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1 Introduction

Understanding the phenomena of pure state thermalization has been a crucial endeavor that,
apart from its own interest and importance, plays important roles across many subjects
ranging from quantum information to black hole physics — particularly the black hole
information paradox [2–9]. A conjecture about the underlying mechanism is the notion of
the eigenstate thermalization hypothesis (ETH), which proposes that high energy eigenstate
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whose energy density remains finite in the thermodynamic limit behave like thermal states
upon evaluating the expectation values of observables [10–13]. More precisely, in terms of
the matrix elements in the eigenstate basis, ETH proposes that:

⟨Ea|Oobs|Eb⟩ = f(E)δab + e−S(Ē)/2Rab, Ē = Ea + Eb
2 (1.1)

where f(E) is a continuous function of E encoding the thermal expectation value, while the
second exponentially suppressed term exhibits random matrix behavior.

In practice, it is difficult to describe explicitly what constitutes the good observables
Oobs that satisfy (1.1). For this reason, an alternative characterization of the ETH has been
put forward in terms of the reduced density matrices (RDM) of the subsystems [14]. In these
versions, ETH proposes the proximity between the reduced density matrices ρAa = TrĀ|Ea⟩⟨Ea|
of a high energy eigenstate |Ea⟩ to those of the micro-canonical ensembles:

ρAa ≈ ρmicro
A (1.2)

More precisely, the notion of proximity is stated in terms of the trace distance measures
between matrices:

||ρAa − ρmicro
A || ∼ O (∆E/E) , ||O|| = 1

2Tr
√
OO† (1.3)

where ∆E is the width of the energy window in defining the microcanonical ensemble.
Additional support based on numerical evidence was performed in [15].

The notion of ETH is associated with the thermodynamic limit, i.e. a large number of
degrees of freedom. While the standard thermodynamic limit is reached by taking the total
system size L to be large, in the context of conformal field theories (CFTs) one can explicitly
define an “internal” thermodynamic limit in which the central charge c becomes large. This is
a necessary condition for the theory to have a weakly-coupled gravity dual through AdS/CFT,
and in which the phenomena of thermalization is related to the black hole formation and
evaporation [2, 3]. In fact the two thermodynamic limits can be taken simultaneously, which
is then dual in the gravity side to the high temperature (L ≫ β) black holes.

Studying ETH in the context of quantum field theories (QFTs) has revealed deeper
aspects of both thermalization and QFTs. In 2d CFTs, we can study states on a circle of
circumference L = 2π with the spatial coordinate φ ∈ [0, 2π]. The nature of the ETH becomes
more subtle in this context due to the infinite number of symmetry generators forming the
Virasoro algebra. Such an algebra gives rise to an infinite number of mutually commuting
conserved charges called the KdV charges [16–18]. They are constructed from the stress
tensor operator. The first few charges are given by:

Q̂1(T ) =
∫ 2π

0

dφ

2π T, Q̂3(T ) =
∫ 2π

0

dφ

2π (TT ), Q̂5(T ) =
∫ 2π

0

dφ

2π

(
T (TT ) + c+ 2

12 (∂T )2
)

These charges are universally present and as a result the energy eigenstates are attached
with an infinite number of additional labels. The nature of ETH in this context is modified,
it is believed that the “target” equilibrium state corresponds to the so-called generalized
Gibbs ensemble (GGE) [19]:

ρGGE(β, µ̃i) = N−1e−βH(µ̃i), H(µ̃i) =
∑
k≥1

µ̃2k−1Q̂2k−1(T ) (1.4)
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where N is a normalization constant. As a result, the study of subsystem ETH in 2d
CFTs involves comparing the entanglement structure of energy eigenstates and those of the
equilibrium states such as the GGEs. The simplest eigenstates in 2d CFTs consist of the
primary states, which are created via the state-operator correspondence by local primary
operators Oh acting on the vacuum |Ω⟩ on the complex plane C:

|h⟩ = lim
x→0

Oh(x)|Ω⟩ (1.5)

Properties of these states are computationally the most straightforward to probe. Their
relations to thermalization has been studied in [20–22]; and those to subsystem ETH, e.g.
entanglement entropy and Renyi entropies, have been studied [23–32].

In order to study or verify subsystem ETH in 2d CFTs, it is also necessary to reveal the
entanglement structures in the thermal equilibrium side. In general, significant entanglement
data, e.g. the entanglement spectrum, can be recovered from the knowledge of the Renyi
entropies Sn for arbitrary Renyi index n. In a companion paper [1], we compute the subsystem
entropies for various states in general chaotic CFTs, by assuming certain chaotic ansatz
concerning the structure of eigenstate at high charge densities. In this paper, we focus the
computation on the context of AdS/CFT, i.e. we compute the holographic Renyi entropies
in thermal equilibrium states of the 2d CFTs. We focus on subsystems that are single
intervals on the circle.

We make some remarks regarding the nature of the equilibrium states considered in this
paper. Similar to the distinctions between canonical/micro-canonical ensembles in terms of
the conditions imposed on the temperature/energy, with the additional KdV charges one
could consider either the GGE represented by (1.4); or the micro-canonical version, i.e. fixing
the KdV charges instead of the chemical potential. Although a possibly more appropriate
term along the line of GGE should be the “KdV micro-canonical ensemble”, we will refer
to the latter simply as the micro-canonical ensemble in this paper. Their density matrices
take the form of projection operators on the full Hilbert-space:

ρmicro
q2k−1 = N−1P̂⟨Q̂2k−1⟩=q2k−1

(1.6)

In the thermodynamic limit, the canonical and micro-canonical ensembles are often considered
to be equivalent. However, the equivalence indeed depends on the choice of observables. In
particular, it fails for observables that scale exponentially with the large thermodynamic
parameter — when computing expectation values using the saddle point approximation,
their “back-reaction” will cause the two ensembles to differ. Examples of such phenomena
include [22, 33]. In the limit of c ≫ 1 in 2d CFTs, they include heavy operators whose
conformal dimension scales with c, e.g. the twist operators σn that compute the Renyi
entropies Sn for n > 1, whose conformal dimensions are given by:

hn = c

24

(
n2 − 1
n

)
(1.7)

For this reason, in this paper we emphasize the micro-canonical nature of the equilibrium
state that appears in the proposal of ETH. The holographic Renyi entropies are computed in
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the micro-canonical ensembles. For reasons to be explained, we also compute Renyi entropies
in more general forms of ensembles with fixed KdV charges.

In practice holographic computations in these ensembles become more difficult, because
the corresponding boundary conditions are less transparent in terms of bulk geometries. To
make progress, we will use a scheme of approximation to be introduced in later sections. They
work for computing the leading order results in such ensembles with high charge densities.
So let us clarify the limits we are working with explicitly. We begin with the c→ ∞ scaling
ansatz for the CFT chemical potentials µ̃2k−1:

µ̃2k−1 =
(
c

24

)−k+1
µ2k−1 (1.8)

Under such a scaling, the leading order terms in the CFT Hamiltonian (1.4) describe a
“classical” theory of the form:

H(µ̃i) =
c

24H(µi) +O(c0), H(µ⃗) =
∑
k

µ2k−1Q2k−1(u) (1.9)

where the classical density u is related to the CFT stress tensor by:

u(φ) = 24
c
T (φ) (1.10)

and Q2k−1(u) as functions of u are the classical KdV charges, the first few of which are given by:

Q1(u) =
∫ 2π

0

dφ

2π u(φ), Q3(u) =
∫ 2π

0

dφ

2π u(φ)2, Q5(u) =
∫ 2π

0

dφ

2π
(
u(φ)2 + 2u′(φ)2

)
They are related to the quantum KdV charges Q̂2k−1 via the rescaling:

Q2k−1 ∼
(
c

24

)−k
Q̂2k−1 (1.11)

and taking the leading order part in c→ ∞. The “classical” variables {u(x), µ2k−1,Q2k−1}
are what directly enter the holographic calculations. In this paper we will work with them
in the context of AdS/CFT; and use (1.8), (1.10), (1.11) to convert to the original CFT
parameters {T (x), µ̃2k−1, Q̂2k−1} when needed.

On top of these, we are then interested in the limit Q2k−1 ≫ 1. We shall call this the high
charge density limit. Strictly speaking, when defining a sensible micro-canonical ensemble
the charges should be allowed to vary in a range of width ∆Q̂2k−1. In this work we take
these widths to all be subleading ∆Q̂2k−1 ≪ ck, the classical charges Q2k−1 are therefore
fixed in the c→ ∞ limit of our interest. We can also restore the L-dependence by rescaling
the spatial coordinates, then the limit corresponds for general circumference L to:

Q2k−1 ≫ L1−2k (1.12)

In terms of the radial quantization states (1.5), we have that:

⟨Q2k−1⟩h ∼
(
h

c

)k
L1−2k (1.13)
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Therefore (1.12) is satisfied if the ensemble is dominated by the contribution from states
|h⟩ satisfying:

h/c≫ 1, c→ ∞ (1.14)

independent of L, i.e. for different L the limit (1.12) probes parametrically the same regime
of the Hilbert space. Having clarified this, from now on we will ignore the L-dependence
by setting L = 2π whenever convenient — especially during explicit computations; and
will restore it via dimensional analysis when needed — mostly for the purpose of stating
parametric limits.

This paper is organized as follows. In section (2) we first review the basics of the black
holes solutions in AdS3/CFT2 that carry KdV charges; we will focus on the BTZ and one-zone
black holes that are relevant for latter analysis, and conduct a thorough analysis of their
thermodynamic properties in various types of GGEs. In section (3) we review the holographic
computation of Renyi entropies via cosmic-brane backreaction; we introduce a scheme of
constructing approximate solutions for the back-reaction called the gluing construction, which
works in the high density limit and was first proposed in [33]; we then discuss its extension
to include higher KdV charges. In section (4) we explicitly perform the computation of
holographic Renyi entropies in ensembles that fixes the first two KdV charges; we also discuss
the implications of the results for the underlying entanglement spectrum. We conclude the
paper in section (5) with some further comments and discussions.

2 KdV-charged black holes

In the holographic (large c) limit the gravity background dual to a 2d CFT KdV GGE

ρ ∝ e−Ĥ, Ĥ =
m+1∑
i=

µ2i−1Q̂2i−1, (2.1)

is a KdV-charged black hole (more carefully, an ensemble of such black holes) [34], with the
3d metric specified in terms of two functions f and u,

ds2 = −
(
fr − 1

4r (uf − 2f ′′)
)2
dt2 +

(
r + 1

4ru
)2
dφ2 + dr2

r2
. (2.2)

The information about generalized chemical potentials µ2i−1 is encoded in the functional
relation between f and u [35],

f [u] = 2πδH(u)
δu

, H(u) =
m+1∑
i=1

µ2i−1Q2i−1(u), Df = 0, (2.3)

where D = ∂3φ + u∂φ. Assuming number of terms in H is finite, the task of finding the black
hole solution, i.e. the function u(φ), 0 ≤ φ ≤ 2π such that f [u] satisfies Df = 0 amounts
to finding the so-called finite-zone solution [36]

{H, u} = 0, (2.4)

with the properly defined Poisson brackets. To be self-contained, we briefly summarize
the procedure below.
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2.1 Finite-zone solutions: a quick review

We begin by considering the eigenvalue problem for the Schrödinger equation:

Ψ′′(φ) + u(φ)Ψ(φ) = λΨ(φ), (2.5)

i.e. the function u now enters as a periodic potential. For (2.5) defined on a circle, the discrete
spectrum {λn} is defined by requiring periodic/anti-periodic boundary conditions for Ψ,

Ψ(φ+ 2π) = ±Ψ(φ) (2.6)

The relation between the Schrödinger equation (2.5) and the original KdV equation (whose
integrals of motion are the KdV charges) can be understood as follows. The solutions u(t, φ)
of higher KdV equations

∂tu = {H(u), u} , H(u) =
m+1∑
i=1

µ2i−1Q2i−1(u) (2.7)

define the spectrum λn(t), which a priori is t-dependent. But in fact λn are the integrals of
motion, i.e. λ̇n(t) = 0. We are interested in static, t-independent solutions satisfying (2.4).
These are the so-called finite-zone solution that have the spectrum {λn} with all but at
most 2m+ 1 eigenvalues forming degenerate pairs. The subset of non-degenerate eigenvalues
{λ0 < λ1 < . . . < λ2m} (together with the information about which zones they correspond
to, see below) completely characterizes the family of static solutions of (2.7). We note that
only m+ 1 of these parameters are free, other m parameters are dependent. In addition to
m+ 1 independent λn, there are also m parameters which deform u(φ) without changing the
spectrum — these are the isospectral deformations generated by first m KdV generators Q2i−1.
Thus, in total, the space of m-zone solutions is parametrized by 2m+1 continuous parameters.

These 2m + 1 parameters can be understood as follows. A periodic potential u(φ) is
an element of the co-adjoint orbit of Witt (Virasoro) algebra. One of these parameters
specifies the orbit invariant h, related to the monodromy of (2.5) for λ = 0. Other 2m
parameters are the coordinates on the symplectic space (reduction of the co-adjoint orbit),
with m parameters being the “action” variables Ik and other m parameters — the “angles”
ϕk. Values of the first m+ 1 KdV charges are the functions of h and Ik (and independent of
angles). For example, when m = 0, there is a one-parametric family of constant solutions
u(φ) = Q1, parametrized by Q1. When m = 1, there is a three-parametric family of solutions
u(φ − ϕ), parametrized by Q1, Q3 and ϕ.

In addition to continuous parameters, there is m discrete natural numbers ki+1 > ki which
specify which zone λ2i−1, λ2i correspond to. Thus, in the one-zone example above, the full
space of solutions is parametrized by Q1, Q3, ϕ and a positive integer k, as we discuss below.

The 2m+1 continuous parameters (say, Q2i−1 for 1 ≤ i ≤ m+1 and angles ϕk), together
with m positive integers ki, define the m-zone solution u(φ), but not f(φ). Function f ,
satisfying Df = 0 is mathematically defined only up to an overall coefficient (this implicitly
assumes f is sign-definite). One can see an m-zone solution as a degenerate m′-zone solution
with m′ > m, coming from {H′, u} = 0 with a different H′. Accordingly both f = 2πδH/δu
and f ′ = 2πδH′/δu will satisfy Df = Df ′ = 0 but in general f ̸= f ′.
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Out of 2m+ 1 continuous parameters of an m-zone u(φ), m parameters can be related
to values of µ2i−1/µ2m+1 in (2.7). Thus, if µ2i−1 for 1 ≤ i ≤ m+ 1 are specified, the space of
static solution is parametrized by m+ 1 additional continuous variables (h and the angles).
Instead of h, one can introduce inverse black hole temperature as follows. Assuming f(φ)
is sign-definite (for sign-indefinite f(φ) the bulk geometry has the event-horizon stretching
all the way to asymptotic boundary, which suggests this case is unphysical), one can read
out the Bekenstein-Hawking entropy (the horizon area) from the metric

S = π
√
u0

2GN
= πc

3
√
u0. (2.8)

Here u0 is defined as follows

u0 =
uf2 + f

′2 − 2ff ′′

f20
, f−1

0 = 1
2π

∫ 2π

0

dφ

f(φ) . (2.9)

The parameter u0 ≡ h labels the co-adjoint orbit u(φ) belongs to. For the BTZ solution
u0 = Q1 and (2.8) is simply the 2d CFT density of states given by Cardy formula. For
a generic finite-zone solution u0 is not the same as the average value of u(φ), and thus
is not equal to Q1.

For a generic finite-zone solution u, accompanied by f , it can be shown that the numerator
of (2.9) is in fact a constant, and equals to temperature squared [34]

(2πT )2 = uf2 + f
′2 − 2ff ′′

, (2.10)

while the sign of T is the sign of f . This fixes h in terms of µ2m+1. Thus, m+ 1 coefficients
µ2i−1 fix all continuous parameters of m-zone solutions, except for angles.

2.2 Example: one-zone black hole solutions

As an example relevant for latter analysis, we examine in detail the one-zone solutions,
specified by zone end-points {λ1 ≤ λ2 ≤ λ3}.1 These three parameters have to satisfy

k = −π
√
λ3 − λ1
K(p) , p = λ3 − λ2

λ3 − λ1
, (2.11)

where K(p) is the elliptic K function and k ≥ 1 is a positive integer labeling the zone. Thus
the one-zone solutions are parametrized by two continuous and one discrete parameters, in
addition to a constant shift of the argument φ.

One can choose instead the continuous parameters to be Q1 and Q3, and the discrete
parameter p,

Q1 = 4λ3 − 4(λ2 − λ1)
(2Π(p, p)

K(p) − 1
)
, Q3 =

J1 − µ1Q1
3 (2.12)

J1 = 16
(
λ21 + λ22 + λ23 − 2λ3λ1 − 2λ1λ2 − 2λ2λ3

)
,

µ1 = −8(λ1 + λ2 + λ3).
1From this section on, we will shift the zone parameter label by 1, i.e. the first zone parameter is λ1.
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where Π(p, p) is the complete elliptic integral of the third kind (EllipticPi in Mathematica).
Alternatively, it is often convenient to keep k as a discrete parameter, while p will become
a continuous parameter together with Q1:

u(φ) = −4∂2 log θ (ik(φ− ϕ), q) +Q1,

θ(ikφ, q) =
∑
n

qn
2 cos (nkφ), q = e

−πK(1−p)
K(p) , (2.13)

Q3 = Q2
1 +

64k4(p− 1)K(p)2
(
K(p)2 + 2(p− 2)K(p)Π(p, p)− 3(p− 1)Π(p, p)2

)
3π4 .

Qualitatively, the solution u(φ) oscillates along the circle with the frequency that is multiple
of k, and with the amplitudes controlled by q(p). The orbit invariant (2.9) associated with
the one-zone solution can be evaluated explicitly,

√
u0 =

(√
4λ1λ2
λ3

) Π
(
1− λ2

λ3
, p
)

K (p) . (2.14)

The one zone-solutions span the space of static solutions of (2.7) for the Hamiltonian
of the form

H = Q3 + µ1Q1 . (2.15)

Without loss of generality we have normalized the coefficient of the Q3 to be one. For a
given GGE ρ ∝ e−βH and a general static one-zone solution, the zone-parameters are related
to the ensemble parameters as follows

2π/β = 32
√
λ1λ2λ3, µ1 − 1 = −8(λ1 + λ2 + λ3), f(φ) = 2u(φ) + µ1. (2.16)

A particular finite-zone solution u(φ) specifies corresponding f(φ) up to an overall
constant. Equation (2.7) provides a functional relation between u and f . In case of Hamil-
tonian (2.15) the relation is (2.16). A peculiar feature of the case when H only includes
Q1 and Q3 is that f(φ) is always negative, forcing temperature of corresponding black hole
background to be negative as well. As was pointed out in [34], this means corresponding
Euclidean gravitational backgrounds are unstable. They give subleading contribution to the
Euclidean path integral dual to GGE state ρ ∝ e−βH with H given by (2.15), while leading
contribution is always given by a BTZ (constant u(φ)) geometries.

The same one-zone solutions u(φ) can give rise to a black hole background with positive
temperature and even give a dominant contribution to gravitational description of the
GGE, when more chemical potentials are turned on [34]. For example, let us consider the
following GGE,

ρ ∝ e−β(Q̂5+µ3Q̂3+µ1Q̂1). (2.17)

Generic black holes in this case are described by two-zone solutions, parametrized by zone-
parameters (λ0, . . . , λ4). However the one-zone solutions are also saddle points of the Euclidean
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path integral associated with this GGE, provided µi satisfy some additional conditions. Given
the one-zone solution parametrized by λ1, λ2, λ3, the GGE parameters {β, µ3, µ1} must satisfy

µ1 + 48
(
λ21 + λ22 + λ23

)
+ 32 (λ1λ2 + λ2λ3 + λ1λ3) + 8µ3 (λ1 + λ2 + λ3) = 0,

π + 16β
√
λ1λ2λ3 (4λ1 + 4λ2 + 4λ3 + µ3) = 0. (2.18)

We remark that there are only two equations relating {β, µ3, µ1} to λi. Thus, for fixed
{λ1, λ2, λ3}, one of the GGE parameters, e.g. β, remains arbitrary, while two others are
fixed in terms of λi and β.

2.3 Smoothness and physical conditions

For later convenience, we gather here the list of conditions for the one-zone black holes to be
physical and smooth as bulk geometries in the GGE (2.17). Related discussions has been
performed in [34], for which the details of the derivations can be referred to. We summarize
them in the form of inequalities relating the zone parameters (λ1 ≤ λ2 ≤ λ3) and the GGE
parameters (β, µ3, µ1). Physically these conditions come from the following considerations:

• The function f(φ) is sign definite, i.e. does not contain zeros.

• The temperature T is positive.

• The variational response satisfies the first law of thermodynamics with the correct sign:
c
12dH = TdS.

• The singularities of the metric (2.2) are covered by the horizon:

rH(φ) > max{rs(φ), 0}, rs(φ) = −u4 , rH(φ) =
uf2 − 2f ′′

f

4f2 (2.19)

These conditions are generic for all finite-zone black hole solutions. It can be checked that
they amount to requiring that:

∀φ ∈ [0, 2π], f(φ) > 0; u0 > 0; uf2 > f
′′
f (2.20)

As remarked before, for a fixed set of zone-parameters (λ1 ≤ λ2 ≤ λ3) the corresponding
GGE is determined up to a free parameter, which for convenience of the present discussion
we choose to be µ3. In terms of these parameters, the smoothness and physical conditions
can be translated into:

λ3 ≥ λ2 ≥ λ1 > 0
µ3 < −4(λ1 + λ2 + λ3)
λ1λ2 + λ1λ3 + λ2λ3 − λ23 > 0. (2.21)

We make some remarks relating these conditions to the classification of the BTZ black holes,
i.e. whether they are deformable or isolated. As discussed before, in the limit of coincident
zone-parameters, i.e. λ1 = λ2 = w/4 or λ2 = λ3 = w/4, the one-zone black hole reduces
to a BTZ black hole. From this we can infer that a BTZ black hole is deformable if its
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zone-parameters (h,w) satisfy the smoothness and physical conditions (2.21); otherwise it
is isolated. For isolated BTZ black holes, the only condition is the positivity of the mass,
i.e. h = ⟨Q1⟩ > 0. There is no restriction for the remaining parameter w — it could even
be complex. The arguments leading to (2.21) assume real zone-parameters to begin with,
which is indeed necessary for non-degenerate one-zone black holes. On the other hand, for
those isolated BTZ black holes with real w < 0, it is interesting to understand how do
they as smooth solutions evade the arguments leading to (2.21). We provide some details
discussing this in the appendix (A).

2.4 Thermodynamics

In this subsection, we analyze the thermodynamic properties of these one-zone black holes
in the context of GGE (2.17) with 3 KdV chemical potentials:

ρ = N−1e−βH, H = Q̂5 + µ3Q̂3 + µ1Q̂1 (2.22)

2.4.1 Phases of BTZ solutions

We are in particular interested in the thermodynamics of the one-zone black holes that
are perturbatively close to a BTZ solution in the GGE (2.17). To this end, we first study
the properties of BTZ solutions, in particular how do they depend on the BTZ parameters
(h,w) as well as the GGE parameters (β, µ1, µ2) they are in. Recall that (h,w) is related to
(β, µ1, µ3) by restricting (2.18) to cases with two coincident zone parameters:

T = G(h), G(h) ≡ 1
2π (3h

5/2 + 2µ3h3/2 + µ1h
1/2)

8w2 + 4(h+ µ3)w + 2π
β
√
h

= 0. (2.23)

where T = 1/β is the temperature. Positive roots to the first equation are identified as
the masses of the BTZ black holes in the GGE. It is easily recognized as the saddle-point
equation for the primary state contribution to the partition function:

Z(β, µ1, µ3) ∼
∫
dh e−β FBT Z(h), FBTZ(h) =

c

12(h
3 + µ3h

2 + µ1h)− S(h) (2.24)

From (2.23), there are only three independent parameters specifying a BTZ black hole
together with the GGE. We choose (h, β, µ3) to facilitate latter discussions. Notice that at
fixed (h, β, µ3), while µ1 is uniquely determined, there are two solutions w± to the second
equation of (2.23). We interpret this as potentially two branches of one-zone black holes
whose limits of either p→ 0 or p→ 1 give rise to the BTZ at the prescribed (h, β, µ3). The
properties that are relevant to us include the following key aspects:

• Extremum type for FBTZ(h) : positive roots of the first equation in (2.23) are
extremum of FBTZ(h). The BTZ has to be a local minimum of FBTZ(h) before
surviving as the thermodynamically stable saddle of the full GGE. This can be checked
by computing F ′′(h) at the roots, from which we obtain that a BTZ at (h, β, µ3) is a
local minimum if:

3h+ µ3 > −
(

π

2βh3/2
)

(2.25)
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• Deformable vs. isolated type: for the BTZs satisfying (2.25), we are interested in
whether they can be deformed into nearby one-zone black holes satisfying (2.21). As
discussed before, this depends on whether the BTZ itself satisfies (2.21), which amounts
to the following inequalities:

µ3 + h+ 2w < 0, w >
(√

2− 1
)
h > 0 (2.26)

It turns out that when (h, β, µ3) satisfy:

h+ µ3 < −
(

4π
β
√
h

)1/2

< 0 (2.27)

Both branches of solutions w± are positive:

w± = −
(
h+ µ3

4

)(
1±

√
1− 4π

β
√
h(h+ µ3)2

)
> 0 (2.28)

Furthermore, they both satisfy the first inequality in (2.26):

h+ µ3 + 2w± = −w∓ < 0 (2.29)

It is then left to checking the second inequality in (2.26) to determine whether they are
deformable. In particular, if the BTZ corresponds to the p→ 0 limit of one-zone black
holes, then w > h > (

√
2− 1)h and it is automatically deformable.

• Limit type of deformable BTZs: for those deformable BTZ black holes satisfy-
ing (2.26), we are then interested in whether they correspond to the p→ 0 limit or the
p→ 1 limit of one-zone black holes. As mentioned previously this depends on the sign
of ∆ = h− w, which satisfies the quadratic equation derived from (2.23):

4∆2 − 2(5h+ µ3)∆ +
(
6h2 + 2hµ3 +

π

β
√
h

)
= 0 (2.30)

For local minimum satisfying (2.25), both branches ∆± are of the same sign as that
of 5h+ µ3. We therefore conclude that they correspond to the p → 0 limit for both
branches w± > h if 5h+ µ3 < 0; while for 5h+ µ3 > 0 they correspond to the p → 1
limits for both branches w± < h.

Based on these, we can derive the following phases regarding the BTZ black hole at fixed
h as one vary the remaining parameters:

χ1 =
(
πT

h5/2

)
, χ2 =

(
µ3
h

)
(2.31)

The phases are organized into windows of χ2 whose locations as well as structure vary with
χ1, see table (1). The ranges of (χ1, χ2) are defined by intervals whose boundaries occur
at the following values:

α1 = 4(
√
2− 1)2, α2 = 4

(√
2− 1

)
, α3 = 4, ζ̃1 = −χ1/2− 3

ζ̃2 = −5, ζ̃3 = −
(
2
√
2− 1

)
− χ1/

(
2
√
2− 2

)
, ζ̃4 = −2√χ1 − 1 (2.32)
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0 < χ1 <∞

χ2

ζ

1 ζ


4

α2 < χ1 < α3

χ2

ζ

1 ζ


4

α1 < χ1 < α2

χ2

ζ

3ζ


1 ζ


4

0 < χ1 < α1

χ2

ζ

3ζ


1

h is a local maximum of FBTZ
(h,w±) are deformable to p→ 0

(h,w±) are deformable to p→ 1

(h,w+) is deformable to p→ 1

both (h,w±) are isolated

Table 1. The phases of BTZ black holes.

More details for the derivation are included in the appendix (B). When the BTZ is
deformable, it is likely to be thermodynamically unstable against nearby one-zone black
holes in the GGE, one needs to further compute the free energies; when it is isolated we
view it as thermodynamically stable, at least locally.

We can also focus only on the GGE parameters (β, µ1, µ3), and identify a phase where it
contains two physical BTZ black holes. This corresponds to when the first equation in (2.23)
has three positive roots (h1 < h2 < h3). It is easy to see that (h1, h3) are local minimum and
h2 is a local maximum for FBTZ(h). This can only happen if G(h) has two positive turning
points 0 < h− < h+, G′(h±) = 0, of which h− is a local maximum and h+ is a local minimum
for G(h); and the positive temperature is between the two extrema: G(h+) < T < G(h−), see
figure (1). This can be translated into the following conditions for (T, µ1, µ3):

µ3 < 0, 0 < µ1 <
3
5µ

2
3, max{0, G(h+)} < T < G(h−)

h± = −µ35

(
1±

√
1− 5µ1

3µ23

)
(2.33)

When the BTZ solutions at h1,3 are deformable, it is easy to see that both branches (h1, w±
1 )

are p → 0 limits; and (h3, w±
3 ) are p → 1 limits. Among the local minimum (h1, h3)

of FBTZ(h), only one of them corresponds to the global minimum and is likely to be
thermodynamically stable.

2.4.2 Thermodynamic stabilities near BTZ

The perturbative expansion of various quantities in these limits can be computed. Let us
label the one-zone solution and the corresponding GGE after solving (2.18) by {λ1, λ3, p, µ},
the results at leading orders can be summarized below.
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G(h)

G(h-)

T

G(h+ )

h-
h+

h1

h2 h3

Figure 1. A GGE satisfying (2.33) has three positive roots (h1 < h2 < h3).

We first study the thermodynamic stability near the p → 0 limit. In this limit, the
deviations from the BTZ solutions are controlled by powers of p. In particular, the KdV
charges and the entropy density are given to the leading orders in p by:

⟨Q1⟩ = 4λ1 +
1
2p

2(λ3 − λ1)

⟨Q3⟩ = 16λ21 + 4p2(λ3 − λ1)(2λ3 − λ1)
⟨Q5⟩ = 64λ31 + 8p2(λ3 − λ1)(8λ23 − 4λ1λ3 − λ21) (2.34)
√
u0 = 2

√
λ1 + p2

√
λ1
λ3 − λ1
8λ3

(2.35)

However we are more interested in the difference between the BTZ solution and the one-zone
solution when the GGE is specified. In particular, we care about how the free energy changes
when we deform a BTZ solution. In the zero-zone limit, the zone parameters can be solved
perturbatively in terms of the GGE parameters according to (2.18), therefore the free energy
difference can be obtained. We find that the difference δF = Fone-zone − FBTZ starts to
show up in the order of p4:

δF = p4h3(w̃ − 1)3
64w̃(χ1 − 4w̃)

(
60w̃4 − 7χ1w̃

3 − 19χ1w̃
2 + χ1

(3
4χ1 − 4

)
w̃ + 3χ2

1

)
(2.36)

where we have written the result in terms of (χ1, χ2) defined in (2.31) and w̃ = w/h. Recall
from (2.28) that for the BTZ parametrized by (h, T, µ3) it has two branches:

w̃± = −
(1 + χ2

4

)(
1±

√
1− 4χ1

(1 + χ2)2

)
(2.37)

For the BTZ to be deformable consistently as the p → 0 limit, the parameters (χ1, χ2)
can only be in the window:

χ1 > 4, ζ̃1 < χ2 < ζ̃4 (2.38)

Within this range w̃± are constrained to vary in the intervals:

1 < w̃− <

√
χ1
2 < w̃+ <

χ1
4 (2.39)
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One can check that at fixed χ1 > 4, the free energy cost δF as a function of w̃ satisfies:

δF

(
χ1
4

)
> 0, δF

(√
χ1
2

)
< 0, δF (1) > 0 (2.40)

This implies that for both branches w±, there must be a phase transition regarding the sign of
δF within the range (2.38). More specifically, the branches w± are thermodynamically
unstable against nearby one-zone black holes for

(
y± < χ2 < ζ̃4

)
; and are stable for(

ζ̃1 < χ2 < y±
)
. The threshold values y± are the roots of the following equations:

1±
√
1− 4χ1

(1 + y±)2
= 60χ1(y± + 1)2 + 2χ2

1(7y± − 85)
(y± + 1)

(
30(1 + y±)3 − 10χ2

1 − χ1(75 + 84y± − 7y2±)
)

that are constrained to lie in:

ζ̃1 < y± < ζ̃4 (2.41)

They are guaranteed to exist due to (2.40).
Next we look at the p→ 1 limit. It turns out in this limit, the leading order deviations

from the BTZ solution are controlled by Λ−1 ≪ 1, where:

Λ = − ln
(1− p

16

)
≫ 1 (2.42)

The KdV charges and entropy density are given to the leading order in Λ−1 by:

⟨Q1⟩ = 4λ3 −
16
Λ (λ3 − λ1)

⟨Q3⟩ = 16λ23 −
128
3Λ (λ3 − λ1)(2λ1 + λ3)

⟨Q5⟩ = 64λ33 −
256
5Λ (λ3 − λ1)(3λ23 + 4λ1λ3 + 8λ21) (2.43)

√
u0 = 2

√
λ3 −

4
Λ
√
λ3 − λ1 tanh−1

(√
1− λ1

λ3

)
(2.44)

Similarly, after specifying the GGE the difference of the free energy is

δF = 8h3
Λ

[(1− w̃

15w̃

)(
8w̃3 − 16w̃2 + (8− 10χ1)w̃ − 5χ1

)
+ χ1

√
1− w̃ × tanh−1

(√
1− w̃

)]
(2.45)

The BTZ is deformable consistently as the p = 1 limit of one-zone black holes if the
parameters satisfy:

χ1 < 4, max
{√

2− 1, χ1
4

}
< w̃− <

√
χ1
2 < w̃+ < 1 (2.46)

It can be verified that in this range, the branch w+ is always thermodynamically
stable, i.e. featuring a positive definite free energy cost δF > 0 to nearby one-zone black
holes. However the branch w̃−, when exists, contains a phase transition — it becomes
thermodynamically unstable for χ2 < y. The threshold value y is the single root of (2.45)
for χ2 through its dependence from plugging w− in (2.37).
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2.4.3 Ensembles at fixed KdV charges: micro-canonical and mixed

As mentioned in the introduction, it is the micro-canonical ensemble whose KdV charges are
fixed that is the most closely related to ETH in 2d CFTs. There are infinitely many KdV
charges that one can fix in principle, in this paper we discuss fixing only a finite number.
The simplest such ensemble is the those fixing only ⟨Q1⟩ and ⟨Q3⟩:

ρmicro
q1,q3 = N−1P̂q1,q3 (2.47)

where P̂q1,q3 denotes the projector into the Hilbert sub-space with the prescribed KdV charges:

⟨Q1⟩ = q1, ⟨Q3⟩ = q3 (2.48)

The first question one naturally asks about the micro-canonical ensemble ρmicro
q1,q3 is whether

it has a well-defined bulk dual description. Abstractly, ρmicro
q1,q2 is related to ρµ1,µ3 by an

inverse Laplace transform:

ρmicro
q1,q3 =

∮
Γ1
dµ1

∮
Γ3
dµ3 e

µ1q1+µ3q3ρµ1,µ3

ρµ1,µ3 = N−1e−µ̃1Q̂1−µ̃3Q̂3 (2.49)

where Γ1,3 are the corresponding Bromwich contours for µ1,3. In the thermodynamic limit,
the inverse Laplace transform can proceed by simply finding the saddle-points for µ1,3. In
physical terms this means finding a particular (µ∗1,3) whose KdV charges ⟨Q1⟩ and ⟨Q3⟩
match with their prescribed values (q1, q3). In the context of AdS3/CFT2, its bulk dual
will be a black hole solution at chemical potentials µ∗1, µ∗3 giving the corresponding KdV
charges. For generic values of q3 ̸= q21 , they have to be one-zone black holes. However, at two
chemical potentials (µ1, µ3) only the BTZ black holes are physical Euclidean saddles of the
GGE. One therefore infers that at generic fixed KdV charges q3 ̸= q21, the micro-canonical
ensembles do not admit well-defined bulk duals.

We have studied one-zone black holes in the GGEs (4.16) featuring three chemical
potentials, in which they exhibit well-defined thermodynamic properties. Motivated by this,
we can consider more general forms of ensembles with fixed ⟨Q1⟩ and ⟨Q3⟩. For example,
we can consider the following ensembles:

ρβq1,q3 = N−1P̂q1,q3 e
−βQ̂5 (2.50)

They describe a non-uniform distribution in the micro-canonical shell of KdV charges (q1, q3),
the statistical weight is decorated by a temperature associated with ⟨Q5⟩. We refer to them
as the mixed ensembles in this paper. They can be obtained from the GGE (4.16) via a
similar Laplace transform:

ρβq1,q3 =
∮
Γ1
dµ1

∮
Γ3
dµ3 e

µ1q1+µ3q3ρβ,µ1,µ3

ρβ,µ1,µ3 = N−1e−µ̃1Q̂1−µ̃3Q̂3−βQ̂5 (2.51)

Similarly, in the thermodynamic limit this is given via the saddle-point approximation by
a black hole solution in the GGEs (4.16) whose first two KdV charges coincide with the
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prescribed values (q1, q3). This requirement does not uniquely fix the black hole solution.
To determine the equilibrium configuration of ρβq1,q3 , we need to find the black hole solution
that minimizes the free energy:

F βq1,q3 ∝ Q5 − TS (2.52)

For the GGEs (4.16) the most generic black holes are two-zone solutions. In this paper, we
focus on the one-zone sector. We assume that the two-zone black holes tend to cost higher
free energies, though this should be checked more rigorously in future investigations.

Eliminating two of the three zone parameters (λ1 ≤ λ2 ≤ λ3) using the constraint on the
fixed KdV charges (2.48), there is one free parameter remain. We take it to be p = λ3−λ2

λ3−λ1
,

which then parametrizes the micro-canonical shell of one-zone black holes. For each fixed
p there are two branches of solutions for the zone-parameters satisfying (2.48). Only one
of them corresponds to zone parameters that are likely to be physical:

λ1 =
q1
4 +

√
3(q3 − q21) ((p− 2)K(p) + 2E(p))

8
√
(p− 1)K(p)2 − 2(p− 2)K(p)E(p)− 3E(p)2

λ3 =
q1
4 +

√
3(q3 − q21) ((p− 1)K(p) + 2E(p))

8
√
(p− 1)K(p)2 − 2(p− 2)K(p)E(p)− 3E(p)2

λ2 = (1− p)λ3 + pλ1 (2.53)

It can be checked from (2.53) that λ2, λ3 → +∞ in the p → 0 limit; while λ1, λ2 → −∞
in the p → 1 limit. The latter limit does not give physical one-zone black holes. It is
therefore important to find the range of p parametrizing the physical one-zone black holes
satisfying (2.48). To this end, we plug the zone parameters (2.53) as functions of p in the
smoothness and physical conditions (2.21) and derive the bound on p. It turns out that the
tightest bound comes from the last condition of (2.21), which prohibits naked singularities
in the one-zone black hole geometry:

λ1λ2 + λ1λ3 + λ2λ3 − λ23 > 0 (2.54)

This imposes the following bound on the allowed range of p

0 ≤ p ≤ p+ (2.55)

The upper bound p+ is the solution of a transcendental equation, and depends on the fixed KdV
charges (q1, q3). For the purpose of latter discussions, we are interested in the following limit:2

ϵ = 1
q1

√
q3 − q21 ≪ 1 (2.56)

In this limit, we can compute the leading order result for p+:

p+ = 1− 16 exp(−Λ+), Λ+ = 32(3− 2
√
2)

3ϵ2 (2.57)

2This is slightly different from the parameter ϵ = q3/q2
1 − 1 defined in [1].
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Now we can discuss the thermodynamics of the mixed ensembles ρβq1,q3 based on the
allowed one-zone black holes (2.53) in the range (2.55). For a fixed temperature T = 1/β,
the equilibrium configuration corresponds to the particular one-zone black hole parametrized
by p∗T , which minimizes the free energy (2.52):

∂F βq1,q3

∂p

∣∣∣
p∗T

=
(
∂Q5
∂p

− T
∂S

∂p

) ∣∣∣
p∗T

= 0 (2.58)

Next we discuss the equilibrium value p∗T as a function of the temperature T . It can be
checked that S is maximized to be:

S →
π
√
q1

2GN
(2.59)

in the p → 0 limit. On the other hand, Q5 → ∞ in the same limit. Such an interplay
between the two terms in F βq1,q3 implies that the equilibrium p∗T admis a high temperature
expansion near p∗T = 0. At the leading order, it can be computed in terms of the rescaled
temperature χ1 = πT/q

5/2
1 by:

p∗T = ϵ

√
8
χ1

+ . . . χ1 ≫ ϵ2 (2.60)

From this result, we can also obtain a corresponding high temperature expansion of the
thermodynamic entropy S = π

√
u0/2GN for the mixed ensemble ρβq1,q3 , where:

√
u0 =

√
q1

(
1− ϵ2

4√χ1
+ . . .

)
(2.61)

It is interesting to take the infinite temperature limit T ∝ χ1 → ∞. Doing this recovers the
microcanonical ensemble at fixed (q1, q3). We discover that the entropy reduces to that of
the ordinary microcanonical ensemble at fixed q1 at the leading order in GN :

Smicro(q1, q3) =
π
√
q1

2GN
+ . . . (2.62)

We clarify some subtleties here. In taking T → ∞, the equilibrium bulk configuration
approaches the p → 0 limit of one-zone black holes, which signals the degeneration into a
BTZ black hole. On the other hand, the KdV charges of the BTZ black holes at the leading
order in 1/c always satisfy: q3 = q21 → ϵ = 0. This is in contradiction with the charges
we are fixing in ρmicro

q1,q3 . What happened is that at finite ϵ, the limit p → 0 also drives two
of the zone-parameters to diverge:

λ2, λ3 ∼ q1

√
ϵ2

8p → ∞. (2.63)

The result seems to suggest that despite not having a Euclidean bulk dual, the micro-canonical
ensemble at fixed (q1, q3 > q21) can be interpreted as a BTZ black hole decorated with a
macroscopic condensation of bulk “hair” that accommodates the surplus Q3 charges. In the
companion paper [1], similar results regarding the micro-canonical entropy at fixed (q1, q3)
at large c are also obtained using more general approaches.
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As the temperature lowers, the equilibrium value p∗T increases. It is found that p∗T
increases monotonously as χ1 decreases. There is then a threshold temperature T0 below
which the equilibrium p∗T is outside the range (2.55), it is marked by:

p∗T0 = p+ (2.64)

In the limit ϵ ≪ 1, the rescaled threshold temperature is given by an order 1 constant
to the leading order:

χ−
1 = πT0

q
5/2
1

=
32
√
58− 41

√
2

5
(
2
√
10 +

√
2 + 3 log

[
1 + 2

√
2− 2

√
2 +

√
2
]) ∼ O(1) (2.65)

We interpret this bond as follows. For χ1 < χ−
1 the mixed ensembles ρβq1,q3 does not have a

well-defined gravity dual — at least not described by a one-zone black hole. It is also found that
the thermodynamic entropy S decreases monotonously with increasing p in the range (2.55).
We can therefore deduce that at fixed (q1, q3), there is a minimum thermodynamic entropy
Smin = π

√
umin
0 /2GN that a one-zone black hole in the micro-canonical shell can have. It

is reached at the threshold temperature χ−
1 . In the limit ϵ≪ 1, the minimum entropy can

be computed to the leading order in ϵ as:√
umin
0 = √

q1
(
1−Bϵ2 + . . .

)
(2.66)

where the constant coefficient B is given by:

B = 3
16
(
3 + 2

√
2
)(

−2 +
√
2 +

√
2−

√
2 tanh−1

[√
2−

√
2
])

(2.67)

We clarify that umin
0 does not necessarily give the minimum thermodynamic entropy that

ρβq1,q3 can have. For χ1 < χ−
1 , the mixed ensemble is not described by a one-zone black hole,

computing its thermodynamic entropy is therefore beyond the current scope.

3 Renyi entropies from the gluing construction

We now proceed to the computation of holographic Renyi entropies. We are interested in the
case of the entangling sub-region A being a large interval on a circle, and the state ρ being
an ensemble at fixed KdV charges. For the purpose of being self-contained, we first quickly
recall some ingredients of the computation in a more general context.

3.1 Review: cosmic-brane backreaction

The Renyi entropy is defined as:

Sψn (A) =
1

1− n
lnTrρnA, ρA = TrĀρψ (3.1)

Through AdS/CFT, we need to perform a bulk computation of the boundary partition
function defined on a branched manifold ΣnA glued across the sub-region A, which specifies
the boundary condition for the bulk:

ZCFT (ΣnA) = TrρnA = Zgrav(ΣnA) (3.2)
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To compute Zgrav(ΣnA) one then looks for a particular bulk saddle Bn such that:

∂Bn = ΣnA (3.3)

In addition, the asymptotic boundary conditions for the bulk fields are specified by replicating
n times those of the state ψ, viewed as the bulk dual. The bulk path-integral thus enjoys a
Zn replica symmetry in terms of the boundary conditions, If such a symmetry is inherited by
the leading saddle Bn, we can consider its quotient geometry: B̃n = Bn/Zn. The partition
functions are simply related by a factor of n:

Zgrav(Bn) = nZgrav(B̃n) (3.4)

The quotient geometry B̃n can be effectively obtained by inserting a co-dimension two defect
Σn, i.e. a cosmic-brane, into the bulk state ψ and allow it to backreact [37]. The tension
Tn of the cosmic brane is related to the Renyi index n via:

Tn = n− 1
4nGN

(3.5)

In the limit n → 1, the cosmic-brane becomes tensionless and simply finds the minimal
area configuration in the original geometry, extracting the leading order in n − 1 effect
then gives the RT formula.

To actually compute the Renyi entropy from the glued solution, it is more convenient to
first compute the intermediate quantity called the refined Renyi entropy [37], defined by:

S̃n(A) = n2∂n

(
n− 1
n

Sn(A)
)
= −n2∂n

( 1
n
lnTrρnA

)
(3.6)

In holography, this quantity has the advantage of being computed directly by the area of
the back-reacted cosmic brane:

S̃n(A) =
Area(ΣnA)|Bn

4GN
(3.7)

instead of the bulk partition function defined by Bn. From the refined Renyi entropy one
can integrate w.r.t. n to recover the original Renyi entropy:

Sn(A) =
n

n− 1

∫ n

1

S̃ñ(A)
ñ2

dñ (3.8)

3.2 High-density limit: the gluing construction

In general, using the cosmic-brane prescription to actually compute the Renyi entropies is a
formidable task — one needs to solve for the fully backreacted geometry. Further compromise
needs to be conceded in order to make progress, e.g. computing the perturbation expansion in
small n−1 [38, 39] or short distance ℓ for the subsystem interval [28, 30, 40, 41]. The difficult
part lies in having to deal with the interplay between cosmic-brane backreaction in the bulk
and the asymptotic boundary condition related to the state specification. We are interested
in the regime where the KdV charge densities are much larger than the appropriate powers
of the inverse subsystem size LA, which is a finite fraction f of the total system size L:

⟨Q2k−1⟩h ∼
(
h

c

)k
L1−2k
A , LA = fL (3.9)
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Figure 2. An illustration for glued solution.

On the other hand, we do not assume anything particular about the Renyi index n. We call
this the high charge density limit for the KdV charges. The holographic Renyi entropy in
the similar limit of the energy micro-canonical ensemble was considered in [33], in which
a back-reacted solution B̃n was constructed explicitly using a gluing procedure. We shall
follow a similar procedure in constructing the back-reacted solution.

The main idea underlying the gluing construction in [33] comes from the following
considerations. For simplicity we consider the case of AdS3/CFT2 as in this paper, although
the construction in [33] works in general dimensions. In the high energy density limit, the
Euclidean geometry of the black hole solution fills the asymptotic boundary that is torus
whose contractible thermal circle β is much smaller than the non-contractable spatial circle
of length L. Upon inserting a cosmic-string ending on the end points ∂A of a finite interval
LA = fL, the back-reaction will equilibrate away from the end points, i.e. producing local
geometry well approximated by that of a global black hole solution. If we choose to neglect
the details near ∂A, the full geometry can be approximated as two segments of black hole
solutions, one along A and the other along Ā, glued together at the junction ∂A subject
to some matching condition, see figure 2.

The matching condition reflects the effect of the cosmic-string insertion, or equivalently
the smoothness condition of the bulk saddle Bn before taking the quotient. By neglecting
the details near the junction, only the global constraint that the thermal circle lengths in Bn
must match across ∂A remains, which in the back-reacted quotient geometry B̃n implies the
following relation between the black hole temperatures βA, βĀ of the two segments:

βA = nβĀ (3.10)

We shall refer to this as the gluing condition. If we are interested in the canonical ensemble
at fixed β, the corresponding glued solution is directly given by:

βA = nβ, βĀ = β (3.11)

On the other hand for the micro-canonical ensemble at fixed total energy E, the glued solution
is obtained by solving for β in (3.11) via the additional matching condition:

f⟨E⟩nβ + (1− f)⟨E⟩β = E (3.12)
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where ⟨E⟩β is the energy expectation value, i.e. ADM mass of the black hole, at temperature
β. The matching condition (3.12) is basically imposing the asymptotic boundary condition
encoding the original state:

ρψ = ρmicro
E (3.13)

while including the cosmic-string backreaction βA = nβĀ, simplified in the context of the
gluing construction. In fact, the original holographic content has been so minimized that
one expects the gluing and matching conditions (3.11), (3.12) apply to broader contexts
featuring similar limits, see [42] for the case of chaotic energy eigenstates. In appendix (C)
we supply additional arguments for (3.11), (3.12) based on finite dimensional intuitions.
The argument there indeed reflects the agreement between the cosmic-brane proposal and
the more general diagonal approximation used in the companion paper [1], see also [43]
for more discussions on this.

More quantitatively, by neglecting the details near the junction boundary ∂A, one is
essentially focusing only on the volume-dependence of the Renyi entropy, i.e. extracting
the contribution that scales like:

Sn(A) ∝ L (3.14)

We should clarify that by volume-scaling it does not necessarily mean Sn(A) ∝ LA — there
could be prefactor in (3.14) that depends non-linearly on f . One can therefore summarize
the validity of the gluing construction as follows: in the high charge density limit E ≫ 1/L,
the Renyi entropy of a finite fractional interval LA = fL is dominated by a contribution
that scales with the total volume L, and it is this contribution that can be captured by
the gluing construction.

From the n-dependent solution βn of (3.12), the volume-scaling part of the refined
entropy is simply given then by the partial horizon area from the segment of the black
hole solution along A.:

S̃n(A) = fSth(nβn) (3.15)

As was pointed out in [33], the integration over n for computing Sn(A) can in fact be done
in the following closed form:

Sn(A) =
fSth(nβn) + (1− f)nSth(βn)− nSth(β1)

1− n
(3.16)

This can be verified by first checking limn→1
[
n−1
n Sn(A)

]
= 0 and then computing the

following derivative in n:

∂n

[
n− 1
n

Sn(A)
]
= fsth(nβn)

n2
−
[
f

n
(∂βSth)nβn

∂n (nβn) + (1− f) (∂βSth)βn
∂nβn

]
The terms inside the square bracket cancel by the thermodynamic relation:

1
T

dE
dT

= dS

dT
→ dE

dβ
= dS

dβ

1
β

(3.17)
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in conjunction with the matching condition equation (3.12) for βn. Therefore the following
differential relation holds:

∂n

[
n− 1
n

Sn(A)
]
= fsth(nβn)

n2
= S̃n(A)

n2
(3.18)

in accordance with eq. (3.8).
It may be worth discussing the range of the Renyi-index n to which the gluing construction

is applicable. To this end we perform the following rough estimate. In order for the gluing
construction to be a good approximation, (n− 1) also needs to be parametrically bounded
from below. The effectiveness of the approximation requires the action contribution of the
cosmic-brane to parametrically outweigh the corresponding bulk contribution from near the
entangling surface ∂A– the latter is neglected in the gluing construction. In very crude
terms, this requires that: (

n2 − 1
n

)
fSth ≫ (βE) ζ (3.19)

The left hand side represents the cosmic-brane effective action, and the right hand represents
the bulk action within a characteristic length scale ζ near ∂A. To be more explicit, we
can make the following estimates:

Sth ∼
√
E , β ∼ 1/

√
E , ζ ∼ β (3.20)

Then (3.19) parametrically corresponds to requiring that:

n− 1 ≫ E−1/2 (3.21)

This lower bound is therefore invisible to us in the high density limit. The nature of this
bound is conceptually similar to the requirement of (n− 1) ≫ 1/c implicitly assumed in the
cosmic-brane prescription — such that the classical action contribution from the cosmic-brane
parametrically outweighs the quantum corrections that is neglected. It is worth mentioning
that despite this subtlety, the limits of n → 1 and c → ∞ are usually assumed to be
commuting in most holographic contexts. However, there are scenarios [44, 45] where they
do not commute and the order of limits is indeed important.

3.3 Gluing construction at fixed KdV charges

Now we generalize the gluing construction to the context of ensembles at a finite number of
fixed KdV charges. The goal is to compute the Renyi entropy in ensembles at fixed KdV
charges ⟨Q2k−1⟩ = q2k−1, k = 1, . . . ,m, which we collective denote as {q}:

S{q}
n (A) = 1

1− n
lnTrρnA({q}), ρA({q}) = TrĀρmicro

{q} (3.22)

along a finite interval LA = fL. We begin with the micro-canonical ensemble at these KdV
charges. By similar lines of argument, the gluing construction is an effective approximation
in the large charge-density limit:

q2k−1 ≫ L1−2k, k = 1, . . . ,m (3.23)
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Given that q2k−1 ≥ qk1 , this would follow if only the high energy density limit is fulfilled:

E = ⟨q1⟩ ≫ L−1 (3.24)

Again we are only focusing the L-scaling part of the result, i.e. ignoring contributions coming
from the junction effects near ∂A.

More specifically, we propose to construct the back-reacted geometry Bn computing
S
{q}
n (A) as follows. We glue two segments of black hole geometries long A and Ā respec-

tively. The segments are characterized by two sets of KdV chemical potentials {µA} and
{µĀ} — locally they are the black hole solutions describing the GGEs e−

∑
k
µ̃2k−1

A Q̂2k−1 and
e−
∑

k
µ̃2k−1

Ā
Q̂2k−1 respectively. The natural gluing conditions to be imposed at the junction are:

µ2k−1
A = nµ2k−1

Ā
= nµ2k−1, k = 1, . . . ,m (3.25)

while the asymptotic boundary conditions characterizing ρmicro
{q} now impose additional match-

ing conditions for each of the fixed KdV charges q2k−1:

f⟨Q2k−1⟩n{µ} + (1− f)⟨Q2k−1⟩{µ} = q2k−1, k = 1, . . . ,m (3.26)

where ⟨Q2k−1⟩{µ} is the k-th KdV charge density evaluated in the black solution describing
e−
∑

k
µ̃2k−1

A Q̂2k−1 . From these we should solve for ({µn}), the refined and ordinary Renyi
entropies are given analogously to (3.15), (3.16):

S̃{q}
n (A) = fSth(n{µn})

S{q}
n (A) = fSth(n{µn}) + (1− f)nSth({µn})− nSth({µ1})

1− n
(3.27)

The integral over n is done similarly by invoking the extended thermodynamic relations
together with the matching conditions (3.26):

m∑
k=1

µ2k−1d⟨Q2k−1⟩
dµ2j−1 = dS

dµ2j−1 , j = 1, . . . ,m (3.28)

So far the analysis has been a straightforward generalization of the computation for the
ordinary micro-canonical ensemble in energy. Before we end the general discussion and turn
to more concrete cases, let us clarify some subtleties that arises due to the nature of the
KdV-charged black hole solutions.

Firstly, for GGEs with k non-zero KdV chemical potentials, as discussed before the generic
finite-zone black holes are labeled by k − 1 free parameters. When carrying out the gluing
construction, a glued solution is physical only when the black hole geometries along each of
the segments A and Ā are the dominant Euclidean saddle-points in the corresponding GGEs
at (nβ, µ1, . . . , µk) and (β, µ1, . . . , µk) respectively. Otherwise their charges do not represent
the correct expectation values in the GGEs when satisfying matching conditions. However,
it is beyond the scope of this work to fully identify the dominant Euclidean saddle-point
systematically. For our purpose, we will for the most part confine the analysis to include
only BTZ and one-zone black holes. We will refrain from including black hole solutions
with more than two zones. Roughly speaking, black holes with a larger number of zones
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Figure 3. In a legitimate glued solution, each consisting of segments should come from the dominant
Euclidean saddle of the corresponding GGEs along A and Ā respectively.

excite more oscillatory modes and thus tend to have higher energies, they are therefore less
likely to be thermodynamically stable. These are intuitions subject to closer scrutiny, we
leave them for future investigations.

Secondly, there may be cases where multiple glued solutions exist that are all physical
in the sense just described, i.e. each consisting of segments from the dominant Euclidean
saddle of the corresponding GGEs along A and Ā respectively. They should then all be
considered as quotients of legitimate Euclidean saddle-points for the partition function on
the replica manifold that computes the Renyi entropy:

Z(ΣnA) = TrρnA (3.29)

The glued solution to be identified as the dominant Euclidean saddle-point of Z(ΣnA) should
then be determined by minimizing the corresponding free energy, which in this case is
proportional to the Renyi entropy Sn(A).

Thirdly, as has been suggested in (3.25) by the index range, the glued solutions should
be constructed using black holes segments from GGEs with only the first m KdV chemical
potentials {µ2k−1, k = 1, . . . ,m} turned on. This is to be compatible with the underlying
micro-canonical ensemble fixing the first m total KdV charges:

ρmicro
{q} = N−1P̂{q} (3.30)

However, there may be cases where under such constraints it is impossible to find glued
solutions that are valid saddle-points of the Renyi entropy computations in the sense just
discussed. We can then choose to consider more general GGEs, i.e. those of the form
with m′ > m KdV chemical potentials turned on {µ2k−1, k = 1, . . . ,m′}. However, we
shall interpret the additional chemical potentials {µ′} = {µ2k−1,m < k ≤ m′} as physical
parameters, i.e. not to be solved from gluing/matching conditions. Accordingly the glued
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solutions constructed from these GGEs should be interpreted as saddle-points responsible
for computing the Renyi entropies in the following ensembles:

ρ
{µ′}
{q} = N−1P̂{q}e

−
∑

k>m
µ̃2k−1Q̂2k−1 (3.31)

Namely, in these ensembles the states within the micro-canonical shell labeled by {q} do not
contribute with equal weights as the micro-canonical ensemble does, but instead are weighted
according to their higher KdV charges {Q2k−1, m < k ≤ m′}. These are the generalized
form of the mixed ensemble considered in section (2.4.3). Related to this, the Renyi entropy
formula (3.27) should be modified accordingly by replacing the thermodynamic quantities used:

Sth → Sth −
∑
k>m

µ̃2k−1Q̂2k−1 (3.32)

Lastly, generic finite-zone solutions are inhomogeneous, i.e. the classical stress energy
field u(φ) varies along the spatial circle. Such inhomogeneity may therefore add additional
subtleties to the gluing construction, e.g. the location of the junction ∂A inside each black
hole segment may become relevant. Although most of the explicit gluing computations in
later sections only concern the BTZ geometries, let us make some comments regarding this
issue. We argue that in the limit of our interest, we can neglect such inhomogeneity and treat
the KdV charge densities as homogeneously distributed along the spatial circle, i.e. the partial
KdV charges along the segments are simply given by f⟨Q2k−1⟩ and (1− f)⟨Q2k−1⟩. There
are two reasons for such an approximation. Firstly, in the high charge density limit a generic
solution has its typical scale of density oscillation much smaller than the subsystem size.
Therefore the details of density distribution reflecting the inhomogeneity is subleading to the
limit we are interested. At a more fundamental level, in [34] it was argued that the gravity
dual of the CFT GGE, even at fixed zone parameters, does not correspond to an individual
finite-zone solution, instead one should statistically average over the Jacobian manifold of
the phase space related to the finite-zone solution. This includes in particular the images
under translation. Upon averaging, the details related to the inhomogeneity are obliviated.

4 Holographic Renyi entropy at fixed ⟨Q1⟩ and ⟨Q3⟩

In this section, we apply the prescription in (3.3) to a concrete setting. We study in detail
the ensembles fixing only the first two KdV charges:

⟨Q1⟩ = q1, ⟨Q3⟩ = q3 (4.1)

In the high density limit we impose that q1 ≫ 1, q3 ≫ 1. A glued solution consists of two
segments of black hole solutions from a GGE with chemical potentials collectively denotes
as µ = {µ}. The gluing/matching conditions combined take the form:

f⟨Q1⟩nβ,µ + (1− f)⟨Q1⟩β,µ = q1

f⟨Q3⟩nβ,µ + (1− f)⟨Q3⟩β,µ = q3 (4.2)

We will consider the micro-canonical ensemble:

ρmicro
q1,q3 = N−1P̂q1,q3 (4.3)
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and will later extend to the mixed ensembles:

ρβq1,q3 = N−1P̂q1,q3 e
−βQ̂5 (4.4)

4.1 Glued BTZ geometries

We begin with the computation in ρmicro
q1,q3 . The corresponding Renyi entropy Sq1,q3

n (A) is then
computed by constructing the glued solutions using GGEs of the form:

ρGGE(β, µ) = N−1e−β(Q̂3+µ̃Q̂1) (4.5)

As has been discussed in section (2.2), these GGEs only have the BTZ black holes as stable
Euclidean saddle-points, the one-zone black holes have negative temperatures. We therefore
compute the glued-solutions using only BTZ black holes. When the black hole segments
are both BTZs, their KdV charge densities satisfy:

⟨Q3⟩nβ,µ = ⟨Q1⟩2nβ,µ = q2A, ⟨Q3⟩β,µ = ⟨Q1⟩2β,µ = q2
Ā

(4.6)

In this case, (qA, qĀ) can be solved from the matching conditions alone:

fqA + (1− f)qĀ = q1, fq2A + (1− f)q2
Ā
= q3 (4.7)

They are explicitly given by:

q±A = q1 ∓ (1/f − 1)1/2
√
∆q3, q±

Ā
= q1 ± (1/f − 1)−1/2√∆q3 (4.8)

where we have defined:

∆q3 = q3 − q21 > 0 (4.9)

We are interested in the effect of ∆q3 that are visible in the high density limit, so we always
assume that ∆q3 ∝ q21 ≫ 1. There are two branches of glued BTZ solutions (4.8): the (+)
branch exists for ∆q3/q21 < (1/f − 1)−1; the (−) branch exists for ∆q3/q21 < 1/f − 1. For
each branch the KdV charges are n-independent. The n-dependence comes from the gluing
conditions, and in this case they only determine the GGE parameters describing the BTZ
geometries. They are fixed by requiring that:

qA = ⟨Q1⟩BTZnβn,µn
, qĀ = ⟨Q1⟩BTZβn,µn

(4.10)

For BTZ geometries in (4.5) they become the following algebraic equations:

2π
√
qA

= nβn (2qA + µn) ,
2π
√
qB

= βn (2qB + µn) (4.11)

The solutions for (β, µ) are given simply by:

βn =
π
(
n
√
qA −√

qĀ

)
n
√
qAqĀ (qĀ − qA)

, µn =
2nq3/2A − 2q3/2

Ā√
qĀ − n

√
qA

(4.12)
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One can check that of the two branches in (4.8), only the q+
A,Ā

branch:

qA = q1 − (1/f − 1)1/2
√
∆q3, qĀ = q1 + (1/f − 1)−1/2√∆q3 (4.13)

corresponds to BTZ segments with positive temperatures β > 0. From these Q1 charges,
one can directly obtain the Renyi entropies:

S̃n(A) =
fπ

√
qA

2GN

Sn(A) =
πn

√
qA

2GN (n− 1)

[√
u0
qA

− (1− f)
√
qĀ
qA

− f

n

]
(4.14)

where u0 is the thermal entropy of the original micro-canonical ensemble ρmicro
q1,q3 . An immediate

problem with the glued BTZ solution (4.13), (4.12) is that the BTZ segments have positive
temperatures only for n ≥ nc:

nc =
√
qĀ/qA (4.15)

For n < nc, the BTZ segments are of negative temperatures, and thus (4.13), (4.12) ceases to
be a valid saddle-point geometry of the cosmic-brane back-reaction. On the other hand, we
know that for GGEs of the form (4.5) the only stable Euclidean saddle-point are the BTZ
black holes. As a result, for n < nc we run out of ingredients to construct a glued solution
using well-defined black hole segments — the cosmic-brane back-reaction on ρmicro

q1,q2 no longer
yields a well-defined bulk dual. We perceive this as a consequence of the fact discussed in
section (2.4.3) that ρmicro

q1,q3 itself does not have well-defined bulk dual, which is revealed in the
limit of diminishing back-reaction n → 1. We remark that a phase transition at a critical
Renyi index nc precisely equal to (4.15) was also discovered in the companion paper [1] using
more general approaches, but concerning a different class of ensembles.

As commented at the end of section (3.3), for lower n < nc we could remedy the situation
by considering glued solutions in more general ensembles. By doing this, the back-reacted
solution is likely to have a well-defined gravity dual. The simplest choice is to add an
additional chemical potential for Q̂5, which we view as the new temperature, and solve the
gluing/matching equation by black holes in the GGEs:

ρ = N−1 e−βH, H = Q̂5 + µ3Q̂3 + µ1Q̂1 (4.16)

In section (2.4) we have studied in details the properties of the BTZ black holes in these
GGEs. As a result of making this modification, we are now effectively computing the Renyi
entropies in the mixed ensemble of the form studied in section (2.4.3):

ρβq1,q3 = N−1P̂q1,q3 e
−βQ̂5 (4.17)

The glued BTZ solutions still consist of two branches of charge densities (4.8) — they come
only from the matching conditions. The GGE parameters are solved by the gluing conditions
in terms of the BTZ saddle-point equations in (4.16):

2π
√
qA

= nβ
(
3q2A + 2µ3nqA + µ1n

)
,

2π
√
qĀ

= β
(
3q2
Ā
+ 2µ3nqĀ + µ1n

)
(4.18)
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The temperature T = 1/β > 0 is fixed as the physical parameter. In this case, both branches
of (4.8) consists of BTZ segments with positive temperatures. We begin with the (+)
branch (4.13), and will discuss the other one subsequently. The remaining GGE parameters
(µ3n, µ1n) can then be solved and are given by:

µ3n =
2π
(√

qĀ − n
√
qA
)
+ 3n√qAqĀ

(
q2
Ā
− q2A

)
β

2n√qAqĀ (qA − qĀ)β

µ1n =
2π
(
nq

3/2
A − q

3/2
Ā

)
+ 3n (qAqĀ)

3/2 (qA − qĀ)β
n
√
qAqĀ (qA − qĀ)β

(4.19)

Therefore at fixed β > 0, the glued BTZ solutions (4.13), (4.19) in the mixed ensemble (4.17)
can stand as smooth bulk solutions to the gluing construction at any n. The Renyi entropies
from these glued solutions are given analogously by:

S̃n(A) =
fπ

√
qA

2GN

Sn(A) =
πn

√
qA

2GN (n− 1)

[√
u0
qA

− (1− f)
√
qĀ
qA

− f

n

]
− βn

4GN (n− 1)
[
Q5 − (1− f)q3

Ā
− fq3A

]
(4.20)

where we have invoked the substitution (3.31) for computing the Renyi entropy in the mixed
ensembles, and (u0,Q5) are the entropy and Q5 expectation value in the original ensemble
ρβq1,q3 . The next task is to investigate whether they correspond to the dominant Euclidean
saddle of TrρnA, in which case (4.20) gives the correct Renyi entropies. The answer depends
on the physical parameters, which in total include (q1, q3, n, β). We will focus on a particular
regime for q1 and q3 that we call the near-primary regime, to be introduced as follows.

4.2 Near-primary regime

As discussed in the introduction, our goal is to study ensembles that resemble the primary
states. In terms of the fixed KdV charges (q1, q3), we are therefore interested in the cases
where they approach to saturate the relation:

q3 → q21 (4.21)

We emphasize that in doing this, we keep ∆q3 ∝ q21 ≫ 1 visible in the high density limit,
it is the ratio:

ϵ =
√
∆q3/q1 (4.22)

that we are sending to small values. Notice that if we send ∆q3 itself to small values, but
remain in the classical description, i.e. at the leading order in c→ ∞, it describes the BTZ
black holes. If we further enforce Q̂3 = Q̂2

1 exactly on the quantum KdV charges, it describes
primary states in the boundary CFTs. For this reason, we will take liberty to call the regime
ϵ ≪ 1 near-primary, even though ∆q3 ≫ 1.
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From now on let us work in the near-primary regime and focus on the mixed ensemble
ρβq1,q3 . We are interested in the range of n in which the glued BTZ solutions (4.13), (4.19)
provide the dominant saddle-point for the computation of the Renyi entropy. The Renyi
entropies are then given by (4.20). We remind that for the micro-canonical ensemble the
range is simply given by:

n > nc =
√
qĀ
qA

= 1 + ϵ

2
√
f(1− f)

+ . . . (4.23)

in the near-primary regime. As discussed at the end of section (3.3), an affirmative answer
favoring the glued BTZ can be decomposed into two aspects: (i) it has to be a valid saddle-
point in the sense discussed previously; (ii) when multiple saddle-points exist, it has to
minimize the Renyi entropy against other possibilities.

4.2.1 Instability towards n → 1

Recall that a glued solution is valid if both of the black hole geometries along A and Ā are
stable in the corresponding GGEs. For the glued BTZ solution (4.13), (4.19), this amounts
to requiring that both BTZ segments along A and Ā are thermodynamically stable in the
GGE with parameters (nβ, µ3n, µ1n) and (β, µ3n, µ1n) respectively. The answer to this question
depends on the Renyi index n through the GGE parameters. In what follows we analyze
this question as n is varied.

Let us first think in general about the n → 1 limit of the glued BTZ solutions. It is
clear that they cannot persist as good approximations to the back-reacted geometry. This is
because that when the cosmic-brane tension vanishes as n → 1, the bulk geometry of the
original mixed ensemble should be recovered. It is studied in section (2.4.3), and among
other properties it is homogeneous with respect to subregions. Therefore the distinction
between the A and Ā segments should diminish as n → 1. It is clear that the glued BTZ
solution fails to exhibit this, e.g. the charge density difference between A and Ā remains
fixed as one takes the limit n → 1:

qĀ − qA =
√

∆q3
f(1− f) (4.24)

Related to this, it fails the expectation that in the n→ 1 limit S̃n(A) should coincide with
the von-Neumann entropy Svn(A) of the original ensemble. In our case Svn(A) is simply
given by the fractional thermodynamical entropy computed in section (2.4.3):

lim
n→1

S̃n(A) =
fπ

√
qA

2GN
̸= Svn(A) =

fπ
√
u0

2GN
(4.25)

Because of this, sufficiently close to n = 1 the glued BTZ solution has to become unphysical
and give ways to other forms of solutions, so as to be consistent with the above considerations.
In other words, the BTZs along either of the segments A and Ā has to become unstable
in the corresponding GGEs.

We consider two types of instabilities. Firstly, it could become unstable due to additional
BTZ solutions in the same GGE but has lower free energies, i.e. unstable via first order
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phase transitions, we will call these the first order instabilities. Secondly, the BTZ segment
could become perturbatively unstable in free energies against nearby one-zone black holes,
we will call these the second order instabilities for reasons to be discussed later. Both have
been discussed in (2.4). It is worth pointing out that the first-order instability is guaranteed
to be present at n = 1, where the BTZ segments along A and Ā belong to the same GGE
(β, µ31, µ11). As a result, the charge densities (h, h̄) = (qA, qĀ) correspond to two distinct roots
of the same saddle-point equation from extremizing FBTZ(h):

2π√
h
= β

(
3h2 + 2µ31h+ µ11

)
(4.26)

It is impossible for both (h, h̄) to be the global minimum of the GGE. One of the them has
to have higher free energy — either as a local maximum or as a meta-stable local minimum.
This provides a “backup” channel of instability that prevents the glued BTZ solution from
reaching all the way to n = 1, as expected.

Now we investigate in details the onset of the instabilities considered. The thermodynamic
properties of the BTZ black hole segments along A and Ā depend on the corresponding
parameters (χĀ1,2, χA1,2) defined in section (2.4). According to (4.19) they are given by:

χA1 =
(

πT

nq
5/2
A

)
, χA2 =

(
µ3n
qA

)
= 2χA1 (nc − n) + 3nc(n4c − 1)

2nc(1− n2c)

χĀ1 =

 πT

q
5/2
Ā

 , χĀ2 =
(
µ3n
qĀ

)
= 2χĀ1 (nc − n) + 3n

(
1− n−4

c

)
2n
(
n−2
c − 1

) (4.27)

Let us recall some relevant discussions from the stability analysis in section (2.4). For our
purpose, a BTZ segment, say along A with Q1 charge density h, is perturbatively unstable
against nearby one-zone black holes in the corresponding GGE if both its branches (h,w±)
are deformable and exhibit negative free energy cost δF < 0, as computed in (2.40). When
the BTZ is deformable as the p→ 1 limit of one-zone black holes, we have concluded that
the w+ branch is always thermodynamically stable. In this case we can pick the w+ branch
for the glued BTZ solution and avoid potential instabilities. Therefore the second order
instabilities can only happen when the BTZ is deformable as the p → 0 limit of one-zone
black holes. This corresponds to when:

χ1 > 4, max{y±} < χ2 < ζ̃4 = −2√χ1 − 1 < 0 (4.28)

where y± are the threshold values determined by the roots of (2.4.2).
If any of the BTZ segments (4.27), say that along A with Q1 charge density h, comes

from a GGE satisfying (2.33), it becomes susceptible to the first order instability via bubble
nucleation into another BTZ saddle-point with Q1 charge density h′ in the GGE that has
lower free energy:

FBTZ(h) > FBTZ(h′) (4.29)

At generic values of n, multiple types of instabilities in either BTZ segment may coexist.
We are interested in the earliest onset of instability starting from sufficiently large n, i.e. the
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maximum value of ncut at which some instability occurs in either BTZ segment (4.27). This
value is very important because it provides a cut-off for n below which we can no longer
trust (4.14). As we will discuss later, it then reveals important entanglement properties
underlying the ensemble ρβq1,q3 across A.

As n is varied, χ1 ≡ χĀ1 is fixed, and we treat it as representing the temperature T . In
the near-primary limit nc−1 ∼ ϵ≪ 1, we can summarize the results regarding ncut as follows.
The details of the analysis can be referred to in the appendix (D).

• In the high temperature limit, ncut is dictated by the second order instability along the
Ā segment and admits the following expansion in η = 1/χ1/4

1 :

ncut (χ1) = nc −
2(n2c − 1)

nc
η2 + 9n4c − 14n2c + 5

2n3c
η4 + . . . (4.30)

• In the low temperature regime, ncut is dictated by the first order instability along the
A segment, and there is a lower limit ∆χ1 at which ncut diverges:

ncut (χ1) =
17n4c − 14n2c + 3− 6n6c

2n3c (χ1 −∆χ1)
+ . . . , ∆χ1 =

(n2c − 1)(3n2c − 1)
2n4 (4.31)

For lower temperatures χ1 ≤ ∆χ1, the glued BTZ solution becomes invalid for all n ≥ 1.

• There is an intermediate temperature χc, at which the first order instabilities are absent
along both segments for all n ≥ 1, and ncut is given by the second order instability
along A:

ncut(χc) = 1 + 5
16 (nc − 1)3 + . . . , χc =

1
2n

−4
c (1 + nc)3 (4.32)

This marks the closest to n = 1 that the lower cut-off ncut can get at fixed (q1, q3).

In terms of the small parameter ϵ, we conclude that away from the low temperature
gap χ1 ≫ ∆χ1 ∼ ϵ, ncut remains close to 1, i.e. ncut − 1 ≲ nc − 1 ∼ ϵ; it approaches the
closest to 1 with ncut − 1 ∼ ϵ3 at χ1 = χc ≈ 4. We illustrate these in figure (4), which
shows the phases of ncut(χ1) according to the numerically computed values of nA,Ā and n′

A,Ā

for an explicit choice of nc =
√
qĀ/qA.

4.3 Other glued solutions

Having understood the range of validity for the glued BTZ solution (4.13), (4.19), we address
the remaining issue concerning its status as the dominant saddle-point for TrρnA. In practice,
this amounts to asking whether there exist other glued solutions to the gluing/matching
conditions yielding lower Renyi entropies. An obvious alternative glued solution is the
other branch of (4.8):

qA = q1 + (1/f − 1)1/2
√
∆q3, qĀ = q1 − (1/f − 1)−1/2√∆q3 (4.33)

For positive temperature β > 0, the remaining GGE parameters are still given by (4.19),
but for this branch we have qA > qĀ. In the near-primary regime, after a careful analysis
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Figure 4. The phase of ncut(χ1) with nc = 1.3.The individual curves nA,Ā represent the second order
instabilities along A and Ā respectively; and n′

A,Ā
represent the first order instabilities along A and Ā

respectively. The lower cut-off ncut is the maximum among these curves.

it is revealed that this branch can never be a valid saddle-point of TrρnA, despite having
positive temperatures. More precisely, it can be checked that for n ≥ 1 and qA > qĀ, the only
possibility requires that h = qA be a p = 1 limit BTZ in the GGE (nβ, µ3n, µ1n); h̄ = qĀ be a
p = 0 limit BTZ in the GGE (β, µ3n, µ1n); and both GGEs admit three BTZ solutions. Using the
results of the BTZ phase diagram in section (2.4), one can then deduce that this is impossible.

We now discuss the possibility of glued solutions consisting of more general black hole
segments, e.g. one-zone black holes. This requires that we solve the gluing/matching condition
by assuming more general KdV charge relations representing one-zone black holes. It is a
difficult but in principle doable computation. We will come back to this in the discussion
section. For the moment let us observe that as n decreases, for χ1 > 4 the second-order
instabilities are triggered as soon as the BTZ segments become deformable to nearby one-zone
black holes; for χ1 < 4 the first-order instabilities are triggered before the BTZ segments
become deformable to nearby one-zone black holes. We therefore conclude that for n > ncut,
the glued BTZ solution does not admit deformations to other glued solutions consisting
of nearby one-zone black holes.

We conclude therefore that for n > ncut, the glued BTZ solution (4.13), (4.19) is the only
glued solution that is valid. We can therefore trust the Renyi entropies (4.20) for n > ncut.
Admittedly, the perturbative analysis considers only nearby configurations when arguing for
the thermodynamic stability of the BTZ segments and the absence of more general glued
solutions. Intuitively, in the near-primary regime ϵ =

√
q3 − q21/q1 ≪ 1 such considerations
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are likely to capture the full picture. We leave the task of non-perturbative analysis to the
future. This is important for studying more general cases, e.g. ensembles with generic fixed
KdV charges that are away from the near-primary regime.

4.4 Implications for the entanglement spectrum

Let us summarize the results in terms of the Renyi entropy. For ϵ =
√
q3 − q21/q1 ≪ 1 and

consider the micro-canonical and mixed ensemble of KdV charges:

ρmicro
q1,q3 = P̂q1,q3 , ρβq1,q3 = N−1e−βQ̂5 P̂q1,q3 (4.34)

The Renyi entropy Sn(A) is simply given by:

Sn(A) =
π

2GN
f
√
qA + π

2GN
n(1− f)√qĀ − nSth

1− n
, qA = q1

(
1− ϵ

√
f−1 − 1

)
(4.35)

This result is valid for Renyi indices n > ncut, where the lower cut-off ncut =
√
qĀ/qA in

ρmicro
q1,q3 , and depends on the rescaled temperature χ1 = πT/q

5/2
Ā

according to the phases
illustrated in figure (4) for ρβq1,q3 . For n < ncut, the only knowledge is its value at n = 1,
given by the von Neumann entropy:

S1(A) = SvN (A) = fSth (4.36)

The interpolation from n = 1 to n ≥ ncut depends on the resolutions of the instabilities
discussed in section (4.2.1). They are beyond the scope of this work, and we leave its
discussions to section (5).

Now we explore some implications. An important aspect of the entanglement properties
regarding the reduced density matrix ρA = TrĀρβq1,q3 is its entanglement spectral density g(λ).
It is related to the Renyi entropies via Laplace and inverse Laplace transformations:

TrρnA =
∫
dλ g(λ)e−nλ = e−(n−1)Sn(A), ρA =

∫
dλ e−λ|λ⟩⟨λ|

g(λ) = 1
2πi

∫ Γ+i∞

Γ−i∞
dn′ en

′λ e(1−n
′)Sn′ (A) (4.37)

With only the partial knowledge of Sn(A) for n > ncut, it is difficult to perform the inverse
Laplace transform explicitly. We instead aim at deducing features of the entanglement
spectral density g(λ) that could consistently reproduce the qualitative behaviors of the
Renyi entropies. We focus on those that are relevant at ϵ ≪ 1 for ρmicro

q1,q3 and the high
temperature phase of ρβq1,q3 :

• As the Renyi-index n varies between [1,∞], the value of the Renyi entropy is bounded
by the asymptotic values in a window of width:

∆S = S1(A)− S∞(A) ∝ ϵfSth (4.38)

The most prominent feature is that ∆S shrinks with vanishing ϵ.
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Figure 5. Left: general feature of the Renyi entropy Sn(A); right: general features of the entanglement
spectral density g(λ) implied by the left.

• The Renyi entropy approaches a constant, i.e. becomes independent of n, for sufficiently
large n − 1 ≫ δncut. The most prominent feature is that δncut also shrinks with
vanishing ϵ, see figure (5).

In order to be consistent with these features, we propose that the entanglement spectral
density are characterized by a bounded support:

g(λ) =

g(λ), fSth −∆S ≤ λ ≤ fSth +∆S
0, otherwise

(4.39)

with vanishing densities towards the edges of the window, see figure (5). Correspondingly,
the most prominent feature is that the width of the spectral support coincides with ∆S and
thus also shrinks with vanishing ϵ. In the appendix (E), we demonstrate this in a toy model
expression of Sn(A) that exhibits similar features.

We end this section with the following comment. It is tempting to extrapolate this
observation to the actual primary states with ϵ→ 0, towards which the entanglement spectral
density collapse to a single delta functional peak:

g(λ) = eS0δ(λ− S0) (4.40)

and resulting in an n-independent Renyi entropy for all n ≥ 1:

Sn(A) = Svn(A), n ≥ 1 (4.41)

In other words, the extrapolation to the primary states at ϵ→ 0 yields a flat entanglement
spectrum. States whose entanglement properties exhibit this feature are important in
understanding the backbones of AdS/CFT. For example, they characterize some tensor
network models of holography [46, 47]; they are also related to the so-called fixed area states
that underly the effective configuration space of quantum gravity [48–50].

5 Discussions

In the final section, we first summarize the main points of the paper. After that we discuss some
remaining issues, along which potential outlooks for future investigations will be suggested.
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5.1 Summary

In this paper, we discussed the computation of holographic Renyi entropies for ensembles
with fixed KdV charges, and used the results to explore the underlying entanglement prop-
erties. This is relevant to the question of subsystem ETH in holographic 2d CFTs. The
computation utilizes two ingredients: the cosmic-brane prescription, which is applicable to
generic holographic states; and the gluing construction, which is an approximation scheme
to solve the cosmic-brane back-reaction. The gluing construction was proposed in [33], and
we extended it to cases with fixed KdV charges. As an approximation scheme, it is effective
when computing the Renyi entropies at the leading order in the high KdV charge density
limit. This is the limit our computation focused on in this work.

To be explicit, we performed the computation on cases with the first two KdV charges
fixed to ⟨Q1⟩ = q1 and ⟨Q3⟩ = q3 > q21. We first considered the micro-canonical ensemble:

ρmicro
q1,q3 = N−1P̂q1,q3 (5.1)

and subsequently extended to mixed ensembles decorated with a temperature β for the
next KdV charge Q5:

ρβq1,q3 = N−1P̂q1,q3 e
−βQ̂5 (5.2)

The gluing construction involves finding segments of black hole geometries that solve a set of
gluing/matching conditions. For our cases these black holes carry KdV charges in AdS3/CFT2.
They are described by the so-called finite-zone solutions, of which the BTZ black holes is
a special class with zero-zone. We systematically surveyed the thermodynamic properties
of the BTZ and one-zone black holes in the relevant ensembles. Based on the results, we
focused on the glued-solutions in the near-primary regime between the fixed KdV charges:

ϵ =
√
q3/q21 − 1 ≪ 1 (5.3)

We found that for sufficiently large Renyi index n > ncut, the dominant glued solution takes
the form of two segments of BTZ black holes of Q1 charge densities:

qA = q1

(
1− ϵ

√
f−1 − 1

)
, qĀ = q1

(
1 + ϵ√

f−1 − 1

)
(5.4)

For n > ncut, the Renyi entropy Sn(A) is equal to:

Sn(A) =
π

2GN
f
√
qA + π

2GN
n(1− f)√qĀ − nSth

1− n
(5.5)

This features an n-independent refined Renyi entropy:

S̃n(A) =
fπ

√
qA

2GN
(5.6)

The lower cut-off ncut for the Renyi index corresponds to when the glued solution becomes
unphysical. For the micro-canonical ensemble it is given by:

ncut = nc =
√
qĀ
qA

= 1 + ϵ

2
√
f(1− f)

+ . . . (5.7)
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below which the BTZ segments have negative temperatures. For the mixed ensemble
ncut depends on both nc and the temperature through the combination χ1 = πT/q

5/2
Ā

.
It corresponds to when the BTZ segments become unstable in the corresponding GGE.
We found that ncut is also close to 1, i.e. ncut − 1 ≲ ϵ, for sufficiently high temperatures
satisfying χ1 ≳ χc ≈ 4. The general features of the Renyi entropy imply that the underlying
entanglement spectral density g(λ) is characterized by a bounded support:

fSth −∆S ≤ λ ≤ fSth +∆S (5.8)

The extrapolation to ϵ→ 0 then reveals a flat entanglement spectrum, which is reminiscent
of the fixed-area states in AdS/CFT.

5.2 Primary states vs. fixed-area states

The most prominent feature of the holographic Renyi entropy at fixed KdV charges (q1, q3) is
the n-independence of the refined Renyi entropy S̃n(A) for n > ncut, where ncut → 1 in the
ϵ→ 0 limit towards primary states. We can interpret this behavior as describing the restricted
nature of the gravitational back-reaction in the bulk dual of the mixed ensemble (5.2), upon
the insertion of cosmic-branes. It can be contrasted with that of ordinary BTZ black holes
representing the micro-canonical ensembles. Intuitively the restriction is a result of the
additional conservation law imposed on the KdV charges, which then affects the gravitational
dynamics in AdS3/CFT2.

Taking ϵ→ 0 then leads to a flat entanglement spectrum across any finite interval A. The
Renyi entropy Sn(A) is equal to the von-Neumann entropy for all n ≥ 1. In these states, the
insertion of cosmic-branes produces no effect on the minimal surface area. This is the defining
character of the fixed-area states that encode super-selection sectors of the bulk configuration
space [48]. In other words, the gravitational back-reaction is restricted to the maximal
extent — it appears to be “frozen” in the ϵ→ 0 limit. One can understand this as follows.
The saturation of q3 ≥ q21 automatically implies the saturation of infinitely many relations
q2k−1 ≥ qk1 among the KdV charges. The states in the ϵ → 0 limit is therefore implicitly
defined by infinitely many conservation laws restricting its gravitational interaction with
cosmic-branes. The flat entanglement spectrum may be a consequence of this. We remark that
in the ϵ→ 0 limit, the metric of the original bulk dual is the same as an ordinary BTZ black
hole. Its characterizations from ϵ→ 0 are encoded in the response to cosmic-brane insertions.

On the other hand, from the CFT side the computation for the Renyi entropy in primary
states |h⟩ = Oh|Ω⟩ has been performed in [22]. It focused on the same limit of our interest,
i.e. the leading order results for a finite interval in the high energy density limit h/c ∝ q1 ≫ 1
while sending c → ∞. For pure states, we have to restrict to subsystems smaller than
half of the total size, i.e. f < 1/2. In 2d CFTs, the Renyi entropy Sn(A) is related to the
correlation function ⟨OhσnσnOh⟩ in the orbifold CFT, where σn is the twist operator. The
computation was done via the method of monodromy, which computes the Virasoro vacuum
block contribution to the correlation function in the c→ ∞ limit. This is essentially computing
the gravitation back-reaction. The monodromy problem was solved in the high energy limit
using the WKB approximation. The leading order result for Sn(A) is n-independent and
hence implies a flat entanglement spectrum. We therefore had an independent computation

– 36 –



J
H
E
P
0
1
(
2
0
2
5
)
0
6
7

that verify the extrapolation directly for the primary states in 2d CFTs. We perceive this
as in support of the subsystem ETH for the primary states according to their higher KdV
charges. It is reasonable to expect that our results can be extended to all near-primary states
in the high density limit, even for ϵ ≲ c−1. This is indeed the case based on the results in [1].

We clarify by emphasizing that in the ϵ→ 0 limit, the fixed-area property only describes
the leading order behavior of the Renyi entropy, in particular the part scaling with the total
volume, or equivalently the total charge of the state. It is not clear whether the sub-leading
contributions exhibit such properties. In the future, it is interesting to extend the analysis to
subleading orders. Besides, recall that at finite ϵ there exists a critical temperature χ1 = χc
at which ncut− 1 is further suppressed to order O(ϵ3), extending the range of n-independence
for S̃n(A) to the maximum. In the future, it is interesting to understand what underlies this.

5.3 Beyond instabilities

For the mixed ensembles ρβq1,q3 we had based our analysis on identifying the instabilities of
the glued BTZ solutions. We now discuss the nature of these instabilities, which may shed
light on what the back-reacted solution becomes for n < ncut. We have classified the relevant
instabilities into the first order and second order types. We first discuss the second order
instabilities. They are identified by a BTZ black segment, say along A, becomes unstable
against nearby one-zone black holes in the corresponding GGE. It is reasonable to speculate
that by crossing ncut of this nature, the back-reacted geometry takes the form of glued
finite-zone black holes, at least along segment A. For the sake of discussion let us assume it
is a one-zone black holes characterized by p > 0, where we recall:

p = λ3 − λ2
λ3 − λ1

(5.9)

The free energy functional is expected to vary continuously, thus the lowest energy config-
uration also changes continuously from p = 0 to p > 0 across n = ncut. As a result, we
expect the properties of the glued solution to change continuously across the transition, with
p = 0 on one side and p > 0 on the other. In particular, the Renyi entropy Sn(A), which
represents the free energy of the partition function Z(ΣnA), and the refined Renyi entropy
S̃n(A), which represents the derivative of the free energy, are both continuous across the
transition. This is reminiscent of a second order phase transition. The one-zone parameter
p > 0 can then serve as an order parameter. Computing glued solutions of this nature is
in principle tractable, we leave it for future investigations.

Next we discuss the first order instabilities. They are characterized by one of the BTZ
black segments, say with Q1 charge density h along A, switching dominance with another
BTZ saddle of Q1 charge density h′ in the corresponding GGE. We emphasize that it does
not lead to a first-order phase transition between the two BTZ segments of charge density
h and h′ — this violates the matching condition on the total KdV charges. As a result,
it is unclear what the bulk saddle of Z(ΣnA) becomes for n < ncut. Recall that ncut is
dictated by the first order instability for lower temperatures χ1 ≲ O(1). This is roughly
the temperature regime that ρβq1,q3 ceases to have a well-defined black hole dual, see (2.65).
The difficulty for finding the glued solution below n < ncut may be a revelation of this fact,
analogous to the discussion in section (4.1) regarding ρmicro

q1,q3 for n < nc. It is found in the
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companion paper [1] that at large c and for n < ncut, the Renyi entropy in ρmicro
q1,q3 is simply

given by that of the ordinary micro-canonical ensemble at the leading order in 1/c. The bulk
implication of this remains unclear. We conjecture that below n < ncut, the Renyi entropy
can still be computed by the gluing construction, whose validity extends beyond holography,
see appendix (C). However, the segment of the glued solution can no longer be described
by well-defined gravitational saddle-points. The original ensemble ρβq1,q3 may be described
similarly. We leave exploring these possibilities for the future.

5.4 Fixing more KdV charges

In this paper we have studied explicitly the holographic Renyi entropies for ensembles with
fixed ⟨Q1⟩ and ⟨Q3⟩. A natural follow up question is what happens for ensembles with more
KdV charges fixed? In particular, how much of the qualitative features may be preserved
as we fix more and more KdV charges? Without explicitly performing these computations
it is difficult to give concrete answers; we instead discuss some plausible features of the
computations based on their general structures.

The most important question concerns whether the refined holographic Renyi entropy
remain n-independent, at least in some interval, in ensembles with more KdV charges fixed.
To this end, let us first extract the main reason driving behind this. In the case of the
glued BTZ solutions, it comes from the fact that the matching and gluing conditions are
solved separately. The charge densities of the BTZ segments are fixed from the matching
conditions alone, which is independent of n, and this determines the refined Renyi entropy;
the n-dependence is encoded in the gluing conditions, which determine the GGE parameters,
but do not affect the refined Renyi entropy. This is to be contrasted with the computation of
the ordinary micro-canonical ensembles in [33], in which the gluing/matching condition can
only be solved simultaneously, resulting in an n-dependent refined Renyi entropy.

Let us imagine going one step further and solving the gluing/matching condition for
fixing the first three KdV charges:

f⟨Q2k−1⟩nβ,µ3,µ1 + f⟨Q2k−1⟩β,µ3,µ1 = q2k−1, k = 1, 2, 3 (5.10)

By choosing to work with GGEs of three chemical potentials, we are computing the Renyi
entropy in the micro-canonical ensemble ρmicro

q1,q3,q5 . In this case, the matching condition can no
longer be satisfied by gluing two BTZ black hole segments. The reason is that for each BTZ
black hole segment, the KdV charges depend only on one parameter. A glued BTZ solution
therefore has two independent parameters, which is over-determined to satisfy three matching
conditions. We can naturally relax one of the black hole segments to be a one-zone black hole,
whose KdV charges depend on three parameters, namely the zone-parameters (λ1, λ2, λ3). In
this case the glued solution consists of a BTZ segment and a one-zone segment. It has four
independent parameters which is sufficient for satisfying three matching conditions. It is in
fact under-determined. However, what matters is that for any choice of such glued solutions,
it is always possible to find a set of GGEs that satisfy the gluing conditions. There are in
total three equations — one from the BTZ segment and two from the one-zone segment, for
the three independent parameters {β, µ3, µ1}. As a result, similar to the glued BTZ solution,
the matching and gluing conditions are solved separately. Due to the under-determinacy
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of the procedure, we would obtain a class of glued solutions, each giving a refined Renyi
entropy S̃n(A) that is n-independent.

From this example, we conjecture that the separation between solving the matching
and gluing conditions is likely to remain when more KdV charges are fixed. Whether this
eventually leads to refined Renyi entropies that are n-independent (at least piece-wise) would
require further studies. For example, with a class of glued solutions just described, there
could be a few possibilities regarding the optimal one as n is varied. It may undergo a series
of phase transitions; or it may change continuously with n. We should point out that if we fix
four KdV charge ⟨Q2k−1⟩ = q2k−1, k = 1, . . . , 4, there is a unique glued solution consisting of
a one-zone and a BTZ segment satisfying the matching conditions, which is more analogous
to the glued BTZ solution. So the answer may also depend on whether an even/odd number
of KdV charges are fixed. We leave these for future investigations.
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A Conditions (2.21) vs. isolated BTZ black hole

We address a potential paradox regarding the isolated BTZs with real zone parameters
(h,w). As pointed out, they emerge as limits of one-zone black holes that fail to satisfy the
smoothness and physical conditions, yet are themselves perfectly smooth and physical. It
appears in these cases that the conditions (2.21) cannot be extrapolated to at least one of the
BTZ limits, i.e. p→ 0 or p→ 1. To understand this let us quote some of the details in [34]
when deriving the first condition in (2.21), which comes from requiring that f be positive
definite. For one-zone solutions in (2.17), recall that we have:

f(φ) = 2(µ3 + s1) (u(φ)− s1) > 0, s1 = u1 + u2 + u3

u1 = 4(λ1 + λ2 − λ3), u2 = 4(λ1 − λ2 + λ3), u3 = 4(−λ1 + λ2 + λ3) (A.1)

In addition, it can be derived that requiring u0 > 0 forces the zone parameters to be one
of the following arrangements:

{λ3 ≥ λ2 ≥ λ1 > 0} or {λ3 > 0 > λ2 ≥ λ1} (A.2)

For any one-zone solution away from the p = 1 limit, i.e. λ1 = λ2, the profile u(φ) of the
solution oscillates between the interval [u1, u2]. This also includes the p → 0 limit, i.e.
λ2 = λ3, for which u1 = u2 and u(φ) is correctly constrained to be constant. For these
solution, one can obtain the maximum of f(φ) by plugging in u(φ) = u1,2 depending on the
sign of (µ3 + s1), and positive definiteness of f(φ) imposes one of the following constraints:

{µ3 < −s1, λ2 > 0} or {µ3 > −s1, λ3 < 0} (A.3)
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Combining both sets of conditions (A.2) and (A.3) then gives part of the smoothness and
physical conditions (2.21).

On the other hand, the BTZ black holes from the p → 1 limit, i.e. λ1 = λ2 poses an
exception to this argument. The constant profile u(φ) = u2 does not oscillate between [u1, u2]
despite u1 < u2. This then alters the analysis of (A.3), and yields instead the condition:

{µ3 < −s1, λ2 > 0} or {µ3 > −s1, λ2 < 0} (A.4)

which brings the following new possibility to satisfy the smoothness and physical condition:

µ3 > −s1, λ3 > 0 > λ2 = λ1 (A.5)

This corresponds to and thus characterizes the isolated BTZ black hole with real-valued zone-
parameters. As discussed before, physically the p→ 0 limit is approached by profiles u(φ)
with diminishing oscillating amplitudes; while the p→ 1 limit is approached by diminishing
frequency k → 0 with a potentially large amplitude. This explains the “jump” in the
smoothness and physical condition away from isolated BTZ black holes of the p→ 1 limit.

B Phases of BTZ black holes

In this appendix we supplement some details in deriving the phase diagram summarized
in the table (1). We have written down in section (2.4) the inequalities among (h, T, µ3)
characterizing the properties of the underlying BTZ black hole. Next we organize these
inequalities into phases for µ3 at fixed (h, T ). To this end, let us first define the following
quantities:

ζ1 = −
(
πT

2h3/2
)
− 3h, ζ2 = −5h

ζ3 = −
(
2
√
2− 1

)
h− πT

2(
√
2− 1)h3/2

, ζ4 = −
(4πT√

h

)1/2
− h (B.1)

Among them, one can check that we always have ζ1 ≤ ζ4, ζ3 ≤ ζ4. Then we can assemble
and arrange the inequalities into the following phases as µ3 is varied:

• For µ3 < ζ1, the BTZ corresponds to a local maximum of FBTZ and thus cannot be
considered as the thermodynamically dominant saddle-point of the GGE (β, µ1, µ3).

• For ζ1 < µ3 < min {ζ2, ζ4}, both branches (h,w±) are deformable as the p→ 0 limit of
one-zone black holes.

• For max {ζ1, ζ2} < µ3 < ζ4, both branches (h,w±) could be deformable as the p→ 1
limit of one-zone black holes if they further satisfy:

w± >
(√

2− 1
)
h (B.2)

It turns out that this depends on the sign of:

∆p =
(√

2− 1
)
h−

(
πT

4
√
h

)1/2
(B.3)
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If ∆p > 0, only the w+ branches is likely to be deformable, and it is so for:

µ3 < ζ3 (B.4)

If ∆p < 0, the w+ branch is automatically deformable, and the other branch w− is also
deformable for:

ζ3 < µ3 < ζ4 (B.5)

• For µ3 > ζ3 in the case of ∆p > 0 and µ3 > ζ4 in the case of ∆p < 0, the BTZ is
isolated.

Some of the phases could be absent if the corresponding window closes. This depends on
(h, T ). To facilitate further analysis, we define the re-scaled parameters:

χ1 =
(
πT

h5/2

)
> 0, χ2 =

(
µ3
h

)
, ζ̃1 = −χ1

2 − 3

ζ̃2 = −5, ζ̃3 = −
(
2
√
2− 1

)
− χ1

2
(√

2− 1
) , ζ̃4 = −2√χ1 − 1 (B.6)

We then find the following intervals for χ1 defined by (α1, α2, α3) of values:

α1 = 4
(√

2− 1
)2
, α2 = 4

(√
2− 1

)
, α3 = 4 (B.7)

that characterize distinct phase structures as the χ2 is varied:

• χ1 ∈ [α3, ∞]: in this range we have that:

ζ3 < ζ̃1 < ζ̃4 < ζ̃2, ∆p < 0 (B.8)

with the following phases:

χ2 ∈


[ζ̃4,∞] : both (h,w±) are isolated
[ζ̃1, ζ̃4] : both (h,w±) are deformable as the p→ 0 limit
[−∞, ζ̃1] : h is a local maximum of FBTZ

(B.9)

• χ1 ∈ [α2, α3]: in this range we have that:(
ζ̃2, ζ̃3

)
< ζ̃1 < ζ̃4, ∆p < 0, (B.10)

with the following phases:

χ2 ∈


[ζ̃4,∞] : both (h,w±) are isolated
[ζ̃1, ζ̃4] : both (h,w±) are deformable as the p→ 1 limit
[−∞, ζ̃1] : h is a local maximum of FBTZ

(B.11)

• χ1 ∈ [α1, α2]: in this range we have that:

ζ̃2 < ζ̃1 < ζ3 < ζ̃4, ∆p < 0 (B.12)
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with the following phases:

χ2 ∈



[ζ̃4,∞] : both (h,w±) are isolated
[ζ̃3, ζ̃4] : both (h,w±) are deformable as the p→ 1 limit
[ζ̃1, ζ̃3] : only (h,w+) is deformable as the p→ 1 limit
[−∞, ζ̃1] : h is a local maximum of FBTZ

(B.13)

• χ1 ∈ [0, α1]: in this range we have that:

ζ̃2 < ζ̃1 < ζ̃3 < ζ̃4, ∆p > 0 (B.14)

with the following phases:

χ2 ∈


[ζ̃3,∞] : both (h,w±) are isolated
[ζ̃1, ζ̃3] : only (h,w+) is deformable as the p→ 1 limit
[−∞, ζ̃1] : h is a local maximum of FBTZ

(B.15)

C Additional support for the gluing construction (3.11), (3.12)

We supplement additional support for the gluing constructions in section (3) based on the
following ansatz for the density matrix of the canonical ensemble:

ρβ = N−1∑
ij

e−β(Ei+Ēj)|Ei⟩A ⊗ |Ēj⟩Ā ⟨Ei|A ⊗ ⟨Ēj |Ā (C.1)

This can be derived from the following chaotic ansatz for the energy eigenstates:

|E⟩ =
∑
ij

cij |Ei⟩A ⊗ |Ej⟩Ā (C.2)

where cij are random variables satisfy:

cijci′j′ = δii′δjj′ (C.3)

from which (C.1) can be obtained as the statistical average. In these ansatz, |E⟩A and |Ē⟩Ā are
eigenstates of the subsystem Hamiltonians whose sum is approximately the total Hamiltonian:

HA|E⟩A = E|E⟩A, HĀ|Ē⟩Ā = Ē|Ē⟩Ā, H ≈ HA ⊗ 1A + 1A ⊗HĀ (C.4)

This property encodes the assumptions that we are considering a subsystem A of finite
fraction f in the high density limit. Based on (C.1) it is straight-forward to first write down
the reduced density matrix across the subsystem A:

ρβA = TrĀ ρβ ∝ ZĀ(β)
∑
i

e−βEi |Ei⟩ ⟨Ei| (C.5)

where ZĀ(β) is the partition function of the subsystem Hamiltonian HĀ. The corresponding
trace giving the Renyi entropy of the canonical ensemble can then computed by:

TrA
(
ρβA

)n
= ZA(nβ)ZĀ(β)n (C.6)
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This is equivalent to the gluing construction for the canonical ensemble Renyi entropy, which
only enforces the gluing condition:

βA = nβĀ = β (C.7)

To obtain the micro-canonical counter-part, we first perform an inverse laplace transform
of the ansatz for the canonical ensemble (C.1):

ρE =
∮
Γ
dβ eβE ρβ (C.8)

where Γ is the corresponding Bromwich contour whose form will not be particularly important
for us. The reduced density matrix is then given by:

ρEA = TrĀ ρE =
∮
dβ eβE ZĀ(β)

∑
i

e−βEi |Ei⟩ ⟨Ei| (C.9)

The trace giving the Renyi entropy is then equal to:

TrA
(
ρEA

)n
=
[
n∏
k=1

∮
dβk e

βkE ZĀ (βk)
]
× ZA

(
n∑
k=1

βk

)
(C.10)

In the saddle point approximation, the inverse Laplace transform is done by finding the
saddle-points for β∗k . To be consistent with the cosmic-brane prescription, we further assume
that the saddle points are all identical:

β∗1 = β∗2 = . . . = β∗n = β∗ (C.11)

In this case, it can derived that the saddle-point equation for the single parameter β∗ takes
the form:

∂ZĀ(β)
∂β

∣∣∣
β∗

+ ∂ZA(nβ)
n∂β

∣∣∣
β∗

= E (C.12)

Using the relation between subsystem and total energy in the high density limit:

∂ZĀ(β)
∂β

∣∣∣
β∗

= (1− f)⟨E⟩β∗ ,
∂ZA(nβ)
n∂β

∣∣∣
β∗

= f⟨E⟩nβ∗ (C.13)

We finally obtain the gluing/matching conditions (3.11), (3.12) used in the gluing construction
for computing the Renyi entropies in the micro-canonical ensembles.

D Details of computing ncut

We first examine the onset of second order instabilities towards nearby one-zone black holes.
As n is varied, χ1 ≡ χĀ1 is fixed, and we treat it as representing the temperature T . In
the near-primary limit nc − 1 ∼ ϵ ≪ 1, it can be derived that the BTZ segment along A
becomes unstable when:

χ1n
5
c > 4, n < min

{
χ1
4 n

5
c , nA

}
(D.1)
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The BTZ segment along Ā becomes perturbatively unstable when:

χ1 > 4, n < nĀ (D.2)

The values nA,Ā mark the thresholds where the BTZ segments become deformable in their
respective GGEs, i.e. χA,Ā2 = ζ̃A,Ā4 . They are explicitly given by:

nA (χ1) = n5cχ1

(√
6− 4n2c − 2n4c + 4n4cχ1 − 2n2c + 2

1 + 2n2c − 3n4c + 2n4cχ1

)2

nĀ (χ1) = 2n5cχ1
3− 2n2c

(
1 + 2√χ1

)
+ n4c

(
2χ1 + 4√χ1 − 1

) (D.3)

In the high temperature regime, the two onset values nA,Ā admit perturbative expansions
in η = 1/χ1/4

1 :

nA (χ1) = nc −
2(n2c − 1)

nc
η2 + 7n4c − 10n2c + 3

2n3c
η4 + . . .

nĀ (χ1) = nc −
2(n2c − 1)

nc
η2 + 9n4c − 14n2c + 5

2n3c
η4 + . . . (D.4)

In this limit, they differ at the η4 order and satisfy nĀ > nA. On the other hand, the
second order instabilities can only exist for sufficiently high temperature

(
χ1 ≥ 4n−5

c

)
and

so is absent in the low temperature limit.
Next we examine the first-order instabilities. The onset of such instabilities on a BTZ

black hole with Q1 charge density h is marked by the existence of another root h′ ̸= h that
simultaneously solves the following two equations:

G(h′) = G(h), FBTZ(h′) = FBTZ(h) (D.5)

By eliminating h′, we obtain the following equation that controls the onset:

64χ2
1 +

(
18− 24χ2 − 16χ2

2

)
χ1 + (2 + χ2) (3 + χ2)3 = 0 (D.6)

At the transition point (D.6), the other root h′ can be obtained from:

h′

h
= −7 + 4χ2 +

√
−15− 8χ2

8 . (D.7)

Solutions of (D.6) are identified as the physical onset of the first order instabilities if h′ > 0.
The onset n′A along the segment A is the value of n such that (χA1 , χA2 ) satisfy (D.6); while
the onset n′

Ā
along Ā is when (χĀ1 , χĀ2 ) satisfy (D.6). Explicit expressions for n′

A,Ā
are

expectedly very complicated and not particularly illuminating for generic temperature T or
χ1. Instead, we study their asymptotic behaviors in a few limits.

In the high temperature limit χ1 ≫ 1, the onset values n′
A,Ā

also admit series expansions
in η analogous to (D.4):

n′A(χ1) = nc −
2
√
2(n2c − 1)
nc

η2 − 25/4(n2c − 1)
n2c

η3 + (n2c − 1)(22n2c − 21)
4n3c

η4 + . . .

n′
Ā
(χ1) = nc −

2
√
2(n2c − 1)
nc

η2 − 25/4(n2c − 1)
n2c

η3 − (n2c − 1)(27n2c − 26)
4n3c

η4 + . . . (D.8)
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They differ at the η4 order. Comparing (D.4) and (D.8), we conclude that the cut-off
ncut = max{nA,Ā, n′A,Ā} for the Renyi index is given by:

ncut(χ1) = nĀ(χ1) = nc −
2(n2c − 1)

nc
η2 + 9n4c − 14n2c + 5

2n3c
η4 + . . . (D.9)

As the low temperature limit is approached, the value of n′A first becomes divergent
towards the lower limit temperature χ1 → ∆χ1:

n′A(χ1) =
17n4c − 14n2c + 3− 6n6c

2n3c (χ1 −∆χ1)
+ . . . , ∆χ1 =

(n2c − 1)(3n2c − 1)
2n4 (D.10)

Below this temperature, the BTZ segment along A is unstable in the corresponding GGE
for all Renyi index n ≥ 1.3 We conclude that for χ1 ≤ ∆χ1 the glued BTZ solution does
not give the refined Renyi entropy S̃n(A) for all n ≥ 1. Since for χ1 ∼ ∆χ1 < 4n−5

c the
second order instability is absent, the cut-off Renyi index ncut near the lower limit ∆χ1 is
dictated by the first order instability:

ncut(χ1) = n′A(χ1) =
17n4c − 14n2c + 3− 6n6c

2n3c (χ1 −∆χ1)
+ . . . (D.11)

There is an interesting intermediate regime for temperatures close to χ1 ∼ χc:

χĀ1 ≈ χc =
1
2n

−4
c (1 + nc)3 (D.12)

The temperature χc is marked by the property that n′A = n′
Ā

= 1 at this point. As a
result the glued BTZ solution is free from such instabilities all the way down to n = 1.
Intuitively χc corresponds to the fine-tuned temperature such that the two local minimal
(h, h̄) of FBTZ in the GGE (β, µ31, µ11) have equal free energies. In the vicinity of χc, the
onset values n′

A,Ā
are given by:

n′A(χ1) = 1− 2n3c(nc − 1)2
(nc + 1)3(3− nc)

(χ1 − χc) + . . .

n′
Ā
(χ1) = 1 + 2n3c(nc − 1)2

(nc + 1)4 (χ1 − χc) + . . . (D.13)

There remains the second order instabilities against nearby one-zone black holes. Those
from the segment along A are present only for χ1 > 4n−5

c ; while those from the segment
Ā are present for χ1 > 4. It is observed that:

4n−5
c < χc < 4 (D.14)

As a result, in the vicinity of χc only the segment along A is susceptible to second order
instabilities. Therefore its onset value nA dictates the cut-off ncut at χc, and can be expanded
in small nc − 1 ∼ ϵ:

ncut(χc) = nA(χc) = 1 + 5
16 (nc − 1)3 + . . . (D.15)

3The other onset value n′
Ā

also exhibits a divergence of similar nature at χ1 = ∆χ̄1 < ∆χ1, where the
glued BTZ solution is already invalid for all n ≥ 1.
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We see that ncut(χ1) − 1 is suppressed to the (nc − 1)3 order near χ1 = χc, this is to be
compared with the (nc − 1) order in the asymptotically high temperature limit χ1 → ∞. It
shows that in the vicinity of the intermediate temperature χc, the range of validity for the
glued BTZ solution, and thus the result (4.14), extends the closest to n = 1.

E Toy model analysis for entanglement spectral density

To this end, we can work with the following expression for Sn(A) as a toy model, whose full
n-dependence effectively captures the qualitative behaviors just listed:

Sn(A) = fSth +
(
δncut∆S
1− n

)
ln
[
cosh

(
n− 1
δncut

)]
(E.1)

We need to evaluate the inverse Laplace transform:

g(λ) =
(
δncut e

λ

2πi

)
×
∫ Γ+i∞

Γ−i∞
dx ex δncut(λ−fSth) cosh (x)δncut∆S , x =

(
n− 1
δncut

)
(E.2)

This is still difficult for general choices of parameters. We can make further progress by
assuming that

M = δncut∆S ∼ √
q1 ∈ N (E.3)

is a very large integer. In this case one can use the binomial expansion to obtain a series
of delta-function peaks:

g(λ) = eλ

2M
∆S∑
m=0

(
M

m

)
δ (λ− λm) , λm = fSth − δn−1

cut (M − 2m) (E.4)

The spectrum {λm} is confined to the interval:

λm ∈ [fSth −∆S, fSth +∆S] (E.5)

In the holographic and high density limit Sth ∼ ∆S ∼ π
√
q1/2GN → ∞, we can bin together

the δ-function peaks into a continuous binomial distribution inside (E.5) weighted by an
exponential growth factor. This produces the entanglement spectral density g(λ) plotted
in figure (5).
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