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Abstract—Layered network visualizations assign each node to one of
several parallel axes. They can convey sequence or flow data, hierar-
chies, or multiple data classes, but edge crossings and long edges often
impair readability. Layout algorithms can reduce edge crossings and
shorten edges using quick heuristics or optimal methods that prioritize
human readability over computation speed. This work uses an opti-
mization metaheuristic to provide the best of both worlds: high-quality
layouts within a predetermined execution time. Our adaptation of the
large neighborhood search metaheuristic repeatedly selects fixed-sized
subgraphs to lay out optimally. We conducted a computational evalu-
ation using 450 synthetic networks to compare five ways of selecting
candidate nodes, four ways of selecting their neighboring subgraph,
and three criteria for determining subgraph size. Large neighborhood
search generally halved the number of crossings vs. the barycentric
heuristic while maintaining a reasonable runtime. Our best approach
randomly selected candidate nodes, used degree centrality to pick
cluster-like neighborhoods, and chose smaller neighborhoods that could
be optimally laid out in 0.6 or 1.2 seconds (vs. 6 seconds). In a case
study visualizing 13 control flow graphs, most with over 1000 nodes,
we show that our method can be employed to create visualizations
with fewer crossings than Tabu Search, another metaheuristic, and
vastly outperforms an ILP solver on meaningfully large graphs. A free
copy of this paper and all supplemental materials are available at
https://osf.io/w3fev/.

Index Terms—Network visualization, graph drawing, layered network,
optimization, heuristic, metaheuristic, computational experiment

1 INTRODUCTION

ETWORK visualizations are widely used to explore and
Nexplain relational data. This data consists of a set of
nodes representing entities and a set of edges denoting the
connections between them. In node-link network visualiza-
tions, the nodes are drawn with marks such as circles, and
the edges are drawn as straight or curved lines joining them.

This paper focuses on a subclass of node-link visualiza-
tions called layered networks. In these networks, each node
is assigned to a layer, for example, to show a hierarchy
or a sequence of events over time. A layered network
visualization generally uses parallel lines to represent the
layers, and nodes within a layer are positioned along their
assigned line [36].

Creating highly readable layered network visualizations
is critical for user performance in several domains, in-
cluding medicine [2], [56] and sociology [5], [62]; another
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more specific example is the need for readable schematic
diagrams for industry machinery, which may be too compli-
cated to create by hand but need to be easily understandable
by maintenance technicians [76].

We will use reverse engineering as a case study to moti-
vate and evaluate this work. Control flow graphs created by
reverse engineering compiled code are often visualized as
layered networks [12]. Reverse engineers use these visual-
izations for several crucial tasks, including understanding
the structure of binary code and the optimizations per-
formed by the compiler [9], [11], which benefit from higher-
quality visualizations [13].

User task performance with node-link visualizations is
highly dependent on the spatial layout of the nodes. For
example, the tasks of finding the shortest paths between two
nodes or finding the minimal set of nodes that disconnect
two nodes when removed [45], [57], [70]. We can partially
quantify a spatial layout’s impact on user task performance
using aesthetic or readability criteria such as the number of
edge crossings [58]. Other criteria we know affect readability
include the bendiness of edges and the angle formed by
crossing edges [16].

Many layered network layout algorithms have been
proposed to improve readability directly using optimization
models or indirectly with layout heuristics. All algorithms
for this task present a tradeoff between computation speed
and scalability to large networks. On one hand, heuristics
such as the popular Sugiyama [64] and dot [26] frame-
works are fast but suboptimal. On the other, algorithms
that find optimal solutions produce perfect layouts but
may take a long time to compute. Models minimizing edge
crossings in particular have existed since 1997 [41]. These
have gained attention in recent years due to increasing
computational power and advancements in solver software,
making crossing-optimal layouts feasible for non-trivially
sized networks [14]. Researchers have proposed models
combining this with additional criteria such as edge length
reduction [14], restrictions on bends in long edges [30], and
maximizing the size of the planar subgraph [24].

However, large networks remain challenging, especially
for approaches that stack together multiple aesthetic criteria.
Additionally, the exponential runtime of the optimization
algorithm causes these approaches to fail to find high-
quality solutions along the way [28]. In this sense, these
techniques are “boom or bust” in that they either find the
optimal solution quickly or hang indefinitely, failing to even
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Fig. 1. We adapt Large Neighborhood Search to the layered network layout problem by executing the following steps. First, in (a), a candidate node
is selected. This candidate is then used as a root node to collect a subgraph of nearby nodes and edges in (b). The vertical positions of the nodes
within their layer are rearranged in (c) by an exact optimization model, which can be calculated quickly for the small subgraph selected. In (d), the
result is an optimal solution for this specific subgraph according to the optimization objective, which, in this case, is edge crossing minimization.
This process is repeated from (a) as many times as possible within a predefined time limit, varying the selected candidate and neighborhood. For

an animated version of this process, click here.

find a valid layout for larger networks when one could have
been determined by heuristics in mere milliseconds [30].
Compounding the problem further is the difficulty of esti-
mating the time it will take to optimize one of these models,
often making global optimization techniques unreliable.

In this work, we analyze how a known metaheuristic
approach for optimization models can be applied to the
problem of creating layouts for layered network visual-
izations. Our goal is to provide the best of both worlds:
more readable network visualizations than those produced
by layout heuristics while keeping execution time within
predetermined bounds. The metaheuristic we use is called
Large Neighborhood Search [61], popular in other domains
and well-suited to layered network layouts. The intuition
behind our approach (fig. 2) is that subgraphs can be
quickly optimized many times, even in the context of the
entire network, in cases when the network is too large for
optimization models to handle in a reasonable time—or at
all! We have several open questions to address to apply
large neighborhood search principles to this problem. Most
importantly, how do you select neighborhoods (which we
interpret as subgraphs of the input network) to optimize?
Specifically, how do you choose a candidate node, and how
do you then find a local neighborhood surrounding it? Also,
how do you determine the neighborhood size to use, and
which variables in the model to optimize?

Specifically, this paper contributes:

1) A useful framework for applying Large Neighbor-
hood Search to the problem of creating layered
network layouts,

2) The results of a computational evaluation showing
the effect on readability and computation time of
five candidate selection methods, four neighbor-
hood selection methods, three neighborhood sizes,
and three restrictions on neighborhood drawing
regions,

3) An improved network size criteria for better esti-
mating the runtime of solving the ILP model for
layout optimization,

4) A case study justifying and demonstrating the use
of Large Neighborhood Search for creating high-
quality diagrams of large software control flow net-
works, and

5) Free and open-source code and data for all
our techniques and evaluations, available at
https://osf.io/w3fev/.

2 BACKGROUND AND RELATED WORK

In this section, we discuss heuristic and optimal approaches
to compute network layouts as our work explores the trade-
off between them. Similarly, we also provide background
to LNS in optimization literature and similar metaheuristics
applied to this problem.

The domains utilizing layered network visualization are
too numerous to list here, spanning control flow diagrams
in reverse engineering [11], machine learning model ex-
planation [47], [72], and schematic diagrams for industrial
machinery [76]. These visualizations are broadly used for
Sankey diagrams [75], timeline-based data [10], [33], and
hierarchical data such as trees or even more broadly any
network that can be classified as directed [25].

2.1 Layered Network Visualization

A layered network or layered graph G is comprised of a
set of vertices or nodes V and edges E, and a layering
function L. For a given network with K layers, the layering
L :V — {1,2,3,...,K} is an assignment of nodes to
layer values. Each edge connects two nodes in adjacent
layers, meaning the layer value of the two nodes differs by
one. Layered networks with longer edges can be modified
by adding a dummy node to each layer spanned by the
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Fig. 2. Aniillustration of the intuition for using large neighborhood search.
Optimizing the model globally is an exponential-time operation, but we
can quickly find a high-quality solution by breaking the input down into
smaller independent subgraph optimizations performed in sequence.

edge, a process described by Gansner et al. [25]. This is
necessary to apply the optimization models discussed in
this work. Same-layer edges can be removed by a node
promotion heuristic [54] or by including constraints to allow
for this [14]. We then consider a layered network visualization
(LNV), or drawing, to be an assignment of nodes to (z,y)
coordinates, such that nodes in the same layers are aligned
along parallel lines that are ordered consecutively. Hence,
assuming the layer assignment is fixed, the problem ad-
dressed by layered network visualization is to find a vertical
placement of the nodes in each layer that optimizes for
some aesthetic criteria, such as edge crossings. All layouts
pictured in this paper use vertically oriented layer lines.

Standard heuristics for LNV. Purchase et al. [57] find
that crossing reduction is the most important overall met-
ric for graph readability and that edge length reduction
is most important for path-related tasks [70]. Therefore,
many heuristics for layered network visualization have been
proposed to minimize edge crossings in layered node-link
diagrams. Among the most popular are the 1981 barycenter
heuristic of Sugiyama et al. [64], and its counterpart the
median heuristic of Eades and Wormald [20]. The barycenter
heuristic places each vertex at the mean index of its neigh-
bors, while the median heuristic uses the median. These
heuristics are defined for 2-layer networks but extend to
general layered networks by “sweeping” back and forth,
applying the heuristic repeatedly.

Many other heuristics originally designed for the bi-
partite crossing problem have been extended to the k-
layered case via this iterated layer sweep scheme. Eades
and Kelly [17] propose the insertion heuristic, switching
heuristic, and split heuristic. In a later paper, Eades proposes
another heuristic, the degree-weighted barycenter [19]. The
weighted median heuristic of Gansner et al. [25] refines the
original median heuristic with a few additional techniques,
and is incorporated into the popular dot algorithm (avail-
able through the Graphviz software) for drawing directed
graphs [26]. Matuszewski et al. introduced the global sifting
heuristic [50], one of the few simple layout heuristics to not
use the layer sweep approach, which iteratively sifts vertices
in decreasing order by node degree. These techniques all
find solutions extremely quickly and are thus well-suited to
large inputs, but they are bounded in terms of the quality

TABLE 1
Notation used in this paper

A layered network G with vertex set V,
edge set I/, and layer assignment on the
vertices L : V — {1,2,...,K}.

V. | Allw € V such that L(u) = r.

All (u,v) € F such that L(u) = r and

G=(V,E L)

Er Llv)=r+1.
Number of layers in G.
. Binary variable denoting the relative
1,

position of nodes ¢ and j in the layout.
Binary variable denoting if edges
(i, k) and (j,1) cross.

Drawing function D : V — {1,2,...}.
Each node u is drawn in the plane
D | at coordinate (L(u), D(u)), and edges
are drawn as straight lines connecting
the nodes.

C(i,k),(,1)

of the solution. For a more comprehensive background, we
refer the reader to Tamassia’s book on graph drawing [65],
of which chapter 13 deals with crossing minimization for
layered networks [36].

Other techniques such as Parallel Edge Splatting [7]
address LNV-adjacent problems within dynamic or tempo-
ral graph visualization. In particular, Linhares et al. [46]
propose a community detection technique for temporal vi-
sualization similar to our neighborhood methods. We refer
the reader to [51] and [3] for a broader overview of dynamic
and multilayer network visualization.

Optimal LNV. Jiinger et al. introduced the powerful
optimal crossing minimization technique [41], though its
performance is exponential. In fact, any method designed to
find the edge crossing-optimal layout is exponential, unless
P=NP [28]. The formulation relies on representing the input
networks as an integer linear programming (ILP) problem,
which optimizes a set of variables and linear constraints to
determine the best possible layout. It is often used even
within the space of layered network heuristics because it
performs quickly in practice for smaller networks and can
provide a baseline to compare results to, as empirically
established by Jiinger and Mutzel [42].

Other works have adapted this original formulation
to account for additional readability criteria. The layout
technique of Di Bartolomeo et al. [14] combines crossing
minimization and edge length reduction, allowing users to
specify the desired level of tradeoff between optimizing
for crossings and optimizing for edge bends. This utilizes
a model provided by Gansner et al. [25] for the final
node placement once a node ordering has been determined.
Zarate et al. [75] provide grouping constraints on nodes to
allow for crossing area-minimal layouts of Sankey diagrams.
Glover et al. [30] apply constraints to long edges to guar-
antee they are drawn without bends. Finally, Gange et al.
[24] combine crossing minimization with a model for the
maximal planar subgraph problem.

2.2 Optimization Metaheuristics

Many commercial solvers can efficiently optimize a wide
array of models [35], [40], and research on model optimiza-



tion has progressed by leaps and bounds through the years
[29], [52]. However, Raidl et al. [59] describe the divide
in the literature between this work on global optimiza-
tion and the study of metaheuristics. Metaheuristics are
generalized strategies for finding high-quality solutions to
optimization problems [4]. In this paper, we focus on Large
Neighborhood Search (LNS), which was first described by
Shaw [61] for the vehicle routing problem. LNS refers to
a broad category of techniques that iteratively improve an
initial solution, examining large, often exponentially-sized
neighborhoods of candidate solutions at each iteration [4].
It has been applied to several hard optimization problems,
including the pickup and delivery problem [60] and has
been generalized to any ILP [63]. Ropke et al. [60] apply
LNS to a transportation routing problem but use a heuristic
to search the neighborhoods, while our approach uses an
optimal solution as in [61], [63]. In their survey, Ahuja et al.
[1] show that the benefits of Very Large-Scale Neighborhood
Search (a subcategorization of LNS) are often dependent on
problem-specific knowledge informing the neighborhood
selection process. We apply this recommendation to layered
network layouts, following Raidl’s insight that there is much
potential progress to be made with hybrid approaches inte-
grating ILP into the neighborhood exploration process [59].

Controlling optimization time. One potential issue with
globally optimizing ILP models is the difficulty of predicting
their computation time—their exponential nature means
there may not be large differences between networks that
take one minute and networks that take one month to
optimize. Hurley et al. [38] find that solver-inherent ran-
domization significantly affects runtime, showing that the
top 3 solvers for the 2014 SAT Competition could have
ranked in any order. Di Bartolomeo et al. [14] provide re-
sults for optimal crossing minimization displaying variation
spanning orders of magnitude when using the number of
nodes in the network as a predictor for runtime.

That said, predicting the runtime of a solver has had a lot
of attention in the literature because of the need for solver
portfolios that can decide which optimization algorithm will
perform best for a given problem [48]. Machine learning-
based solutions [69] and statistical methods [39] have been
shown to be effective for this task. In our work, we do
not require a perfect predictor, but we do incorporate these
guidelines to standardize runtime for instances of specific
sizes.

Existing metaheuristic approaches for LNV. The most
similar work to our own is a series of papers applying
Tabu Search, a different optimization metaheuristic, to the
layered crossing minimization problem. Tabu search, intro-
duced by Glover et al. [31], was first adapted to layered
network visualization by Laguna et al. [44]. The metaheuris-
tic’s principle is to maintain a queue of recently explored
solutions (the “taboo” list) to prevent the process from
cycling on the same solutions. More recently, Cavero et al.
[8] combine the Tabu search framework with a strategic
oscillation technique, improving the performance of layered
crossing minimization. Other recent works have adapted
the approach to adjacent problems, such as the incremental
graph drawing problem [53], [55], which bear some simi-
larity to our large neighborhood approach. van den Elzen
et al. [67] use simulated annealing, a metaheuristic, to re-
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order nodes for dynamic graph visualization. Another meta-
heuristic, GRASP, has been studied for network layouts in
the bipartite case [43]. However, Tabu search, GRASP, and
simulated annealing differ from LNS in that they focus on a
small number of local moves.

Our work in this paper takes a different approach to
optimizing the layered network layout, with a much broader
scope and more extensive use of the ILP formulation.

3 METHODOLOGY

In the following section, we describe our adaptation of
Large Neighborhood Search to the layered graph drawing
problem, starting with a standard optimization model and
then focusing on how we define and optimize neighborhood
subsets of the input network.

3.1 ILP Formulation

We first present the ILP formulation of Jinger et al. [41]
for crossing minimization on layered networks. While for-
mulations that incorporate other aesthetic criteria have been
proposed [14], [24], Jiinger et al.’s constraints are typically
still included in some form due to the importance of crossing
minimization with respect to readability [57]. Hence, though
LNS and our application of it are optimization model-
independent, we perform our evaluation using this standard
model:

minimize Zc(uwl),(u%w) subject to:

Ty un T Tog,o1 T Clug,o1),(ug,ve) = 1
Tug,ur T Loy wg T Clug 1), (uz,v2) >1
Vi, Y(ui,v1), (uz,v2) € E; )
Taurus T Tus,ug — Tugus < 1
Tuyus + Tus,ug — Tug,ug = 0
Vi, Yui,us,us € V;
Ty uns Clur 1), (ug,wz) € {0,1}

See table 1 for definitions of these quantities. For a more
thorough explanation of each of the inequalities, see Wilson
etal. [71].

3.2 Large Neighborhood Search

Below we provide a high-level overview of our adaptation
of LNS for an input layered network G, an initial layout of
its nodes, and a predetermined time limit:

1) Select a subgraph H; of G

2) Fix in place all positional variables x,, ,,, in the ILP
model of eq. (1) unless u; € H; or ug € H;

3) Optimize the model, updating node positions ac-
cordingly

4) Repeat from step 1 until time runs out

3.2.1 Initial layout

LNS, as an iterative technique, requires an initial solution
to improve on. Since it examines much larger neighbor-
hoods than other optimization metaheuristics, LNS is more
resilient to poor initial layouts [1]. For the sake of stan-
dardization, we utilize the iterated barycenter heuristic of
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Fig. 3. A visual example of the differences between the four neighborhood selection techniques for the same network layout and candidate node.
The candidate node is larger and outlined, and the neighborhood consists of the nodes bounded by the dashed lines. The edges included in the

dotted outline influence the size calculation in eq. (3).

Sugiyama et al. [64] for the initial layout, as it is quick to
compute and is perhaps the most widely known and used
heuristic for layered network visualization.

3.2.2 Fixing variables

Fixing and unfixing portions of the model are integral to
the framework. A major strength of LNS is that the model
needs only be loaded once, a computationally expensive
operation, while fixing and unfixing variables is very cheap
[63]. Fixing a variable is achieved by setting the upper and
lower bound on the variable to the same number.

Note that we need only fix and unfix the x-variables
(the decision variables of the model) since values the c-
variables in eq. (1) take are fully constrained relative to the
z-variables.

3.2.3 lterative improvement

As LNS is an improvement heuristic,c we always fix -
variables to maintain the current layout D. z,,, , controls
the relative position of u; and uy in the drawing, so fix
Tyyus = 1 if D(uy) > D(ug) for the current layout and
Ty, us = 0 otherwise.

The optimization subproblem then considers all con-
straints in the base model while solving a reduced subset
of the model’s decision variables. Hence, the optimization
model will never backtrack or otherwise decrease the value
of the overall objective function. That way, we achieve
perfect intensification—an important notion that says opti-
mization improvement heuristics ought to use the current
best-found solution to inform its search for new solutions
[4]. This is another strength of LNS—by examining a large
subproblem and solving to optimality, we are more likely to
avoid falling into a local minimum, which is a problem for
local search techniques [1].

3.3 Candidate Selection

We hypothesize that the solver will have more difficulty
untangling the edge crossings in certain areas of the network
than others, and these areas should be prioritized. Selecting
a candidate node to use as the root node for neighborhood
selection is an important consideration when given a fixed,
short amount of time to find a high-quality solution. We
examine five methods for selecting this candidate.

e Degree Centrality Candidate. Networks with high
edge density are more challenging for solvers and

cause large increases in the number of crossings in
the layout when positioned suboptimally. Focusing
on nodes with the greatest degree centrality may
yield subproblems with large potential for improve-
ment. Additionally, Matuszewski et al. [50] find that
their layered graph layout technique, global sifting,
is greatly improved when nodes are sifted in order
by degree.

o Betweenness Centrality Candidate. Betweenness
centrality is a widely used technique for scoring
how important each node is to the overall network
structure [22], which may refine the algorithm’s focus
to subgraphs with excess edge crossings.

o Edge Crossings Candidate. Instead of using central-
ity metrics as a proxy for improvement potential, we
can simply use the number of crossings on edges ad-
jacent to a node. Nodes with many adjacent crossings
have a higher potential for moves, which decreases
the crossing number.

o Edge Length Candidate. Similarly, we can use the
average length of edges adjacent to a node. Nodes
with very long adjacent edges may need to be repo-
sitioned since long edges often cross over many other
edges.

e Random Candidate. As a candidate selection base-
line method, we also study the effect of uniformly
randomly choosing a candidate node.

3.3.1 Penalty function

To ensure the same sections of the network are not re-
peatedly optimized, we apply a penalty function on the
candidate score after performing each optimization. This is
necessary to achieve global diversification, a crucial quality
for optimization heuristics [4].

We loosely borrow the idea of a penalty on node
movement from work on incremental, force-directed graph
visualization [23], [32]. Each node is initially assigned a
numerical candidate score s based on the candidate method.
Then for every node in the neighborhood, a penalty w,, is
applied to the candidate score, and w, if the node was the
selected candidate for that iteration. If the node swapped
positions with another node during the optimization step,
the penalty is halved. The node’s score s is then multiplied
by the reciprocal of the penalty, s - w%, and the node chosen
next iteration will be the one with the new highest candidate
score. In our implementation we use w, = 8 and w,, = 4.



For the crossings candidate and edge length candidate
methods, the candidate score changes each iteration. Hence,
we do not apply the penalties as just described, but instead
recalculate the score every iteration and implement a no-
repeats policy on the candidate node selection. We also lift
the no-repeat limitation on a node if it or one of its neighbors
swapped positions in the previous iteration.

3.4 Neighborhood Selection

As noted previously, our LNS adaptation requires at each
step a set of variables in the model to optimize, keeping
all others fixed. In this work, we explore four methods
of aggregating these neighborhoods given some candidate
node.

Breadth-First Search (fig. 3a). BFS is a typical
algorithm for searching a graph, and is standard
for collecting the nodes nearby to a root node.
Given some candidate, we use BFS to branch
outwards, adding neighboring nodes to the se-
lected subgraph.

Degree Centrality Search (fig. 3b). Based on
our hypothesis that clusters of connected nodes
should be prioritized, we also utilize a simple
heuristic to collect highly connected subgraphs.
Cavero et al. [8] describe this technique for the
layered graph optimization problem. We use
their approach, but tweak the criteria slightly
to avoid having to train parameters—at each
iteration, add to the subgraph the node v with
the highest ratio #z(g)ﬂ’ where d;,(u) is the
number of edges connecting u to a node in
the subgraph, and d,y:(u) is the number of
edges from u to nodes not in the subgraph. At
each iteration, the process considers all nodes
connected to the currently selected subgraph.

Layer-by-Layer Search (fig. 3c). The majority of
standard heuristics for LNV utilize a layer-by-
layer sweep approach wherein a single layer’s
nodes are reordered, and this process is re-
peated for increasing and decreasing layer num-
bers. We use a modification of this sweeping
technique, following the same general principle.
At each layer, starting from the candidate’s, all
nodes are added before moving on to the next
layer. Nodes from the current layer are selected
in the order of highest in-degree calculation
as described above, ﬁgﬁ_l After adding all
nodes, the next layer is chosen at random from
the two adjacent layers on the left or right.

Random Search (fig. 3d). As a baseline method,
we also consider the process of uniformly select-
ing random nodes from the network to form a
subgraph.

3.4.1 Controlling neighborhood size

We hypothesize that the size of the optimized subproblems
will have a large effect on the quality of the final layout.
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A main challenge of this work is controlling the size of
these subproblems, which is necessary in order to compare
the neighborhood aggregation and candidate selection tech-
niques. Since the stated goal of our work is to find tech-
niques which produce the highest-quality solutions within
a fixed, user-specified period of time, we use solver runtime
as a metric to represent subproblem size. Then, we need
to control the average number of optimizations performed
per a unit amount of time. This requires predicting the
runtime of a given ILP model, however—a tricky challenge
in optimization research [38], [39].

While previous work in network layout optimization has
used the number of nodes in the network as an independent
variable for ILP runtime [14], we find that the number of
crossing constraints in the model is a better indicator of
optimization time:

E E

Previous exper1mentat1on, detailed in section , shows
this to be more consistent predictor of runtime than count-
ing the number of nodes in the network. Even with this
improved metric, controlling the runtime of optimization
across the different neighborhood techniques remains chal-
lenging.

However, eq. (2) needs to be adapted to our neighbor-
hood selection techniques, since calculating eq. (2) for only
the selected subgraph would ignore the other constraints
with edges not in the subgraph. These account for the
majority of constraints in the model when the subgraph is
small and increase the optimization time in practice. Hence,
when the next node u is selected for the current neigh, we
instead increment a counter by the number of additional
crossing variables associated with w, Inc(u, H;), given by
the following calculation:

2 2

ré{L(u)—1,L(u)} (u,v)EE,.:vEH,

where E,\ H; is the set of edges in E, that are not already
in the currently selected subgraph H;. This has the effect of
counting the number of crossing constraints in the model
that could be violated when the subgraph nodes are reposi-
tioned, in line with our findings on runtime prediction. The
value of the counter also approaches eq. (2) as H; grows
towards the size of the full network. We repeat this process
until the counter reaches a predetermined threshold, at
which point the process is halted and the selected subgraph
H; is returned.

Note that eq. (3) increments only for edges with both
endpoints in the selected subgraph to prevent double-
counting. This also means that the random neighborhood
method (fig. 3d) will always select at least one connected
component. In practice, the technique selects more nodes
than the others, however, because it selects many mostly
disconnected nodes that do not cause the counter to incre-
ment much.

Inc(u, H;) = 2|E.-\ H;| (3

3.4.2 Neighborhoods with boundaries

Up until this point, for a given subgraph H we have unfixed
and optimized all variables controlling to the position of
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Fig. 4. The process of selecting a neighborhood when boundaries are
involved (indicated by the dashed rectangle window). Nodes outside
the boundary region (in the grayed-out area) cannot be added to the
neighborhood subgraph, and their respective ILP variables are also kept
fixed. Therefore, optimizing the nodes’ position is also restricted to this
region.

nodes in H. While intuitive, there is no particular reason
why we must unfix all of the variables. Due to the con-
straints in the model (eq. (1)), contiguous sections of nodes
in a layer can all swap positions when unfixed, but two
islands of nodes separated by a fixed node cannot swap be-
tween the two islands. Hence, we can reduce the size of the
region in which the unfixed nodes are able to swap so long
as the region is contiguous. Since the variables in the model
scales polynomially with the number of nodes in a layer,
reducing this swappable area may improve performance.

Now, we describe how to isolate a contiguous region
of the network around a selected candidate—see fig. 4
for visual reference. Given some candidate node c and a
restriction percentage 17, we define the boundary width to
be R:|Liaz|, where Ly, is the largest layer in the network.
For each layer r, the swappable area is then the set of nodes
u € V, such that |u, — ¢,| < g - |Lmaz|, where u, is u's
y-coordinate in the current drawing. This window is shifted
if ¢ is close to the top or bottom of the layer so that the
swappable area is always of size R - |L,q,|. Then, step 2
of our technique overview (section 3.2) is modified to unfix
only variables x,,, ., if u1 € H; or ups € H;, and both u; and
uy are in the swappable area.

A clarification of the term “neighborhood.” Throughout
this work we use “neighborhood” to refer to the subgraph
selected for optimization, due to the intuition of collecting
a neighborhood of nodes surrounding a candidate. How-
ever, in the context of optimization metaheuristics including
large neighborhood search, neighborhood has a specific,
and slightly different meaning we refer to as the “true”
neighborhood: it is the potential moves considered at each
iteration [1]. In our adaptation, we use ILP models that
optimize with respect to all possible node moves. This means
the true neighborhood in our case is the exponentially-many
possibilities for where the selected subgraph nodes can
move to, which is represented by the values each unfixed
ILP variable can take. Hence this true neighborhood changes
when we use boundaries as previously described, even
though the subgraph nodes are unchanged.

4 EVALUATION

In this section we describe the datasets and experimental
procedures for our two computational evaluations: an ex-
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periment analyzing the candidate and neighborhood tech-
niques, and an experiment analyzing the efficacy of neigh-
borhood boundaries.

4.1 Datasets

We use three randomly generated datasets in our experi-
ments.

The first dataset is comprised of rectangular-shaped net-
works, following the experimental design of Matuszewski
et al. [50]. The number of layers K and number of nodes
per layer n were generated with a ratio of 3 : 2 as this
represents a standard aspect ratio when the nodes are laid
out orthogonally. 5 different K x n sizes of this aspect ratio
were generated—18 x 12, 24 x 16, 30 x 20, 36 x 24, and
42 x 28—with 50 networks sampled at each size. Edges
were sampled randomly and uniformly between adjacent-
layer nodes until the network contained 2n(K — 1) edges,
to reach an average density of approximately 3 edges per
node. Disconnected nodes were removed, and any net-
works that remained disconnected were resampled, since
disconnected networks can and should be optimized piece-
wise. These are sparse networks. Note that we use edge
count instead of more traditional notions of edge density
following Matuszewski’s recommendation [50]—edge count
provides a better metric for visual edge density on layered
networks. The choice to not examine different edge densities
was made to simplify the dataset as much as possible to
help with runtime estimation, and because optimal models
are better-suited for sparse networks while many heuristics
perform better on denser networks [42]. Hence large, sparse
networks are in more dire need of optimized layouts. They
also lend themselves better to node- and edge-level reading
tasks that optimal layered layouts are meant to improve.
We leave study of this technique for networks with varied
densities as future work.

For the second experiment looking at node movement re-
strictions, we generate two additional datasets changing the
shape of the networks, since we hypothesize that restricting
the node movement will have more impact on networks
with large layers. The first is the same as the previously
described rectangular-shaped networks, but with 10% of the
layers (randomly sampled, but in a contiguous group) con-
taining 3x the number of nodes. The other dataset consists
of triangle-shaped networks, selected because hierarchical
data, such as evolutionary trees and file hierarchies [37],
lends itself well to layered visualization. The layer size
generally increases with hierarchy depth for these networks,
which we use the triangular shape to model. For these we
use the same base size ratios as the rectangular networks,
but modify them to start with one node in the first layer and
2n nodes in the last, linearly interpolating the layer counts
in between. The random sampling scheme for all of these
networks, including the edge sampling and base sizes, is the
same as the initial dataset, though we examine 20 networks
of each of the five sizes.

4.2 Procedure

We now detail the evaluation conducted for candidate func-
tions, neighborhood aggregation functions, neighborhood
sizes, network sizes, and movement restriction on nodes,
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selection.

starting with our procedure for controlling optimization
time.

4.2.1 Learning the neighborhood size calculation

Since the neighborhood techniques of section 3.4 are so var-
ied in the way they collect subgraph nodes, we must correct
for variance between the different methods by learning a
unique size calculation for each neighborhood technique
according to our formula in eq. (2). The purpose of this
is to standardize the number of optimizations performed
per minute across the different techniques, as described
in section 4.2.1. For each target optimizations per minute
in {10, 50,100} and each neighborhood method and input
network size, we run all networks in the dataset for 1 minute
using a randomly selected neighborhood size. Then we
calculate the average optimizations performed per minute
and repeat this process nine more times, using binary search
to zero in on a number such that when input into eq. (2), the
LNS procedure on that specific network size and neighbor-
hood aggregation technique will perform the desired num-
ber of mean optimizations per minute. We did not repeat
this process for the each candidate method, since candidate
selection does not effect size or shape of the subgraph to
optimize. This resulted in (4 neighborhood techniques)x (5
input network sizes)x (3 subgraph sizes) = 60 learned size
parameters for the first experiment. We henceforth refer
to runs of the experiment which performed an average 10
optimizations per minute as using large subgraphs, 50 as
medium, and 100 as small.

4.2.2 Candidate + Neighborhood evaluation

We first seek to evaluate the combinations of candidate and
neighborhood methods.

For every combination of the two, we ran all 250 input
networks for 5 minutes each, using the size constraint

to aggregate neighborhood nodes learned in section 4.2.1.
This resulted in (5 candidate methods)x (4 neighborhood
methods)x (3 neighborhood sizes) = 60 runs of the exper-
iment. At each optimization step we recorded for each
network the wall-clock time and number of crossings. Each
network was loaded and optimized using the Gurobi opti-
mization software [35].

4.2.3 Restricted movement evaluation

Next, we performed an evaluation limiting the vertical
mobility of nodes during optimization, also as a full cross
product of the experiment variables. Fixing the candidate
method to be randomly selected in order to reduce the
number of runs of the experiment, we tested each dataset
detailed in section 4.1 for each neighborhood aggrega-
tion function at each neighborhood size and network size.
For the vertical restriction parameter, we tested each of
{100%, 75%,50%} as a percent of maximum layer count.
The parameters learned in section 4.2.1 were relearned for
the new networks and then each network was run for 5
minutes, as with the first experiment. This resulted in (4
neighborhood methods) x (3 neighborhood sizes)x (3 restric-
tion levels) = 36 runs of the experiment.

4.2.4 Technical Specifications

We ran the experiments in CentOS Linux using 1 CPU with 8
GB RAM and Gurobi 10.0 [35]. Experiments were truncated
after the target number of optimizations was performed, or
5 minutes elapsed. E.g. for a target of 10 optimizations per
minute, computation was halted once 50 optimizations were
performed. In practice, most of the networks completed the
target number of optimizations within the 5-minute bound.

5 RESULTS

Our experimental results, broadly speaking, provide strong
evidence for the usefulness of optimal Large Neighborhood
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Fig. 6. Crossing improvement across neighborhood techniques for 50
networks of various sizes. The circles outlined in black show the median
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the large neighborhoods don'’t have the opportunity to explore as much
of the network. The degree centrality search technique with the medium
neighborhood size performs best for the larger network sizes.

Search in the layered network visualization space. Results
are reported in terms of crossing improvement, which is
calculated as the number of crossings in the initial layout
divided by the number of crossings in the final step.

Improvement over iterated barycenter. Our studied
techniques consistently yielded a 2-2.5x improvement
within the allotted 5 minutes over the standard barycenter
heuristic. This is extremely good—reducing crossings by
over half provides a huge boost to network readability. This
greatly outperforms other reported improvements over the
barycenter by previous heuristics, e.g., [27], [34], [44], [50].
Furthermore, this improvement is achieved very quickly
on the smaller networks evaluated, needing only a small
portion of the 5 minute allotment. This high degree of im-
provement was generally true across all the techniques and
variables studied, highlighting the strength of the optimal-
neighborhood search technique for layered crossing mini-
mization.

5.1 Candidate + Neighborhood Evaluation

Neighborhood size is the most important factor for solu-
tion convergence. For smaller networks, all neighborhood
sizes generally converged to the same number of crossings,
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as seen in fig. 6 and based on the large number of ties in
fig. 5. As network size grows, this factor has a greater effect.
We see that large neighborhoods start to perform worse,
due to not having time to converge within 5 minutes. Given
enough time to converge, however, larger neighborhoods
outperform the small neighborhoods, since they are able
to find ways of detangling larger structures in the network
(fig. 7). Hence, for the larger networks we examine, we find
that the medium-sized neighborhoods (~50 optimizations
per minute) perform best.

BFS and Degree centrality neighborhood searches per-
form best. We see that in fig. 5 that these two techniques
outperform the other two for nearly all graph sizes and
neighborhood sizes tested, with the degree centrality tech-
nique edging out BFS on average. The only subset of the
data which did not exhibit these results were very large
networks when optimized with large neighborhoods, where
random search consistently outperformed the others. This is
likely due to properties of the technique wherein it selects
larger neighborhoods compared to the other techniques.
In effect, it optimizes multiple disconnected neighborhoods
simultaneously, allowing it to improve faster but converge
without much improvement, as seen in fig. 7.

Diversity in candidate selection is the highest prior-
ity. We find that generally speaking, candidate selection
on its own does not greatly affect the solution quality, as
evidenced by the random candidate method slightly outper-
forming the others on average. Results are summarized in
fig. 5, with full results broken down by candidate in section .
The strong performance of the random method implies that
the most important factor in candidate selection is diversity,
which is a finding in line with the recommendations of Blum
et al. for implementations of metaheuristics [4]. We suspect
that our penalty function (section 3.3.1) is greatly helping
to ensure diversity of the selected candidates, making their
performance more similar.

5.2 Limited Mobility Evaluation

The primary takeaway from our evaluation of limited mo-
bility is that even with neighborhoods limited to only half
of the available positions to move to, performance is not
affected. Hence, this mobility limiting can safely be used
without much impact to performance when input networks
have layers with many nodes—reducing the considered
variables in the model by a polynomial quantity and poten-
tially resulting in considerable performance gains in terms
of solver optimization speed.

Even greater improvement can be achieved on certain
types of networks. We find that, particularly for the graphs
with a small number of extra-large layers, that performance
can be improved even further with respect to the barycenter
layout. On these networks, the performance of the BFS and
degree centrality techniques exceeded 2.8 the performance
of the iterated barycenter.

Boundaries improve performance of random and layer
sweep techniques. We see in fig. 8 that while the vertical
boundaries have little detectable performance improvement
for the BFS and degree centrality search techniques, the
random and layer sweep techniques perform better with
tighter boundaries. This brings their performance more in



Improvement

24

2.1+
2.0 = —
1.9+ e
1.8+
17+ 7 @ Degree
1.6 V7
7 @ &fs
1.5+ I 4
1.44 //f . Layer Sweep
w4 [ /] @ Random
1.2+
114 Time (s)
10 ————————— T 71—
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

10

Improvement
2.2

2.1 Degree Centrality
2.0
19 4
18 4
1.7 4
16 o
15 4 . Lo o
0T L Small
et InRNNE Medium
- HEENE Large

Time (s)

T T T T T T T T T T T 1
80 100 120 140 160 180 200 220 240 260 280 300

T T
20 40 60

Fig. 7. The left figure displays median crossing improvement over time for all combinations of candidate and neighborhood methods on large
42 x 28 networks for the medium neighborhood size. There is generally little difference for lines of the same color, meaning candidate selection was
not much of a factor. The right figure shows the same data but for only the degree centrality neighborhood technique, with varying neighborhood
size and a band representing the middle 50% of the data. The small neighborhood size results in fast convergence, quickly reaching a plateau that
doesn’t improve further. The large neighborhood size does not have time to converge for these large networks, allowing the medium size to win out

for the 5-minute timeframe.

line with BFS and degree centrality, though not enough to
eclipse them.

6 DiISCUSSION

In this section, we draw out some key insights from our
previously described results, and use this to inform recom-
mendations for algorithms implementing LNS for layered
network optimization.

A key takeaway from our results was the fast conver-
gence of small neighborhoods but higher ceiling achievable
by large neighborhoods. To take advantage of this, it is ad-
visable to start with small neighborhoods, finding “easy”
improvements first, before moving to large neighborhoods
that can make more complex rearrangements.

As for the techniques used to aggregate neighborhood
nodes, we consistently find that BFS and degree central-
ity search provide the best results. The performance of
these two techniques align with our hypothesis that con-
nected subgraphs have the greatest potential for crossing
reduction—meanwhile, the layer-by-layer technique selects
all nodes in the layer regardless of their connectedness, and
the random technique ends up selecting many disconnected
components. However, boundaries on node mobility have
the effect of condensing the selected neighborhoods into
more connected groups for these two techniques, improving
their performance (fig. 8). Hence, subgraphs should be
selected using a proximity-based connectivity metric.

For candidate node selection, we found little evidence of
a winning technique but still suspect this choice has some
impact, particularly for networks with high variance in edge
density, which we did not study here. Our candidate tech-
niques also may not be sophisticated enough—many of the
optimizations performed result in no change. There may be
better ways of choosing candidates that yield improvement.

Additionally, we find evidence that diversity is highly
important in neighborhood selection (fig. 5). This means
that there may be benefits to rotating between different
candidate and neighborhood selection techniques.

As described previously, the size of the model scales
polynomially with the number of nodes in a layer, due to
needing ILP variables for every pair of nodes. Our results
show that we can limit this vertical mobility by 50% without

any major impact to performance, hence limiting vertical
mobility should be used for networks with very large or
dense layers.

Finally, we see in fig. 7 and will see again in section 7 that
the quality of the LNS solution is subject to the quality of
the initial solution. Therefore, practitioners should utilize a
high-quality but fast heuristic for the initial layout.

7 CASE STUDY: CONTROL FLOW GRAPH (CFQG)
OPTIMIZATION

CFGs are often represented as layered networks, with nodes
depicting code blocks and edges indicating transitions, to
aid reverse engineering binary code. Popular decompiler
tools like Ghidra and Radare2 can generate CFGs from bi-
nary files, revealing code structure and connections between
sections of the code. Research highlights the importance
of CFG readability in reverse engineering domain tasks
[49], [68]. Malware analysts in particular commonly utilize
these visualizations as part of their workflow [73], [74].
Tasks include identifying and tracking variables between
code blocks and identifying structures that could lead to
malicious behavior. Layout computation often employs a
Sugiyama-style approach—Radare2’s documentation cites
Buchheim et al. [6], for instance. Recent advancements from
Devkota et al. [13] include more sophisticated approaches
to enhance CFG readability and usability even for large
graphs. Hence, task performance could be further improved
by LNS optimization techniques, especially since these net-
works can often grow to be very large.

We examine the use of large neighborhood search on
the decompiled control flow graph extracted from the code
for 13 different Linux commands. To layer these directed
networks, we first break cycles using the heuristic of Eades
et al. [18], then apply the minimum-width heuristic of
Tarassov et al. [66] before re-adding the removed edges.
Dummy nodes are then inserted on long edges to create
a proper layering, per the technique of Eades and Wormald
[21]. These CFGs contained 468-2572 nodes and 540-2828
edges after performing these steps.

For this study, we evaluate both the crossing reduction
model described in section 3.1 and a more complex model
following the technique of Di Bartolomeo et al. [14]. This
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Fig. 8. Results for the neighborhoods with boundaries experiment on
medium-large networks, broken down by dataset (a: rectangular, b:
extra-large layers, c: triangular) and level of vertical neighborhood re-
striction (100%, 75%, 50%). Results were similar on all three datasets,
with the performance in (b) increasing to over 2.8 x on average for BFS.
BFS and degree centrality searches were not affected much by restrict-
ing node mobility, but greater restrictions improved the performance of
the layer-by-layer and random searches.

model simultaneously considers both edge crossings and
edge bends, another highly important readability metric
[58]. We use 71 = 3 and 72 = 1, meaning the model weighs
crossings three times more heavily than edge bends—in this
case, bend is quantified as the difference in vertical position
of the source and target node of an edge, when nodes
can only be placed at integer-valued vertical positions. The
optimization function, where y,, is a variable representing
the vertical position of node w, is then changed to:

OPT =3 > cCoert . o=l )

e1,e2€lR (u,v)EE

The computational results provided by Di Bartolomeo et al.
show that this model takes nearly 100x longer to optimize
than the crossings-only model, making the benefit of a
metaheuristic technique even more apparent.

For the LNS implementation, we use degree central-
ity neighborhoods and random candidate selection with a
small-to-medium neighborhood size of |C| = 1000 (eq. (2)),
with the barycenter layout [64] as a starting solution. We

11

compare this to an implementation of Tabu search (TS) [44]
which has been set to run until cut off by the time limit, and
the ILP model with symmetry breaking recommended by
Wilson et al. [71].

To our knowledge, no incremental improvement-based
metaheuristic has previously been evaluated on the hy-
brid crossings and edge bends model. For this model, we
substitute Tabu Search for the weighted median heuristic
with optimal placement (WM) of Gansner et al. [25], part
of the popular dot method [26], though note that it is
not a metaheuristic and typically terminates within a few
seconds. The optimal node placement algorithm performed
after the weighted median step computes final positions
for the nodes minimizing total edge length, and can be
computed quickly. For our LNS method, we use the same
placement algorithm for initial node positions after apply-
ing the barycenter and prior to entering the LNS phase.

For each of the 13 control flow graphs, we ran all three
methods on both the crossings and crossings+bends model
(13- 3 - 2 = 78 runs) for 15 minutes each.

Study Results and Observations. When run on a desk-
top computer with an Intel Core i7-8700K CPU with 6
cores, 32 GB RAM, Windows 10, & Gurobi 10, we achieve
a median improvement of 5.7 over the optimal model
and 8.6x over Tabu Search for the 15-minute timeframe.
We see in fig. 9 that although the optimal ILP method
outperforms LNS on the smaller inputs, this performance is
erratic, making highly sporadic improvements to the layout
that mean the larger networks are far from optimal after 15
minutes. We note that the parameters of Tabu Search are not
tuned for these large, sparse CFGs—the authors examine
much smaller networks in their study with much shorter
execution times than 15 minutes, and note that their tech-
nique, like many crossing minimization heuristics, struggles
with sparse networks [44]. Nevertheless, these results are
very impressive, indicating that even an unrefined imple-
mentation of LNS can fill our aforementioned theoretical
niche between optimal methods and heuristics. We provide
all layouts generated on OSF with post-processing done for
final node placement [25].

The gap is closer for the crossings+edge length model,
where LNS improves on the optimal ILP method by 2.6x
and the weighted median by 1.5%, on average. Due to the
increased complexity of the model, ILP is unable to even
find a valid solution for some of the larger graphs. The
weighted median is a strong technique for this task, pro-
ducing high-quality solutions in seconds that can take the
LNS method minutes to reach. This suggests that our adap-
tation of LNS may require some careful parameter tuning
to achieve peak performance—the technique would likely
improve by using a model-specific heuristic for starting
placement such as weighted median instead of barycenter,
and learning a neighborhood size calculation for the model.

All layouts generated are available in our supplemental
materials at https://osf.io/w3fev/. The edge crossing
minimization layouts were post-processed with the optimal
model of Gansner et al. [25] to reduce edge length subject to
the calculated node ordering. For an example, the different
layouts for the CFG of ptx are linked here: [ILP] [Tabu]
[LNS] (crossing minimization only), [ILP] [WM] [LNS]
(crossing and edge length minimization)
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Fig. 9. The left two figures display the final objective function values after 15 minutes for the the ILP technique [14], [71], Tabu Search (TS) [44],
the weighted median heuristic (WM) [25], and our LNS adaptation, for 13 large control flow graphs. The left chart plots the results for the edge
crossing minimization study, and the middle plots the more complicated model that optimizes both crossings and edge length. The median for each
method is highlighted with a black line. In both cases, our LNS-based method produces the best results on average. The behavior of the ILP solver
is well-illustrated by the figure on the left, which shows the objective value over time for the edge crossing minimization of the csplit graph:the ILP
model makes little progress until it gets lucky and finds an improving solution, whereas the LNS approach makes much more consistent progress.
The full layouts of csplit after the 15 minutes of optimization can be viewed here: ILP, Tabu, LNS.

8 LIMITATIONS AND FUTURE WORK

Limitations. While we analyze many techniques and their
performance, it is outside the scope of this work to present
a generalized technique. This is due to the lack of existing
work analyzing large neighborhood search in this domain
and the non-specific nature of the LNS metaheuristic—
LNS requires considerable work to justify a process for
neighborhood selection, which we have attempted here. We
wish to continue towards the presentation of a generalized
algorithm in the future.

Our adaptation of LNS, while more scalable than optimal
techniques, still has limitations on input size. Since the
size of the model scales polynomially in the number of
edges/number of nodes per layer, the additional runtime
each optimization from iterating each constraint adds up
and creates inefficiency for larger networks. For the largest
networks, even simply loading the model can incur a non-
negligible runtime penalty. With diminishing returns for
node-link visualizations on larger networks due to reduced
emphasis on individual nodes and edges, however, we
believe this technique may scale close to the limits of practi-
cality for node-link visualization, but more work is needed
to understand the extent of the scalability of this method.

Future Work. While the benefits of a neighborhood
search-based method for layered network optimization are
obvious, we leave the construction of a general-purpose
algorithm as future work. Following the design guidelines
we specify (section 6), this requires an evaluation of existing
fast layout heuristics, and an investigation of modifying
the neighborhood size once convergence is reached. There
may be additional benefits worth evaluating from rotating
between different neighborhood techniques, candidate tech-
niques, and vertical movement restrictions, thereby increas-
ing the diversity of explored neighborhoods.

Other tasks left to future work include performing a
computational evaluation of the state-of-the-art methods
for layered network visualization, such as Tabu Search [§],
[44]. We hope to explore extensions of this technique in
the context of the broader graph drawing and multilayer
network visualization [51] fields.

9 CONCLUSION

Layout techniques for layered networks often fall into two
categorizations: fast heuristics that produce reasonable lay-
outs and optimal methods that create perfect layouts but do
not scale well. We have shown that utilizing large neighbor-
hood search (LNS) to repeatedly optimize small subgraphs
within a larger network creates high-quality layouts within
a bounded execution time. In our evaluations, we show
that LNS can be used to reduce the edge crossings in
large networks from by over 50% within a few minutes,
starting from the standard barycenter layout. By exploring
different subgraph aggregation techniques, candidate se-
lection techniques, and constraints on neighborhood size,
we have empirically validated a set of recommendations
for implementing LNS for network layout optimization.
Our case study provides one possible framework for this
implementation, showing that high-quality layouts of huge
control flow networks can be created with LNS, even using
a more complex objective function combining both edge
crossings and bends.
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Fig. 10. On the left, the runtime of optimal model in log-milliseconds are graphed as a function of the natural log of the number of nodes, and on the
right as a function of the natural log of the number of crossing variables, for the same set of 3,880 networks. While these results still display a high
degree of variance, the crossing variable count is clearly a better runtime predictor.

RUNTIME PREDICTION

A previous study examining the performance of the optimal
crossing minimization model of Jiinger et al. [41] on a
collection of 3,880 networks from the Rome-Lib graphs [15]
found results supporting the conclusion that the number
of crossing variables in the model is a better predictor of
runtime than the number of nodes in the graph—see fig. 10.
While not a perfect predictor, we find that this calculation
is practice is more reliable and consistent than number of
nodes, and can be calculated easily from information readily
available about the input network, described in section 3.4.1.
To find a better predictor, it may be necessary to train a
machine learning model, a procedure described in [69].

SUPPLEMENTAL FIGURES

We provide a number of additional figures describing our
experimental results from section 4.2.2. fig. 11 and fig. 12
contain improvement results not included in section 5,
fig. 13 shows winning method across all networks by candi-
date function instead of neighborhood function.
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Fig. 11. Improvement results for the middle network sizes not pictured in
fig. 6. From top to bottom, we have 24 x 16, 30 x 20, and 36 x 24.
As network size increases, the relative performance of the degree
candidate and BFS search techniques begins to eclipse the other two
for the medium and small neighborhood sizes.
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Fig. 12. Individual figures display all 15 candidate + neighborhood combinations graphed as median improvement over the 5-minute timespan. The
color corresponds to neighborhood aggregation technique, where purple is BFS, blue is degree centrality search, orange is layer-by-layer search,
and green is random search. From left to right, the columns are: small neighborhoods, medium neighborhoods, large neighborhoods. From top to
bottom, the rows are: 18 x 12, 24 x 16, 30 x 20, 36 x 24, and 42 x 28 network sizes.
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Fig. 13. Improvement results from fig. 5 but instead colored by winning candidate, where gray represents a tie. Results are broken up by increasing
network size and then by neighborhood size. We see no clear winner for any particular graph or neighborhood size, though the average edge length
candidate wins less then the other methods.
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