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ABSTRACT: We provide an approach to sample rare events
during classical ab initio molecular dynamics and quantum
wavepacket dynamics. For classical AIMD, a set of fictitious
degrees of freedom are introduced that may harmonically interact
with the electronic and nuclear degrees of freedom to steer the
dynamics in a conservative fashion toward energetically forbidden
regions. A similar approach when introduced for quantum
wavepacket dynamics has the effect of biasing the trajectory of
the wavepacket centroid toward the regions of the potential surface
that are difficult to sample. The approach is demonstrated for a
phenol-amine system, which is a prototypical problem for
condensed phase-proton transfer, and for model potentials undergoing wavepacket dynamics. In all cases, the approach yields
trajectories that conserve energy while sampling rare events.

1. INTRODUCTION
Critical chemical processes occur over a range of time-scales
spanning several orders of magnitude. For example, proton
transfer in enzyme complexes may occur in the femto- to
picosecond scale, which can be readily simulated using AIMD
methods.1−9 By contrast, larger-scale conformational trans-
formations in proteins and biomolecules may occur over
micro- to milli-seconds,10,11 and are currently inaccessible to
most molecular dynamics approaches. Such events are
generally classified as “rare events.”11−35

One approach for MD to sample these events would be to
increase the rate of occurrence. Several methods have been
implemented to overcome this issue.11−24,26−41 A few of these
methods are briefly reviewed here. In transition path
sampling,11,40 given a precomputed path that connects two
potential energy wells, Chandler and co-workers use a Monte
Carlo procedure with importance sampling based on the
classical action, to find an ensemble of other productive
trajectories (transition path ensemble). Other efforts along a
similar vein are discussed in refs 12,15,22,23,36. In general,
these methods attempt to variationally optimize the discrete
classical action for paths connecting two points in config-
uration space.
Other schemes utilize fictitious degrees of freedom to bias a

trajectory in a specific direction.18,20,24,30−32,37,41 These
methods all hinge on the assumption that if massive, fictitious
degrees of freedom are tethered to nuclear degrees of freedom
via some attractive potential, the fictitious particles can force

the motion of the nuclei along a particular direction. These
methods differ in how the dynamics of the fictitious particles
are treated. In steered molecular dynamics (SMD),24,32 the
fictitious degrees of freedom are given a constant velocity.
SMD is generally utilized to force the unfolding of proteins and
mimic atomic force microscopy (AFM) experiments. In the
scheme by Paci and Karplus,41 the fictitious particles move
with their respective nuclei and exert no force as long as the
nuclei are moving in the “forward” direction along the reaction
coordinate. However, the fictitious particles remain fixed and
exert a force if the nuclei move backward. The remaining
methodologies18,20,37 allow the fictitious particles to follow
classical trajectories and they differ in how these classical
particles bias the molecular motion toward a specific goal. We
also note that these methods are similar to extended
Lagrangian formalisms3,7,42−45 that have been used routinely
to create distribution functions commensurate with other
ensembles and also to obtain approximations to the dynamics
of electrons and nuclei. For example, the Nose−Hoover44,45

and Andersen thermostats42 involve fictitious particles that
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enforce Lagrangian constraints as part of a super-Hamiltonian,
which conserves the total energy; but the system Hamiltonian
samples an NPT or NVT ensemble. Similar generalizations
exist for grand-canonical ensembles as well.
Another common approach is to create biased ensem-

bles17,21,27,38 through biased initial conditions and biased
potentials26,39 to improve the likelihood of rare events.
Although these algorithms are generally applied to classical
MD, a notable exception is from Hammes-Schiffer and Tully,27

who implemented their scheme in conjunction with their
quantum-classical, surface hopping dynamics.46

Finally, rare events also have a significant role in creating
free-energy surfaces from Jarzynski’s equality (JE).21,31,32,47−51

JE relates nonequilibrium work to the change in free energy by,
exp{−βΔF} = ⟨ exp{−βW}⟩, where β ≡ 1/kBT (kB is
Boltzmann’s constant, T is temperature, W is nonequilibrium
work, and ⟨···⟩ indicates an ensemble average). Generally, to
construct a free energy surface from this equality, a system is
forced along a particular reaction coordinate and the work
done over the reaction coordinate is calculated. Often, the
methods listed above are implemented with the goal of
generating free energy surfaces from JE.21,31,32 However, the
negative exponential dependence on work implies that the
ensemble average is dominated by low work trajectories which
rarely occur. Andricioaei and co-workers use their biased
ensemble technique, Skew’m,21o attempt to address this
problem. The authors do so by generating an ensemble of
initial conditions that are biased toward a particular direction.
For example, they can bias the ensemble to sample trajectories
that require less work to force over barriers. They are then able
to calculate the unbiased ensemble average.
In Sections 2 and 3, we outline our approach to address the

problem of rare event sampling in both classical AIMD and
quantum wavepacket based AIMD (QWAIMD).52−59 Our
classical AIMD results are presented in Section 4.2 and our
QWAIMD results are discussed in Section 4.1. It must be
noted that our approach is fully ab initio and hence has close
connections to the studies proposed in ref 18. However, our
approach is also strongly influenced by methods such as
Steered Molecular Dynamics.24,25 Conclusions are given in
Section 5.

2. CLASSICAL AIMD METHODOLOGY INFLUENCED
BY THE CALDEIRA−LEGGETT THEORY OF
QUANTUM DISSIPATION

We introduce a Caldeira−Leggett-based33−35,60,61 system-bath
Hamiltonian for electron nuclear systems coupled to bath
variables. This approach is similar to the fictitious particle
methods discussed in the introduction. However, unlike in
standard Langevin approaches,42−45 our formalism has no
random force, since the “bath” particles are explicitly
propagated via a unique Hamiltonian.
We begin by introducing a Car−Parrinello-like3 extended

Hamiltonian with Lagrangian constraints that use atom-
centered electronic basis functions and single particle density
matrices. This is hence based on the atom centered density
matrix (ADMP) formalism7−9,62−65 and given by

= [ ] + [ ] +

+ [ ]

EV W R P

P

1
2

Tr MV
1
2

Tr( ) ( , )

Tr (PP )

T

P

S
1/4 1/4 2

(1)

Here M, R, and V are the nuclear masses, positions, and
velocities. Likewise, P, W, and μ are the single-particle
electronic density matrix, density matrix velocity, and the
fictitious inertia tensor,8 respectively. The quantity E(R,P) is
the ab initio potential energy function obtained from a single-
particle theory such as DFT. The last term in eq 1, imposes the
so-called N-representability constraints on the single-particle
density matrix, which amount to constraints on total number
of electrons and on the idempotency of the density matrix
using a Lagrangian multiplier matrix ΛP. In refs 65−69, eq 1
has been generalized to include post-Hartree−Fock (CCSD)
levels of theory, on-the-fly, thus providing a Car−Parrinello-
like method with CCSD65 and MP268 accuracy, along with on-
the-fly basis set extrapolation.69 It must be noted that eq 1 is
purely classical Hamiltonian that governs the dynamics of
parameters {P,W,R,V}. In ref 70, a Bohmian mechanics71−76

based generalization to eq 1 has been presented.
We now introduce (a) a family of nuclear bath variables, R̃,

with M̃, R̃, and Ṽ representing the masses, positions and
velocities, and similarly (b) a set of electronic bath variables
labeled as P̃, with quantities μ̃, P̃, and W̃ representing the bath
density matrix inertia, density matrix and density matrix
velocities. The quantity, P̃, must have the same physical
dimensions as P. In extended Lagrangian formalisms like
ADMP, P is a generalized classical variable, with inertia μ and
velocity W. Associated with this, the dynamics of P̃, enforces a
Lagrangian constraint that numerically biases P, with inertia μ̃,
and velocity, W̃, treated classically. When the bath variables are
linearly coupled to the system variables, we obtain a system-
bath Hamiltonian

= + [ ] + [ ]

+ [ ] + [ ]

+ [ ]

V MV W

PP P R R R R

P P P P

1
2

Tr
1
2

Tr( )

Tr ( )
1
2

Tr ( ) ( )

1
2

Tr ( ) ( )

T

P
T

R

T
P

SB S
1/4 1/4 2

(2)

where we have introduced the bath kinetic energies,
[ ]V MVTr T1

2
, and [ ]WTr( )1

2
1/4 1/4 2 , and the system-bath

coupling is captured by the last two terms. Specifically, the
quantity, [ ]R R R RTr ( ) ( )T

R
1
2

, the harmonic potential

constraining real variables to the “bath” variables used to drive
the process”.60,61 Additionally, we have introduced the term,

[ ]P P P PTr ( ) ( )T
P

1
2

, which may be used to constrain the

electronic density by introducing the variable, P̃. Now, since P̃
is dimensionally equivalent to P, we include a similar N-
representability term as in eq 1, that is, [ ]PP PTr ( )P . That
is, an N-representable bath variable biases the dynamics of P.
The inclusion of these terms allow for a conservative
Hamiltonian in eq 2, as can be seen from inspection of the
total derivative of SB with respect to time in Appendix A,
where we also provide a way to derive all equations of motion
from eq 1. Additionally, these constraint terms may further be
partitioned as per
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(4)

Here, κR and κP are the matrices that span the dimensionality
of the electronic and nuclear basis spaces. Thus, there is
potentially one set of bath variables to “drive” each system
variable and as noted above, we have combined (a) the
harmonic bath terms, [ ]R RTr T

R
1
2

, and [ ]P PTr T
P

1
2

, (b) the

linear system-bath coupling terms, [ ]R R R RTr T
R R

T ,
and [ + ]P P P PTr T

P P
T and (c) the harmonic potential

constraining real variables to the “bath” variables used to drive
the process”,60,61 [ ]R RTr T

R
1
2

and [ ]P PTr T
P

1
2

together into
eq 2. Thus, the harmonic force-constants, [κR;κP], connect the
system and bath variables. The quantities, [κR;κP], also
determine the spectral density of the bath degrees of freedom.
Equation 2 represents an ADMP generalization to system bath
coupling using the Caldeira−Leggett theory.
We may also rewrite eq 2, using momenta which makes it

convenient to connect to other methods. Thus

= [ ] + [ ]

+ [ ] + [ ]
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(5)

where , , M̃, and μ̃ are the momenta and mass tensors of
the bath particles. From eq 5, we can derive the following
equations of motion for the fictitious and molecular degrees of
freedom, and this aspect is also discussed in Appendix A.

= { } =
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P
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T

(9)

where {...} is a Poisson bracket.77 The dynamics of the bath
variables may therefore be utilized to bias specific nuclear and
electronic degrees of freedom over potential barriers. In this
way, our trajectories may be able access regions in phase space
that are rarely sampled in nonbiased MD, such as product
channels.
Equations 6, 7, 8, and 9 have an interesting connection to

the generalized Langevin equation, which can be used to
describe the dynamics of a system immersed in a bath of
Brownian particles. The Langevin equation of motion for a
system of particles can be written as

= +
t

V R Md
d

( ) d
t

tR
1

0

T
(10)

where ξt−τ is a dynamic friction or memory kernel matrix with
elements that depend on t − τ and ϱ is a “random” force. One
may then connect this memory kernel to the formalism here,
by collecting the terms in eqs 6 and 8 to obtain

+

[ + ]

[ + ] + [

+ ]

M

R R R R

P P P P

P P

d

1
2

( ) ( )

1
2

( )

( )

t

t
1

R R

P P P P

P

0

T

T

T (11)

Thus, the “memory” here is generated by coupling to an
external bath that drives the nuclear-electronic system degrees
of freedom.

3. QUANTUM WAVEPACKET DYNAMICS WITH RARE
EVENTS

In addition to classical treatment of rare events, there are
several cases where quantum-mechanical treatment of nuclei is
necessary,52,55,56,78 and also may need a rare-events dynamics
description. In this section we present a mixed-quantum-
classical rare events sampling technique that is applied to the
previously developed quantum wavepacket ab initio molecular
dynamics (QWAIMD) approach.52,56 In QWAIMD,52−55,79 a
general electron−nuclear system is partitioned into separate,
but interacting parts:80−83 subsystem 1 comprises nuclear
degrees of freedom that are treated quantum dynamical
manner. The degrees of freedom in subsystem 1 are
represented by the variable RQM below. Subsystem 2 contains
nuclear degrees of freedom whose description will be given
classically, and represented below using the symbol, RC, and
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subsystem 3 comprises the electrons in the system. In our
exposition here, unlike in the previous section, only the nuclear
degrees of freedom (both classical and quantum) are exposed
to a rare-events treatment. The resultant subsystem 1
description may follow Hamiltonian dynamics given by

= + +H K V R R RR( , )
1
2

( )CI QM QM QM QM
2

(12)

where K
M R2

22

QM QM
is the kinetic energy operator and

RQM are fictitious degrees of freedom coupled to the quantum
nuclear degrees of freedom, RQM, with force constants κQM.
The quantity, V(RC,RQM) is the electronic potential energy
surface, obtained as a function classical nuclear, RC and
quantum nuclear degrees of freedom. Correspondingly, the
classical nuclear evolution may be derived from

= [ ] + [ ] + | |

+ [ ]

HM M

R R R R

1
2

Tr
1
2

Tr

1
2

Tr ( ) ( )

C
T 1

C C
T 1

C

C C
T

R C C

II I

(13)

where we have introduce a wavepacket, |χ(RQM)⟩, averaged
interaction term: | |HI . From these Hamiltonians, we may
derive the following equations of motion

=
t

R t H R t( ; ) ( ; )QM I QM (14)

= | | [

+ ]
t

V RR R R

R R

d
d

( , )
1
2

( )

( )
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R C R C C

C C R
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T
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(15)

= [ + ]
t

R R R R
d
d

1
2

( ) ( )C
R C C C C R

T
(16)

and

= | |
t

R R
d

d
( )QM

QM QM QM (17)

where, PC is dictated by the choice of a mass parameter, MC,
PQM is dictated by the choice of a mass parameter, MQM, and
these along with the respective force constants, κR and κQM
together dictate the rate at which rare events sampling can be
achived, while suitably sampling orthogonal degrees of
freedom. The mass, MQM, has an impact on the momentum
of the fictitious particle which provides one handle on how
quickly or slowly the rare event sampling is meant to be
conducted. On the contrary, the values of κQM and κR influence
the extent to which the orthogonal degrees of freedom are
sampled. For example, for small values of MQM, the fictitious
mass may have a higher velocity at a given temperature.
However, even in this case, by reducing κQM and κR, sampling
of orthogonal degrees of freedom can be achieved. By contrast
at large values of MQM, the fictitious degree of freedom may
have a lower momentum at a given temperature and here again
suitable values of κQM and κR may allow appropriate sampling
of orthogonal degrees of freedom. Therefore, in the results
section, we first study the quantum dynamical sampling
approach by fixing MQM while varying κQM.

Additionally, eqs 12−17 contain three components:
electronic degrees of freedom that yield the potential energy
surface, V(RC,RQM), quantum nuclear degrees of freedom,
RQM, and classical nuclear degrees of freedom, RC, along with
associated bath variables. The electronic and quantum nuclear
components are together represented within eq 12 (and
attempts to generalize these have been discussed in refs 57 and
58), whereas the classical nuclear degrees of freedom are
contained within eq 13. Nonadiabatic effects between the
quantum nuclear and electronic degrees of freedom may be
included by generalizing eq 12 as in refs 57 and 58, but these
will involve approximations to multiple electronic surfaces and
nonadiabatic couplings.84−91 Additionally, when nonadiabatic
effects between the classical nuclear and quantum nuclear
degrees of freedom are needed (to improve correlation
between these treatments), this necessitates generalizations
of eqs 13 and 14 to a surface hopping92,93 paradigm. However,
these elaborate ideas are left for discussion in a future
publication.
Toward integrating the above-mentioned equations of

motion, given the time dependence of the potential in eq 14,
arising from the constraint term: R R( )1

2 QM QM QM
2, the

propagation of eq 14 needs special handling? We thus
approximate the time-dependence of the constraint potential
by expanding this as a Taylor series

+

=

+ +
=

V R R t t

R R

V R R t

V R R t

t
t

( , , )

1
2

( )

( , , )

d ( , , )

d
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t t

C QM QM

QM QM QM
2

C QM QM

C QM QM

(18)

and choose

=
V R R t

t

V R R t

R

R

t

d ( , , )

d

( , , )C QM QM C QM QM

QM

QM

(19)

We then use this time-dependent potential in eq 14, which
integrates to

{ }= =R t t H R t( , ) exp d ( , 0)
t

QM
0

I QM

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

(20)

where is the time-order operator. Equation 20 is solved by
invoking the Magnus expansion,94 which we also truncate at
first order so that eq 20 becomes

+ = +

×
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R t t H t
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R

t
t

R t
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2
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t t
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(21)

4. NUMERICAL RESULTS FOR BIASED QUANTUM
AND CLASSICAL TRAJECTORIES

In Section 4.1 we present numerical results for the quantum
dynamical implementation of rare events sampling. This is
done on model potentials. We then proceed in Section 4.2 to
study biased AIMD trajectories for a phenol-amine system that
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has been considered prototypical for condensed phase proton
transfer. For the system in Section 4.2, electronic variables are
included as within classical ADMP without using P̃ and W̃.
Equations 6−8 determine the dynamics in Section 4.2. In
Section 4.1 electronic variables are not included in the
dynamics and a potential energy surface is used, as can be
seen from eqs 12 and 14. Equations 14 and 17 determine the
dynamics in Section 4.1. On a related note, the methods in this
paper aim to discover new rare events pathways during
quantum and classical trajectory calculations. An example of
how such a method can be useful is seen from refs 34 and 35,
where a new hydrogen bond between isoleucine-839 and the
substrate hydroxy group in the active side within the enzyme,
soybean lipoxygenase-1, was discovered using a special case of
the classical ADMP version of the method described here. It
turns out that this new hydrogen bond changes the electric
field inside the active side and could be an additional reason
for the accelerated transfer process seen in soybean lip-
oxygenase-1. These aspects are not discussed here, and will be
further evaluated in future publications using the wavepacket
version discussed here.
4.1. Biased Quantum Wavepacket Dynamics on

Model Systems. There are two kinds of analytical potentials
that are used to benchmark our quantum rare events
formalism. The first example (labeled system 1) is a simple
quadratic potential, V R RR( , )C QM

1
2 QM

2 , in eq 12, and thus
the overall (biasing) potential has the form

+R R R
1
2

1
2

( )QM
2

QM QM QM
2

(22)

For the second systems (labeled system 2), V(RC,RQM) is
chosen as a double well potential function of RQM with a
barrier height of approximately 7.5 kcal/mol and a well-to-well
distance of about 0.85 Å. Both of these models have been
studied by other investigators within the context of quantum-
classical dynamics.95

System 1: Since system 1 is fully harmonic, the dynamics of
the wavepacket centroid and the fictitious (biasing) degree of
freedom can be analytically solved via normal mode
decomposition.95 As discussed in Section 3, proper tuning of
κQM should be sufficient to accommodate fictitious mass of
different scale for appropriate sampling. Here we choose to fix
MQM (see eq 17) and vary the value of κQM to demonstrate the
impact of κQM on the dynamics. The fictitious mass is chosen
to be =M 350QM amu, the initial kinetic energy of the
fictitious particle is chosen to be 3.0 kcal/mol. The grid is
comprised of 151 points spaced at 0.013 Å. In Figure 1a, we
compare the propagation error for the wavepacket centroid as
a function of the constraint force constant, κQM (see eq 12), for
the zeroth-order propagation scheme (zeroth order Taylor
expansion in eq 18) and the time-dependent scheme discussed
in section. Three (first-order approximation). The error in
numerical propagation is gauged by comparison with the
analytical result by using the expression

=
T

x t x t t
1

( ) ( ) d
T

prop
0

ref prop
2 (23)

The quantity ∥···∥2 is the L2 norm,96,97 T is the total
propagation time and xref denotes the analytical form of the
wavepacket or its centroid, whereas xprop denotes the
numerically propagated wavepacket or centroid.

As expected, there is a clear dependence of the error on
coupling strength. It is also clear that the first-order method is
several orders of magnitude more accurate than the zeroth-
order method across all values of coupling strengths. The same
trend is seen in Figure 1b, where the energy conservation is
shown as a function of κQM. The first-order method maintains
good energy conservation over 1 ps at all values of κQM and has
error orders of magnitude less than the original scheme.
Furthermore, Figure 2a clearly shows that the first-order

method root-mean-square deviation in energy (ΔE) has a
quadratic dependence on simulation time, whereas the zeroth-
order method has a linear dependence. (A similar functional
dependence is seen in Figure 2b, but the relationship is
complicated by higher-order terms.) This quadratic relation-
ship is expected98 for third order integration schemes like
velocity-Verlet and our Trotter-factorized quantum propagator.
The linear relationship seen for the zeroth-order method does
not conflict with the quadratic relationship published in ref 52,
since only the quantum propagation was considered in that
publication. Thus, approximating the time-dependence of the
potential with a truncated Taylor expansion as outlined in the
previous section results in a third-order, quantum-classical
integration scheme.
In Figure 3, we present the time-evolution of the wavepacket

density, centroid and classical particle for biased and unbiased
trajectories. (The initial wavepacket is the same in both cases
and this figure corresponds to κQM = 0.1 Eh/Bohr2.) In Figure
3a, the green, blue and magenta contour lines, represent the
wavepacket density for the case where no bias is used. Since
the potential is harmonic, the wavepacket essentially does very
little, and this is also seen from the wavepacket centroid, that is

Figure 1. We present the logarithm of the (a) propagation error (eq
23) for the quantum centroid and (b) the root-mean-square deviation
for the total energy in Hartree vs the logarithm of κQM (in atomic
units). The red curve corresponds to the 0th-order scheme, whereas
the black curve is the first-order scheme. The system was propagated
for 1 ps with a time-step of 0.05 fs.

Figure 2. We present (a) the root-mean-square deviation in the total
energy (ΔE), and (b) the propagation error [eq 23] for the quantum
centroid as a function of integration time step [Δt] in fs. The red
curve and left y-axis corresponds to the 0th-order scheme whereas the
black curve and the right y-axis is the first-order scheme. The system
was propagated for 1 ps, and the blue lines represent a quadratic
function of the form aΔt2.
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red trace, which does not change with time. Figure 3b, shows
the biased dynamics for the same harmonic potential in Figure
3a. Here, given the initial conditions on the bath particle (black
trace), the wavepacket is pulled and oscillates on either sides of
the potential well. Contour lines have the same magnitude for
Figure 3a,b. Clearly, we sample higher energy regions with the
biased scheme where the wavepacket oscillates about the
minimum. This lays the groundwork for us to consider system
2 which now contains a barrier.
System 2: As stated previously, we also benchmarked this

algorithm for a double-well potential (system 2). Since this
potential contains a barrier, it is a reasonable starting point for
probing this methodology in terms of the quantum mechanical
sampling of reaction barriers and conformational trans-
formations in future. The wavepacket grid is identical to that
for system 1. The initial kinetic energy for the fictitious biasing
degree of freedom is chosen to be 6.5 kcal/mol (that is below
the barrier height) and the mass remains 350 amu as in the
case of system 1. Again, as in system 1, the value of κQM is
varied for identical reasons as presented in the discussion for
system 1. We begin the simulation with the wavepacket
localized in one of the wells (time zero slice in Figure 6a,b)
and the initial wavepacket was thermalized according to

| = [ ]|Eexp
i

i i0
(24)

where the eigenstates (eigenvalues) are |ϕi⟩ [(Ei) and β (=1/
kBT) is the inverse temperature.
In Figure 4, we again note that the higher-order integration

algorithm has better energy conservation across a wide range of

coupling constant, κQM, values. In Figure 5, we also note that
the algorithm retains its Δt3 scaling in energy conservation.

In Figure 6 we present the trajectories for the wavepacket
density, its centroid and the fictitious biasing degree of

freedom. (This figure corresponds to κQM = 0.1 Eh/Bohr2.)
Figure 6a is the unbiased dynamics and can be understood as
follows: As noted above, the system is initially localized and
stable on one side of the barrier as indicated by the relative
localization of the wavepacket near the time t = 0 slice. The
wavepacket is highly oscillatory, which is expected, since
contributions from high-energy eigenstates are required to
enforce this localization. At about 400 fs, the second well
begins to become accessible in Figure 6a (unbiased trajectory)
because the quantum propagator allows for tunneling
probabilities.52,53,56,59,79,99 This accumulation is purely a
quantum-mechanical (tunneling) effect. The centroid motion
is shown in red in Figure 6a and accurately captures the
wavepacket migration process.
The biased dynamics in Figure 6b drags the wavepacket over

the barrier in a concerted fashion. For the biased dynamics the
transition occurs earlier through the bath particle the dynamics
for which is shown in black. One issue in this dynamics is that
the wavepacket coherent oscillations in magenta and blue
curves in Figure 6a are lost in Figure 6b, and it is this aspect
that is critical to evaluate during choice of κQM as mentioned in
response to the previous comment from the reviewer. The
time-scale of this biased motion can be controlled through
careful choice of κQM. As noted, in Figure 6 we present our
results for κQM = 0.1 Eh/Bohr2.

Figure 3. We present (a) the unbiased wavepacket density (with red,
green, blue, and magenta contours) and (b) the biased wavepacket
density, and the trajectory for the fictitious biasing degree of freedom
(in black). The wavepacket density contour lines are 2.5 × 10−2

(green), 1 × 10−2 (blue) and 1 × 10−3 (magenta) and the red line is
the wavepacket centroid for the trajectory.

Figure 4. We present the logarithm of the root-mean-square of the
total energy in Hartree versus the logarithm of κQM [in atomic units].
The red curve corresponds to the zeroth-order approximation in the
Taylor series expansion in eq 18, whereas the black curve is the first
order approximation. The system was propagated for 1 ps with a time-
step of 0.05 fs.

Figure 5. We show the root-mean-square deviation in the energy ΔE
vs integration time-step (Δt) in fs. The red curve and left y-axis
corresponds to the zeroth-order approximation in the Taylor series
expansion in eq 18, whereas the black curve and the right y-axis is the
first order approximation. The system was propagated for 1 ps with a
time-step of 0.05 fs. The quadratic scaling of the first order approach
is emphasized through the quadratic blue curve.

Figure 6. We present trajectories for (a) the unbiased wavepacket
density and centroid trajectory and (b) the biased wavepacket density,
centroid, and fictitious degree of freedom. The wavepacket density
contours are shown at 2.5 × 10−2 (green), 1 × 10−2 (blue) and 1 ×
10−3 (magenta) in (a), and 4 × 10−2 (green), 2.5 × 10−2 (blue) and 1
× 10−2 (magenta) in (b). In both cases, the red trace represents is the
wavepacket centroid trajectory. In (b) the black trace depicts the
trajectory for the fictitious biasing degree of freedom.
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4.2. Biased Classical Ab Initio Dynamics on the
Phenol Amine System. In this section we study the phenol-
trimethyl-amine, PhOH-N (CH )3 3, which is considered a
model proton transfer system (see Figure 7), using the classical

description of rare events introduced above. Such systems have
been thought to be prototypical for condensed phase proton
transfer46 and involve critical quantum nuclear effects.52,56,100

The delocalized electrons in the phenol ring and the associated
polarizability of the amino group may stabilize the loss of the
proton from the phenol group, facilitated by the surrounding
polarizable electronic environment. The electronic structure
for the system is treated here using B3LYP. The phenol-
trimethylamine system has been previously studied46 in a
methanol solvent, however, solvent molecules are excluded
from the current study, to simplify the problem. The time scale
for the proton-transfer from the donor-oxygen to acceptor-
nitrogen is hindered by the large potential barrier in the gas
phase of ≈25 kcal/mol; furthermore, the product is an unstable
zwitterion in the gas-phase thus providing a test for the current
algorithm where the system is driven out of equilibrium into an
unstable geometry, in a conservative fashion. Additionally, it is
critical in such cases that the transformation be done in an
effective and efficient way, while allowing suitable sampling of
vibrational modes that remain orthogonal to the degrees of
freedom actively involved in the transformation. Thus, the
time-scale of transfer is critical.
As for the quantum nuclear systems mentioned above, here,

we have tethered a fictitious particle to the shared hydrogen
with a force constant of 0.1 Eh/Bohr2 and performed the
dynamics with both BOMD and ADMP performed at B3LYP/
6-31+G(d,p). The choice of mass for the fictitious degrees of
freedom was derived from the fact that the largest reduced
mass of the normal modes is ≈7 amu, and we needed the
fictitious degree of freedom to be well separated from the time
scale of the other molecular vibrations.
Table 1 shows the energy conservation data for are

simulations. The total energy (real plus fictitious) is conserved
to within micro-Hartrees over picosecond length trajectories.
Figure 8 displays the time-evolution of the reduced reaction
coordinate, (ROH − RNH)/RON. As can be seen, the rare-events
sampling occurs more rapidly for the biased trajectories, while
the unbiased trajectory oscillates and remains close to the
initial configuration. We also note that fictitious bath degrees
of freedom with greater masses allow for a lengthier sampling
of the all degrees of freedom involved in the process, whereas
the lighter fictitious particle eventually causes the cluster to

completely dissociate. This occurs since (a) there is no stable
well on the acceptor side and (b) the cluster is bound by a
weak, long-range hydrogen bond and the kinetic energy of the
system is much greater than the stabilization of this well. To
sample the acceptor side moiety completely, one needs to
damp the kinetic energy of the fictitious particle smoothly.
This was not considered as part of the current study, since the
goal was to demonstrate a technique that samples rare events
to probe the dynamical coupling that occurs during the process
of such dynamics.

5. CONCLUDING REMARKS
In this paper, we proposed a scheme to allow both classical
AIMD and quantum wavepacket dynamics to sample rare
events on an accelerated time-scale. We accomplish this by
introducing fictitious degrees of freedom that are bound to the
molecular Hamiltonian. In essence then, these fictitious
degrees of freedom steer the molecular dynamics over
potential barriers in a reduced time-scale. The classical version
of this approach was demonstrated on the PhOH-N (CH )3 3
system for both Born−Oppenheimer and extended Lagrangian
AIMD schemes. Here, a fictitious nuclear degree of freedom is
introduced that allows one to quickly traverse the surface that
connects the reactant and product states of this proton-
coupled electron transfer process. Future studies will also use
the theory developed here to allow the sampling of
electronically rare events, that is, electronic structures that
are no immediately accessible.
We also demonstrated the efficacy of this approach for

quantum wavepacket dynamics, through an integration scheme
wherein the implicit time-dependence of the potential energy
surface, resulting from the introduction of a biasing nuclear
degree of freedom is accounted for. This improves the overall

Figure 7. PhOH-N (CH )3 3 system for biased classical ab initio
dynamics benchmark. The transferring hydrogen atom is highlighted
in pink, the donor-oxygen is in red, and acceptor nitrogen is in blue.

Table 1. Energy Conservation Summary

M̃a

(amu)
time
(ps)

tempb
(K)

fictitiousc kinetic
energy (kcal/mol) ΔEd (Eh)

BOMD 700 3.5 234.7 4.6 2.35 × 10−5

70 1.9 219.2 20.8 1.06 × 10−5

ADMP 700 3.6 224.5 4.6 6.20 × 10−5

70 1.3 213 20.8 2.43 × 10−5

aThe mass of the fictitious degree of freedom. bThe temperature is
calculated from the kinetic energy of the system. cThis refers to the
initial kinetic energy of the fictitious particle, not the kinetic energy of
the density matrix in the ADMP trajectories. dΔE represents the
standard deviation of the total energy (nuclear kinetic energy plus
fictitious electronic kinetic energy plus potential energy) of the system
during the simulation.

Figure 8. Reduced dimensional reaction coordinate, (ROH − RNH)/
RON as a function of time. (a) BOMD results. (b) ADMP results. Both
formalisms (ADMP and BOMD) effectively steer the shared
hydrogen atom toward the nitrogen acceptor.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.3c07385
J. Phys. Chem. A 2024, 128, 5386−5397

5392

https://pubs.acs.org/doi/10.1021/acs.jpca.3c07385?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c07385?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c07385?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c07385?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c07385?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c07385?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c07385?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c07385?fig=fig8&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.3c07385?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


scaling of errors of the quantum-classical integration from Δt2
to Δt3 for the strongly coupled system/biasing-bath problem
studied here. This methodology will in future be generalized to
account for coupling between classical and quantum nuclear
degrees of freedom.

■ APPENDIX

Appendix A: Conservative Nature of eq 2
To probe the conservative nature of the Hamiltonian in eq 2,
we first introduce the conjugate Lagrangian, given by the
Legendre transform77 of the Hamiltonian

= + +

+

W W V
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Tr( ) Tr( ) Tr( )
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where ,
ˆ

, , and are the conjugate momenta for P, P̃,
R, and R̃, respectively, and are given by
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Given these, the total derivative of SB with time is
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We next show that each of the terms inside brackets (···) is
identically zero. For example, consider the first term

+
t tP
Pd

d
d

d
SB SBi

k
jjjj

y
{
zzzz (A7)

Since the Hamiltonian in eq 2, governs the dynamics of
{P,W,R,V} and bath variables, { }P W R V, , , , the quantity,

P
SB is the negative of a force acting on the classical variable P,

which describes the density matrix of the systems, and is equal
to the rate of change of its momentum,

t
d

d
. Thus

=
tP

d
d

SB
(A8)

yields the equation of motion for P. Additionally, using eq A1
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and thus
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We can similarly prove that all four (···) bracketed terms, in
Eq. are independently zero and

=
tP

d
d

SB
(A11)
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d
d

SB
(A12)

and

=
tR

d
d

SB
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provide equations of motions for the respective variables.
Together, along with the definitions for velocities as in eq B4,
we arrive at

=
t

d
d

0SB
(A14)

This proves that the Hamiltonian in eq 2 is conservative and
also provides the needed conduit to derive equations of
motions.
Appendix B: Further Analysis of eqs 2 and AA1
The approach in this paper is along the lines of steered
molecular dynamics24,25 for classical force-field based molec-
ular dynamics studies. The approach in this paper implements
this scheme for classical AIMD and quantum AIMD. Ensemble
properties for steered MD methods have been extensively
discussed in the literature. As noted in eqs 1 and 2, we may
partition the Hamiltonian in eq 2 as a system-bath
Hamiltonian

= +SB S bath (B1)

Here S is defined in eq 1, and

= [ ] + [ ]
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with
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The goal is to choose R R P P( , , , ; , )R P to couple the
degrees of freedom in {P,W,R,V} with{ }P W R V, , , , to nudge
the dynamics in the direction of the rare event in question.
In Section 2, we discussed the conservative nature of SB.

Thus, bounds to fluctuations in S and bath can also be
established as follows.
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where and are defined in eqs A5 and AA3. Since S is
independent of { }P W R V, , , , it follows from the discussion in
Appendix A, the sum of the last four terms on the right side of
eq B4 is identically zero. Thus
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Thus, the fluctuations bath are dictated by fluctuations in
the constraint term, and by the system velocities.
Dynamics trajectories constructed using eqs 6−9 may yield

ensemble averages where the phase space is weighted
according to the quantity [ ]Qexp( )/SB SB

. Here Q
SB
is

the partition function constructed from SB. To obtain
observables corresponding to S, we write the ensemble
average, we have

=
+

+

=
+
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d exp( )exp( )
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S S
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where ΓS includes the position and momenta from S. As per
the above equation, one needs to obtain averages for the
quantity, [Aexp(+βη)], and also monitor exp(+βη) during
dynamics, where the latter provides the appropriate normal-
ization (denominator above). The primes in the last equation
above indicate that while the ensemble averages are
constructed from the dynamic given by SB, the integration
is over the phase space of S and not SB. Sampling issues
that arise from such formalism are discussed in refs 21 and 24.
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