Evaluating and extending speedup techniques
for optimal crossing minimization in layered graph drawings

Connor Wilson (), Eduardo Puerta @, Tarik Crnovrsanin (2, Sara Di Bartolomeo (%, and Cody Dunne
@D Symmetry breaking
L d ®
o L3
® od ® ® hd hd 3 e
® ®
P - o ° ° ° ° °
L 3
»‘ — ~ . . . . o
) ° ° ° ° M o °
& &
\ ° - -
® ® [ ] o °
b 1 Faster bt Fastr -
@ @ @ @ @ © @ Pﬁ These switch
& < 2 G 4. e / ese switches
%3:, 0475 %, 'L% %, '5‘/;% e%;o% 0’71,/5 ,,M» " & correspond to techniques
71«,6 0%/ %, 9 “‘("/Q % %, (/‘.}, oo% for speeding up the
%, @, e,/é 3 s,:) SN Vs, Ly 05 05— layout algorithm.
Qs %, 2% ) % ¢ Y %

Y, g % . T We appydierent
% v combinations to achieve
S~ ' faster optimal layouts.

Fig. 1: We aim to create faster and more scalable methods of finding layered graph layouts with the minimum number of crossings.
We characterize nine techniques to improve the performance of an integer linear programming (ILP) formulation and empirically test
their improvement. We call these switches since they can be toggled and combined. Here, we show the performance of two switches
and highlight an optimal control flow graph layout from our case study, with final node placements generated by the bendiness reduction
of Di Bartolomeo et al. [9] performed in sequence after crossing minimization (full layouts available athttps://osf.io/5vq79). These
control flow graphs can grow very large but benefit from minimal crossing visualizations to aid human task performance.

Abstract—A layered graph is an important category of graph in which every node is assigned to a layer, and layers are drawn as parallel
or radial lines. They are commonly used to display temporal data or hierarchical graphs. Previous research has demonstrated that
minimizing edge crossings is the most important criterion to consider when looking to improve the readability of such graphs. While
heuristic approaches exist for crossing minimization, we are interested in optimal approaches to the problem that prioritize human
readability over computational scalability. We aim to improve the usefulness and applicability of such optimal methods by understanding
and improving their scalability to larger graphs. This paper categorizes and evaluates the state-of-the-art linear programming formulations
for exact crossing minimization and describes nine new and existing techniques that could plausibly accelerate the optimization algorithm.
Through a computational evaluation, we explore each technique’s effect on calculation time and how the techniques assist or inhibit one
another, allowing researchers and practitioners to adapt them to the characteristics of their graphs. Our best-performing techniques
yielded a median improvement of 2.5-17 x depending on the solver used, giving us the capability to create optimal layouts faster and for
larger graphs. We provide an open-source implementation of our methodology in Python, where users can pick which combination of
techniques to enable according to their use case. A free copy of this paper and all supplemental materials, datasets used, and source
code are available athttps://osf.io/5vq79.

Index Terms—Integer linear programming, layered graph drawing, layered network visualization, crossing minimization, edge crossings
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1 INTRODUCTION

In alayered graph, every node in the graph is assigned to a layer and
edges connect nodes in different layers. Layered graphs (also called
layered networks) are commonly used to represent sequential and hierar-
chical relationships across a wide variety of domains, including machine
learning [33, 54], biology [5], the humanities [20], and more. Usually,
layered graphs are shown using node-link visualizations, which means
that human task performance in reading them heavily depends on the spa-
tial layout of nodes and edges [2]. Computing this layout is most often
done using heuristic algorithms which are fast, but produce suboptimal
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results, particularly for sparsely connected graphs [31,46]. Conversely,
other methods focus on the optimality of the result but require more time
and computational resources and are, therefore, less scalable.

Straightline edge crossing minimization is the most important
aesthetic criterion for graph readability [25,42]. The goal is to create
a node-link visualization for a given graph with the fewest number
of edges that cross over each other. Traditionally, this is done using
heuristics which quickly produce layouts with few crossings. Notably,
the Sugiyama framework for graph visualization [46] breaks this into
steps: nodes are first assigned to layers, and are reordered within layers
using a barycentric method to produce a drawing with few crossings.
This approach creates very readable graph visualizations, and is widely
used in graph drawing libraries [4, 17].

Typically, methods are implemented with the goal of balancing the
runtime and optimality of the layouts generated, but in this paper we
focus on the creation of layouts with a provably-optimal number of
overlapping edges. Not only does the optimal crossing minimization
approach create more readable graphs, but it can also be used to
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benchmark the speed of heuristic layout algorithms and the readability
of their layouts. However, optimal layouts can take a long time to
compute, making heuristics more suitable for larger graphs.

This paper focuses on speeding up the creation of provably-optimal
layouts using Integer Linear Programming (ILP). The advantage of
ILP formulations is that they allow us to use powerful existing solvers,
many of which are commercially available and very quick in practice.
As ILP techniques and computer speeds improve, the computational
cost of these exact methods approaches the realm of practicality
for larger and larger graphs, leading researchers to speculate that
optimal techniques will eventually replace heuristics for layered graph
layouts [16]. Another benefit is that ILP is extremely flexible—we can
combine constraints for whichever criteria we desire into a combined
ILP model and explicitly input how much we want the result to favor
one criterion over the others [9, 16]. Finally, ILP is uniquely positioned
to solve specific problems, such as the layout of sparse graphs, which
are often in greatest need of minimal crossing visualization due to the
increased importance of individual edges. While heuristics perform
worse on sparser graphs, ILP’s performance skyrockets [31].

In this paper, we present two standard formulations for layered cross-
ing minimization ILP and analyze nine techniques for improving runtime
across a range of input sizes. To our knowledge, no prior research has
reported on the use of two of these nine techniques, nor has any research
empirically validated any of the techniques or transitivity formulations
we present. To make optimal layered crossing minimization feasible on
larger graphs, we categorize existing approaches and classify the perfor-
mance of each of nine techniques for each of two transitivity types on a
3,200-graph dataset. We then perform a comprehensive benchmark study
of 1,280 different ILP formulations on a dataset of 1,700 graphs, to com-
pare the combined performance benefits of the different techniques. Fi-
nally, we illustrate our formulation with a case study on visualizing code
control flow and compare it with existing formulations in this application.

Specifically, this paper contributes to layered graph visualization:

1. An empirical comparison of nine new and existing techniques
for faster exact crossing minimization and their scalability to larger
graphs, using two different base formulations and two ILP solvers,

2. A case study demonstrating the practicality of our recommended
method applied to control flow graphs, and

3. An open-source implementation of our exact crossing mini-
mization algorithm in Python for both Gurobi 10.0 [21] (license
required) and HiGHS 1.5 [26] (fully open source), available on
OSFathttps://osf.io/5vq79.

2 BACKGROUND AND RELATED WORK

In the following section, we discuss relevant extant layered graph
drawing algorithms. We also survey important heuristics, and
describe notable optimal algorithms, including ILP formulations and
optimization approaches. A review of general graph visualization and
graph drawing is outside the scope of this discussion. However, for an
introduction, see Tamassia’s book [47], Gibson et al.’s survey [19], and
the following systematic review of computational evaluations of graph
layout algorithms [7].
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A layered graph G, also referred to as a layered graph, is a structure
consisting of a set of vertices V (also referred to as nodes) and edges E,
where each edge connects two vertices, and a layering L. The layering
is a function L: V — {1,2,3,...,K}, where K is the number of layers
in G. We call a layered graph proper if, for all (i, j) € E, we have
|L(i)—L(j)|=1. That s, all edges in a proper layered graph are between
consecutive layers, an important property for the use of the formulations
outlined in this paper. When graphs contain edges traversing more than
one layer, we split them up into sections using anchor or dummy nodes
as per Gansner et al. [17]. We refer to the number of nodes in the graph
after this dummy node insertion as rofal nodes. We then consider a
drawing to be an assignment of nodes to 2-dimensional coordinates,
where nodes in the same layers are drawn aligned, and these layer lines
are parallel and ordered consecutively. For the purposes of layouts in
this paper, layers are drawn vertically.

Layered Graphs

Layered node-link graph visualizations are used to represent hier-
archical and sequential relationships between entities [23]. These are
useful for visualizing medical time series [1], SQL queries [9], and
navigation techniques [24], for example. Layers can be provided as part
of the data or assigned as a step in the algorithm. Many criteria influence
the readability of these visualizations. Purchase found edge-crossing re-
duction to have the most significant impact on the readability of relations
in a graph [42]. In later work, she formalized seven metrics to measure
the aesthetic criteria that influence the readability of graph layouts [43].
Hence, layout algorithms range from optimizing some of these criteria,
such as minimizing edge bends [9,46], to constraining the design conven-
tions of specific domains, like calculating readable metro maps [37,41].
While many of these metrics are studied, we focus on crossing minimiza-
tion as it is the most important metric for many tasks [42,53].

Many fast but suboptimal heuristic algorithms have been proposed to
minimize edge crossings for layered graphs. Among the most prominent,
the Sugiyama framework [23, 45, 46] consists of assigning layers to a
graph and then sweeping through them to permute nodes with a barycen-
ter heuristic. Eades and Wormald proposed a similar method in 1994,
with a median heuristic to compute the positions of nodes [14]. In their
paper, they also utilized dummy nodes to ensure multilevel graphs have
a proper layering. This technique is still commonly used and allows us
to make formulations for layered graphs that would otherwise not be
proper. A few years later, Eades, alongside Lin and Tamassia, presented
a degree-weighted barycentric method [13]. All these methods focus
on iteratively sweeping through layers and computing “average” posi-
tions of nodes, with the main differences among them being how they
define average. The original barycentric heuristic [46] has exceptional
performance [31] and is often implemented in graph visualization li-
braries [27]. Matuszewski et al. [36] propose a k-layer sifting method that
often outperforms the barycentric method at the expense of being slower.

2.2 Optimal Algorithms for Layered Graphs

Alternative to heuristic approaches, graph layouts can be computed by us-
ing precise mathematical expressions, which can be solved for provably
optimal solutions. However, finding a minimum crossing drawing for
a layered graph is NP-Complete [18] due to the combinatorial nature of
reordering nodes. Hence, many approaches in the literature have focused
on improving the performance and scalability of existing algorithms. In
presenting their framework, Suyigama et al. proposed exact algorithms
for permuting nodes within layers subject to a prior layer assignment step.
For the exact layout, they designed their objective function to minimize
the vertical distance between every pair of nodes at the end of each edge,
which is a quadratic optimization problem [46]. Gansner et al. added
more constraints to linearize the method proposed by Sugiyama [17].

Optimal Formulations using ILP. Jiinger and Muntzel proposed
a branch-and-bound algorithm to minimize crossings in 2-layer
graphs [30]. That same year Valls et al. also proposed another
branch-and-bound method [50].

We call a formulation a way to define a desired property as a
set of integer variables and linear constraints. An /LP model is an
encoded formulation (or multiple formulations) with a corresponding
optimization goal given to an ILP solver. ILP solvers programmatically
find an integer assignment to the variables that satisfy all constraints such
that the optimization expression is minimized/maximized. ILP solvers
leverage years of research [28], and commercial solvers such as Gurobi
report yearly performance increases [21]. Therefore, we expect ILP
solvers’ increased performance to translate to more viable and scalable
optimal formulations. This paper aims to compare the performance of
existing ILP models by combining techniques that alter the formulations
themselves or influence the solver. Below, we discuss the varied
formulations and optimization techniques found in the literature.

Extant ILP Formulations. In 1997, Jinger and Mutzel proposed an
ILP formulation to permute the nodes in the 2-layer case to reduce cross-
ing numbers [30]. They further developed a multilayer approach [31] us-
ing the dummy node strategy. Their formulation directly ensures the tran-
sitivity of nodes by outlining constraints on the vertical position variables
for each pair of nodes. Di Bartolomeo et al. presented another notable
formulation in Stratisfimal Layout [9]. While many other formulations
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Table 1: Notation Used in This Paper

G=(V,E,L) A layerefi graph G with ver}tex set V, edge set E, and
layer assignment on the vertices L:V — {1,2,....K}.

Transformed node set of G with dummy nodes inserted

on long edges and |V'| rotal nodes.

E. | All(u,v) €E suchthat L(u)=rand L(v)=r+1.

K Number of layers in G.

Binary variable denoting the relative position of nodes

iand jin the layout.

Clid). (i) Binary variable denoting if edges (i,k) and (/) cross.

ensured transitivity via direct constraints, Stratisfimal Layout implies this
property by assigning indexed positions to nodes within layers when min-
imizing edge length. Indices are natural numbers, which are transitive on
the “greater than” relation (>). Di Bartolomeo et al. formalized vertical
position constraints as a set of implications relating direct transitivity
constraints to node positions. They proceed to linearize these implica-
tions with a conversion that introduces auxiliary variables to provide
constraints for the ILP. Stratisfimal Layout still implements the direct
transitivity constraints, which creates redundancy in their formulation.

Notable Speedup Approaches. The corpus of ILP formulations also
consists of strategies to improve the solver’s performance. To our knowl-
edge, we are the first to empirically evaluate these when combined and
compared across different transitivity formulations. Gange et al. provide
a comprehensive evaluation of ILP and MIP solutions for layered cross-
ing minimization using a few of the switches outlined in our work [16]—
the closest computational evaluation to ours in scale of anything we could
find in the literature. They propose symmetry breaking, collapsing leaf
nodes, and an improved set of constraints based on the vertex exchange
graph introduced by Healy and Kuusik [22] as potential improvements.

Mutzel proposed leveraging the planarity of graphs on their
formulation by considering constraints based on subgraphs that
guarantee the existence of a crossing [39]. Their work started with
the 2-layer case [40] and was later extended to k-levels by Healy and
Kuusik [22]. Notably, Mutzel described how cycles in 2-layer graphs
guarantee the existence of crossings. Their approach involved creating
constraints that checked for the existence of such subgraphs. Conversely,
we use this insight to remove crossing constraints with known solutions.

Zarate et al. abstracted Sankey Diagrams as layered graphs and
propose an ILP approach for their layouts [56]. They added symmetric
variables on crossings to hone in on possible solutions to increase
performance. Some ILP literature discusses how adding redundant
variables can help the formulation determine solutions faster [32]. They
noticed that if there is a crossing between two vertices, it does not matter
which vertex we consider the first one in our notation the crossing is
still there. However, adding redundancy is theoretically justified but
not experimentally verified. They also proposed enhancing the solver’s
performance by branching on the binary position variables (x-vars).
Branch-and-bound techniques are often used in ILP problems to find can-
didate solutions [38]. Their formulation included a crossing constraint,
with x,c € {0,1}. However, they highlight that since x-vars constraints
are binary, the crossing variables (c-vars) must be integers. Therefore,
they mention they do not have to enforce the constraints that c-vars are
also binary since the crossing constraints imply this. Nonetheless, they
claim that adding branching priorities on x-vars is more efficient, telling
the solver these are more important in finding the solution space.

Some of these optimizations inspire the “switches” used for the differ-
ent experiments we run to evaluate the performance of different models,
which we further discuss in their respective sections. We also compare
the formulations of Jiinger et al. [29], Zarate et al. [56], Gange et al. [16],
and Di Bartolomeo et al. [9] to our own in the context of a case study.

3 METHODOLOGY

Modern ILP solvers allow complex problems to be solved much more
quickly than brute force, provided the problem can be formulated as a set
of linear constraints. Exact layered crossing minimization is one such
problem. We first define the standard formulation for layered crossing
minimization, which is a way to transform any input graph into a set of

variables and linear constraints. This formulation has the property that
if we can find the assignment to the variables with minimum crossing
variable sum, it will correspond to the layout of the graph with the
minimum possible edge crossings. We then describe two variations
of this formulation which we will later compare empirically. Next, we
detail nine “switches”, which modify the formulation and ILP solver
in ways that could improve the speed of exact crossing minimization
while still returning an optimal solution.

3.1

Existing techniques for formulating layered crossing minimization
using ILP follow the same standard template. We assume a proper
layered graph G is given, with a layer assignment L:V — {1,2,....K}
for every node in V, such that all edges in E connect nodes in different
layers. Given G, we say the following variables and constraints define
the standard model M:

e Position variables, denoted x; ;, corresponding to two nodes i and
Jj. These are defined for every pair of nodes in the same layer. If
iis drawn above j in that layer we write x; j =1, and if 7 is below
J we write x; j=0.

* Crossing variables, denoted c(; ) (; 1), corresponding to whether
or not edges (i,k) and (,I) cross in the drawing of the graph. They
are defined when i, j k, and [ are all unique, for every pair of edges
between the same consecutive layers. If (i,k) and (j,/) cross, we
write ¢(; (1) = 13 if they do not, we write ¢(; 1) (1) =0.

e Crossing constraints, which are given in [9, 56], and in [29] as
a set of inequalities equivalent to:

ILP Formulation

Clik), () T =1 W
€(ik), (i) T X2 1
These are defined for every crossing variable c(;y) ;). and
enforce c(j ) (j) = 1if (i,k) and (j,1) cross. This concept is
illustrated here:

i Kk i 1 j Kk j 1
[ L [ [ ] [ ® ® ]
b 1 3 k i 1 i k
[ L [ L [ L [ ] ]

The first equation enforces c¢(; 1), () = 1 when i is above j but k

is below / (illustration 2 above); the second enforces ¢(; 1) (1) =1

when i is below j and k is above [ (illustration 3). Note that these

constraints can be added only if G is a proper layered graph.
 Transitivity constraints, see Sec. 3.2.

When combined into an ILP model, valid assignments to position
and crossing variables correspond to a layout of the input graph. The
sum of all crossing variables is the number of crossings in this drawing.
Therefore, the assignment to these variables with the smallest sum

K—1
0BI=Y Y coo

r=1ej,e €k,

(€5

represents a layout with the fewest crossings. This is the objective
Jfunction the ILP solver seeks to minimize. The goal of the ILP solver
is to assign binary values to all x- and c-variables such that the crossing
and transitivity constraints are satisfied and the sum Eq. (2) is minimal.

So, given some input graph, we encode it using the above constraints
to form an ILP model. This is passed to an ILP solver, which works
to find assignments minimizing the objective function OBJ, and
we can post-process these assignments to create and visualize the
crossing-minimized drawing.

3.2 Transitivity Constraints

Since node placements are encoded using their position relative to other
nodes instead of absolute position, it is necessary to include constraints
that prevent non-transitive assignments. In order for the variable
assignments produced by the ILP solver to correspond to a valid layout,



there must be additional constraints that ensure the x-variables are not as-
signed values by the ILP solver which disobey transitivity. For instance,
if we start with a graph that has three nodes i, j, and k in the same layer,
nothing stops our ILP solver from setting x; j =1, x; y = 1, and x; ; =0.
But if we decode what this is actually saying, we find out that the ILP
solver has just told us to draw i above j, j above k, and k above i—this
is impossible since we cannot draw i simultaneously above and below k.

There are multiple ways of encoding this transitivity relationship as
an ILP constraint, which we will compare empirically.

3.2.1

The original formulation of Jiinger et al. [29] enforces transitivity
directly on all triples of nodes in the same layer:

Direct transitivity constraints

Xijtxjp—xip <1

3

Xij+Xj k=X >0

Equation (3) enforces the relationships x; j = 1Ax; = 1= x;; =1
and x; ; = 0 Axjx = 0 = x;3 = 0, which comes directly from the
definition of a transitive relation. That is, if we have that i is above j
and j is above k, we require that i is above k. Similarly for the converse,
if we have i below j and j below k, we require that i is below k. These
are added to the ILP model for every combination of nodes 7, j.k in the
same layer, guaranteeing a transitive relationship across the entire layer.
This generates O(|V|?) constraints.

3.2.2 \Vertical position transitivity

Di Bartolomeo et al. [9] define an additional integer-valued variable y
for each node representing the vertical position of the node when drawn.
For this to work, we require constraints that ensure that assignments
to x-variables (the relative positions of nodes) are consistent with
assignments to y-variables (the absolute position of each node). The
following inequalities from Di Bartolomeo et al. accomplish this:

Zi,j—M-x; j<0
Zij—yi—M-x; ;> —M
Yj—zi,j—Xi,j=0 (C))
Zi,j—yi<0
zi,j =0

These constraints implicitly enforce transitivity on the x-variables,
and the authors also use them to relate the x-variables to vertical position
y-variables to better control the placement of nodes in the resultant layout.
M is a fixed upper bound which is set to the size of the largest layer. Eq. (4)
also requires an additional variable z; ; for each variable x; ;, and adds

O(|V|?) constraints to the model in total. For large graphs, this adds far
fewer constraints than Eq. (3). Advanced solvers such as Gurobi [21] can
perform this linearization automatically provided x; j =1 = y; <y;
and x; j=0 = y;>y; for each x; ;, the constraints encoded by Eq. (4).

3.3 Switches

Having defined the ILP formulation for crossing minimization, we now
detail nine techniques we call “switches”. In contrast to formulations,
switches can be toggled on and off but never alter the value of the
solution found by the model. Switches are defined as modifications to the
variables and constraints in an ILP model, or alterations to the behavior
of the ILP solver, in a way that does not affect the optimal solution.
The purpose of these switches is to try and improve the runtime of the
ILP solver and its ability to scale to larger graphs. This is accomplished
by restricting the space of all possible solutions or giving hints to the
solver that guide it toward the optimal solution. Due to the nature
of exponential growth, ILP models will always reach a point where
the inputs get too big, causing runtime to rapidly increase, thereby
dramatically decreasing the feasibility of solution-finding for graphs
past a certain size. Our goal in defining these switches is to try to reduce
the time complexity of crossing minimization, even if some additional
overhead is required. This expands the range of feasible graph sizes
for the optimizer. To that end, we first summarize the action behind

Table 2: Switch Descriptions

1. Symmetry breaking: Select the x-variable which
appears in the most crossing constraints and fix it to be
0 before optimizing the model.

2. Butterfly reduction: For each crossing variable
C(i.j),(k,1) Whose edges form a butterfly, add the constraint
(i), (k) TEGD, (ko) = 1

3. Polyhedral constraints: For each 2-layer 3-claw
motif W, add the constraint ch(h kD) > 1, and add the
additional dome-path constraints.

4. Mirrored variables: Add both x; ; and x;; to the
model for all pairs of nodes i, j in the same layer, and
implement the symmetry constraintx; j=1—x; ;.

5. Cycle constraints: For each fundamental cycle C in
the vertex exchange graph, add constraints 2kc =Y ,ccCe
for even-labeled and 2kc + 1 =Y ¢ c. for odd-labeled
cycles.

6. Collapse leaf nodes: Replace leaf nodes in the same
layer with one single node, and set the weight of its edge
to the number of leaves removed.

7. Branch on x-variables: Set the ILP solver branching
priority on the x-variables to the highest level.

8. Heuristic starting assignments: Perform the iterated
barycenter heuristic on the input graph, and assign
starting values to the solver variables according to this
initial layout.

9. Continuous variables: Explicitly define the crossing
variables ¢(; 1 (j.1) and vertical position variables y; (if
used) in the model to be positive real numbers instead of
integers.

o 88 0 6 8 88
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each switch in Tab. 2 before describing them in detail and explaining
our intuition for why it may improve performance.

@D Switch 1: Symmetry breaking

Gange et al. introduce symmetry breaking in their model, which is
the process of selecting a single x-variable and fixing it to O prior to
optimization [16]. This works because there is functionally no differ-
ence, most importantly in crossing number, between a layered graph
layout and the upside-down version of the same layout. This is visible
in Fig. 1, where the two layouts of the graph at top-left are functionally
the same. So, we can fix x,,,, = 0 before optimizing the model without
repercussion. So, fixing one single variable breaks this symmetry and
eases the burden on the ILP solver by one decision variable.

Gange et al. implement this by selecting the x-variable that
corresponds to the first pair of nodes in the same layer. We extend this
technique by selecting not the first x-variable, but the x-variable that
appears in the greatest number of crossing constraints. This gives the
solver a starting point to leverage for finding the optimal assignment
to the other variables and simplifies the model as much as possible.

@D Switch 2: Butterfly reduction

This switch involves crossing variables whose edges are part of a2 x 2
biclique, or butterfly [44]. This graph motif is 2-level non-planar [39].
Zarate et al. [56] make use of this fact by describing an additional ILP
constraint for any butterfly {(i,/),(k,!),(i,1),(k,j)} CE:

C(i,j),(kd) TE () (k) =1 )

In Fig. 2a we can see that swapping the within-layer positions of
nodes k and / does not change that the graph has exactly one crossing.
Likewise for swapping the positions of i and j.

@D Switch 3: Polyhedral constraints

Juinger et al. study the polytope associated with the solution space of the
layered crossing minimization problem [29], and derive several classes
of constraints which are “facet-defining”’, meaning they restrict the so-
lution space of the crossing minimization problem as much as possible.



i k i 1 ® PY 5
° e o e i
® [
o 1
ol e ol e ® i
e © "
[ [ )
(a) (b) ()

Fig. 2: Butterfly reduction pictured in (a), 3-claw motif and dome-path
respectively pictured in (b) and (c).

This switch adds all facet-defining constraints described by Jiinger et
al., with the exception of two sets of constraints which are cycle-based.
The findings detailed in the appendices at https://osf.io/5vq79 and the
recommendation of Gange et al. for cycle-based constraints [16] suggest
that these constraints do not significantly improve solution time. Further-
more, switch 2 already studies constraints regarding the 4-cycle.

The only other minimal non-planar 2-layer motif besides the butterfly
is the 3-claw [39], shown in Fig. 2b. Jiinger et al. describe additional
constraints for any occurrence of this subgraph [29].

Z Cey ey >1 6)

el ,L’zEW

For any pair of edges e1,e, € W such that the vertex point v of W is
part of exactly one of the two edges, for all 3-claws W in G.

The other set of constraints involves dome-paths (Fig. 2¢), which
are added for any 2-layer path on four edges and five nodes i, j,k,/,m:

Xkt = 2 X1 m = (k) (1) ~ (i) (jm) SO @
=Xk 1+ 22X — X = C(i k), (ud) — € (id),(jum) O

@D Switch 4: Mirrored variables with symmetry constraints

This switch doubles the number of variables by adding both x; ; and x; ;
to the model. Without this switch on, we assume only one of the two is
added, say x; ;. If a constraint requires x; ; we instead substitute 1 —x; ;
(the negation of x; ;). The statement “iis above j” being false implies that
“i1is below j” is true, hence this substitution is valid. Turning this switch
on also implements the following symmetry constraints from Zarate
etal. [56]: x; j = 1 —xj; and ¢, ¢, = Ce, ¢, for all x- and c-variables,
enforcing the symmetric relationship of the mirrored variables.

This doubles the number of variables used in the model; however,
redundancy in ILP models has been shown to sometimes improve
solver performance [32]. Other previous works typically follow the
precedent of Jiinger et al. [29] who do not use mirrored variables, so
for the purpose of this paper we use the more minimal model as default.

@D Switch 5: Cycle constraints

Healy and Kuusik describe a structure called the vertex exchange graph
which gives rise to additional ILP constraints [22]. The vertex exchange
graph is created from an input graph G by defining a node (u;,u;) for
every same-layer node pair in G (i.e., one node for every x-variable in
the standard ILP model) and connecting pairs of nodes (u1,u3),(vi,v2)
with an edge if (uy,v;) and (up,v;) are edges in G (thus the edges
correspond with c-variables in the ILP model). Cycles in this new
graph are odd-labeled if the sum of the c-variables of the cycle edges
is odd and even-labeled otherwise. If this switch is on, add the following
constraints for each fundamental cycle C in the vertex exchange graph:
For odd-labeled cycles C:

chzl (8)

ecC

For even-labeled cycles C:

Y ce<lcl-1 ©)

ecC

Fig. 3: Example of @D leaf node collapse. The left graph contains a
node with four leaves, highlighted in red, which are combined into a single
node as shown on the right.

These a reduced set of the original paper’s [22] constraints per the
recommendation of Gange et al. [16] (see the appendices at https:
//osf.io/5vq79 for an evaluation supporting this recommendation).

@D Switch 6: Collapse leaf nodes

Introduced by Gange et al. [16], this switch is unique from the other
switches in that it directly modifies the input graph. The principle of
the technique is to select a leaf node subgraph—two or more nodes
connected only to a single parent node—and remove all the leaf nodes,
replacing them with a single “collapsed” node and edge. Once the
crossing minimized layout is found, the nodes in this subgraph are
re-inserted back into the graph by squeezing them all into the spot left
by the collapsed node. To ensure optimality, the objective function in
Eq. (2) must be updated to

K—1
OB‘I:Z Z We, Wey Ceyen (10)

r=ley,er€kE,

where w, is the weight of the collapsed edge and w, = 1 if eis not a
collapsed edge. This procedure works because if it is optimal to place
one leaf node in a certain position, then any other leaf nodes must also
be optimally placed if they are immediately adjacent—all leaves will
incur the same number of crossings.

@D Switch 7: Branching on x-variables

This switch sets the branching priority of all x-variables to 1 and all other
variables to 0. ILP solvers search for potential solutions by branching
on a decision variable, which involves looking at the potential solutions
when the branch variable is fixed. At each branching point, a variable
is selected randomly from the set of variables with the highest branching
priority that has not yet been branched on [21]. Zarate et al. claim this
yields up to 10x performance improvement for large instances [56].

) Switch 8: Heuristic starting assignments

This switch uses the straightforward iterated degree-weighted barycenter
heuristic [13] to provide an initial starting assignment for the solver.
ILP solvers perform an iterative process of finding assignments to the
variables which progressively get closer to the optimal solution, but
modern solvers allow the user to input a valid starting assignment to
the variables. This is not the same as fixing the variable, as is done in
@D switch 1, because the solver can change the assignments made
by the starting value parameter.

The barycenter heuristic is widely used for crossing minimization
on layered graphs We use it as a reasonable starting point for the ILP
solver. Providing a starting point is suggested to speed up solution time
as it potentially skips early iterations of the ILP algorithm [21].

@D Switch 9: Continuous variables

Mixed-integer programming (MIP) solvers have traditionally been
used to solve layered crossing minimization, utilizing a branch-and-cut
approach [29]. Confusingly, the terms ILP and MIP are sometimes
used synonymously. With modern solvers, however, users can define the
integrality of each variable in the model explicitly, and the solver selects
the best algorithms to use on the back end. This switch makes sure the
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Table 3: Datasets Used for Empirical Study

By Collection
Experiment Graphs  |V/| Per Bin
Rome-Lib  AT&T
Ind. switches 3170 10-399 100 2959 211
All combos. 1713 10-399 50 1615 98

x-variables are kept as binary variables, but the crossing c-variables
and vertical position y-variables (if vertical position transitivity is being
used) are explicitly defined to be real-valued.

This does not affect the optimal solution of the model:

* Equation (1) ensures ¢ > 01if ¢’s edges do not cross and ¢ > 1 if they
do. Since our objective is to minimize the sum of all c-variables,
real-valued c-variables will still all converge to either 1 or 0 in the
optimal solution.

e “<”is a transitive relation on the real numbers and the integers,
so Eq. (4) still enforces transitivity on real-valued y-variables.

A number of solvers have made advancements in algorithms for
mixed-integer programming (MIP)problems, with Gurobi 10.0 claiming
24% improvement over the previous release for large models.! It may
improve solution time if we can expressly define some variables in our
model to be real-valued since MIP algorithms may be more efficient
than ILP algorithms for the same problem [51], or signal to the solver
amore efficient way to treat these continuous variables.

4 EXPERIMENT

We will now analyze the effect these nine switches and the transitivity
formulations have on optimization time via a computational evaluation.

4.1

The experiment dataset was composed of graphs from standard
benchmark collections AT&T [10] and Rome-Lib [11], detailed in
Tab. 3. Graphs used are available from the Graph Drawing Benchmark
Datasets Repository [8].

For our first experiment on individual switch evaluation, we com-
bined the entire AT&T collection of 1,276 graphs with the Rome-Lib
collection of 11,528 graphs and randomly sampled 100 graphs for every
10-node interval up to 400 total nodes. Past the [270,280) interval there
were fewer than 100 graphs per 10-node interval, so no sampling was
necessary. In practice, no run of the experiment completed the full
dataset without being cutoff due to timing out. Note that graph size |V'|
used for the sampling is in terms of the post-processed number of ver-
tices, see Sec. 4.2.1. This dataset contains 3,170 graphs and is included
at https://osf.io/5vq79 with the code that performed the sampling.

For the second experiment evaluating all combinations of switches,
we performed the same steps as for the previous experiment, with the
exception that we sampled 50 graphs per 10-node interval up to 400
total nodes. Sampling was necessary up to interval [310,320), and as
before, no run of the experiment completed the full dataset. The dataset
for the all-combinations experiment contains 1,713 graphs.

Dataset

4.2 Procedure

We now discuss how we pre-processed and modified the graphs to create
proper layered graphs. We also detail the evaluation conducted for
individual switches and all combinations of switches.

4.2.1 Graph pre-processing

The Rome-Lib [11] and AT&T [10] graphs do not have a predetermined
layer assignment, hence one must be created for each graph.

First, we interpret the input graph as directed by assuming the first
node in each edge is the source and the second is the target for the
Rome-Lib graphs. The AT&T graphs are already both directed and
acyclic [10]. We then applied the greedy cycle removal heuristic of
Eades et al. [12], followed by assigning layers using the minimum width

1https ://www . gurobi.com/whats-new-gurobi-10-0/

layering heuristic of Tarassov et al. [48]. They suggest using the layering
with minimum width across all combinations of input parameters
UBW =1,2,3,4 and ¢ = 1,2, which are tuning parameters specific to
the minimum-width algorithm. We use only UBW =4 and c=2 as we
do not require perfect width minimization, and these parameter choices
still consistently produce layered graphs with “rectangular” shapes. Le.,
they had a similar number of nodes in each layer. This rectangular shape
is desirable as it better approximates real-world layered graphs such
as Storyline graphs and time-series data [1,20], and gives the drawing
a conventional aspect ratio without much unused space. More trivial
approaches, such as assigning layers based on each node’s level in the
tree created by a breadth-first search, tend to have a few layers with many
more nodes than the others. Finally, we added back the edges removed
by the cycle removal step to re-create the original graph topology.

After pre-processing to ensure we had layered graphs, we ensured
each graph was proper by replacing edges that skip layers by adding
dummy nodes, following the procedure described by Eades and
Wormald [14]. That is, if («,v) is a long edge, where L(u)+1 < L(v),
we remove edge (u,v) and add nodes d; ,d>,...d, where:

L(d))=L(u)+1
L(dy)=L(u)+2

L(dy)=L(u)4+r=L(v)—1

We then add dummy edges (u,d;),(d,d3),...,(dr,V).

This process transforms the graph into a proper graph so that crossing
constraints can be imposed correctly. We refer to the number of nodes
in this processed graph (including dummy nodes) as total nodes, which
may be larger than the number of nodes in the original graph. We
henceforth report data using total nodes as the independent variable,
since we find that it more closely correlates with solver runtime than
the number of original nodes.

The resultant graph is transformed into its corresponding set of
linear constraints as described in Sec. 3.1, and they are modified
according to the choice of switches. These are provided to Gurobi
10.0, a state-of-the-art linear programming solver, which computes the
optimal layered graph drawing.

422

For both transitivity formulations, we ran a baseline experiment with
all switches disabled. We also evaluated the effect of turning on only
one of the switches at a time. Therefore, we performed 18 runs of the
experiment for each pair of the two transitivity formulations and nine
switches. With the baseline runs, this left us with 20 sets of results.

Each run comprised solving every graph in the experiment dataset
(Secs. 4.1 and 4.2.1) and recording the solver runtime. We separated
graphs into bins by their total nodes in 10-node intervals. When less
than 75% of the graphs in a bin completed optimization within the
cutoff time of 5 minutes, the run was halted. The two baseline runs were
continued for every graph completed in the nine individual-switch runs
for that formulation. This ensured all data points in the experiment had
a corresponding baseline data point for comparison.

Individual switch evaluation

4.2.3 Evaluation of all switch combinations

To find the best-performing sets of switches, and to make comparisons
between the different transitivity formulations, we ran an experiment
for all 1024 combinations of switches (2%) and formulations (x2).
‘We used a smaller set of graphs to run the experiment within the time
available. All 1024 formulation-switch combinations were run on the
all-combinations dataset of 1,713 graphs (Tab. 3), with the experiment
halted once fewer than half of the graphs in any 10-node bin were solved
within the cutoff time. The 5-minute cutoff time per graph was changed
to a shorter 1-minute cutoff for this experiment to reduce the number
of compute-hours to perform the experiment. Additionally, the halting
condition was relaxed for this experiment to better compare switch
combinations. Instead, all combinations of switches were evaluated
on all graphs solved by the best-performing combination.
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Fig. 4: The left figure shows performance improvement over the baseline for individual switches. All figures plot median runtime as a natural log
ratio over the respective baseline, where line color corresponds to the color of the switch. The two center figures show more detailed information
for the symmetry breaking (1) and mirrored variables (4). The lines are 25% and 75% quartiles, and the darker center line is the median. Data is
truncated once fewer than 75% of the graphs per 10-node interval are solved within the 5-minute cutoff by both the switch technique and the baseline.
@D Symmetry breaking gives a large performance improvement which increases as input sizes grows, while @ mirrored variables also improved
with input size but hurt performance on average for most sizes tested. On the right, individual switch results for the HiGHS solver are shown, where
@D symmetry breaking, @) continuous variables, @ mirrored variables, and € cycle constraints all perform well. All figures shown
combine the direct transitivity and vertical position transitivity results. See appendices athttps://osf.io/5vq79 for more in-depth results figures.

4.2.4 Evaluation using different solver

We repeated both of the experiments described above using HIGHS,
an open-source linear optimization solver [26]. ) Heuristic start
and @D x-var branch priority are unavailable due to the required func-
tionality being not yet available for HIGHS, and so were left out of both
experiments. All experiment parameters were otherwise kept the same.

4.2.5 Analysis

We report results for these experiments by calculating, for each 10-node
bin, the natural logarithm of the ratio of mean experimental runtime
to the mean baseline runtime. Natural log ratios are additive, symmetric,
normed indicators of relative change [49], allowing us to more easily
compare the impact of a switch on different formulations.

Units. Each data point is reported in optimization time, the time in
seconds it took the ILP solver to determine the optimal solution, with
independent variable total nodes. This ignores setup and pre-processing
time, which took at most a few seconds for the largest graphs.

Hardware/software. We ran the experiments in CentOS Linux with
8 GB RAM & Gurobi 10.0 [21]. For the secondary solver, we used
HiGHS 1.5 [26] available through SciPy 1.10’s linprog.

4.3 Discussion and Results

In the following section we discuss key takeaways and ramifications of
our experimental results. We also outline ways practitioners can change
their models to improve performance, and the degree of speedup that
can be expected.

4.31

Use @D symmetry breaking to reliably reduce optimization time.
Compared to the baseline, only one switch had a large runtime impact
for both solvers when used in isolation. The overall results are shown
in Fig. 4. Deleting the symmetry in the model by fixing one variable
makes finding a solution approximately twice as fast (in general), with
even more speedup for larger graphs. For both transitivity formulations,
every combination of switches that included fixing one variable greatly
outperformed the combinations that did not (Fig. 6). It is incredibly
helpful as a universal technique and shows that even advanced ILP
solvers do not always have the capability to recognize the inherent
symmetry of the problem. Adopting this approach may improve runtime
performance for other problems in visualization and beyond. We
recommend that anyone implementing an ILP/MIP model examine the
problem for symmetries that allow you to fix even a single variable.
Combining switches is very successful, but only when
using HiGHS. With the open-source solver HiGHS [26], all

Switch performance

three of @D symmetry breaking, @ mirrored variables, and

continuous variables contributed significant performance
improvements when using direct transitivity—see Fig. 5. Moreover,
the formulation using these three switches was the best-performing
combination of the experiment, solving an impressive 88% of the 600
graphs tested within one minute. The baseline, meanwhile, solved only
60%. This corresponds to a more than 17 x median speedup across
all graphs tested—the combination had a median runtime of 1.9 seconds
while the baseline took a median of 32.5 seconds to complete.

A number of other switches also contributed to strong performance re-
sults when using HiGHS with direct transitivity, namely @ butterfly
reduction, @ cycle constraints, and @D leaf node collapse.
Generally speaking, combining switches together greatly improved the
performance of the HiGHS solver.

This contrasts with the Gurobi results, for which @D symmetry
breaking drastically improved runtime while the inclusion of additional
switches often slowed the solver down. For instance, using symmetry
breaking with no other switches was a top-performing combination.
Solving the 1150 graphs took a median runtime of 1.7 seconds while
the baseline took 4.2 seconds—a more modest 2.5x speedup. We
suspect that since Gurobi is a very efficient solver optimized for finding
high-quality potential solutions, the addition of some of our described
techniques is more of a distraction. That is, the solver wastes time
each iteration verifying the additional constraints added by many of
the techniques we describe are upheld when that time would often be
better spent applying solution-finding and pruning heuristics to advance
towards the optimal solution.

The remaining switches give little performance increase. By
comparison, the remaining six switches do not have much, if any,
positive impact when used in isolation, suggesting their usefulness is
more restricted to specific graphs, or larger input sizes and cutoff times.
Results for all individual switches are included in the supplemental
materials at https://osf.io/5vq79.

However, switch performance dependends on more than node
count. We were concerned with the variability exhibited in the ILP solver
times and performed additional studies on layer counts and edge density
with a more controlled dataset. Procedures and results are described
in the appendices at https://osf.io/5vq79. We find that when
using Gurobi with direct transitivity, both @I symmetry breaking and

@D x-var branch priority delay the exponential spike in runtime that
happens when increasing the edge density and number of layers—for
the 50-node graphs studied, @ symmetry breaking in particular was
able to solve graphs at up to 35% edge density within 5 minutes, while
the baseline was unable to solve the graphs with 25% edge density.
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Gurobi HiGHS

Switch  Direct Vertical Switch  Direct Vertical
@ 139% 15.6% @ 49% 47%
@ 061% 0.0% @ 1.6% 0.30%
@ 29% -59% @ -035% 022%
@  022% -0.09% @  22% 091%
@D -022% 0.78% D 078%  23%
@ 061% 057% @ 15% 0.74%
@ 18% 0.09% a — —
D 065% 0.13% a — —
a  21% -25% @ 13% 1.9%

Fig. 5: Median improvement provided by each switch for direct and
vertical transitivity formulations, provided as an increase in the number of
graphs solved in the all-combinations experiment dataset (1,150 graphs
for Gurobi and 600 for HiIGHS). Average improvements over 1%—12
graphs for the Gurobi experiment and 6 for HHGHS—are bolded. We
define improvement for a switch as the difference between the number
of graphs successfully solved for a given formulation and the same
formulation without that switch, presenting the median improvement
over all formulations including the given switch. We see that including
@D symmetry breaking resulted in being able to solve an average of
160 (13.9%) additional graphs when using Gurobi and direct transitivity.
This is a huge improvement, seeing as each 10-node interval included
50 graphs: including this switch allowed us to routinely solve graphs 30
nodes larger than without the switch, within the same amount of time.

Guidelines for using switches. We provide the following summary
of the improvement provided by each switch technique.

Substantially improves runtime a
; . @ @
mproves performance, but is solver- or & @
graph-dependent o)
May give small improvement a @
&

Not recommended

For the best guarantee of fast optimal layouts, it is recommended to
select a number of combinations of switches shown to perform well on
average for your choice of solver and run them in parallel. This also
helps offset some of the variability inherent to the ILP solving process.
For an example of this, refer to Sec. 5.

4.3.2 Transitivity constraint performance

Direct transitivity generally outperforms vertical position tran-
sitivity. Each combination of switches with direct transitivity solved,
on average, 21 more graphs (1.9% of the dataset) than the same com-
bination with vertical position transitivity. Itis worth noting that direct
transitivity combinations took more setup time than vertical position
transitivity combinations, which never took more than 1 second. This
is due to the direct transitivity requiring more constraints than vertical
position transitivity—for large inputs, this O(|V|?) versus O(|V|?)
difference starts to become noticeable. Additionally, vertical position
transitivity performs better than direct transitivity for specific graphs,
oftentimes large graphs with many layers but fewer nodes per layer, as
in Sec. 5. However, for the HIGHS solver all-combinations experiment,
direct transitivity formulations solved 7.0% more graphs on average,
a much more substantial increase than Gurobi. Direct transitivity
formulations also responded better to the addition of switches, seen in
Fig. 5. Therefore, we recommend using direct transitivity constraints,
although experimentation with vertical position transitivity is beneficial
for large many-layered graphs when using efficient solvers.

direct transitivity vert. pos. transitivity
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Fig. 6: All512 combinations for each transitivity formulation plotted against
their baseline using the natural log ratio of median runtimes. In the top row,
all combinations using symmetry breaking are highlighted in red,
showing that the use of the switch completely partitions the space of all
combinations beyond 50 total nodes. @ Polyhedral constraints, mean-
while, tend to be on the bottom half of the two partitions performance-wise.

Some types of redundancy are helpful, but others are not.
Lalla-Ruiz et al. claim that redundancy can both help and hinder
the solver performance [32]. We can corroborate this since some of
our techniques introduce redundancy into the model. Specifically,
@D mirrored variables doubles the variables and constraints in the
model, but does not typically slow down solution time, even improving
it substantially for some solvers and formulations. However, a study
we conducted found that including both direct transitivity and vertical
position transitivity simultaneously had a large negative impact on
solution time—see appendices at https://osf.io/5vq79.

5 CASE STUDY: VISUALIZING SOFTWARE CONTROL FLOwW

Control Flow Graph (CFG) readability is crucial to help reverse
engineers [35,52] and malware researchers [55] extract knowledge from
decompiled binary files, including malware. Therefore minimizing edge
crossing should be prioritized to facilitate tasks like tracking variables
and tracing activation code in the diagram.

Reverse engineering control flow graphs can be represented as layered
graphs, where nodes correspond to blocks of decompiled assembly code,
and edges represent jumps taken between code blocks [35]. Code blocks
are often ended by JMP or INZ instructions, followed by an edge connect-
ing to the next code block. Specific structures can appear in CFG visual-
izations which tell engineers about the nature of the code. For example,
switch instructions generate a large number of outgoing edges from a
single node. The layer assignment for these drawings is typically done
by trying to maximize the number of call arrows pointing in the same
direction before assigning positions within each layer, using a Sugiyama-
style approach [6]. The layouts of these drawings are conventionally
computed with heuristic-based algorithms (Radare2, for instance, cites
Buchheim et al. [3]). The optimal approach we propose can be used to
produce more readable visualizations for reverse engineers. For example,
the readability and utility of control flow graphs generated by tools like
the recent work by Devkota et al. [6] could be further improved by using
layouts with the optimally fewest crossings. While optimal approaches
have rarely been applied in this context in the past because of their high
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Command |V/| |E’| Baseline Baseline+ @D  SL[9] OSD [56] PA[29] OKLCM[16] Ensemble
chmod 511 581 895s 1.59s 487s  6.03s 6.21s 1.61s 143s
echo 279 333  8.83s 323s 3.19s 9.71s 8.88s 2.14s 1.22s
cp 359 423 942s 13.7s 6.0ls 12.2s 13.5s 1335 2.88s

Table 4: Control Flow Graph optimization results, reported as the median of five trials on each graph. All formulations were tested using Gurobi.
The formulations for comparison are, in order, a baseline with direct transitivity and no switches, the same baseline with @I symmetry breaking,
Di Bartolomeo et al.s Stratisfimal Layout (SL) [9], Zarate et al.’'s Optimal Sankey Diagrams (OSD) [56], Jiinger et al.’s Polyhedral Approach to Crossing
Minimization (PA) [29], and Gange et al.'s Optimal k-Level Planarization and Crossing Minimization (OkLCM) [16]. Our ensemble method, taking
advantage of running multiple formulations in parallel, is quickest for all three graphs.

computational requirements, we demonstrate that our approach is viable
for use with control flow graphs with very large numbers of nodes.

We compare an ensemble method of our best switch combinations to
formulations from the literature, which we can also represent as switch
combinations. Di Bartolomeo et al.’s Stratisfimal Layout [9] uses vertical
position transitivity with no other switches. Zarate et al.’s Optimal
Sankey Diagrams [56] use direct transitivity with @ mirrored
variables, butterfly reduction, and @D x-var branch priority.
Jiinger et al.’s Polyhedral Approach [29] uses direct transitivity with
é polyhedral constraints. Gange et al.’s Optimal k-Level Crossing
Minimization [16] uses direct transitivity with @D symmetry
breaking, @) cycle constraints, and @D leaf node collapse.

Our ensemble method ran six combinations in parallel, taking
the layout from whichever finished first. The table below lists these
combinations by their transitivity type (direct transitivity or vertical tran-
sitivity), and the switches combined. These combinations were selected
because they performed strongly in the all-combinations experiment.

1) Direct & @ a @

2) Direct & @

3) Direct & @ @ @

4) Direct & @ @ a a @
5) Vertical & @ @ @ @

6) Vertical & @D @ @ @ @

The case study was run on a desktop computer with an Intel Core
17-8700K CPU with 6 cores, 32 GB RAM, Windows 10, & Gurobi 10.
The number of processing threads available to the solver was limited to
1 for all ensemble members, and 6 for all other methods. Our ensemble
method found an optimal control flow diagram for the implementation
of the Linux chmod command in an average of 2.34 seconds over five
repeated trials, see Tab. 4. Part of this optimal layout is pictured in Fig. 1.
This control flow graph has 511 nodes and 581 edges after layering and
inserting dummy nodes and edges—all control flow graphs included
had a large number of layers but reasonable layer widths, allowing for
quick solving even for the relatively huge graph size.

Our recommended method never took longer than 1.5 seconds to
find the optimal drawing, which has 16 crossings. The advantage of
the ensemble method is that it leverages our finding in Sec. 4.3 that
different formulations perform better on different input graphs. For
chmod, the fastest-performing ensemble member was model 2, which
used only @D symmetry breaking. More complicated models worked
much better than this for echo and cp, on the other hand, which were
solved fastest by models 5 and 4 respectively. Each member solved
at least one of the graphs very quickly, but speed often varied by up
to 5x slower than the fastest member, particularly for cp. As for the
other models evaluated, the access to 6 more processing power did
not seem to improve performance much if at all, likely due to the
relatively quick execution times and the solver not needing to visit
many branch-and-bound nodes [21]. chmod and echo were solved
quickly by OKLCM [16], but cp was solved the quickest by the vertical
transitivity-based formulations such as SL [9].

6 LIMITATIONS

Like all methods that use ILP, the key limitation of our approach is the
upper bound on the size of graphs which can be solved in a reasonable
amount of time. In our experiments, graphs with up to 100 nodes in the
original graph could typically be solved quickly with our techniques.
Graphs with more than 300 nodes could not often be solved within a
5-minute cutoff time for the edge densities studied in our experiments.
It should be noted, however, that the number of edges and nodes
is not fully indicative of the complexity of a problem. For clarity of
presentation, we have categorized graphs throughout this paper by their
total nodes. Although it is more consistent than reporting based on
the number of nodes in the original graph, it is still far from perfect as
a predictor of runtime. We have studied some additional factors (see
appendices at https://osf.io/5vq79), but more work is needed.
There is also little indication in our results of what causes certain tech-
niques to perform much better on some graphs than others, an example
being the differences in performance between direct transitivity and
vertical position transitivity for the control flow graphs studied in Sec. 5.
Furthermore, it is impossible to perfectly predict the runtime of the
ILP solver given only knowledge of the input graph because ILP solvers
contain internal randomization such as for selecting branching variables.
This randomization causes some variability in optimization time with
repeated trials [15,34]. Sometimes, the solver gets lucky and finds a so-
lution very quickly, when the solver would take much longer on average.
Conversely, the solver can get unlucky and take much longer than average.
We overcome this variance in the experiments by using a large number
of graphs, and in practice by recommending an ensemble method.

7 CONCLUSION AND FUTURE WORK

Algorithms that arrange node-link graph visualizations with considera-
tion of human factors can assist users in comprehending complex graphs
more quickly. With the aim of scaling optimal layouts to larger graphs,
we present in this paper an adaptable framework that yields empirically
faster layout optimization, and analyzed nine established and innovative
techniques using two different solvers. The result is a comprehensive
benchmark characterizing the degree to which the nine techniques,
two types of transitivity formulation, and two ILP solvers impact the
running time of ILP solutions for layered crossing minimization. Our
recommended approach can quickly generate optimal layouts for most
graphs with up to 150 nodes and works in a reasonable amount of time
for many graphs with even more nodes. Our implementation is available
as open-source code, as are our benchmark results and datasets used
for our empirical study.

Future work. More research can be done to evaluate techniques
for the scalability of aesthetic criteria besides crossing minimization,
such as planarity, edge length, edge bundling, and node groupings. The
experiments described in this paper can be replicated using additional
ILP solvers, ensemble methods such as the one in Sec. 5, and larger
graphs over longer runtimes, to better recommend software to use for the
problem and further investigate the trends observed. Additionally, more
experimentation is in order to better understand the relationship between
the input graph and the solver runtime. Work could be done to integrate
our fast crossing minimization algorithm with Devkota et al.’s CFGConf
for even more understandable, useful control flow graph generation.
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SUPPLEMENTAL MATERIALS

All

supplemental materials can be found on OSF at

https://osf.io/5vq79. We provide:

1.

3.

4.

A copy of our paper, including all appendices and supplemental
figures.

Open-source GitHub repository of our implementation in Python,
including a LayeredOptimizer class which takes as input a
layered graph, and allows the user to choose what switches to use,
then generates the optimal drawing.

All result data and datasets used in our experiments, as well as
code used to sample said datasets.

All results figures:

(a)

21 individual switch evaluation figures, one for each switch
on each transitivity formulation.

(b)
(©)

24 total figures which extend Fig. 6 to all switches.

Full optimal layouts for the three control flow graphs in the
case study (Sec. 5).
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A EXPERIMENTS ON GRAPH DENSITY AND LAYER COUNT

We noticed a significant amount of variance in ILP solve time when
graphed as a function of the number of nodes, so we performed some
additional experimentation to try and explain this. We examined how the
number of layers and the edge density affect solve time. Following the ex-
periment design of Gange et al. [16] and other benchmark studies on lay-
ered graphs [31,36], we controlled for other variables by generating ran-
dom graphs. To generate one graph, a density d and layer count k were se-
lected, and then k layers of 10 nodes per layer were created. For each con-
secutive pair of layers, edges were randomly and uniformly sampled until
the number of edges was equal to the required density d. If the sampling
process ever reached a point where the next sample could ensure that a
node remained unconnected, the sample space was restricted to uncon-
nected nodes, thus ensuring connected graphs. To generate a set of graphs
where only density was varied, we sampled 10 random graphs for each
d=14,16,...,48,50 fixing k=5 and 10 nodes per layer. To generate a set
of graphs where only the number of layers varied, we sampled 10 random
graphs foreach k=3,4,...,19,20, fixing d =0.15 and 10 nodes per layer.
We find that runtime is strongly exponential in the edge density of the
graph, but our techniques, particularly @I symmetry breaking and
@D x-var branch priority do much to delay this exponential explosion
in runtime—see Fig. 7. The same holds true for increasing the number
of layers k.
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Fig. 7: ILP runtime (s) for each switch when using Gurobi, as the median of
the 10 graphs at each layer count/edge density. Individual graph runtime
was cut off at 300 seconds, and switches were cut off once fewer than
50% of the graphs completed. @D Symmetry breaking and @D x-var
branch priority delay the spike in runtime, allowing us to solve larger
and more dense graphs. These techniques are plotted in red and green
respectively, and the baseline is plotted in black.

B ON UsING BOTH DIRECT AND VERTICAL TRANSITIVITY

In previous runs of the individual and all-combinations experiments
described in Sec. 4.2, an additional transitivity formulation was included,
which was to add both the direct transitivity constraints and the vertical
position transitivity constraints simultaneously to the model. The reason-
ing was that the literature suggests that redundancy can often assist solu-
tion finding, such as the é mirrored variables technique of Zarate et
al. [56] or the findings of Lalla-Ruiz et al. [32]. However, this technique
was found to greatly hinder performance, often by 2-3 x for the graph
sizes tested. Figure 8 details the all-combinations results from this exper-
iment, which found that the redundant transitivity formulation was con-
sistently cut off 30 nodes sooner than the other two types of transitivity.

C EMPIRICALLY TESTING HEALY AND Kuuslik’s CYCLE
CONSTRAINTS

While Gange et al. [16] use Healy and Kuusik’s vertex exchange
graph [22] to recommend several constraints, they use only a small
subset of the constraints described by Healy and Kuusik. To ensure
a holistic evaluation of layered crossing minimization literature, we
studied the performance of both the original set of constraints and the
Gange et al. recommendation. We found that, as expected, the Gange
et al. recommendation had superior performance, and is therefore the
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Fig. 8: All-combinations results with additional transitivity type, both
direct and vertical position transitivity combined. Pictured left-to-right is
direct transitivity, vertical position transitivity, and both combined, with
the lines darkened according to the number of switches included in
the combination. The both-combined formulations consistently cut off
30 nodes sooner than the other two types, illustrating its tendency to
negatively impact performance.

set of constraints used by our cycle constraints switch (Fig. 9).
The original vertex exchange constraints, meanwhile, had a negative
impact on runtime which grew worse the larger the input size.
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Fig. 9: Natural log ratio of runtime over the baseline, for the abbreviated

cycle constraints on the left and the original vertex exchange cycle
constraints on the right. While the left often improves runtime, the original
constraints greatly decrease performance for graphs larger than 50 total
nodes.

D ALLINDIVIDUAL SWITCH FIGURES

We provide the figures for the individual switch evaluation (Sec. 4.2.2),
for all nine switches across both solvers, with results for both transitivity
types combined.



Table 5: Allindividual switch results, both types of transitivity combined. Re-
sults are reported using natural log ratio relative to baseline performance.
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