)eÉ(i t−´/2)
�

�

�

�

f |A(t)|Z
1/2(2´)Z1/2(0)

Z(´)
. (B.6)

Here ẽ is the energy density where the main contribution to the integral in (B.1) comes from,

ẽ = −∂ /∂ ´ ln Z(´)/N . We can now redefine t → t − i´/2,

�

�

�

�

∫

dÉ fA(ẽ,É)gÈ,A(ẽ,É)eiÉt

�

�

�

�

f |A(t − i´/2)|Z
1/2(2´)Z1/2(0)

Z(´)
. (B.7)

The LHS is an even function of t, while |A(t)| is analytic within the strip | Im(t)| f ´∗ [72].

Thus the RHS of (B.7) is analytic inside the strip −´∗+´/2f Im(t)f ´∗+´/2. Because the

LHS is even, it has to be analytic inside a wider strip −´∗ − ´/2f Im(t)f ´∗ + ´/2. For the

integral over É to converge, taking into account the bound (B.3) we find

|gÈ,A(ẽ,É)| f O
�

e−(´/2−
˜́/4)É
� Z1/2(2´)Z1/2(0)

Z(´)
, É→∞ . (B.8)

Here ´ is a free parameter, it determines the “saddle point” (mean energy density) ẽ(´), where

the integral in (B.1) is saturated, which in turn defines ˜́. Parameter ´∗, which characterizes

the model does not appear in (B.8). When ´ = 0, mean energy density ẽ = e0, and ˜́ is the

effective temperature of state È.

The logic behind free parameter ´ appearing in bound (B.8) is exactly as in [72], this is

a parameter to optimize over, to find the best possible bound. For the large deviation states

(9), the factor
Z1/2(2´)

Z(´) grows extensively, ln(
Z1/2(2´)

Z(´) ) ∼ N O(´2), not leading to a meaningful

bound in the thermodynamic limit.

For the states with energy of order one, e.g. discussed in the next section, effective energy

density ẽ = e0 is ´ -independent, ˜́ = ´0, at least so for the parameter ´ smaller than certain

value ´ < ½, see (C.3). In this regime Z1/2(2´)Z1/2(0)/Z(´) is of order one, and gÈ,A(ẽ,É)

for large É decays exponentially, bounded by e−(½/2−´0/4)É, provided ´0 f 2½.

C Bipartite energy eigenstates

Consider a tensor product Hilbert space H =HA¹HB and a Hamiltonian Ĥ = ĤA+ ĤB + ĤAB,

describing an interaction of a (sub)system A with a “bath” B. A particular example to keep

14
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in mind is a spin-chain split into two parts, interacting through a local term HAB. We start

with a pair |a,, |b, of the eigenstates of ĤA, ĤB respectively and consider a state |È, = |ab,.
Decomposition of this state in the eigenbasis |Ei, of Ĥ defines the projector (6)

Ψ
(ab)

i j
= +Ei |ab,+ab|Ei,= c

(ab)

i
c
(ab)∗
j

. (C.1)

These initial states have been the focus of a great attention lately [27, 29–34, 73], especially

in relation to bipartite entanglement. The statistical properties of (C.1) can be formulated in

terms of the so-called Ergodic Bipartition (EB) Ansatz [34], which postulates that on average

Ψ
(ab)

ii
= |c(ab)

i
|2 = e−S(Ea+Eb)F(Ei − Ea − Eb) , (C.2)

where F(Ei − Ea − Eb) is a narrowly-peaked function around Ei ≃ Ea + Eb. More accurately

instead of Ea + Eb in the expression above one should use mean energy E0 of |ab,, as we do

below. More detailed properties of F(x) for 1D systems with local interactions, the Lorentzian

shape at small x and exponential suppression at large x ,

F(x)∝
�

(x2 +∆2)−1 , x j Ã ,

e−|x |½ , x k Ã ,
(C.3)

whereÃ,∆,½ are model-dependent local (finite in the thermodynamic limit) parameters, were

outlined in [32].

From the definition (C.1) it is clear the ergodic bipartition Ansatz (C.2) is the diagonal part

of the out-of-equilibrium ETH Ansatz (6) applied to a particular initial states. We now discuss

how our approach encompasses the properties of (C.2). Starting from (7), using saddle point

approximation we find

Ψii =
e−Φ(Ei)

Z
≈ e−S(E0)

e−Φ(Ei)+Φ(E0)

p
2Ã∆E0

, (C.4)

where E0 is the mean energy of state |ab,, E0 = Ea + Eb +∆ab. Here ∆ab = +ab|ĤAB|ab, and

∆
2
E0
= +ab|Ĥ2

AB|ab, − (∆ab)
2 =O(1) ,

are of order one, i.e. remain finite in the thermodynamic limit, while E0 and Ea + Eb are

extensive. From here follows

F(Ei − E0)≈
e−Φ(Ei)+Φ(E0)

p
2Ã∆E0

, (C.5)

which is sharply peaked around mean energy Ei ≈ E0 with the variance of order one.

Integrating (C.4) over dEb with the weight eSB(Eb) and the constraint E0 ≈ Ea + Eb readily

gives diagonal approximation to reduced density matrix [27]

TrB(|Ei,+Ei)≈
∫

dEa eSA(Ea)e−S(Ei)+SB(Ei−Ea)|a,+a| , (C.6)

from where von Neumann and Renyi entropy follow via saddle point approximation. Justifi-

cation of the diagonal approximation to evaluate entropy was recently addressed in [34] by

considering the statistical properties of

c
(ab)

i
c
(a′b)∗
i

c
(a′b′)
i

c
(ab′)∗
i

, (C.7)

which can be understood extending the Ansatz to four different states |È1,= |ab,, |È2,= |a′b,,
|È3,= |a′b′,, |È4,= |ab′,, with i1 = i2 = i3 = i4.
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Figure 5: Left panel: averaged diagonal matrix elements (C.4), with the entropy

subtracted Æ(Ei) ≡ lnΨii + S(E0) +
1
2 ln(2Ã∆E2), for different system sizes, super-

imposed with −(Ei − E0)
2/(2∆2

E0
) with the value of ∆2

E0
for L = 15 (green dashed

line). Blue points show raw data (un-averaged value of lnΨii , with the entropy sub-

tracted) for L = 15. Right panel: average of the off-diagonal matrix elements (C.10)

for different system sizes, superimposed with −É2/(4∆2
E0
) with the value of ∆2

E0
for

L = 13 (green dashed line).

To illustrate the behavior of Φ(Ei) we consider, c.f. (C.3),

lnΨii ≃ −S(E0)−
1

2
ln(2Ã∆E2)− (Ei − E0)

2

2∆2
E0

+ . . . , (C.8)

and note that for E − E0 of order one, higher-order corrections to (C.8) are also of order one

and can not be neglected [32]. It corresponds to the first two terms of the Taylor expansion

of (C.3) in (Ei − E0)
2. We plot Æ(Ei) ≡ lnΨii + S(E0) +

1
2 ln(2Ã∆E2) as a function of Ei − E0

numerically in the left panel of Fig. 5 for the tilted field Ising model (25) of size L = 2L′+1 with

the parameters J = −1, w= 1.05, h= 0.4. The eigenstates |a,, |b, are chosen to be the ground

state and the most excited states of the subsystems of size L′ and L′+1 correspondingly. With

this choice of È0 the total energy E0 is very close to the middle of the spectrum. To obtain Ψii

we use smoothed average (28) with Ä= 2. The entropy

S(E) = lnΩ(E0) , Ω(E) =
¼ L!

(L/2− ¼E)!(L/2+ ¼E)!
, (C.9)

is evaluated using binomial analytic approximation for the density of states of the titled filed

Ising model, see Appendix A of [27], with ¼ = 1
2

p

J2 + w2 + h2 − 1/L. Mean energy E0 and

energy variance ∆2
E0 are evaluated numerically for each L. The plot in 5 shows good collapse

of Æ(Ei − E0) for different values of L, and is well described by
(Ei−E0)

2

2∆2
E0

for small |Ei − E0|.
The out-of-equilibrium ETH anzats predicts the off-diagonal matrix elements

ϕ(É) = lnΨ2
i j
− 2 lnΨee ≃ −

É2

4∆2
E0

, |É|≲∆E0
, (C.10)

plotted in the right panel of Fig. 5. Here Ψee denotes the average Ψii over a narrow shell

around Ei = E0 of size∆E0
. Similarly, Ψ2

i j
in (C.10) is averaged only over pairs Ei , E j satisfying

|(Ei + E j)/2− E0| f∆E0
.

Next, we study cross-correlations ofÈ with different operators A, sitting at the L(eft) edge,

R(ight) edge, or the M(iddle) site of the chain,

A= Ã
z,x
L = Ã

z,x
si te=1

, A= Ã
z,x
M = Ã

z,x
si te=L′+1

, A= Ã
z,x
R = Ã

z,x
si te=L

. (C.11)
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Figure 6: First row: from left to right, plots of fA(É)gÈ,A(É) for A = Ãz
L ,Ãz

M ,Ãz
R

correspondingly. Second row: scaling of Eqs.(10) contrasted with (dimH)−1 (dashed

red line) and (dimH)−2 (dashed black line).
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Figure 7: In the absence of translational invariance, the function g is independent of

the direction of the observable, but not on the site.

We plot fA(É)gÈ,A(É) for different A in Fig. 6. In the second row of Fig. 6, we display the

scaling with the system size of Eqs.(10), finding a good agreement with the predictions at zero

and finite frequency (É = 2.1 shown in the Figure).

Finally, in Fig. 7 we illustrate approximate independence of gÈ,A(É) at high frequencies,

on the choice of the observable A.
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