Locking Down Science Gateways

Steven R Brandt*

, Patrick Diehl#*t

*LSU Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, 70803 U.S.A.
T Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803 U.S.A.
t Applied Computer Science (CCS-7), Los Alamos National Laboratory, Los Alamos, NM 87545 U.S.A.

Abstract—The most recent Linux kernels have a new feature
for securing applications: Landlock. Like Seccomp before it,
Landlock makes it possible for a running process to give up access
to resources. For applications running as Science Gateways, we
want to have network access while starting up MPI, but we want
to take away network access prior to the reading of parameter
files in order to prevent malicious exploits of the gateway code.
We explore the usefulness of this tool by modifying and locking
down two mature scientific codes: The Einstein Toolkit, and Octo-
Tiger.

Index Terms—Science Gateways, security, landlock

I. INTRODUCTION

Science Gateways typically provide a graphical or web
interface to scientific code, allowing users who are less savvy
about the command line, supercomputers, Slurm, etc. to have
ready access to advanced codes. Often, in the interest of
democratization, the vetting process for users of the Gateway
is less rigorous than a typical user account. Because scientific
codes are typically written in C, C++, or Fortran without a
thought about security, these applications represent a potential
security hazard via buffer overruns, poor input sanitization,
etc. Full audits of these codes represent a cost few are willing
to undertake.

An ideal solution for these systems would be to sandbox
the code, limiting what it can do even if a hacker were to
gain control of the running process. Because these applications
typically run in a distributed fashion over MPI, they need
the ability to turn on the sandbox (and take away the ability
to make new connections) after calling MPI_Init (). In
addition, of course, the sandbox should limit what directories
the process can read or write.

The most recent Linux kernel (version 6.9), fortunately,
offers a way to lock down an application, i.e. a way for an
application to give up its access to the network and to files. Can
this tool (landlock) readily address the needs of the Science
Gateway and make sophisticated scientific applications secure?
Can it accomplish this without overburdening the Gateway
developer with the need to understand deep things about
security or make extensive modifications of their code?

In this paper, we explore the difficulty in securing two
codes: The Einstein Toolkit, which we will use to simulate
a spherically symmetric neutron star, and Octo-Tiger, which
we will use to simulate a white dwarf. These codes have little
in common except that they are large C++ codes that explore
astrophysical scenarios. We will show that it is relatively easy
to modify these codes to employ Landlock.

The paper is structured as follows: Section II discusses
security tools and methodologies. Section III briefly introduces
the studied scientific applications. Section IV addresses the
implementation and testing. Section V shows examples to
lock the file systems access and network. Section VI shows
some run time measurements for Octo-Tiger with and without
Landlock. Finally, Section VII concludes the work.

II. SECURITY TOOLS AND METHODOLOGIES

Landlock is far from the first tool designed to lock down
an otherwise insecure application and prevent it from doing
malice. The original Linux had chroot to serve this purpose.
The chroot system call changed the effective root of the
process calling it. It thereby gave up access to all files below
the new root passed to it. Unfortunately, subsequent calls to
chroot can undo the first call, so it is inadequate even
for a low-level sandboxing. The pivot_root system call,
introduced in Linux 2.3.41, provides an irreversible change of
the root directory. While it does make it possible to sandbox
direct access to the file system from the current process, it
does not prevent the local process from opening network
connections, creating IPC resources, etc. So it is, at best, a
start at building a sandbox.

Another, more comprehensive effort at limiting what appli-
cations can do, is provided by the seccomp facility and has
been available since Linux 3.17. This tool allows system calls
to be selectively blocked and filtered. However, seccomp
does not claim to be able to sandbox an application, but it does
provide a way for an application to give up a wide variety of
privileges. One limitation of seccomp is that one cannot pass
pointers to it. This means it cannot be given character arrays,
and this means it cannot be used to limit access to specific
files or directories. In principle, it could be combined with
pivot_root to accomplish this end.

SELinux and AppArmor provide true sandboxing capa-
bilities, but they must be configured by the root user and
provide system-wide restrictions. It should, in theory, be
possible to configure them into an image and launch the image
from MPI. In principle, these tools could be configured for an
Apptainer image and launched by a user. Alternatively, rules
could be crafted collaboratively between the sysadmins and
the Science Gateway developer. While these tools are fully
capable of providing the necessary level of restriction, turning
them on after calling MPI_init () might, however, prove
challenging.

OpenBSD has similiar capabilities to Landlock through
its pledge and unveil system calls. However, very few


https://orcid.org/0000-0002-7979-2906
https://orcid.org/0000-0003-3922-8419

clusters currently use OpenBSD on their clusters. Namespaces
also have the capability of limiting what an app can do, but
they were designed more for virtualization than for security.
Landlock, however, allows programmers the flexibility of
controlling when restrictions are turned on and requires neither
special permission from sysadmins nor virtualization. We
believe that, in many cases, this will make it the best choice
for locking down a science gateway.

III. SCIENTIFIC APPLICATIONS

Although theoretically present in kernel version 5.13, the
first version in which Landlock was capable of stopping
network connections seems to be Fedora 40 running kernel
version 6.8.1. We feel that this is a crucial capability for the
purposes for preventing bad actors from gaining control of or
misusing local resources.

We constructed a function call named landlockme () [1]
which our applications can call. It is based on an example
landlock sandboxing code found here [2]. This code uses
environment variables to communicate which directories the
application is allowed to read, write, and where (if anywhere)
it is allowed to make internet connections and on what ports.

Most scientific codes follow a standard workflow: (1) initial-
ize MPI, (2) then read parameter and/or data files, (3) and then
finally produce a result. To secure such an application, one
inserts a call to landlockme () or the equivalent between
steps (1) and (2). For this strategy to be effective, the gateway
should not give the user any control over command line
arguments to the application, only to the contents of the
parameter and input files.

The insertion of this call can be performed in one of two
ways: (1) editing the source code, or (2) using PMPI to call
MPI_TInit ().

A. The Einstein Toolkit

The Einstein Toolkit (ET) [3] is a hybrid code constructed
from C, C++, and Fortran. It’s core infrastructure was first
created in 1977 and it has been under continuous develop-
ment since. While the core infrastructure, Cactus, is generic
and could be used for any Cauchy problem, the family of
science-specific modules in the ET centers on fully relativis-
tic astrophysical simulations, e.g. black holes, neutron stars,
supernovae, and cosmology. Cactus provides adaptive mesh
refinement (AMR) with subcycling in time. Using the Carpet
driver, this is in the form of nested and moving boxes rather
than a fully general refinement system.

The test problem we are using in this paper is a TOV
star [?]. This is a simple, spherically symmetric neutron star
which we model on a full 3D Cartesian grid. While this is
more computational infrastructure than is needed for such a
simple simulation, it is a common test problem that is run
to verify code correctness and to teach students about neutron
stars and the ET code. The TOV star will exercise all important
components of the solvers required for more sophisticated
problems.

B. Octo-Tiger

Octo-Tiger is an astrophysical code simulating the evolution
of non-relativistic star systems using adaptive octrees [4].
Octo-Tiger simulates the following multi-physics: Gravity is
solved using a fast-multipole method (FMM) and the hydro
equation is solved using a finite volume method with a fully
adaptive mesh refinement (AMR) without subcycling in time
(subcycling is avoided because of the need to solve elliptic
equations). Octo-Tiger is implemented in C++ using the C++
standard library for parallelism and concurrency (HPX) [5].

IV. IMPLEMENTATION AND TESTING

We note that while Landlock works on Fedora 40, we
were unable to get the default installed valgrind to work.
As far as valgrind and the emulated CPU it uses work,
the system does not have the capability. The GNU debugger
project (gdb) worked with Landlock.

A. The Einstein Toolkit

We began by testing very basic MPI codes that exchange
simple messages of random data using MPI_Send and
MPI_Recv in order to verify whether our method works.

We were able to show that if landlockme () was called
before MPI_TInit, then the application did not run. If we
called landlockme () after MPI_Init, then the applica-
tion ran without difficulty using MPICH. When we attempted
the same test using OpenMPI, Landlock blocked an attempt
to use shared memory. In principle, we could ask OpenMPI
not to do this, or we could change the rules to allow shared
memory. For simplicity, we tested our scientific codes using
MPICH.

The modification to the Einstein Toolkit was straight-
forward. We were able to identify the function call
CCTKi_InitialiseCactus and insert the «call to
landlockme () after the call to a method named
CCTKi_InitialiseDataStructures. With the addi-
tion of this single line of code, our TOV star example was
able to run and generate data files.

As a double check that the Landlock was indeed active,
we ran the tests again, running it in directories it was not
supposed to be able to access. As expected, Landlock
prevented it from reading or writing files.

B. Octo-Tiger

For the Octo-Tiger version without networking, we called
landlockme () as the first thing after entering the main
method. As expected, Landlock prevented it from reading
or writing files. For the version with networking on, we had
to make sure that each MPI rank calls landlockme ().
Here, we called the function in the initialization of each MPI
rank. For debugging purposes, we added simple stdout/stderr
messages to the landlockme () function. So the function
is called for each MPI rank. Adding LandLock to Octo-
Tiger was straightforward and had no major issues. We have
to mention that we had to do code changes unrelated to
LandLock but specific to GCC 14. We are in the process to
prepare a pull request for adding LandLock as an optional
feature to Octo-Tiger.



Listing 1. Example variables to land lock applications.
export LL_FS_RO="/bin:/lib/:S$USER/"
LL_FS_RW="SUSER/"
LL_TCP_BIND=""
LL_TCP_CONNECT=""

export
export
export

C. Generic Science Codes

We note that, with Landlock, it is theoretically possible
to create a service which runs arbitrary MPI codes on behalf
of unknown users. One way to accomplish this would be to
accept a user code in the form of a shared library (i.e. a . so
file) with some kind of standard method, e.g. runcode ().
The service would call MPI_Init, then landlockme (),
then it would use dlopen () and dlsym () to access and
run the user method. By using dlopen () instead of linking
the shared object file, we circumvent the potential problem of
constructors being called prior to landlockme () in C++’s
initialization sequence.

V. CONFIGURATION

Listing 1 shows some of the configuration options we
used in this study. The first option is LL_FS_RO, which
takes a list of paths separated by colons. These are the files
and directories the application is allowed to read. We gave
access to the system-wide installed libraries and executables.
The second option LL_FS_RW provides a list of files and
directories the application is allowed to write to. The third
option LL,_TCP_BIND restricts the port binding and the fourth
options LL_TCP_CONNECT restricts the ports for connec-
tions. We refer to the Linux kernel documentation [6] for more
options.

VI. RUNTIME MEASUREMENTS

Using landlockme () should not introduce any overhead
to the process. We executed the rotating star problem from
Octo-Tiger’s test suit to investigate the claim. We adaptive
refined the intial mesh four times and executed the simulation
for ten steps. Both runs with and without landlock took around
92 seconds. We compiled Octo-Tiger using Spack [7] and
restricted it to access the Spack installation directory and the
user’s home directory to read and write the output files. We
could not observe introduced overheads for the Octo-Tiger
version with networking.

VII. CONCLUSION

In this work we have studied the use of Landlock for
securing scientific applications for use in Science Gateways.
Because Science Gateways typically involve taking large,
mature, C/C++ and Fortran codes and making them semi-
publicaly available on the web, they represent a potential
security hazard. These codes usually are based on MPI and
follow a pattern of starting up, reading initial data files,
computing, then generating results. Modifying such codes to
invoke Landlock after MPI startup but before the reading
of parameter files should secure the code against attackers

launching attacks based on input files (e.g. exploiting buffer
overruns or unsanitized inputs).

We note, however, that Landlock provides no protection
against denial of service attacks, e.g. using up file space,
inodes, file descriptors, etc. While these types of threats can
still cause significant problems, they are of a different class.
They should not allow user data or password information to
be stolen, back doors to be installed, etc.

We have demonstrated that, even with large, complex codes
such as Octo-Tiger and the Einstein Toolkit, sandboxing a code
with Landlock is a relatively straightforward task. Not only
was this done with relative ease, it introduced no performance
penalties or observable runtime overheads.

APPENDIX A
SUPPLEMENTARY MATERIALS

Octo-Tiger is available on GitHub [8] and can be compiled
with Spack [9]. The scripts and input data to reproduce the
runs in Section VI are available on Zenodo [10].

The Einstein Toolkit is free under the GPLv3 license and is
available for public download using instructions found at the
Einstein Toolkit website [11].

ACKNOWLEDGMENT

The authors would like to thank the IT support staff of
the Center for Computation and Technology who setup our
test machines for us. Also, we wish to acknowledge the
support of NSF grant OAC 2004157 to support work on
the Einstein Toolkit. This work was supported by the U.S.
Department of Energy through the Los Alamos National Lab-
oratory. Los Alamos National Laboratory is operated by Triad
National Security, LLC, for the National Nuclear Security
Administration of U.S. Department of Energy (Contract No.
89233218CNA000001). LA-UR-24-27511

REFERENCES
[1

—

“landlock(7) — linux manual page,” last accessed 07/20/2024. [Online].

Available: https://man7.org/linux/man-pages/man7/landlock.7.html

[21 S. R. Brandt, “Sandbox for landlock,” last accessed
07/18/2024. [Online]. Available: https://gist.github.com/stevenrbrandt/
ced0bd99a90628453cbd899480d435d2

[3] “The einstein toolkit,” 2023. [Online]. Available: https://doi.org/10.
5281/zenodo.10380404

[4] D. C. Marcello, S. Shiber, O. De Marco, J. Frank, G. C. Clayton, P. M.
Motl, P. Diehl, and H. Kaiser, “Octo-tiger: a new, 3d hydrodynamic code
for stellar mergers that uses hpx parallelization,” Monthly Notices of the
Royal Astronomical Society, vol. 504, no. 4, pp. 5345-5382, 2021.

[5] H. Kaiser, P. Diehl, A. S. Lemoine, B. A. Lelbach, P. Amini, A. Berge,
J. Biddiscombe, S. R. Brandt, N. Gupta, T. Heller et al., “HPX-the
C++ standard library for parallelism and concurrency,” Journal of Open
Source Software, vol. 5, no. 53, p. 2352, 2020.

[6] M. Salaiin, “Landlock: unprivileged access control,” 2024, last accessed
07/17/2024. [Online]. Available: https://docs.kernel.org/userspace-api/
landlock.html

[7] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.
de Supinski, and S. Futral, “The Spack Package Manager: Bringing
Order to HPC Software Chaos,” ser. Supercomputing 2015 (SC’15),
Austin, Texas, USA, November 15-20 2015, 1ILNL-CONF-669890.
[Online]. Available: https://github.com/spack/spack

[8] D. Marcello et al., “Octo-tiger: Astrophysics program simulating

the evolution of star systems based on the fast multipole method

on adaptive octrees,” last accessed 07/15/2024. [Online]. Available:
https://github.com/STEIIAR-GROUP/octotiger


https://man7.org/linux/man-pages/man7/landlock.7.html
https://gist.github.com/stevenrbrandt/ced0bd99a90628453cbd899480d435d2
https://gist.github.com/stevenrbrandt/ced0bd99a90628453cbd899480d435d2
https://doi.org/10.5281/zenodo.10380404
https://doi.org/10.5281/zenodo.10380404
https://docs.kernel.org/userspace-api/landlock.html
https://docs.kernel.org/userspace-api/landlock.html
https://github.com/spack/spack
https://github.com/STEllAR-GROUP/octotiger

[9] G. DaiB, J. Yan, P. diehl, and C. Junghans, last accessed 07/18/2024.
[Online]. Available: https://github.com/G-071/octotiger-spack
[10] P. Diehl, “Data: Locking down science gateways,” May 2024. [Online].
Available: https://doi.org/10.5281/zenodo.11355929
[11] “The einstein toolkit,” last accessed 07/15/2024. [Online]. Available:
https://einsteintoolkit.org


https://github.com/G-071/octotiger-spack
https://doi.org/10.5281/zenodo.11355929
https://einsteintoolkit.org

	Introduction
	Security Tools and Methodologies
	Scientific applications
	The Einstein Toolkit
	Octo-Tiger

	Implementation and Testing
	The Einstein Toolkit
	Octo-Tiger
	Generic Science Codes

	Configuration
	Runtime measurements
	Conclusion
	Appendix A: Supplementary materials
	References

