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Abstract

Motivated by applications to the internet of things (IoT), Cremers, Naor,
Paz, and Ronen (CRYPTO ’22) recently considered a setting in which
multiple parties share a common password and want to be able to pairwise
authenticate. They observed that using standard password-authenticated
key exchange (PAKE) protocols in this setting allows for catastrophic imper-
sonation attacks whereby compromise of a single party allows an attacker
to impersonate any party to any other. To address this, they proposed
the notion of identity-binding PAKE (iPAKE) and showed constructions
of iPAKE protocol CHIP.

We present LATKE, a framework for iPAKE that allows us to construct
protocols with features beyond what CHIP achieves. In particular, we can
instantiate the components of our framework to yield an iPAKE protocol
with post-quantum security and identity concealment, where one party
hides its identity until it has authenticated the other. This is the first
iPAKE protocol with either property.

To demonstrate the concrete efficiency of our framework, we implement
various instantiations and compare the resulting protocols to CHIP when
run on commodity hardware. The performance of our schemes is very close
to that of CHIP, while offering stronger security properties.

Keywords: key agreement, password-based cryptography, IoT, post-
quantum cryptography

1 Introduction

Short passwords are one of the most common methods of authentication today.
Passwords are used for logging into websites, performing secure file transfers,
connecting to WiFi, connecting to mesh networks, storing encrypted backups,
and logging into remote servers. Dedicated protocols are necessary to handle
authentication and key exchange in the password-only setting where no public-
key infrastructure exists and the authenticating parties share only a low-entropy
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password. This is precisely the setting password authenticated key-exchange
(PAKE) protocols address.

Since their introduction by Bellovin and Meritt [BM92], PAKE protocols
have been extended to offer stronger security (see further discussion below)
and have been deployed in several practical scenarios. In the context of the
internet of things (IoT), PAKE protocols have been deployed for authentication
between devices [Thr15, All22a], and the WiFi specification includes the SAE
PAKE [Har08] for mutual authentication of stations in a network [All22b].1

For IoT and mesh networks in which multiple entities share a common pass-
word, identity-binding PAKE (iPAKE)—recently introduced by Cremers et al.
[CNPR22]—offers a strong form of security. This form of PAKE allows each
party to bind their password to their identity, such that, if an adversary compro-
mises a party, then it can impersonate only that party, and no other parties. In
particular, upon compromising a party, the adversary does not learn the shared
password, and can only recover the password via a brute-force attack. Besides
introducing the notion, Cremers et al. also proposed the iPAKE protocol CHIP,
and a precomputation-resistant variant, CRISP.

We present LATKE, a generic framework for constructing iPAKE protocols.
Our framework allows us to construct iPAKE protocols that have features beyond
what CHIP achieves (and does not compare to CRISP, as we do not include
precomputation resistance). Specifically, we can instantiate our framework to
yield an iPAKE protocol based on post-quantum assumptions that also offers
identity concealment; this is the first iPAKE protocol with either property. This
comes at the cost of a concretely small overhead in runtime and communication
as compared to CHIP, and a slight weakening of the security model, that we
argue is natural in the context of iPAKE.

In what follows, we review prior work on PAKE and its generalizations
(including iPAKE), discuss limitations of existing iPAKE protocols, and then
describe our contributions in greater detail.

1.1 Background

PAKE. Bellovin and Merritt [BM92] proposed using password authenticated
key-exchange (PAKE) protocols for allowing two parties to authenticate and
generate a cryptographically strong shared key based on a low-entropy shared
password. PAKE protocols ensure, in particular, that 1) a passive adversary
learns nothing about the password; 2) an active adversary cannot learn the
password any faster than by doing an online brute-force attack whereby it guesses
a single password per protocol execution; 3) barring a correct password guess
in an active attack, the session key shared by the parties is indistinguishable
from uniform for the adversary. Note that, unlike most other cryptographic
constructions, an active attacker can succeed in impersonating one of the parties
with non-negligible probability by guessing the password using sufficiently many
online attempts. This is as good a guarantee as possible, given the constraint

1See doi.org/10.1109/IEEESTD.2021.9363693.
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that honest users must be able to establish a shared key using only a low-entropy
password.

aPAKE. PAKE protocols require both parties to have a copy of the password
when executing the protocol. This is fine for a human user who memorizes a
password and then types it to authenticate, but is less desirable for the server
authenticating that user to store the password since, in particular, it would
imply that if the server is compromised then an attacker would immediately
learn the user’s password. Augmented password authenticated key-exchange
(aPAKE) protocols—proposed by Jablon [Jab97] and later formalized by Gentry,
MacKenzie, and Ramzan [GMR06]—extends PAKE to afford more security
against server compromise. Such protocols allow the server to store a (per-user)
password file that is computed as some hard-to-invert function of the password,
and ensure that if an adversary compromises the server then they must perform an
offline brute-force attack in order to learn the password. (Note that the possibility
of such an attack is inherent.) Many protocols rely on aPAKE, including
iCloud key recovery [App], WhatsApp message history recovery [DFG+23], and
1Password [Fil18].

As just noted, aPAKE protocols ensure that an adversary who obtains a
server’s password file must perform a brute-force attack in order to recover the
corresponding password. But they allow for the possibility that the adversary
can use precomputation to carry out the bulk of the work before learning the
password file (and then recovering the password immediately upon corruption of
the server). Strong aPAKE (saPAKE) protocols [JKX18] prevent this, and force
the attacker to do work linear in the size of the password dictionary after the
attacker learns the password file. Jarecki et al. [JKX18] show a generic approach
for compiling any aPAKE protocol into an saPAKE protocol using an oblivious
pseudorandom function (OPRF).

dPAKE. Although (s)aPAKE protocols offer protection against compromise
of one of the parties, they still require the other party to use a plaintext
password; thus, in scenarios where both parties to the protocol are machines2

storing the password, compromise of one of the parties reveals the password
immediately. Doubly augmented password authenticated key-exchange (dPAKE)
protocols [Ham15] allow both parties to store a transformed version of the
password, so that if either party is compromised the adversary cannot do better
than impersonating the compromised party or performing a brute-force search
for the password. By analogy with aPAKE, strong dPAKE (sdPAKE) makes
precomputation ineffective. As with aPAKE, it is possible to generically construct
sdPAKE from dPAKE using an OPRF. At the time of writing, (s)dPAKE has
not received any formal treatment. But it is a useful conceptual extension of
aPAKE, and has been proposed for use in WiFi stations [Tho22b].

2One may question why passwords—rather than high-entropy cryptographic keys—are used
in this setting at all. First, as discussed further below, there may be more than two entities
sharing the same secret information, one of which might be a human user. Moreover, a human
user might be required to enter the secret information into the devices upon initialization. In
any case, real-world deployments of IoT/mesh networks often use passwords.
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iPAKE. Even (s)dPAKE is insufficient for some use cases, since it assumes
that there are only two roles: client and server. In some applications, specifically
IoT/mesh networks, there are multiple parties—having multiple roles—who share
a common password and want to potentially authenticate each other (pairwise).
Motivated by exactly this scenario, Cremers et al. [CNPR22] introduced the
notion of identity-binding password authenticated key exchange (iPAKE), a
strengthening of dPAKE in which each party’s password file is bound to an
arbitrary identity string. Similar to dPAKE, an attacker who compromises a
party can impersonate that party, but it cannot impersonate any other party
without performing an offline brute-force attack to determine the password.
Strong iPAKE (siPAKE) is also defined in the natural way.

Cremers et al. [CNPR22] define (s)iPAKE in the Universal Composability
(UC) framework [Can01]. They also present CHIP, an efficient iPAKE protocol
constructed generically from any PAKE protocol and any identity-based key-
exchange (IBKE) protocol with certain properties (explained in the next section).
Finally, they also present CRISP, an efficient siPAKE protocol that they prove
secure in the generic-group model.

1.2 Limitations of Existing dPAKEs and iPAKEs

As noted above, CHIP is an efficient iPAKE protocol that can be based on any
PAKE protocol and any IBKE protocol with certain properties. Specifically,
the IBKE protocol is required to have key-compromise impersonation resistance
(KCIR), a standard property, but also to be msk-independent, i.e., the message
flow of the protocol must be statistically independent of the main secret key msk.
While there are a handful of KCIR, msk-independent IBKE protocols [Oka88,
Gün90, FG10, Shi03, Wan13, CC07b, CC07a], they are insufficient to give CHIP
some desirable properties.

Quantum resistance. All the aforementioned IBKEs rely on the commutativity
of certain group operations, and depend on the Diffie-Hellman assumption or
a generalization thereof over bilinear pairings for security. Hence, there is no
clear way to build iPAKE from post-quantum assumptions, i.e., cryptographic
assumptions that plausibly hold for quantum computers.

Beyond post-quantum iPAKE, there is also no clear way to construct an
efficient post-quantum dPAKE. The OPAQUE aPAKE compiler (not to be
confused with the same paper’s saPAKE compiler) [JKX18]—doubly augmented
to be a dPAKE [Ham15]—can be instantiated with entirely post-quantum
primitives, namely a post-quantum authenticated key exchange (AKE) pro-
tocol, and a post-quantum oblivious pseudorandom function (OPRF). How-
ever, the only options for post-quantum OPRF at the time of writing are
either broken [BKW20, BKM+21], or require two to four orders of magnitude
greater computation time or communication overhead than Diffie-Hellman-based
OPRFs [FOO23, Dod23, BDFH24], or have unknown concrete runtime [Bas22,
Bas23]. Thus, practical use is limited.

Identity concealment. Another property not present in the listed IBKEs is
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that of identity concealment, i.e., one of the parties remains anonymous until
the other party has successfully authenticated itself, and both parties remain
anonymous to a passive eavesdropper. This idea was introduced in the SIGMA-
I/SIGMA-R protocols [Kra03] and is available in IKEv2 which is used in the
widely deployed IPSec VPN protocol. If an iPAKE device responds to every
incoming request with its identity string, an attacker can wardrive, i.e., move
through a geographical area, attempt to connect to all the devices within range,
and map the network’s topology [SPT13]. This may be problematic in the case of
industrial IoT, e.g., leaking which building a specific sensor or controller resides
in.

It is not clear if adding identity concealment to the listed IBKEs is possible,
since none have explicit authentication, and adding explicit authentication in
the form of signatures or MACs can easily break msk independence.

1.3 Our Contributions

In this work, we present low-assumption iPAKE (LATKE), a highly flexible
framework for building iPAKE protocols. LATKE relies on an ordinary PAKE
and an identity-based key-exchange (IBKE) protocol with key-compromise im-
personation resistance (KCIR) and full forward secrecy (full FS). There are many
IBKE protocols with the necessary properties, as opposed to the situation for
the msk-independent IBKEs that CHIP requires. In particular, we show that
it is possible to construct a LATKE-compatible IBKE using only a signature
scheme and an authenticated key exchange (AKE) protocol.

We consider two variants: LATKEpre and LATKEpost. The former is intended
to be used for pre-specified peer IBKEs, i.e., ones where the peers both know
the identity of their intended partner in advance. The latter is intended to be
used for post-specified peer IBKEs, i.e., ones where that is not the case. We will
consider identity concealment in the post-specified peer setting, which is the
more difficult of the two, since the parties to conceal from must also include a
user’s intended partner.

We prove security of LATKE with respect to a slightly weaker version of the
iPAKE functionality FiPAKE given in [CNPR22]. We also argue why our relaxed
functionality F ′

iPAKE is a natural one. We prove that LATKE produces protocols
that UC-realize F ′

iPAKE under adaptive corruptions in the FRO-hybrid model with
erasure. Since there exist post-quantum AKEs/IBKEs and post-quantum PAKEs,
we conclude that LATKE can be instantiated as a post-quantum iPAKE.3 To
the authors’ knowledge, this is the first description or implementation of a
post-quantum or identity-concealing iPAKE. In addition, our construction also
represents the most efficient post-quantum dPAKE, since the only known post-
quantum dPAKE currently requires post-quantum OPRF, whose shortcomings
were described above.

To demonstrate concrete efficiency, we instantiate LATKE and CHIP in
various ways and benchmark the resulting protocols on a commodity WiFi router

3We mean here that it can be based on assumptions that are plausibly quantum-hard. The
proof we give, however, only considers classical adversaries.
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at the 128-bit security level. We find some pre-quantum instantiations of LATKE
have computation cost within 5% of CHIP and with a communication overhead
of 324B, and one post-quantum instantiation achieves computation cost within
3% of CHIP with a communication overhead of only 3kB.

2 Preliminaries

In this section we present the notation, definitions, and security models necessary
for the construction of LATKE.

2.1 Notation

We write probabilistic algorithms as Alg(x; r) where x denotes the input and r
denotes the random coins. We write y ← Alg(x) to denote sampling uniform
r and setting y := Alg(x; r), and x ←$ S to denote sampling a uniform value
from a set S. For our security proofs we will consider probabilistic polynomial
time (PPT) adversaries, and denote them with calligraphic letters A. We denote
the output x, x′ of either side of an interactive protocol between parties A,B by
(x, x′)← (A⇔ B). For interactive protocols, a protocol round is the set of all
messages that can be sent in parallel from any point in the protocol [Gon93].4

We use λ to denote the security parameter.
In our pseudocode for ideal functionalities, retrieve denotes retrieval of

a record with a specific marking; if no such record is present, this returns

“no record.” We write IBKE to denote execution of an IBKE protocol, and

PAKEsid,ssid to denote execution of a PAKE protocol with session and sub-session

identifiers sid and ssid.

2.2 Universal Composability

The Universal Composability (UC) model [Can01] provides an alternative to
game-based security definitions. The model frames cryptographic protocols as
idealized functionalities, which can be thought of as black boxes with a tightly
constrained interface to the outside world. In the security game showing Π
UC-realizes the functionality F, the goal of an interactive Turing machine called
the environment Z is to distinguish between the ideal world and the real world,
which are defined as follows.

In the real world all the parties participate in Π, Z may view parties’ outputs,
and is permitted to give arbitrary instructions to a separate interactive Turing
machine, called the adversary A. The environment can arbitrarily ask the
adversary to view/modify/delay/drop messages between parties, corrupt parties,
and interact with any ideal functionalities F ′

i used to instantiate Π. In the
ideal world all the parties are dummies, speaking directly to F. In addition, the

4The number of messages is not the same as number of rounds. A protocol with 2 rounds
and 4 messages can be converted into one with 3 rounds and 3 messages by combining messages.
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adversary may also only interact to F, though it is still permitted to corrupt
parties.

Π UC-realizes F if for any A, there exists a simulator S of A such that any
Z has at most negligible advantage in distinguishing between A and S. That is,

IdealFS,Z
c≈ ExecA,Z

where the LHS refers to the probability ensemble consisting of the view of the
environment in the ideal world, and the RHS in the real world.

By [Can01, Theorem 11], we may assume A is the dummy adversary AD that
simply delivers messages generated by the environment to the specified recipients,
and delivers to the environment all messages generated by the protocol parties.

Corruption. There are two widely used corruption models in UC. In the static
corruption model, the adversary may not corrupt any parties once execution has
started. In the adaptive corruption model, the adversary may corrupt parties at
any time. In this work, we will consider adversaries who are allowed adaptive
corruptions.

SID and SSID. To represent different instances of the same scheme, the UC
model uses session identifiers. Each party is given a session identifier sid on
activation and will only interact with other parties with the same sid. To repre-
sent individual protocol executions, we will use sub-session identifiers, denoted
ssid (these can be established by out-of-band means, or, e.g., by exchanging
nonces [BLR04]). A party in session sid may be engaged in multiple simultaneous
protocol executions ssid1, . . . , ssidn. As in [GMR06], we may assume that every
protocol execution is uniquely identified by its (sid, ssid) pair. For clarity of pre-
sentation, we will assume in our protocol definitions that session and sub-session
identifier establishment has already occurred.

2.3 PAKE and iPAKE

PAKE. We describe the function of a PAKE protocol and its intended security
properties. A (balanced) password authenticated key-exchange protocol is a two-
party key-exchange protocol where parties use mutual knowledge of a low-entropy
password pw to establish a high-entropy session key K. The security goals for a
PAKE are (1) to establish a high-entropy shared session key when both parties
are honest, (2) to prevent passive adversaries from learning anything about the
password, and (3) to limit active adversaries to one (or another small constant)
password guess(es) per protocol instance, even if given access to session keys.

We give the corresponding ideal functionality FPAKE in Figure 1. We include
the small modifications to adversary-controlled keying from [AHH21], as do
the authors of CHIP/CRISP. We use the multi-session variant of the PAKE
functionality [CR03] (i.e., using ssid in addition to sid), which, as noted in
[BGHJ24], is equivalent to the base single-session functionality.

PAKE protocols permit an attacker who corrupts a party to learn pw and
subsequently impersonate any party using the same password. In a setting
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Session management

On (NewSession, sid, ssid,Pj , pwi) from Pi

send (NewSession, sid, ssid,Pi,Pj) to A
if ∄(Session, sid, ssid,Pi,Pj , pwi) :

record (Session, sid, ssid,Pi,Pj , pwi)

Mark it fresh

Active session attack

On (TestPwd, sid, ssid,Pi, pw
′) from A

retrieve (Session, sid, ssid,Pi,Pj , pwi)

marked fresh

if pwi = pw′ :

Mark session compromised

send “correct” to A
else

Mark session interrupted

send “wrong” to A

Key generation and authentication

On (NewKey, sid, ssid,Pi,K
′) from A

retrieve (Session, sid, ssid,Pi,Pj , pwi)

not marked completed

if session is compromised :

Ki := K′

elif session is fresh and

∃(Key, sid, ssid,Pj , pwj ,Kj) s.t. pwi = pwj :

Ki := Kj

else : Ki ←$ {0, 1}λ

if session is fresh :

record (Key, sid, ssid,Pi, pwi,Ki)

Mark session completed

send (sid, ssid,Ki) to Pi

Figure 1: The (multi-session) FPAKE ideal functionality, with the keying modifi-
cations suggested in [AHH21].

where multiple devices all share the same password, this results in catastrophic
impersonation following the compromise of even a single device.

Identity-binding PAKE (iPAKE). iPAKE [CNPR22] prevents catastrophic
impersonation attacks. Each party runs a one-time initialization procedure
StorePwdFile that takes as input a (common) password pw and its (public)
identity id, and outputs a password file pwfile. That party then saves pwfile, and
deletes pw. At a later point in time, two parties who wish to authenticate run
the iPAKE protocol using their respective password files. The output is a tuple
(K, id) containing the session key and the identity of the other party.

As with PAKE, iPAKE provides a high-entropy shared key to the two
parties running the protocol, and limits active attackers to a single password
guess per instance. In contrast to PAKE, however, iPAKE also ensures some
measure of robustness following compromise of parties. Specifically, an attacker
who compromises Alice only learns Alice’s pwfile. With this, the attacker can
impersonate Alice to anyone, but does not immediately learn enough information
to impersonate any other party to anyone else (including Alice). The best the
attacker can do—which is clearly unavoidable in our setting—is to mount a
brute-force attack against Alice’s pwfile to derive pw; this can be made prohibitive
if the pw has moderate entropy and/or if StorePwdFile is relatively slow. The
latter can be achieved by incorporating into StorePwdFile a time-, memory-,
and/or cache-intensive password hashing function, such as Argon2 [BDK15] or
bscrypt [Tho22a].

We briefly describe the function of the remaining procedures of FiPAKE. The
formal definition is given in Figure 2.
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Password Registration

On (StorePwdFile, sid, id, pw) from P
if ∄ a record (File,P, ·, ·) :

record (File,P, id, pw)

Password Authentication

On (NewSession, sid, ssid,Pj) from Pi

retrieve (File,Pi, idi, pwi)

send (NewSession, ssid,Pi,Pj , idi) to A
if ∄ a record (Session, ssid, ·, ·, ·) :

record (Session, ssid,Pi,Pj , pwi)

and mark it fresh

Active Session Attacks

On (OnlineTestPwd, sid, ssid,Pi, pw
′) from A

retrieve (Session, ssid,Pi, ·, pwi)

marked fresh or compromised

if pw′ = pwi :

record (Imp, ssid,Pi, ∗)
Mark the session compromised

send “correct” to A
else :

Mark the session interrupted

send “wrong” to A

On (Impersonate, sid, ssid,Pi,Pk) from A
retrieve (Session, ssid,Pi, ·, pwi)

marked fresh or compromised

retrieve (File,Pk, idk, pwk)

marked compromised

if pwi = pwk :

record (Imp, ssid,Pi, idk)

Mark the session compromised

send “correct” to A
else :

Mark the session interrupted

send “wrong” to A

Key Generation and Authentication

On (NewKey, sid, ssid,Pi, id
′,K ′) from A

retrieve (Session, ssid,Pi,Pj , pwi)

not marked completed

retrieve (File, Pj , idj , pwj)

if (session is fresh and id′ ̸= idj) or

(session is compromised and

∄(Imp, ssid,Pi, id
′) and ∄(Imp, ssid,Pi, ∗)) :

return // ignore invalid queries

if session is compromised : Ki := K′

elif session is fresh and ∃ a record

(Key, ssid,Pj , pwj ,Kj) with pwi = pwj :

Ki := Kj

else : Ki ←$ {0, 1}λ

if session is fresh :

record (Key, ssid,Pi, pwi,Ki)

Mark session completed

send (Key, ssid, id′,Ki) to Pi

Stealing Password Data

On corruption query (StealPwdFile,P) from A:
retrieve (File,P, id, pw)
Mark the file compromised

if ∃ a record (Offline,P, pw) :
send (Stolen, id, pw) to A

else : send (Stolen, id,⊥) to A

On (OfflineTestPwd,P, pw′) from A
retrieve (File,P, ·, pw)
if file marked compromised :

if pw′ = pw : send “correct” to A
else : send “wrong” to A

else : record (Offline,P, pw′)

On (OfflineComparePwd, sid,Pi,Pj) from A
retrieve (File,Pi, ·, pwi) marked compromised

retrieve (File,Pj , ·, pwj) marked compromised

if pwi = pwj : send “match” to A
else : send “no match” to A

On (OnlineComparePwd, sid, ssid,Pi,Pj) from A
retrieve (Session, ssid,Pi, ·, pwi)

marked fresh or compromised

retrieve (File,Pj , ·, pwj) marked compromised

if pwi = pwj : send “match” to A
else :

Mark the session interrupted

send “no match” to A

Figure 2: The FiPAKE and Focp-iPAKE (abbreviated F ′
iPAKE) ideal functionalities.

F ′
iPAKE includes the code in the dashed box, while FiPAKE does not.



Corruption: iPAKE permits two kinds of corruption queries:

• StealPwdFile returns the password file of a specific party P , and does
not mark P corrupted; i.e., the adversary does not get any ephemeral
keys nor does it gain control over P.5

• Corrupt returns the output of StealPwdFile plus all the ephemeral data
held by P, sends a message to the environment that the action was
performed on P, and does mark P corrupted.

A party who is not corrupted but whose password file has been stolen is
called compromised.

OfflineTestPwd: This is called by the simulator S (acting on behalf of the
adversary) to guess the password of a stolen password file.6

OfflineComparePwd: This is called by S to compare the password files of
compromised parties. Through this, it learns which parties’ passwords are
equal, but does not learn the password itself.

NewSession: This is called by a party Pi to initiate a new iPAKE session with
Pj . At some point, Pj will have to call NewSession with Pi and the same
sid and ssid if they wish to complete the protocol execution.

NewKey: This is called by S with a session key K ′ and ID id′ to finalize the key
exchange in an active session. If the session is fresh, i.e., has not already
been interrupted with a different attack, then this outputs a uniformly
random key (independent of K ′) and actual peer identity to the relevant
party, and it will output the same key and actual peer identity to the other
party when called for them. The values K ′ and id′ are sent to the relevant
party when certain compromise conditions are met. These are described
below.

OnlineTestPwd: This is called by S to guess the targeted party’s password
in an active session. On success, the session is marked compromised,
meaning the adversary has full control over the targeted party’s session
key and the perceived identity of its peer. On failure, the session is marked
interrupted, i.e., the exchange will fail.

Impersonate: This is called by S to impersonate a compromised user in an
active session. If the compromised user’s pw matches the session peer’s
pw, the adversary is given full control over the peer’s session key (not the
impersonated user’s session key), and the identity is set to the impersonated
party’s identity.

5In prior work [GMR06] this is not explicitly called a corruption query, but—as noted by
Hesse [Hes20]—that is the only definitionally sound way to treat this query.

6In order to prevent trivial simulators with arbitrary brute-force attack capability, we
bound the simulator’s usage of OfflineTestPwd by the runtime of the environment Z. See
Hesse [Hes20] for more detail.
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In order to permit analysis of LATKE, we slightly weaken the FiPAKE func-
tionality by adding a procedure OnlineComparePwd. This allows the adversary
to check if a compromised user’s password matches the password used in an
active session. We call the new functionality Focp-iPAKE. For brevity, we refer to
this as F ′

iPAKE.
We argue that this additional procedure is natural in the sense that sim-

ilar attacks are already allowed in other PAKE extensions. The Ω-method
aPAKE [GMR06] begins with a PAKE over H(pw), and requires the client to
store pw and the server to store H(pw). Thus, an active attacker who compro-
mises a server can use the stolen hash to intercede in unrelated PAKE sessions
and thus determine whether or not the parties of a given session share a password.
The reason an OnlineComparePwd procedure is not included in aPAKE is because
aPAKE doesn’t have a strong notion of identity—to perform the described attack,
it suffices to use Impersonate using the generic identities of “client” or “server”.
This isn’t so in iPAKE: an Impersonate query would force the attacker to use
the unique identity of the compromised user.

The procedure is natural in another sense. It is possible to emulate
OnlineComparePwd by calling Impersonate as described above, tearing down the
session with OnlineTestPwd(sid, ssid,P,⊥), and forcing the parties to attempt a
new session. The only step that is outside of the UC simulator’s capabilities is the
last. In reality, though, this is already possible. For example, WPA2-protected
WiFi connections can be injected with a deauthentication packet, thus forcing
the client to tear down the session and reconnect [SRV23]. Similar attacks in
other protocols such as Bluetooth are also documented [Lou21]. Thus, it is not
unreasonable to imagine ideal attacker being able to force a retry in just the key
exchange portion of a protocol.

2.4 Key Exchange

We review notions of authenticated key exchange (AKE) and identity-based key
exchange (IBKE). We include definitions for post-specified peer protocols, i.e.,
protocols where the parties do not know the identity of their peer in advance.

Authenticated key exchange. An AKE protocol allows two parties interact
over a public channel and produce a shared secret key. The procedures of a
post-specified peer AKE are as follows:

KeyGen(1λ)→ (upk, usk) Generates a long-term keypair.

Execute(skA)⇔ Execute(skB) Executes the interactive key exchange protocol.
The output is a shared session key K and the public key of the other party,
pkA or pkB .

Identity-based key exchange. Identity-based key exchange (IBKE) is a
generalization of AKE which introduces a trusted third party, called the key
generation center (KGC). The KGC is responsible for generating the main
keypair (mpk,msk), and for extracting secret keys for users. A user with an
identifier string id will request a secret key skid from the KGC that corresponds to
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id. With this secret key, the user can participate in key establishment protocols
wherein the other participant knows only the global mpk and their id (and
optionally their own skid′ if mutual authentication is desired).

Concretely, the procedures of a post-specified peer IBKE are as follows:

Setup(1λ)→ (mpk,msk) Generates the main keypair.

Extractmsk(mpk, id, aux)→ skid Extracts a secret key for the given ID under the
given mpk, with auxiliary data aux.

Execute(skidA , idA,mpk)⇔ Execute(skidB , idB ,mpk) Executes the interactive key
exchange protocol. The output, on success, is the shared session key K
and the ID of the other party, idA or idB .

The purpose of aux in extraction is to allow additional data to be included
in the extraction request. For example, if extraction requires the KGC to sign a
requester-generated public key, aux is where the public key is encoded.

Identity concealment. A post-specified peer AKE or IBKE is said to have
passive responder concealment if the responder’s identity is hidden from a passive
adversary, and active responder concealment if from an active adversary (i.e., a
malicious initiator). Specifically, in a protocol with active responder concealment,
the responder will wait until the initiator has authenticated themselves before
they send any identifying information. Active initiator concealment is defined
similarly. A protocol may have both passive initiator concealment and active
responder concealment (as SIGMA-R does; Section 4) or vice-versa, but cannot
have active concealment for both parties, since one party must authenticate first.

The Canetti-Krawczyk (CK) model. The CK model [CK01] and its
extension, the identity-based CK model (id-CK), are commonly used for proving
security of AKEs and IBKEs, respectively. Their purpose is to model everything
an adversary can reasonably do in a real-world AKE or IBKE protocol execution.
Within these models, it is possible to define notions of ordinary session-key (SK)
security, key-compromise impersonation resistance (KCIR), maximal exposure
resistance (MEX), forward secrecy (FS), post-compromise security (PCS), and
more. In order to capture identity concealment, we will use the CK model
adapted to the post-specified peer setting, as presented in [CK02a].

For security of LATKE, we require an IBKE that has SK-security with
KCIR and full FS. In words, KCIR ensures that if Mallory compromises Alice,
then Mallory cannot impersonate anyone (aside from other parties Mallory has
compromised) to Alice. FS ensures that if Mallory compromises Alice, Mallory
remains unable to learn the session keys from Alice’s past completed sessions.
For IBKE there is another notion of FS, which we call KGC-FS, which requires
that if Mallory compromises the KGC, she is still unable to learn the session
keys of Alice’s past completed sessions. We say a protocol has full FS if it has
FS and KGC-FS. More detailed definitions can be found in Appendix A.3.

Finally, we note there are numerous, subtly different, variants of the CK
model, including CKHMQV, eCK, and CK+ [Kra05, LLM07, FSXY12] (their
id- variants being defined similarly, by adding KGC extraction and revelation).
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In fact, it has been shown that security in the first three variants is pairwise
incomparable—security in one model does not imply security in any other
model [Cre11]. Nevertheless, these models have enough in common that our
main security reduction will be able to use any one of them.

2.5 Symmetric Encryption

LATKE requires a symmetric encryption scheme that is secure under adaptive
corruptions (i.e., is non-committing). For this, we use the notion of SIM*-AC-
CCA security [JT20, Jae23]. Informally, an authenticated encryption scheme
AE is SIM*-AC-CCA-secure with respect to some ideal primitive P, e.g., a
programmable random oracle or ideal cipher, if there is a simulator Scca such
that no PPT adversary can distinguish between Scca and AE, even when given
the ability to encrypt messages, decrypt messages, expose keys, and program
the random oracle/ideal cipher. We refer the reader to Appendix A.4 for a more
complete explanation of this security notion.

For our purposes, it suffices to note that a SIM*-AC-CCA-secure encryption
scheme is easily instantiable via the encrypt-then-MAC construction [JT20],
given some reasonable modeling choice for the underlying cipher.

3 The LATKE Framework

In this section we present the LATKE framework for constructing iPAKE
protocols. The structure of LATKE can be viewed as a synthesis of the Ω-
method [GMR06] for constructing aPAKE protocols and the CHIP iPAKE
protocol [CNPR22]. We introduce both those constructions and then present
ours.

3.1 Ω-method

The Ω-method [GMR06] is a generic construction of aPAKE from PAKE. The
transformation works as follows (see Figure 3). A server with password pw com-
putes one-way functions of the password h0 := H0(sid, pw) and h1 := H1(sid, pw).
Next, it generates public and private keys (pk, sk) for a signature scheme, and
encrypts the signing key sk using h1 to obtain ciphertext c. The password file
includes pk, h0, and c.

Execution of the protocol proceeds by having the parties run an underlying
PAKE protocol using h0 := H0(sid, pw) to obtain two keys (K,K ′). (The client
derives h0 using pw, while the server has h0 in its password file.) The parties
use K to establish a secure channel over which the server sends c. The client
uses h1 := H1(sid, pw) to decrypt c, obtain sk, and then generate a signature σ
of the transcript using sk. The client sends σ to the server, which verifies the
signature. On success, both parties output K ′.

A key feature of the Ω-method is that it uses a PAKE to set up a secure
channel, via which the client can then “prove” knowledge of the password to the
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Ω.StorePwdFile(sid, pw)→ pwfile

1 : (h0, h1) := (H0(sid, pw),H1(sid, pw))

2 : (pk, sk)← Σ.Kg(1λ)

3 : c← AE.Ench1(sk)

4 : pwfilesid := (pk, h0, c)

5 : delete pw, sk

6 : return pwfile

Client(sid, ssid, pw) Server(sid, ssid, pwfile)

H0(sid, pw) h0

K K′
PAKEsid,ssid

K K′

h1 := H1(sid, pw) c̃ c̃← AE.EncK(c)

c := AE.DecK(c̃)

sk := AE.Dech1(c)

σ := Σ.Signsk(sid∥ssid∥tr) σ

if ¬Σ.Vfypk(σ, sid∥ssid∥tr) :
abort

return K′ return K′

Figure 3: The Ω-method aPAKE [GMR06]. tr represents the protocol transcript
up to that point in time. Σ is a signature scheme. AE is an authenticated
encryption scheme.

server. This allows the protocol to be secure even though what is transmitted
over the secure channel allows for an offline brute-force attack. Intuitively, this
holds since any adversary who can learn information about what is sent over the
secure channel must already know H0(sid, pw) (since, to see the messages, it must
have successfully attacked the PAKE). We use a similar idea in our framework.
This will be essential to the flexibility of our iPAKEs.

3.2 CHIP

Recall the purpose of an iPAKE is to permit parties with mutual knowledge of a
password to establish a secure connection while identifying themselves to each
other based on their unique identities. Further, an attacker who compromises a
device should not have the ability to impersonate any identity other than that
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CHIP.StorePwdFile(sid, pw, id)→ pwfile

1 : (mpk,msk) := IBKE.Setup(1λ;H0(sid, pw))

2 : usk← IBKE.Extractmsk(mpk, id)

3 : pwfile := (id,mpk, usk)

4 : delete pw, r,msk

5 : return pwfile

Alice(sid, ssid, pwfileA, idB) Bob(sid, ssid, pwfileB , idA)

pwfileA idB idA pwfileB

K
IBKE

K

K tr tr K

K′
PAKEsid,ssid

K′

return K′ return K′

Figure 4: The CHIP iPAKE, using a generic IBKE and PAKE. tr represents the
protocol transcript up to that point.

of the compromised device (barring a successful brute-force attack).
We give an overview of CHIP in Figure 4. Like the Ω-method, it uses a

generic PAKE as a building block. The other building block it requires is an
msk-independent identity based key-exchange (IBKE) protocol with KCIR. More
formally, the messages of the IBKE must be statistically independent of not just
msk, but also the random coins used in the IBKE’s Setup procedure.

The protocol works as follows. A party with ID string id and password pw
generates its password file by hashing pw and using the output as random coins
to generate a fresh IBKE keypair (msk,mpk). The party then extracts a secret
key usk bound to its own identity id. The password file is (id,mpk, usk).

An execution of the CHIP protocol consists of two phases. First, the parties
execute the IBKE protocol using their extracted secrets and their identities.
Next, they use the resulting key (plus the transcript of the protocol) as the
“password” for an ordinary PAKE. The output is their final session key.

The crucial element of CHIP is its novel reliance on IBKE, a primitive that
typically involves a trusted third party but here is executed by the parties
themselves based on their shared password. The IBKE is used to establish a key
that simultaneously binds the ID and the password, while ensuring that (1) the
pwfile is bound to a specific ID, and (2) the password is not directly stored. We
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will use this idea in LATKE.
A drawback of CHIP its that it requires an IBKE with strong properties.

Specifically, CHIP’s message flow is required to be statistically independent of
the password (and hence the random coins of Setup). This is because, unlike
the Ω-method, CHIP’s key exchange is done “in the clear,” so must ensure that
passive adversaries cannot perform an offline brute-force search for the password.

3.3 LATKE

LATKE combines the key features of the Ω-method and CHIP. Password-file
generation is identical to that of CHIP, using an IBKE to generate main keys
(mpk,msk) that depend on the password, as well as a derived key usk bound to
the user’s identity. The protocol itself is similar to the Ω-method, beginning
with a PAKE using a one-way function of the password, specifically mpk.7 The
resulting key is used to set up a secure channel for the rest of the protocol.
The parties execute an IBKE protocol inside the secure channel and output the
result. The full definition of LATKE can be found in Figure 5. The pre- and
post-specified peer variants only differ in what is included in the initial PAKE
step.

Since the framework permits a wider range of IBKEs than CHIP, we can
now achieve post-quantum iPAKE from post-quantum IBKE and PAKE, and
identity-concealing iPAKE from identity-concealing IBKE.

There are a handful of details to work out in order to determine the security
and efficiency of LATKE.

Secure channel: The EUE transform. We must specify what we mean
by secure channel. In the Ω-method, the payload of the channel was a single
message. In the case of LATKE, the payload is the entire transcript of an
IBKE. In order to achieve security under adaptive corruptions, we must pick
our notion of authenticated encryption carefully, and design a secure channel
protocol that can be simulated even for sessions between parties whose password
files are unknown to the UC simulator. We will design a simple transform,
called encrypt-and-unconditionally execute (EUE) to meet this specification. We
postpone further discussion to Section 3.4.

Necessary security properties. Another detail is precisely what kind of
security we need from the PAKE and IBKE. The PAKE requirement does not
change from the Ω-method—all we require is a protocol that UC-realizes FPAKE.
The IBKE must have KCIR and full FS, which we note are common properties
of key exchange protocols. In the lead-up to our theorem statement, we will
explain why each property is necessary.

Building the IBKE from AKE. To further demonstrate the practicality of
LATKE, we show in Section 3.5 that it is possible to generically achieve these
properties given just an AKE with KCIR (and no FS).

7It would suffice to perform the PAKE using a hash of pw as in the Ω-method. Since the
parties already hold mpk, however, we simply use that.
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LATKE.StorePwdFile(sid, pw, id)

1 : (mpk,msk) := IBKE.Setup(1λ;H0(sid, pw))

2 : usk← IBKE.Extractmsk(mpk, id)

3 : pwfile := (id,mpk, usk)

4 : delete pw, r,msk

5 : return pwfile

Alice(sid, ssid, idB , pwfileA) Bob(sid, ssid, idA , pwfileB)

idA idB mpk mpk idB idA

K
PAKEsid,ssid

K

K pwfileA pwfileB K

K′ idB
EUE[IBKE]

idA K′

K′′ := H1(K
′, tr) K′′ := H1(K

′, tr)

return (idB ,K
′) return (idA,K

′)

Figure 5: The LATKE iPAKE framework. With the grey text excluded,
the above defines LATKEpost. With the grey text included, the above defines
LATKEpre. EUE[IBKE] is encrypt-and-unconditionally-execute transform of the
identity-based key agreement protocol IBKE (Section 3.4), and uses a separate
random oracle H2 for key derivation. tr is the transcript of the entire protocol.

Round complexity. PAKE and IBKE constructions can both be achieved
using one round of communication each. So, like CHIP, the minimum round
complexity for the LATKE framework is two rounds. While one-round PAKEs
and IBKEs exist (e.g., EKE [LLHG23] and Fiore-Gennaro [FG10], resp.), most
rely on a Diffie-Hellman-type assumption. In Section 5, we discuss ideas to
achieve post-quantum LATKE in two rounds.

3.4 The Encrypt-and-Unconditionally-Execute Transform

Recall we must use the PAKE-derived key to establish a secure channel in which
to perform the IBKE protocol. To hide IBKE messages and ensure correct
execution, we must carefully apply a symmetric encryption scheme so as to
avoid potential replay attacks. In addition, our security proof requires that the
protocol transcript look the same to a passive attacker regardless of whether
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the initial PAKE succeeded. To achieve this, we must send ciphertexts even on
protocol failure. Finally, since we must be able to open ciphertexts to arbitrary
values, we require a simulation-secure notion of symmetric encryption. We call
the combination of these techniques the encrypt-and-unconditionally-execute
transform EUE[IBKE].

EUE definition. We require an IBKE with a fixed number of rounds and
fixed message sizes, an authenticated encryption scheme AE with SIM*-AC-CCA
security using ideal primitive P, and a random oracle H. We use the variable
rmode to denote whether the party is in real mode, i.e., is still encrypting real
messages. At the beginning of the protocol, rmode := true. We define the
behavior of a party P interacting with its peer P ′ in session (sid, ssid). We let
K represent the encryption key that P intends to use for the session.

1. Let the chain key Kch := H(sid, ssid, 0∥K). We will use the chain key to
derive all subsequent keys using a symmetric ratchet similar to the Signal
protocol [Mar16, CJSV22]. Once a chain key has been ratcheted forward,
the old keys are erased.

2. Protocol step i, where P is sending: Compute the step key and new
chain key (Kch, ki) := H(sid, ssid, 1∥Kch). If rmode = true, the IBKE
hasn’t aborted yet, so P has a specific IBKE message mi it wishes to
send. Compute ci := AE.EncPki

(m). Otherwise if rmode = false, let
ci := AE.Encki

(0ℓi), where 0ℓi is the all-zeros string of the known step i
message length ℓi. Finally send ci to P ′.

3. Protocol step i, where P is receiving: Compute the step key as described
above. If rmode = false, the IBKE has aborted, so simply return. Other-
wise, proceed as follows. To decrypt the incoming ciphertext ci, compute
m′

i := AE.DecPki
(ci). If a decryption failure occurred, set rmode := false

and return. Otherwise pass m′
i to P to continue the protocol execution. If

P aborts, then abort the protocol.

4. At the end of the protocol, if rmode = false, output ⊥. Otherwise, output
P’s output.

We will not prove any standalone security properties about the EUE protocol,
as it only makes sense when used in the broader context of LATKE.

3.5 Building the IBKE

We briefly recall results which make it possible to construct a satisfactory IBKE
from the smaller building block of authenticated key exchange (AKE). We start
with an AKE with just key compromise impersonation resistance (KCIR). We will
use these techniques to build several IBKEs which we benchmark in Section 4.

Forward secrecy for AKE. LATKE requires full forward secrecy from its
key exchange. There are a few well known methods to endow a generic AKE
with forward secrecy. For generic AKEs, Boyd and Nieto [BN11] describe a
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transform wherein the AKE is used to set up an authenticated channel, and
through that channel, the parties perform an ordinary (unauthenticated) key
exchange to derive the final key. The resulting AKE has forward secrecy as long
as the adversary is not given the ability to perform ephemeral key revelations.
This security meets the preconditions of Theorem 1.

Another transform achieves forward secrecy from weak forward secrecy, i.e.,
forward secrecy when the adversary does not tamper with the messages in the
test session. The transform simply adds key confirmation to the end of the
protocol—each party sends a MAC whose key is derived from the shared secret
[Kra05, Section 8] [GGJJ23].

Both of these transforms add at least one round of communication.

AKE to IBKE. To convert an AKE into an identity-based AKE, we follow a
well-known schema, the certification approach, used for building identity-based
signatures from ordinary signatures [KN09]. In this construction, every user
has an AKE public key pk, and some ID string id. The key generation center
(KGC) issues identities by signing (id, pk) pairs with its signing key msk. The
user’s certificate is thus (id, pk, σ), where σ is the signature they received from
the KGC. At the very beginning of key exchange, users exchange and verify each
other’s certificates with respect to the KGC’s public key mpk. On success, they
proceed with AKE using the user-provided public keys.

We describe the transform more formally. Let Σ be an EUF-CMA-secure
signature scheme, and let AKE be an authenticated key exchange protocol in the
post-specified peer model. The post-specified peer IBKE is defined as follows:

Setup(1λ)→ (mpk,msk) Generates a signing keypair (mpk,msk)← Σ.KeyGen(1λ).

Extractmsk(id, upk)→ σ Computes the signature σ ← Σ.Signmsk(id∥upk).

Execute(uskA, idA, σA,mpk)⇔ Execute(uskB , idB , σB ,mpk) Each party first sends
each other certX := (upkX , idX , σX) where X ∈ {A,B}. Then, each party
verifies cert with respect to mpk. On success, the parties proceed with the
AKE. At the end, the parties check that the outputted upk matches the
one they received.

For a pre-specified peer IBKE from a pre-specified peer AKE, it suffices to
remove the last check and add a check that the received certificate’s ID matches
the expected ID.

We make some remarks on the certification approach. Firstly, the security
properties we desire, namely KCIR and FS, are preserved in this transform.
Secondly, this transform produces an IBKE with KGC-FS. This is because the
KGC keys are strictly used for authentication, and never for key derivation.
Thirdly, as stated above the transform is slightly stricter than necessary regarding
the ordering of events. In particular, certificates can be sent at any point in the
protocol. If AKE is responder-concealing, then the transformed protocol may
have the initiator send its certificate at the very beginning, and the responder
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send their certificate at the very end of the protocol, encrypted with the session
key, thus preserving the responder-concealing property.8

3.6 Identity Concealment

Informally, due to LATKE’s initial PAKE, passive attackers cannot observe
the identity of either party in a protocol execution. This holds even for active
attackers who have not compromised any users or guessed the password. However,
the PAKE alone is insufficient to prevent an active attacker in possession of
a compromised password file. If Mallory steals Alice’s password file, she can
initiate a session with Bob (whose identity she does not yet know), successfully
complete the PAKE, and learn Bob’s identity if the underlying IBKE protocol is
non-concealing. Thus, even if Alice is not the ID Bob expected or wanted to
interact with, he may be forced to reveal his identity.

To address this, we look to IBKE protocols with active identity concealment—
where one party is forced to identify themselves before the other party does.
As mentioned by the authors of the SIGMA-I/SIGMA-R identity-concealing
protocols [Kra03], it is not possible to provide active identity concealment to
both parties; one must pick either the initiator or the responder.

When LATKEpost is instantiated with a responder-concealing IBKE, the
above scenario is no longer possible: if Bob does not wish to communicate with
Alice (currently impersonated by Mallory), he may abort the iPAKE protocol
before revealing his identity. We note that an attack is still possible if Mallory
successfully guesses pw, since then she may impersonate any party, including
those Bob wishes to communicate with. This is an unavoidable property of a
password-based identity system.

3.7 Security

We informally discuss the security of LATKE before stating the main security
theorem. To build intuition, we explain why each security assumption is necessary
for LATKE.

SK-security. The base security of the IBKE prevents the most basic attacks,
e.g., determining the session key of a passively observed session, impersonating a
party who has not been compromised, or forcing two unrelated sessions to have
the same session key.

Key-compromise impersonation resistance. If an adversary, Mallory,
compromises Alice, then the only party Mallory should be able to impersonate

8It is possible to go even further with this idea. Some protocols which are responder-
concealing (resp. initiator-concealing) are also passively initiator-concealing (resp. passively
responder concealing). An example is SIGMA-R [Kra03]. The transform described here does
not preserve the passive concealing property. But if the protocol is modified so certificates
are sent at the exact same time and encrypted under the same key as the user-identifying
information in the underlying protocol, the both these properties are preserved. We will do
exactly this in our experiments (Section 4).
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(barring a brute-force attack) is Alice herself. In particular, she should not be
able to impersonate Bob to Alice. This is captured by our KCIR requirement.

Full forward secrecy. Mallory can use a stolen mpk to corrupt the initial PAKE
and passively observe the cleartext IBKE execution between two uncompromised
parties, Alice and Bob. If Mallory records this execution, cracks the password
associated with mpk (thus getting msk), and later corrupts Alice and Bob, she
should still not be able to later determine the session key. This is captured by
our full FS requirement.

OnlineComparePwd. The above scenario also elucidates why OnlineComparePwd
is necessary in our ideal functionality. If the UC simulator is to simulate the
cleartext IBKE session, it must know whether the stolen mpk matches one of the
parties’ PAKE inputs. This is ordinarily captured by the Impersonate procedure,
which forces the target party to believe the stolen mpk’s owner is their peer.
However, it is not immediately clear when Mallory performs the attack if she
intends to impersonate a party or to merely pass messages transparently. Since
the latter case would not result in a change of perceived peer, the UC simula-
tor cannot call Impersonate at that moment, and must use OnlineComparePwd
instead.

SIM*-AC-CCA security and programmable ROM. As with
OnlineComparePwd, we require this symmetric security notion and ideal primitive
for UC simulatability reasons. Suppose Alice and Bob are both uncompromised
and executing the protocol. In this case, the simulator does not know anything
about the parties’ mpk: they may be unequal, equal to each other, equal to other
parties with known passwords/mpk, or none of the above. Suppose Mallory
waits until the first party, wlog Bob, outputs a session key K ′′ and sends the
final (encrypted) message c to Alice. Then Mallory may immediately corrupt
Alice, forcing the simulator to create an internal state which can explain c in the
context of the protocol, and also demonstrate that the session key is indeed K ′′.
The difficulty here is twofold: first, the simulator must find a message m that
makes sense and results in the output K ′′, and second, the simulator must be
able to provide a decryption key that opens c to m. The first issue is resolved by
the random oracle at the end of the protocol: the simulator can construct any
transcript it wants, and simply program H1(K

′, tr) := K ′′.9 The second issue is
resolved by our choice of a non-committing encryption primitive, which achieves
SIM*-AC-CCA security.

Main theorem. In addition to three random oracles, H0,H1,H2, we require in
our model the ideal primitive P that is used by the underlying SIM*-AC-CCA-

9This is resolved differently by Canetti and Krawczyk in their paper tying UC authenticated
key exchange to SK-security [CK02b]. They define the ACK property—an AKE has the ACK
property iff, once the first party outputs the session key, the internal states of both parties are
simulatable using only the session key and public information. They show that this property
is necessary to achieve UC simulatability, and describe a simple, generic transform to endow
an SK-secure AKE with the ACK property, at the cost of one communication round. We
are able to circumvent this overhead by using a programmable random oracle on our session
key outputs. Since we must use a programmable model for iPAKE regardless [Hes20], this is
essentially free.
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secure authenticated encryption scheme (for AES-CTR + HMAC, for example,
this is an ideal cipher and a random oracle). A proof of the following can be
found in Appendix B.

Theorem 1. Let IBKE be a post-specified peer IBKE with SK-security with KCIR
and full FS in the identity-based CK, eCK, CKHMQV, or CK+ model. Let AEP

be a SIM*-AC-CCA-secure symmetric encryption scheme with ideal primitive
P. Then the LATKEpost protocol realizes F ′

iPAKE in the (FPAKE,FRO,P)-hybrid
model with erasure and adaptive corruptions.

Similarly, if IBKE is a pre-specified peer IBKE with SK-security in these
models, then LATKEpre realizes F ′

iPAKE in the (FPAKE,FRO,P)-hybrid model with
erasure and adaptive corruptions.

We note that the theorem accepts a range of IBKE models whose security
statements are known to be incomparable [Cre11]. In our proof, we avoid issues
by using the narrowest set of adversary powers possible, a set which all models
happen to share. In fact, the proof does not even require an IBKE security
model with a notion of ephemeral key revelation. This permits a wider class
of IBKE constructions, e.g., those constructed from AKEs with the forward
secrecy transform from [BN11]. Our reduction is helped by the coarseness of the
UC iPAKE model, which has strong session identifiers and only two types of
corruption—long-term key corruption and total corruption.

Finally, our proof is written for LATKEpost, but it is not dependent on
the pre-specified peer model, and transfers with little modification (given in
Appendix B). Thus, we achieve a general result for any peer model and any
commonly used notion of IBKE security.

4 Experiments

To demonstrate the practicality of LATKE, we instantiate it using a variety
of PAKEs and IBKEs with different cryptographic assumptions and round
complexities, and perform microbenchmarks on the resulting protocols. In
particular, we instantiate the first post-quantum, identity-concealing iPAKE. For
fair comparison, we also instantiate CHIP with the same underlying primitives
where applicable. All our primitives are chosen to meet 128-bit security.

4.1 Choosing Primitives

In this section we list the PAKEs, IBKEs, and other primitives we chose for
experimentation. For hashing, message authentication, and key derivation we
use the Blake2b [ANWW13], HMAC [BCK96], and HKDF [Kra10] functions,
respectively. For SIM*-AC-CCA-secure encryption, we use the encrypt-then-
MAC construction [JT20] with the ChaCha20 stream cipher [Ber08] and the
HMAC-Blake2b MAC. For simple Diffie-Hellman key agreement, we use the
X25519 key-exchange protocol [Ber06]. For any protocol requiring prime-order
group operations, we use the Ristretto255 group [VGH+23].
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PAKEs. We now describe the PAKEs we used to instantiate LATKE and
CHIP.

For our pre-quantum PAKE, we use CPace [HL19, AHH21], a one-round
Diffie-Hellman-based construction. We also implemented and benchmarked
KC-SPAKE2 [Sho20], but found it had higher communication cost, higher round
complexity, and worse runtime efficiency. Thus, we omit KC-SPAKE2 entirely
from our analysis.

For our post-quantum PAKE, we use CAKE [BCP+23], a three-round generic
construction which can be instantiated from any fuzzy, key-anonymous IND-
CPA-secure KEM and any keyed permutation (standing in for an ideal cipher).
For the keyed permutation, we use Kravatte, an instantiation of the Farfalle
wide block cipher over the Keccak permutation [BDH+17]. For the KEM, we
use Saber [DKRV18],10 whose ciphertexts and public keys pack perfectly into
bytes, and so is compatible with CAKE with a wide-block cipher-based keyed
permutation.

IBKE. We now describe the IBKEs we used to instantiate LATKE and CHIP.
We remark that we benefit greatly from the generality of Theorem 1. The
protocols used below are proven in the id-CK, CK, eCK, and CKHMQV models,
respectively.

For more direct comparison with CHIP, we use the same Fiore-Gennaro
IBKE that CHIP uses [FG10]. However, the IBKE only provides weak forward
secrecy. To make it usable for LATKE, we add key confirmation to both sides
using a MAC, as described in Section 3.5. We call the key confirmation variant
FgC.

For identity-concealing and post-quantum security, we instantiate LATKE
with the SIGMA-R responder-concealing protocol, due to Krawczyk [Kra03]. This
is the only post-specified peer AKE we test. We apply the modification suggested
by Peikert [Pei14] to base the protocol on a generic IND-CPA-secure KEM,
rather than Diffie-Hellman. Finally, we apply our AKE-to-IBKE transform to
the protocol, while preserving responder concealment. We illustrate the protocol
in full in Figure 6. SIGMA-R and the IBKE transform both require signatures,
so we benchmark with respect to the Ed25519 [BDL+12] and Dilithium [BDK+]
signature schemes.11

We also instantiate LATKE with the one-round AKE protocol by Bergsma
et al. [BJS15] that, at its core, is signed Diffie-Hellman. We apply the same
AKE-to-IBKE transform, using Ed25519 signatures, to this protocol.

Finally, we instantiate LATKE with the HMQV-C protocol (i.e., HMQV
with key confirmation), described by Krawczyk [Kra05]. We apply the same

10Saber is very similar to Kyber [BDK+18] in construction, with the only essential difference
being its reliance on the Module Learning with Rounding (MLWR) problem rather than
Module Learning with Errors (MLWE). Their similarity allows CAKE’s required fuzziness and
key-anonymity properties proven about Kyber in [BCP+23, Lemma 2] to transfer to Saber.

11There is good reason to consider using a pre-quantum signature scheme in an otherwise
post-quantum protocol. The store now, decrypt later threat model only applies to encryption
that may be broken in the future, not authentication. Thus, it suffices to use pre-quantum
signatures until a cryptographically relevant quantum computer is imminent.
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iPAKE PQ? Con.? Rounds Comm. Setup Online
Chip[Cpace,Fg] [CNPR22] x x 2 208B 284µs 5.33ms (1×)

Latkepre[Cpace,FgC] x x 4 404B 314µs 5.56ms (1.04×)
Latkepre[Cpace,IdHmqvC] x x 4 532B 467µs 5.62ms (1.05×)
Latkepre[Cpace,IdSigDh] x x 2 616B 615µs 8.32ms (1.56×)

Latkepost[Cake,IdΣEd25519] enc. ✓ 6 3.53kB 813µs 5.46ms (1.03×)
Latkepost[Cake,IdΣDilith2] enc.+auth. ✓ 6 15.5kB 2.55ms 10.1ms (1.89×)

Table 1: Performance characteristics of CHIP and LATKE, instantiated with
varying IBKEs and PAKEs. The Con. column indicates whether the iPAKE
has identity concealment. Reported online latencies are for the full protocol,
excluding communication times.

transformation, also using Ed25519 signatures.

4.2 Experimental Setup

We now describe the hardware, software, and methodology of our benchmarks.

Hardware. Since the intended use case for iPAKE is in mesh networking
protocols, we chose to conduct benchmarks on a commodity WiFi router. The
router, a Linksys E8450 AX3200, has a 64-bit ARM Cortex-A53 CPU (late
2012), and runs OpenWrt [ope] snapshot r17758-b118efa0d2 (late 2021).

Software. All benchmarks were written in Rust, in a total of 2.9kloc.12 We used
the Criterion benchmarking framework to measure performance, and disabled
SHA2 hardware acceleration. SIMD is not supported on the target chipset, and
we did not use any other form of parallel execution.

Methodology. For each combination of CHIP / LATKE with PAKE and IBKE,
we measured online runtime, i.e., how long it takes to run the online portion of the
protocol from beginning to end, ignoring any communication costs. We separately
measured communication costs. To have a fair comparison of the included pre-
and post-specified peer protocols, we exclude the communication costs that come
from sending identifier strings (this is at most 64B per protocol execution). We
also measure setup runtime, i.e., the time it takes to run StorePwdFile, which is
a one-time offline cost per device. To facilitate comparison between schemes, we
do not use any hard password hashing functions in StorePwdFile (e.g., Argon2
or PBKDF2), though any realistic implementation must use one.

We report the medians of the recorded latencies. Across all benchmarks,
then maximum observed relative standard error of the median was 0.5%.

4.3 Discussion

We show the results of our benchmarks in Table 1.
As expected, LATKEpre with FgC performs closely to CHIP with Fg, both in

setup and online time. The additional communication overhead of 196B can be

12Code is available at https://github.com/rozbb/latke-ipake
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StorePwdFile(pw, id)

1 : (mpk,msk) := SigKg(1λ;H0(pw))

2 : (upk, usk)← SigKg(1λ)

3 : σ ← Signmsk(upk∥id)
4 : cert := (upk, id, σ)

5 : pwfile := (mpk, cert, usk)

6 : return pwfile

Alice(pwfileA, sid, ssid) Bob(pwfileB , sid, ssid)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Begin CAKE over mpk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(epk, esk)← KemKg(1λ)

ẽpk← Empk∥sid∥ssid(epk) ẽpk

epk := Dmpk∥sid∥ssid(ẽpk)

(ek,K)← Encap(epk)

ẽk ẽk := Empk∥sid∥ssid(ek)

ek := Dmpk∥sid∥ssid(ẽk)

K := Decapesk(ek)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Begin SIGMA-R, encrypted with K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nonceA ← {0, 1}λ nonceB ← {0, 1}λ

(epk, esk)← KemKg(1λ)

EUEK

epk nonceA

ek nonceB (ek, ss)← Encap(epk)

ss := Decapesk(ek)

(K′,K(e),K(m)) := KDF(ss) (K′,K(e),K(m)) := KDF(ss)

σA ← SignuskA(0∥nonceB∥sid∥ssid σB ← SignuskB (1∥nonceA∥sid∥ssid
∥epk∥ek∥certA) ∥ek∥epk∥certB)

τA := MacK(m)(0∥sid∥ssid∥idA) τB := MacK(m)(1∥sid∥ssid∥idA)

cA := EncK(e)(certA∥σA∥τA) cA cB := EncK(e)(certB∥σB∥τB)

decrypt cA or abort

cB verify certA, σA, τA wrt mpk, upkA,K
(m)

decrypt cB or abort

verify certB , σB , τB wrt mpk, upkB ,K
(m)

K′′ := H1(K
′, tr) K′′ := H1(K

′, tr)

return (idB ,K
′′) or ⊥ on EUE err return (idA,K

′′) or ⊥ on EUE err

Figure 6: LATKEpost instantiated with the CAKE PAKE [BCP+23], and the
SIGMA-R AKE [Kra03, Pei14] with identity certificates (Section 3.5). E,D
represents a wide-block cipher.



attributed to the additional key confirmation information that CHIP does not
require, plus the ciphertext expansion due to EUE.

The HmqvC instantiation of LATKE performs similarly well, albeit with a
slightly higher setup time and communication cost. The round-optimal instanti-
ation with IdSigDh performs noticeably worse due to its reliance on signatures
for authentication, rather than the implicit authentication of FgC and HmqvC.
This is one area in which CHIP has a strong advantage—since CHIP does not
require any form of forward secrecy from its IBKE, it can use efficient, one-round,
implicitly authenticated IBKEs, while LATKE must use digital signatures or
else increase its round complexity.

The IdΣEd25519 post-quantum encryption is surprisingly close to CHIP
in online runtime, albeit with nearly 17× the communication cost. And, as
expected, IdΣDilith2 post-quantum encryption and authentication instantiation
performed the worst across the board, with over 74× the communication cost
compared to CHIP, but surprisingly only 1.89× the online runtime.

We also measured an optimization in which users save the certificate of the
other party so that in future exchanges the user does not have to perform a signa-
ture verification. This saves 822µs on average, making Latkepre[Cpace,IdHmqvC]
and Latkepost[Cake,IdΣEd25519] faster than Chip[Cpace,Fg] on every execu-
tion after the first (again, ignoring communication costs).

Finally, we note there are still performance gains to be had for the post-
quantum SIGMA-R instantiation. The reason we use Saber for IBKE is simply
for convenience in testing, since it is already used in CAKE. But there are post-
quantum KEMs faster than Saber, such as NTTRU [LS19] and Kyber [BDK+18].

5 Future Work

Post-quantum siPAKE. Recall the CRISP protocol is a strong iPAKE
(siPAKE), meaning that it is robust to precomputation attacks. In CHIP and
LATKE, an adversary who precomputes a table of mpk values from various
password guesses can use it to speed up a brute-force attack, should they ever
retrieve an mpk from a user device. The CRISP construction uses algebraic
techniques which rely on bilinear pairings in order to locally rerandomize its pwfile
without breaking authenticity. It is not immediately clear if these properties
can be obtained generically with an AKE and PAKE, nor if there exists a
post-quantum analogue to the local rerandomization and pairing steps.

In addition, we reiterate the call for future work by the authors of CHIP/CRISP,
that it would be useful to find a local rerandomization step that produces a
problem for an attacker with tweakable hardness. Currently, CRISP forces the
attacker to compute 1 pairing per guess—on the order of 1ms—whereas an
OPRF-based strong construction like OPAQUE force an attacker to compute a
hard hash per guess—on the order of 100ms.

Hybrid iPAKE. We have described LATKE using entirely post-quantum
and entirely pre-quantum primitives, but the common path taken recently by
standardization bodies is to define hybrid schemes, which combine two schemes
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and enjoy the security of the harder of the two, even if we don’t yet know which
one that is. Since there already exist hybrid IBKEs with the properties necessary
for LATKE, all that remains to build a hybrid iPAKE is to find a hybrid PAKE.

To the authors’ knowledge, there is no known hybrid PAKE, let alone a
generic method for creating one. Consider the concatenation transform, used in
KEMs [BCD+24], whereby two KEMs are hybridized by simply running them in
parallel, concatenating the final shared secrets, and hashing the concatenation.
Suppose we do the same with two PAKEs which rely on a computational
indistinguishability assumption for passive security, as CAKE does (specifically,
LWE for fuzziness and key anonymity). Then the resulting hybrid PAKE’s
passive security is only as secure as the least secure of the two underlying
PAKEs, since a passive attacker may simply pick which subprotocol transcript
they wish to attack, and derive the password from that.

Round-optimal post-quantum iPAKE. As demonstrated in Section 4,
pre-quantum LATKE can be achieved using only 2 rounds of communication.
The same is true for post-quantum LATKE, but there are limited options for
the underlying primitives.

For post-quantum one-round PAKE, the only efficient scheme that satis-
fies our security requirements appears to be EKE-NIKE [BGHJ24]. For post-
quantum security, this can be instantiated with the CPA-secure variant of the
Swoosh [GdKQ+23] NIKE, which is based on LWE (note, though, that com-
munication costs are high because it requires high lattice dimension), or the
CSIDH [CLM+18] NIKE, which is based on an isogeny walk assumption. Be-
yond this, there are PAKEs from isogeny assumptions [AEK+22, IY23], though,
they are only proven in (an extension of) the BPR model [BPR00], not UC.
Finally, there is a PAKE from (approximate) smooth projective hash functions
and simulation sound NIZKs, which can both be realized from LWE assump-
tions [BBDQ18].

One-round post-quantum IBKEs are also difficult to instantiate. We may
consider just AKE in our round complexity analysis, since our AKE-to-IBKE
transform does not add rounds. Note a one-round AKE is equivalently a non-
interactive key exchange (NIKE), since we can simply make the first round an
exchange of the parties’ public keys.

The only post-quantum AKE considered in Section 4 is SIGMA-R [Kra03],
which has four rounds of communication. Schemes with two rounds are well
known [BCNS15, ADPS16], but there are few schemes with just one round of
communication. CSIDH appears to be the only plausibly efficient protocol in
this space. The only other option in, the CCA-secure variant of Swoosh, requires
each party to compute a non-interactive zero-knowledge proof over such vectors
for every key exchange, and, as in the CPA-secure version, has relatively high
communication costs.

Finally, as noted also by the CHIP/CRISP authors, it would be useful to
find a one-round iPAKE, or else prove that one cannot be constructed.
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Gilles Van Assche, and Ronny Van Keer. Farfalle: parallel
permutation-based cryptography. IACR Trans. Symm. Cryptol.,
2017(4):1–38, 2017. doi:10.13154/tosc.v2017.i4.1-38.

[BDK+] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien
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[HL19] Björn Haase and Benôıt Labrique. AuCPace: Efficient verifier-based
PAKE protocol tailored for the IIoT. IACR TCHES, 2019(2):1–
48, 2019. https://tches.iacr.org/index.php/TCHES/article/
view/7384. doi:10.13154/tches.v2019.i2.1-48.

[HL23] Helena Handschuh and Anna Lysyanskaya, editors. CRYPTO 2023,
Part IV, volume 14084 of LNCS. Springer, Heidelberg, August 2023.

[IY23] Ren Ishibashi and Kazuki Yoneyama. Compact password au-
thenticated key exchange from group actions. In Leonie Simp-
son and Mir Ali Rezazadeh Baee, editors, ACISP 23, volume
13915 of LNCS, pages 220–247. Springer, Heidelberg, July 2023.
doi:10.1007/978-3-031-35486-1_11.

[Jab97] David P. Jablon. Extended password key exchange protocols im-
mune to dictionary attacks. In 6th IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enter-
prises (WETICE 1997), pages 248–255, Cambridge, MA, USA,
June 18–20, 1997. IEEE Computer Society.

[Jae23] Joseph Jaeger. Let attackers program ideal models: Modularity
and composability for adaptive compromise. In Carmit Hazay

34

https://doi.org/10.1007/3-540-46885-4_5
https://moderncrypto.org/mail-archive/curves/2015/000424.html
https://moderncrypto.org/mail-archive/curves/2015/000424.html
https://doi.org/10.1109/SENSORCOMM.2008.131
https://doi.org/10.1109/SENSORCOMM.2008.131
https://doi.org/10.1007/978-3-030-57990-6_29
https://doi.org/10.1007/978-3-030-57990-6_29
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://doi.org/10.13154/tches.v2019.i2.1-48
https://doi.org/10.1007/978-3-031-35486-1_11


and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume
14006 of LNCS, pages 101–131. Springer, Heidelberg, April 2023.
doi:10.1007/978-3-031-30620-4_4.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE:
An asymmetric PAKE protocol secure against pre-computation
attacks. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages
456–486. Springer, Heidelberg, April / May 2018. doi:10.1007/

978-3-319-78372-7_15.

[JT20] Joseph Jaeger and Nirvan Tyagi. Handling adaptive compromise for
practical encryption schemes. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS,
pages 3–32. Springer, Heidelberg, August 2020. doi:10.1007/

978-3-030-56784-2_1.

[KN09] Eike Kiltz and Gregory Neven. Identity-Based Signatures. 2009.

[Kra03] Hugo Krawczyk. SIGMA: The “SIGn-and-MAc” approach
to authenticated Diffie-Hellman and its use in the IKE pro-
tocols. In Boneh [Bon03], pages 400–425. doi:10.1007/

978-3-540-45146-4_24.

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman
protocol. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 546–566. Springer, Heidelberg, August 2005. doi:
10.1007/11535218_33.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation:
The HKDF scheme. In Tal Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 631–648. Springer, Heidelberg, August 2010.
doi:10.1007/978-3-642-14623-7_34.

[LLHG23] Xiangyu Liu, Shengli Liu, Shuai Han, and Dawu Gu. EKE meets
tight security in the Universally Composable framework. In Alexan-
dra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part I,
volume 13940 of LNCS, pages 685–713. Springer, Heidelberg, May
2023. doi:10.1007/978-3-031-31368-4_24.

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger
security of authenticated key exchange. In Willy Susilo, Joseph K.
Liu, and Yi Mu, editors, ProvSec 2007, volume 4784 of LNCS, pages
1–16. Springer, Heidelberg, November 2007.

[Lou21] Karim Lounis. Cut it: Deauthentication attack on bluetooth. In
2021 14th International Conference on Security of Information
and Networks (SIN), volume 1, pages 1–8, 2021. doi:10.1109/

SIN54109.2021.9699265.

35

https://doi.org/10.1007/978-3-031-30620-4_4
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-031-31368-4_24
https://doi.org/10.1109/SIN54109.2021.9699265
https://doi.org/10.1109/SIN54109.2021.9699265


[LS19] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast
NTRU using NTT. IACR TCHES, 2019(3):180–201, 2019. https:
//tches.iacr.org/index.php/TCHES/article/view/8293. doi:

10.13154/tches.v2019.i3.180-201.

[Mar16] Moxie Marlinspike. The Double Ratchet Algorithm, 2016. URL:
https://signal.org/docs/specifications/doubleratchet/.

[Oka88] Eiji Okamoto. Key distribution systems based on identification
information. In Carl Pomerance, editor, CRYPTO’87, volume
293 of LNCS, pages 194–202. Springer, Heidelberg, August 1988.
doi:10.1007/3-540-48184-2_15.

[ope] Welcome to the OpenWrt Project. URL: https://openwrt.org.

[Pei14] Chris Peikert. Lattice cryptography for the internet. In Michele
Mosca, editor, Post-Quantum Cryptography - 6th International
Workshop, PQCrypto 2014, pages 197–219. Springer, Heidelberg,
October 2014. doi:10.1007/978-3-319-11659-4_12.

[SE15] Jae Hong Seo and Keita Emura. Revocable hierarchical identity-
based encryption: History-free update, security against insiders,
and short ciphertexts. In Kaisa Nyberg, editor, CT-RSA 2015,
volume 9048 of LNCS, pages 106–123. Springer, Heidelberg, April
2015. doi:10.1007/978-3-319-16715-2_6.

[Shi03] Kyungah Shim. Efficient id-based authenticated key agreement pro-
tocol based on weil pairing. Electronics Letters, 39:653–654(1), April
2003. URL: https://digital-library.theiet.org/content/

journals/10.1049/el_20030448.

[Sho20] Victor Shoup. Security analysis of SPAKE2+. In Rafael Pass and
Krzysztof Pietrzak, editors, Theory of Cryptography, pages 31–60,
Cham, 2020. Springer International Publishing.

[SPT13] Craig A. Shue, Nathanael Paul, and Curtis R. Taylor. From
an IP address to a street address: Using wireless signals to lo-
cate a target. In 7th USENIX Workshop on Offensive Technolo-
gies (WOOT 13), Washington, D.C., August 2013. USENIX As-
sociation. URL: https://www.usenix.org/conference/woot13/
workshop-program/presentation/shue.

[SRV23] Domien Schepers, Aanjhan Ranganathan, and Mathy Vanhoef.
Framing frames: Bypassing Wi-Fi encryption by manipulat-
ing transmit queues. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 53–68, Anaheim, CA, August
2023. USENIX Association. URL: https://www.usenix.org/

conference/usenixsecurity23/presentation/schepers.

36

https://tches.iacr.org/index.php/TCHES/article/view/8293
https://tches.iacr.org/index.php/TCHES/article/view/8293
https://doi.org/10.13154/tches.v2019.i3.180-201
https://doi.org/10.13154/tches.v2019.i3.180-201
https://signal.org/docs/specifications/doubleratchet/
https://doi.org/10.1007/3-540-48184-2_15
https://openwrt.org
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-16715-2_6
https://digital-library.theiet.org/content/journals/10.1049/el_20030448
https://digital-library.theiet.org/content/journals/10.1049/el_20030448
https://www.usenix.org/conference/woot13/workshop-program/presentation/shue
https://www.usenix.org/conference/woot13/workshop-program/presentation/shue
https://www.usenix.org/conference/usenixsecurity23/presentation/schepers
https://www.usenix.org/conference/usenixsecurity23/presentation/schepers


[Tho22a] Steve Thomas. bscrypt: A Cache Hard Password Hash, 2022. URL:
https://tobtu.com/files/bsideslv2022.pdf.

[Tho22b] Steve Thomas. Demystifying Key Stretching and
PAKEs. Black Hat 2022, Aug 2022. URL: https:

//www.blackhat.com/us-22/briefings/schedule/

#demystifying-key-stretching-and-pakes-27615.

[Thr15] Thread Group. Thread commissioning, July 2015. URL:
https://www.threadgroup.org/Portals/0/documents/

support/CommissioningWhitePaper_658_2.pdf.

[VGH+23] Henry de Valence, Jack Grigg, Mike Hamburg, Isis Lovecruft, George
Tankersley, and Filippo Valsorda. The ristretto255 and decaf448
Groups. Request for Comments RFC 9496, Internet Engineering
Task Force, December 2023. URL: https://datatracker.ietf.
org/doc/rfc9496.

[Wan13] Yongge Wang. Efficient Identity-Based and Authenticated Key
Agreement Protocol, pages 172–197. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013. doi:10.1007/978-3-642-35840-1_9.

A Deferred Preliminaries

Here we include the preliminaries necessary for our main proof in Appendix B.

A.1 Notation

We say a function f : N → R is negligible in n, denoted f(n) = negl(n),
iff |f(n)| = n−ω(1) or, equivalently, for any c > 0, there is an n0 such that
f(n) > n−c for all n > n0. We say a function f : N → R is polynomial in
n, denoted f(n) = poly(n), iff for some M,d > 0, there is an n0 such that
|f(n)| ≤Mnc for all n > n0.

A.2 Probability

A probability ensemble S is an infinite sequence of probability distributions
S1,S2, . . . , where each Si is over a set Ai ⊂ {0, 1}ℓ(i), where ℓ(n) = poly(n) is
some length function. The statistical distance between two probability distribu-
tions S,S ′ over sets A,A′ is

∆(S,S ′) = 1

2

∑
x∈A∪A′

|Pr[y = x | y ← S]− Pr[y = x | y ← S ′]|.

We say that two probability ensembles S,S ′ are statistically indistinguishable,
denoted S s≈ S ′ iff ∆(Sn,S ′n) = negl(n). We say that two probability ensembles
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S,S ′ are computationally indistinguishable, denoted S c≈ S ′, if for any proba-
bilistic polynomial-time (PPT) distinguisher |Pr[D(S) = 0] − Pr[D(S ′) = 0]|
is negligible. We say an event X in some probability ensemble S occurs with
overwhelming probability if the event fails to occur with negligible probability.

A.3 Canetti-Krawczyk Model

The authors of [CK02a] present a game-based approach to modeling adaptive
adversaries in an authenticated key agreement protocol in the post-specified peer
setting. The adversary is permitted to activate new sessions between honest
parties, intercept their messages, inject messages, and corrupt them in various
ways. We describe in more detail the post-specified peer CK model. Similar
definitions exist for pre-specified peers, and can be found in [CK01].

A session activated at party Pi (the owner) is denoted by the tuple (Pi, role, s, d),
where role is the role (initiator or responder) of Pi; s is the unique session
identifier; and d is the destination address of the intended peer, i.e., an abstract
identifier that may define a network location or shared address where the in-
tended peer may be found. For brevity, we omit role and d when referring to
a session. At the end of a successful session, the party outputs a public triple
(Pi, s,Pj) where Pj is the (discovered) peer to the session, and a private session
key K. It also erases all its session state, i.e., all the ephemeral data used to
conduct the protocol. A session that has output its peer-key tuple is called
completed. A session that has failed is called aborted and returns ⊥.

The model permits the adversary A to query the following oracles regarding
the state of protocol sessions and participating parties.

NewSession(Pi, s, d, role) Creates a new session for party Pi with destination
address d. If role = initiator, then Pi will send an initiating message to
the given address. If s is given, the new session is given ID s. If s = ⊥,
then a fresh ID is generated and returned to the caller.

Send(Pi, s,m) Sends a message m to Pi in session s. Returns the response of
Pi after processing the message according to the protocol.

Corrupt(Pi) Reveals to A the long-term keys of Pi, the session keys of all its
(unexpired) completed sessions, and the state of all its incomplete sessions.

RevealKey(Pi, s) Reveals to A the session key derived by Pi in the completed
session s.

RevealLtk(Pi, s) Reveals to A the long-term keys of Pi.
13

RevealState(Pi, s) Reveals to A the session state of Pi in the given incomplete
session s.

Expire(Pi, s) Expires the completed session at the given party, i.e., erases the
session key of s from Pi’s memory.

13This oracle is not actually in the CK model. We show our extended model’s equivalence
to the base model in Appendix C

38



Test(Pi, s) Can only be called on a completed, unexpired session. Flips a coin b.
If b = 0, reveals to A the session key of s held by Pi. If b = 1, sends to A
a uniform value from the session key space.

In order to rule out trivial attacks, we must prevent the adversary from
corrupting a session’s peer and using it to win the test session at the owner. We
give the definition of matching session from [CK02a].

Definition (Matching session). Let (Pi, s) be a completed session with public
output (Pi, s,Pj). The session (Pj , s) is called the matching session of (Pi, s) if
either

1. (Pj , s) is not completed, or

2. (Pj , s) is completed and its public output is (Pj , s,Pi).

Definition (Session exposure). A completed session (Pi, s) with public output
(Pi, s,Pj) is exposed if any of the following holds:

1. RevealKey was called on the session or its matching session (if it exists),

2. RevealState was called on the session or its matching session (if it exists),

3. Corrupt or RevealLtk was called on Pi or the owner of its matching session
(if it exists) at any point.

We now give the basic notion of security in this model. We will build on this
by adding notions of KCIR and full FS.

Definition (Session key (SK) security). An authenticated key exchange protocol
Π has session key security if the following hold

1. Π is correct, i.e., if two uncorrupted parties complete matching sessions,
then their session keys are equal with overwhelming probability.

2. The advantage of an adversary in distinguishing b = 0 versus b = 1 in an
unexposed Test session is negligible.

Definition (Key compromise impersonation resistance (KCIR)). An adversary
A breaks SK-security with KCIR against an AKE protocol iff it wins the SK-
security game with the following extra capability: A may learn the long-term
key of the owner of the test session at any time (via, e.g., RevealLtk or Corrupt
outside the lifetime of s).

Definition (Forward secrecy (FS)). An adversary A breaks SK-security with FS
against an AKE protocol iff it wins the SK-security game with the following extra
capabilities: (1) A may learn the long-term key of the owner of the test session
after it is expired; (2) similarly, if the test session has a matching session, A
may learn the long term key of the owner of that session after it is expired.

SK-security with KCIR and full FS is the combination of the above three
definitions. Note that the combination of capabilities afforded by KCIR and FS
gives the attacker the novel ability to get the long-term key of the owner of the
test session, expire the session, and call Corrupt on the test session peer.
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A.3.1 The id-CK Model

The CK model has been extended in prior works to apply to identity-based
authenticated key exchange protocols [SE15, HC09, FSXY12]. The changes to
CK are minimal:

1. Every party is given a unique identifier id, chosen by the adversary. In
protocol outputs and session tuples, idi replaces Pi.

2. At the beginning of the game, the main keypair (mpk,msk) is generated.
mpk is given to the adversary.

3. There an additional oracle, RevealMsk, which reveals to A the value of msk.
The notion of exposure is extended to include: RevealMsk was called at
any point.

Finally, since there is a new type of secret, msk, we extend FS to the id-CK
setting.

Definition (Key generation center forward secrecy (KGC-FS)). An adversary
A breaks SK-security with KGC-FS against an IBKE protocol iff it wins the
SK-security game with the following extra capability: A may call RevealMsk after
both the test session is expired, and its matching session (if it exists) are expired.

Note that the above definition is equivalent to the ordinary FS, treating
RevealMsk as if it were a call to RevealLtk on both the owner of the test session
and the owner of its matching session (if it exists).

Finally, we combine our notions of FS:

Definition (Full FS). An IBKE achieves full FS iff it has FS and KGC-FS.

A.4 Symmetric Encryption

LATKE requires a symmetric encryption scheme that is secure under adaptive
corruptions (i.e., non-committing). For this, we use SIM*-AC-CCA encryp-
tion [JT20, Jae23]. Informally, an authenticated encryption scheme AE is SIM*-
AC-CCA-secure with respect to some ideal primitive P (e.g., programmable
random oracle or ideal cipher), if there is a simulator Scca such that no efficient
adversary can distinguish between Scca and AE, even when given the ability
to encrypt messages, decrypt messages, expose keys, and program the ideal
primitive.

The procedures exposed by the symmetric encryption scheme AE are:

KeyGen(1λ)→ k Generates a fresh symmetric key.

EncPk(m)→ c Produces an authenticated ciphertext for message m under key k.
This procedure has access to ideal primitive P.

DecPk(c)→ m Decrypts the given ciphertext using key k, returning the plaintext
m or an error ⊥. This also has access to ideal primitive P
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Game Gsim*-ac-cca
F,Scca,A (λ)

k(·) ← AE.KeyGen(1λ)

σP ← P.Init(1λ)

σ ← Scca.Init(1
λ)

b←$ {0, 1}

b′ ← AEnc,Dec,Exp,PPrim(1λ)

return (b = b′)

Exp(u)

if b = 1 : k′ := ku

else : k′ ← Scca.Exp
PPrim(1λ, u,Mu : σ)

Xu := true

return k′

PPrim(Op, k, x, y)

assert Op ∈ {Ls,Prog}

y ← P.Op(1λ, k, x, y : σP)

return y

Enc(u,m)

if ¬Xu : ℓ := |m|, else : ℓ := m

if b = 1 : c← AE.EncPku
(1λ,m)

else : c← Scca.Enc
PPrim(1λ, u, ℓ : σ)

Mu.add(c,m)

return c

Dec(u, c)

if Mu[c] ̸= ⊥ : return Mu[c]

if b = 1 : m← AE.DecPku
(1λ, c)

else : m← Scca.Dec
PPrim(1λ, u, c : σ)

return m

Figure 7: The SIM*-AC-CCA security game, for authenticated encryption scheme
AE, ideal primitive P, simulator Scca, and adversary A.

The simulator Scca associated with AE exposes the following procedures. We
use σ to denote state that Scca maintains. We mark the separation between this
state and other inputs using ‘:’, as in [JT20, Jae23] (this is done for technical
reasons beyond the scope of this overview).

Init(1λ)→ σ Creates the simulator’s state

Dec(u, c : σ)→ m Simulates a party u decrypting a ciphertext c.

Exp(u,Mu : σ)→ k Simulates the corruption, i.e., exposure of a key, of a party
u. Mu is the set of ciphertext-plaintext pairs that the simulator must
behave consistently with.

In LATKE, specifically EUE, each round of each subsession has a unique key.
Thus, we will let the game’s user identifier u be a tuple containing the party
identifier, the subsession identifier, and the current step in the protocol execution:
u = (P, ssid, step). When P is corrupted in our LATKE simulator, it will trigger
the exposure of all its incomplete subsessions.

We reproduce the SIM*-AC-CCA security game from [Jae23] in Figure 7.
The game permits the adversary to encrypt messages, decrypt ciphertexts, expose
keys, and query and program the ideal primitive P. When b = 0, the adversary
A sees the real world, i.e., the behavior of the authenticated encryption scheme
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AE. When b = 1, A sees the ideal world, i.e., the behavior of the simulator Scca.
AE is SIM*-AC-CCA-secure if there exists a simulator Scca such that for any
PPT adversary A, A’s advantage in distinguishing these two worlds is negligible.

Concrete instantiation. We can instantiate a SIM*-AC-CCA-secure encryp-
tion scheme is via the encrypt-then-MAC (EtM) transform [JT20]. If SE is
SIM*-AC-CPA-secure with primitive P and MAC is UF-CMA*-secure (a weaker
notion than SIM*-AC-PRF-secure) with primitive P, then EtM[SE,MAC] is
SIM*-AC-CCA-secure with primitive P [Jae23, Lemma 2].

Ideal ciphers and random oracles are both SIM*-AC-PRF-secure [Jae23,
Lemma 3]. Thus, if we model AES as an ideal cipher or the ChaCha20 block
function [Ber08] as a random oracle, and use them in CTR mode, by Lemma 2,
we have a SIM*-AC-CPA-secure encryption scheme. If the hash function H is
modeled as a random oracle, then HMAC[H] is UF-CMA*-secure. Putting these
together, Lemma 2 says that AES-CTR + HMAC and ChaCha20 + HMAC are
SIM*-AC-CCA-secure authenticated encryption algorithms.

B Proof of Main Theorem

We prove the main theorem of the paper, Theorem 1, which claims LATKE
UC-realizes FiPAKE given an IBKE and a symmetric encryption scheme. The
proof consists of multiple game hops, beginning with the real world, i.e., the
protocol itself, and ending in the ideal world, i.e., where the simulator may only
make calls to FiPAKE. For brevity we do not write out each game’s simulator
in full, but we include the final simulator in Figure 8. We will use trpakesid,ssid to

denote the transcript of the PAKE in the appropriate subsession.14

We state the proof below for LATKEpost. The argument for LATKEpre for
pre-specified peer IBKEs is nearly identical. The only difference is that the
simulator must use the IDs given in the initial PAKE to activate IBKE sessions
in its SK-security reduction. This is a procedural change, and does not affect
the soundness of any reduction.

Beyond CK. The below proof references the id-CK∗ model as a stand-in for
any of the identity-based variants of CK, eCK, CKHMQV, or CK

+ (adding the
RevealLtk oracle as necessary, as explained in Appendix C). It is known that
these models all differ [Cre11], but the differences are subtle and are finer than
the somewhat coarse UC definitions we target. More specifically, the models
differ in their notions of matching sessions (and hence, who is allowed to be
compromised and which session keys can be revealed) and permissiveness of
attack scenarios.

The differences in matching sessions lie in whether sessions match when their
transcripts match, or their ssid’s and roles match, or some combination thereof.
Our reduction does not corrupt or reveal the session key to sessions that satisfy

14This transcript exists in practice, but in our proof this is a fictive variable. This is because
the real world is in the FPAKE-hybrid model, and thus has no PAKE protocol transcript. To
address this, it suffices to imagine an extension of FPAKE that also outputs a transcript variable
to the environment.
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any of these definitions. We also avoid a correctness issue—whether sessions
with matching ssid but non-matching transcripts will output the same key—by
simply hashing the transcript into the final key.

The differences in attack permissiveness in these models comes down to the
adversary’s ability to use short-term state revelation (called “state revelation”
in CK-type models, and “ephemeral key revelation” in eCK-type models). Since
our reduction never uses short-term state revelation, we are able to use the
weakest notion of security, i.e., the least permissive to the adversary, in any
of these models. In particular, this means that our notion of key compromise
impersonation resistance and full forward secrecy are covered by those in any of
these models.

Proof. Game 0. Real world

Game 1. S simulates FPAKE and P. S also simulates FRO using hash tables
H0,H1,H2. This is perfectly indistinguishable from Game 0.

Game 2. We introduce FiPAKE and have parties call FiPAKE.StorePwdFile on
initialization instead of directly generating its mpk. Instead, a party will generate
its mpk lazily via IBKE.Setup on its first session initiation. After the setup, the
simulator will simulate the rest of the session. In this game, the simulator
must do two things: (1) consistently respond to corruption queries even for
parties that haven’t participated in an active session, and (2) simulate honest
parties in a session. For an honest party Pi with password pwi, we denote its
IBKE.Setup randomness by coinsi. S will read from and program H0 in order to
make consistent choices for coinsi.

For StealPwdFile (resp. Corrupt) queries on parties who have not yet begun a
session, S calls FiPAKE.StealPwdFile (resp. Corrupt) and receives (Stolen, idi, pwi),
where pwi = ⊥ if the password has not yet been guessed. S must now determine
that party’s randomness, coinsi. If pwi ≠ ⊥, S sets coinsi := H0[sid, pwi]. Other-
wise S performs FiPAKE.OfflineComparePwd queries to see if the stolen password
file matches any other known stolen password files. If there are any matches, then
coinsi is set to the other party’s coins. Otherwise, this a fresh compromise, so
coinsi ←$ {0, 1}m. S then saves a record (KnownCoins,Pi, idi, coinsi). Now that
coinsi is set, S may generate the main keypair mski,mpki and extract the user
keys uski, upki with respect to idi. S returns all these values to the environment.

To maintain consistency of coins, we must also modify how S simulates H0

queries. On query (sid, pw), S calls FiPAKE.OfflineTestPwd for each compromised
party to test if pw produces their stolen password. If there is a match on
party Pj , then S sets H0[sid, pw] := coinsj , where coinsj comes from the record
(KnownCoins,Pj , ·, coinsj).

Finally, S simulates honest parties in the protocol as follows. For a session
with an honest party Pi, S receives mpki via its simulation of FPAKE.NewSession.
From mpki, S can find the corresponding pwi by testing which pw′ yields
(mpki, ·) = IBKE.KeyGen(1λ;H0[sid, pw

′]). This is guaranteed to exist because an
honest party in an active session must have called IBKE.KeyGen on a password.
If the user keypair uski, upki has not yet been extracted for the party, S does so
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now via IBKE.Extract, and save it for future simulations. S then compares the
mpk provided by both parties in the PAKE session. If the PAKE fails, S does
not need to know the parties’ secrets in order to simulate. If the PAKE succeeds,
then the mpk values are the same, and if one of them is honest, then S knows the
msk for both, and can thus generate user keypairs for both sides and use them for
a complete IBKE simulation A(mpk, upkA, uskA)⇔ B(mpk, upkB , uskB). Since
the functionality is symmetric, we assume for simplicity that the first party to
NewSession is the initiator in the IBKE.

This simulation is perfect.

Game 3. Rather than returning the session key directly to the parties, S
now uses FiPAKE.NewKey. Since this procedure will only use the provided key
if the session is marked compromised, the simulator must call the appropriate
compromising functions, Impersonate and OnlineTestPwd, when possible.

We define the simulator to mark a compromise at multiple points. Firstly,
any time an mpk is provided to the protocol by a corrupted party (in the next
step uncorrupted parties will not provide mpk at all), S checks if there is a
pw such that (mpk, ·) = IBKE.KeyGen(1λ; coins), where coins = H0[sid, pw]. If
there is a match, S calls FiPAKE.OnlineTestPwd with that password. This is done
in the simulation of FPAKE.TestPwd and FPAKE.NewKey. Secondly, if an party
uses a compromised mpk, i.e., one that is the result of IBKE.KeyGen(1λ; coinsk)
for some recorded coinsk belonging to party Pk, and the session is tampered
with by the adversary, then S calls FiPAKE.Impersonate on the corresponding
party as Pk.

15 Similarly, if both parties are compromised, then Impersonate is
called on both. Impersonate is also done in the simulation of FPAKE.TestPwd and
FPAKE.NewKey. Finally, if an honest party Pi is corrupted during a session with
another honest party, S calls FPAKE.Impersonate as Pi, “impersonating” itself.

Game 2
c≈ Game 3. We argue that this is indistinguishable from the last

game, assuming IBKE is SK-secure with KCIR and full FS.
Let Z be an environment that can distinguish between the two games. We

will use Z to construct an adversary A against the SK-security game with KCIR
and full FS. We will show the reduction for a sequence of hybrids. In hybrid i,
all sessions j ≥ i return the key directly to the user, and all sessions j < i call
FiPAKE.NewKey. Hybrid 0 is game 2, and hybrid N is game 3, where N is the
(polynomial) number of sessions in the experiment.

Note that, between these two games, the only time NewKey behaves differently
(i.e., sending a random key) is when, at the end of the protocol execution, both
parties are uncorrupted and at most one is compromised.16 In addition, NewKey
is only different when mpk doesn’t come from a known password (else S runs

15The tampering condition is to handle the following scenario. If Alice is compromised and
Mallory breaks the PAKE session between Alice and Bob, but otherwise does not tamper with
any messages, then the session should succeed. That is, NewKey must produce the same key
for both parties. If Mallory modifies or injects messages, though, then Bob’s output must be
consistent with Mallory’s view, so S must Impersonate to Bob. If Bob is not compromised, then
this breaks the symmetry of the keys. The final transcript hash helps us break this symmetry.

16Note that this still permits an adversary to participate in the encrypted portion of the
protocol, assuming they passed the PAKE using a stolen mpk.
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OnlineTestPwd and wins). Finally, NewKey is only different when the initial
PAKE succeeds, i.e., both parties submitted the same mpk (otherwise both
parties output randomness). Thus, for hybrid i, we may assume wlog that
the session in question ends with both parties uncorrupted, at most one party
compromised, H0[sid, pw] belonging to the mpk not queried, and both parties
submitted the same mpk to the PAKE. We can safely assume this because,
outside of this scenario, the simulator’s success probability is 1.

We reduce hybrid i from id-CK∗ now, defining an adversary A. Let mpk∗ be
the main public key provided by the id-CK∗ challenger. Let session i be a session
between parties P and P ′. This will be the Test session. We program the mpk of
both P and P ′ to be mpk∗. We use the id-CK∗ Send oracle when simulating the
sending of messages in every session using mpk∗ as P and P ′, CK.RevealLtk for
StealPwdFile queries, CK.Corrupt for Corrupt queries (by hypothesis, on parties
other than P and P ′), and RevealKey to determine the final key of all other
sessions. If the adversary did not modify the IBKE messages during a session
(either by knowing the PAKE key and modifying the messages, or not knowing
the PAKE key and modifying the ciphertext), then the iPAKE output key for
both parties is the one given by Test. This corresponds to the condition that
matching completed sessions between honest parties must produce the same
key, and non-matching sessions overwhelmingly do not produce the same key
(otherwise an adversary wins by simply calling RevealKey on the non-matching
session). We return these as described above, based on the session number. For
the test session (which is clean by hypothesis), we simply return the challenge
to P and P ′. Clearly, b = 0 is hybrid i − 1 and b = 1 is hybrid i. A returns
whatever Z guesses at the end of the UC game. Thus the advantage is precisely
the SK-security with KCIR and full FS advantage.

Game 4. We replace AE with the simulator Scca whenever a PAKE completed
and at most one of the parties is compromised. Recall, rather than using just the
party Pi as a user identifier for Scca, we use (Pi, ssid, step), where step refers to
the current step in the protocol. This corresponds to the fact that the real-world
protocol uses a unique key for every message.

Recall the simulator knows the msk and usk of any party in a session where
at least one compromise has occurred. Thus, it knows the output of the PAKE
in these scenarios and does not need to use any indistinguishability property.
Similarly, the simulator learns the value of the PAKE if FPAKE.TestPwd is called
on the session. The only case we must handle is where, during the EUE phase
of a session with two honest parties and an uncompromised PAKE session, one
party is corrupted.

When Corrupt is called on Pi, S uses the long term keys to check if the
PAKE failed or if any messages were modified by the adversary. Either of these
events imply a decryption error in the real world. Thus, the simulator creates a
valid IBKE transcript between Pi and its peer Pj , up until the point of failure
(if at all), and then, per EUE, pads the rest of the transcript with zeros. The
simulator selects a random chain key Kch and programs the decryption key
k = AE.Exp(m, c), where c is the last ciphertext to be received by Pi in the
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protocol and m last message to be received by Pi in the fabricated transcript.
After corruption, S switches to using AE and the revealed key. If the

corruption occurred after the last message was sent, then S programs H1(K
′, tr)

to be the random session key previously chosen.
In order to make the keys consistent, we must also program H2 so that

H2(sid, ssid, 1∥K(i)
ch ) = (K

(i+1)
ch , ki+1) for every chain key K

(i)
ch and exposed en-

cryption key ki, and H2(sid, ssid, 0∥K) = K0
ch for the initial key.

Game 3
c≈ Game 4. We reduce this hop to the SIM*-AC-CCA security

of AE. The only bad situation to handle is if H2 has already been called on
one of the chain keys. Since the PAKE keys are unknown to the adversary
by hypothesis, and all keys are defined in a random oracle hash chain, this
probability is negligible.

We can show this game reduces to SIM*-AC-CCA using a sequence of hybrids.
We define hybrid i as the world where every iPAKE subsession ≤ i is defined
without the simulator, and each > i is. Each game hop goes from defining
a ciphertext c := AE.Enck(m) for a known key k and message m, to defining
c := Scca.Enc and later generating k as the opening of c to m. Further, all
tampered ciphertexts are assumed by the simulator to trigger a decryption error.
This is precisely the SIM*-AC-CCA security game. Thus, the advantage of any
adversary in the larger game hop is bounded above by N ·Advsim∗−ac−cca

A , where
N is the number of sessions in the game.

Game 5. We now remove the ability of S to see the PAKE keys for sessions with
participants who are honest up to and including FPAKE.NewKey. On activation,
each party calls FiPAKE.NewSession instead of directly calling FPAKE.NewSession.
Using NewSession means that OnlineTestPwd can return meaningful answers.

Since the specific value of the PAKE keys no longer matters (since Scca allows
S to generate the appropriate hash chain key), the thing S loses in this hop is
knowing whether a PAKE session succeeded, i.e., both parties got the same key.
Specifically, S must know this for sessions with at least one compromised party
in order for the above steps to work. Thus, it will suffice to define a way for S
to determine the success of any such PAKE session.

We define S to check every possible value to determine whether the PAKE
between Pi and Pj succeeded. If the parties are both corrupted, then they
provided their own mpk values, and those can be compared directly. If only one
of them is corrupted, then that supplied mpk value is checked against known
compromised users (use OnlineComparePwd) and compromised passwords (use
OnlineTestPwd). Finally, if one party is compromised and not corrupted then
its mpk is checked against the other’s (use OnlineTestPwd). This new simulator
covers every edge case using just F ′

iPAKE functionality, and so this hop is perfectly
indistinguishable from the last. This completes our proof.
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On corruption query (StealPwdFile, sid,Pi) from Z
send (StealPwdFile, sid,Pi) to FiPAKE

if received “no record” :

send “no record” to Z and exit

elsereceived (Stolen, idi, pwi)

if pwi ̸= ⊥, coinsi := H0[sid, pwi]

else : coinsi ←$ {0, 1}m

for each record (KnownCoins,Pj , ·, coinsj) :
send (OfflineComparePwd,Pi,Pj) to FiPAKE

if received “match”, coinsi := coinsj

record (KnownCoins,P, id, coinsi)

(mski,mpki) := IBKE.Setup(1λ; coinsi)

(uski, upki)← IBKE.Extractmski(idi)

ibkeStates[·,Pi, 0] := (begin,mski, uski)

Mark Pi compromised

for each (Session, ssid,Pi,Pj , ·, ·)
marked pakecompleted and not complete :

EueCatchup(sid, ssid)

record (Pwfile,Pi,mpki, upki, uski)

send (mpki, upki, uski) to Z

On corruption query (Corrupt, sid,Pi) from Z
(mpki, upki, uski) := S.StealPwdFile(Pi)

curKeys := {}
for each (Session, sid, ssid,Pi, ·, ·, ·)not complete :

curKeys.append((ssid,Kch, k))

Mark P corrupted and compromised

send (mpki, upki, uski, curKeys) to Z

On (TestPwd, sid, ssid,Pi,mpk) from Z to FPAKE

retrieve (Session, ssid,Pi,Pj , ·,mpki)

retrieve (Session, ssid,Pj ,Pi, ·,mpkj , ·)
succ := false

if mpk = mpki ̸= ⊥ :

succ := true

else :

if received “correct” : succ := true

if succ :

Mark session compromised

return “correct”

else :

Mark session interrupted

return “wrong”

On (NewSession, sid, ssid,Pj ,mpk) from corrupt Pi to FPAKE

if ∄ a record (Session, ssid,Pi,Pj , · · · )
role := if ∄(Session, ssid,Pj ,Pi, · · · ) : init else resp
record (Session, ssid,Pi,Pj , id = ⊥,mpk, role)

marked fresh

On (NewSession, sid, ssid,Pi,Pj , idi) from FiPAKE

role := if ∄(Session, ssid,Pj ,Pi, · · · ) : init else resp
record (Session, ssid,Pi,Pj , idi,mpk = ⊥, role)
marked fresh

On (NewKey, sid, ssid,Pi,K
′) from Z to FPAKE

retrieve (Session, ssid,Pi,Pj , ·,mpki, role)

retrieve (Session, ssid,Pj ,Pi, ·,mpkj , ·)
not marked pakecompleted

if session is compromised :

Ki := K′

elif session is fresh and ∃(FreshKey, ssid,Pj ,Kj) :

iseq := SessMpkEq(ssid)

if iseq = true : Ki := Kj

elif iseq = false : Ki ←$ K
else : Ki := indeterminate

else : Ki ←$ K
if fresh : record (FreshKey, ssid,Pi,Ki)

Mark session pakecompleted

if Ki ̸= indeterminate :

record (ChoseKey, ssid,Pi,Ki)

if Pi corrupted : send (ssid,Ki) to Pi

On (Hash, sid, (i, x)) from Z to FRO

if i = 0, for each party P : // program keygen coins

pw := x

send (OfflineTestPwd, ssid,P, pw) to FiPAKE

if received “correct” : // “correct” =⇒ compromised

retrieve (Compromised,P, ·, coins)
H0[sid, pw] := coins

return Hi[sid, x]

Figure 8: The final UC simulator S for the LATKEpost protocol. S maintains
hash tables, H0,H1,H2. Hash queries Hi[x] are defined to be uniform and
consistent when not otherwise specified.



On msg (Pj → Pi, c, sid, ssid)

Check all (Session, ssid, · · · ) are pakecompleted

or abort

retrieve (Session, ssid,Pi,Pj , ·, idi, role)
step := |sentMsgs[sid, ssid,Pi, ·]|
recvdMsgs[sid, ssid,Pi, step] := c

if ∃(KnownCoins,Pi, idi, coinsi) :

st := ibkeStates[ssid,Pi]

inCt := recvdMsgs[sid, ssid,Pi, step− 1] or begin

if st ̸= ⊥ :

inMsg := Scca.Dec
P
k(inCt : σ)

if inMsg ̸= ⊥ :

(outMsg, st′) := IBKE.next(st, inMsg)

if st′ = (Done, ·, ·) :
FinishIbke(sid, ssid, st′)

return ⊥
ibkeStates[ssid,Pi] := st′

else : outMsg := 0msgSizestep

else : outMsg := 0msgSizestep

outCt := Scca.Enc
P((Pi, ssid, step), outMsg : σ)

else :

outCt←$ {0, 1}msgSizestep+τ

send (Pi → Pj , ssid, outCt)

sentMsgs[sid, ssid,Pi, step] := outCt

Procedure FinishIbke(sid, ssid,Pi, st)

retrieve (Session, ssid,Pi, ·, ·, idi, ·)
(Done,K, id′) = st

K′ := H1(K, trpakesid,ssid∥recvdMsgs[sid, ssid, ·, ·])

sessTampered :=

sentMsgs[sid, ssid, ·, ·] ̸= recvdMsgs[sid, ssid, ·, ·]
if id′ ̸= idi or sessTampered :

if id is compromised

send (Impersonate, sid, ssid,Pi,Pid)

elif ∃sid′, pw s.t.mpki = IBKE.Kg(1λ;H0(sid
′, pw)) :

send (OnlineTestPwd, sid, ssid,Pi, pw)

else : abort

send (NewKey, sid, ssid,Pi, id
′,K′)

Mark session complete

Procedure EueCatchup(sid, ssid)

// assume wlog i is the compromised party

retrieve (Session, ssid,Pi,Pj , idi,mpki, role)

retrieve (Session, ssid,Pj ,Pi, ·,mpkj , ·)
steps = |sentMsgs[sid, ssid,Pi, ·]|
if SessMpkEq(ssid) :

if ∃(ChoseKey, ssid,Pi,Ki) : K := Ki

else : K ←$ {0, 1}λ

Kch := H2(sid, ssid, 0∥K)

ibkeStates[ssid,Pj , step] := (begin,msk, uskj)

outMsg := ∅
for step in 0 . . . steps :

st := ibkeStates[ssid,Pk, step] or ⊥
if step is even :

ℓ := if role = init : i else j

else :

ℓ := if role = init : j else i

if st = ⊥ or

recvdMsgs[sid, ssid,Pk, step− 1]

̸= sentMsgs[sid, ssid,Pk, step− 1] :

outMsg := 0msgSizestep

st′ := ⊥
else :

outCt := sentMsgs[sid, ssid,Pk, step]

(outMsg, st′) := IBKE.next(st)

k := Scca.Exp((Pk, ssid, step), (outMsg, outCt) : σ)

K′
ch ←$ {0, 1}λ

H2[sid, ssid, 1∥Kch] := (K′
ch, k)

ibkeStates[ssid,Pk, step] := st′

Procedure SessMpkEq(sid, ssid)

retrieve (Session, ssid,Pi,Pj , idi,mpki, role)

retrieve (Session, ssid,Pj ,Pi, ·,mpkj , ·)
if mpki ̸= ⊥ ∧mpkj ̸= ⊥ :

return mpki = mpkj

out := indeterminate

coins := ⊥
if ∃ℓ s.t.mpkℓ ̸= ⊥ :

ℓ̂ := i if ℓ = j else j

if mpkℓ has owner Pℓ :

send (OnlineComparePwd, sid, ssid,Pℓ̂,Pℓ)

out := resp = “correct” :

if Pℓ̂ honest :

coins := coins of mpkℓ

elif mpkℓ is derived from pwℓ :

if Pℓ̂ honest :

coins := coins of pwℓ

send (OnlineTestPwd, sid, ssid,Pℓ̂, pwℓ)

out := resp = “correct” :

elif ∃ℓ s.t.Pℓ compromised :

ℓ̂ := i if ℓ = j else j

if Pℓ̂ honest :

coins := coins of mpkℓ

send (OnlineComparePwd, sid, ssid,Pℓ̂,Pℓ)

out := resp = “correct”

if out = true :

record (KnownCoins,P, idi, coins)
return out

Figure 9: (cont.) the LATKEpost UC simulator



C RevealLtk in the CK Model

In our presentation of the CK model in Appendix A.3, we include the oracle
RevealLtk, which, unlike Corrupt, reveals the long-term key of the given party
without revealing any internal state. While RevealLtk is included in the extended
Canetti-Krawczyk model (eCK) [LLM07], it does not appear in the original CK or
CKHMQV models [CK01, CK02a, Kra05], which Theorem 1 claims compatibility
with.

We claim that this new model is equivalent to the base model. An adversary
against the SK-without-RevealLtk game is trivially an adversary against the
SK-with-RevealLtk game. So it only remains to show the converse. The theorem
applies to protocols in the CK and CKHMQV model.

We also note that the SK-with-RevealLtk game was implicitly used in the
security proof of CHIP in version 3.0 of the CHIP paper [CNPR22]. Thus, this
section is not only necessary for LATKE, but also fills a gap in the security proof
of CHIP.

Theorem 2. Let Π be an authenticated key exchange protocol . If B is an
adversary with advantage ϵ against the SK-security game with access to the
RevealLtk oracle, then there exists an adversary A against the ordinary SK-
security game with advantage at least ϵ/4. This also applies to SK-security with
KCIR, FS, and KCIR+FS.

Proof. Let N = poly(λ) denote the number of parties that B initializes in its
game. We define A as follows. At the very beginning of the SK-security game,
A selects N/2 parties at random and calls Corrupt on them, thus receiving all
their long term keys. Let C denote the set of the initially corrupted parties, and
U the set of initially uncorrupted parties. Let ski denote the long-term key of
party Pi.

Then, A runs B. For every oracle query B makes, A makes the same query
(if it exists), including when choosing the test session. When B makes a query of
the form RevealLtk(Pi), then A (1) checks if it has stored ski and, if so, returns
it; or (2) calls Corrupt on Pi, saves the long-term key as ski, and returns ski.
For its test session, A outputs whichever bit B outputs. If any of the previous
instructions lead A to expose the test session, a failsafe will trigger and A will
instead respond to the test session with a random bit.

It will suffice to consider a specific condition E under which A is guaranteed
to win its game when B wins its game, i.e.,

Pr[A wins | E] = Pr[B wins].

In other words, when E holds, then A’s test session is unexposed.
In all of the SK-security variants, RevealLtk and Corrupt are treated equally

in terms of exposure except during the test session (i.e., after it is initiated and
before it is expired). In the KCIR variant, the adversary is permitted to call
RevealLtk on the owner Pi of the test session during the test session . If B does
this, then A may have to call Corrupt on the owner, exposing the session. Thus,
A’s test session remains unexposed if both
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1. Pi ∈ C (so A can respond with ski), and

2. the peer of the session Pj (if it exists) is in U (so at least one party is
uncorrupted).

Let E be the event in which both statements are true. It is clear that the above
equality holds with respect to E in every SK-security variant. Since both (1) and
(2) occur independently and with even odds, Pr[E] = 1/4.

When E does not occur, then A’s failsafe may trigger. We may lower bound
Pr[A wins | ¬E] ≥ 1/2.

Thus, the advantage of A is∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ = ∣∣∣∣Pr[A wins | E] Pr[E] + Pr[A wins | ¬E] Pr[¬E]− 1

2

∣∣∣∣
≥

∣∣∣∣Pr[B wins]

4
− 1

8

∣∣∣∣
=

1

4

∣∣∣∣Pr[B wins]− 1

2

∣∣∣∣
= ϵ/4
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D Changelog

v1.0

• Replaced FPAKE with its multisession variant to clarify iPAKE presentation

• Renamed the new functionality Focp-iPAKE, or F ′
iPAKE for short

• Removed claim that the reductions are plausibly history-free

• Added informal discussion of identity concealment

• Placed expanded overview of SIM*-AC-CCA security in appendix

• Fixed symmetric key schedule in the main proof’s simulator

• Updated future work to mention existing one-round PQ PAKEs

• Removed unnecessary role field from PAKE ideal functionality

• Miscellaneous cleanup and clarification

v0.5

Initial ePrint submission
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