Two-Round Threshold Lattice-Based Signatures
from Threshold Homomorphic Encryption*

Kamil Doruk Gur! ®, Jonathan Katz?** ®, and Tjerand Silde?* **

! University of Maryland, dguri@cs.umd.edu
2 Google, jkatz20gmail.com
3 Norwegian University of Science and Technology
tjerand.silde@ntnu.no

Abstract. Much recent work has developed efficient protocols for thresh-
old signatures, where n parties share a signing key and some threshold ¢
of those parties must interact to produce a signature. Yet efficient thresh-
old signatures with post-quantum security have been elusive, with the
state-of-the-art being a two-round scheme by Damgard et al. (PKC’21)
based on lattices that supports only the full threshold case (i.e., t = n).

We show here a two-round threshold signature scheme based on standard
lattice assumptions that supports arbitrary thresholds ¢ < n. Estimates
of our scheme’s performance at the 128-bit security level show that in
the 3-out-of-5 case, we obtain signatures of size 46.6 KB and public keys
of size 13.6 KB. We achieve ~ 5x improved parameters if only a small
number of signatures are ever issued with the same key.

As an essential building block and independent contribution, we con-
struct an actively secure threshold (linearly) homomorphic encryption
scheme that supports arbitrary thresholds ¢ < n.

Keywords: Lattices - Threshold Signatures - Threshold Encryption

1 Introduction

In a t-out-of-n threshold signature scheme, a signing key is shared among n
parties such that any t of those parties can jointly issue a signature. In contrast,
an adversary corrupting strictly fewer than ¢ of those parties cannot forge a
signature. The past few years have witnessed remarkable progress in developing
efficient protocols for threshold signatures. These efforts have been motivated
largely by applications to cryptocurrency, with most attention being focused on
threshold versions of ECDSA [GG18,LN18,DKLs19,CGG™20,CCL"20,DJN*20]
and Schnorr-like schemes [KG20, Lin24, CGRS23]. Based in part on this level of
interest, NIST has announced their intention [BP23] to standardize threshold
cryptosystems.

* This is the full version of [GKS24] published at PQCrypto 2024.
** Work done in part at the University of Maryland and Dfns.
*** Work done in part while visiting the University of Maryland.

https://orcid.org/0000-0003-4796-212X
https://orcid.org/0000-0001-6084-9303
https://orcid.org/0000-0002-5455-0409

Efficient threshold signatures based on post-quantum hardness assumptions—
and specifically lattice assumptions—have been elusive. While generic construc-
tions are possible, they have drawbacks and/or are not particularly efficient.
We survey other existing constructions in Section 1.3. The state-of-the-art is a
recent construction by Damgard et al. [DOTT21] based on standard lattice as-
sumptions that has a two-round signing protocol. Unfortunately, their solution
only works for the full-threshold (i.e., t = n) setting and does not extend to the
case of general thresholds ¢ < n. (We discuss the challenges in adapting their
technique to the case of general thresholds in Section 1.2.)

1.1 Owur Contributions

We show a t-out-of-n threshold signature scheme based on standard lattice
assumptions (Ring-LWE/SIS) that supports arbitrary thresholds ¢ < n. Our
scheme features a two-round signing protocol and allows for efficient distributed
key generation. Estimates of our scheme’s performance at the 128-bit security
level show that in the 3-out-of-5 case, we obtain signatures of size 46.6 KB and
public keys of size 13.6 KB. We can also reduce the signature size by up to a
factor of 5x in settings where the number of signatures generated using a single
key is bounded in advance; we refer to Section 7 for further details.

Our scheme is based on a general framework for constructing threshold sig-
natures from a (linearly) homomorphic encryption scheme with threshold de-
cryption. Although the particular instantiation we propose is based on a variant
of the Dilithium signature scheme, our framework is general enough to be in-
stantiated using other schemes in the future.

As an essential building block of independent interest, we show a new and
actively secure t-out-of-n threshold (linearly) homomorphic encryption scheme.
Our construction is based on the BGV encryption scheme [BGV12] combined
with (verifiable) Shamir secret sharing and lattice-based zero-knowledge proofs.
In contrast to prior work of Boneh et al. [BGGT18], we make the standard
assumption that the set of users involved in decryption is known in advance;
this allows us to achieve better parameters than in their case.

1.2 Technical Overview

We begin with a high-level overview of the approach used by Damgard et
al. [DOTT21] to construct n-out-of-n lattice-based threshold signatures, and
explain why their scheme does not generalize easily to the t-out-of-n case. We
then describe the key ideas underlying our scheme. Several technical details are
omitted since this is intended only to provide intuition.

We first describe a three-message identification scheme based on lattices in-
spired by the Schnorr identification scheme in the discrete-logarithm setting. Fix
a ring R,. The prover’s private key is a short vector s € Rf;*k , and its public

key consists of a matrix A :=[A|I] € RI(;X(HIC) (where A is uniform) and the
vector y := As. Execution of the protocol proceeds as follows:

. The prover samples a short vector r € Ré"’k and sends w := Ar.
. The verifier responds with a short challenge ¢ € R,.

. The prover responds with short vector z :=c-s+r.

. The verifier accepts iff z is short and Az =¢-y + w.

=W N

Although this protocol can be shown to be sound, in general it is not honest-
verifier zero knowledge (HVZK). One way to address this is by allowing the
prover to abort [Lyul2]. Specifically, step 3 is modified so the prover only re-
sponds if a certain condition holds, but aborts (and returns to step 1) otherwise.
It can be shown that an execution of such a modified protocol is HVZK con-
ditioned on the event that an abort does not occur. While this is insufficient to
prove security of the above as an interactive protocol (since information may be
leaked in executions where the prover aborts), it suffices when the Fiat-Shamir
transform is applied to the above protocol® to derive a signature scheme (since
the prover/signer will then never release transcripts from aborted executions).
We refer to the latter approach as Fiat-Shamir with aborts (FSwA).

Another way to make the protocol HVZK, without introducing aborts, is to
use noise drowning [GKPV10]. We use Rényi divergence [ASY22] to analyze the
extra noise needed for security based on the number of allowed signing queries.
When coupled with the Fiat-Shamir transform, this results in larger signatures
than the FSwA approach but can lead to better computational efficiency. It can
also benefit the threshold setting, where interaction is inherent.

Damgard et al. propose a way to distribute the FSwA version of the above
scheme among n signers based on the following idea: the ith signer holds short
vector s; and s = Zie[n] s; is the private key. Then, the n signers can run a
distributed, two-round signing protocol as follows:

1. The ith signer chooses a short vector r; € Rf;““ and sends w; := Ar,.

2. Each signer computes w := | w; followed by ¢ := H(w). The ith signer
then sends z; :=c-s; + 7;.

3. Each signer then computes z :=)"

i€[n

ieln] i and outputs the signature (c, z).

We stress that the above does not work directly since it does not consider the
possibility that one or more of the honest signers will need to abort. Moreover,
incorporating aborts in the trivial way (namely, by restarting the protocol if any
of the signers abort) may not be secure since the initial message w; of the ith
signer is revealed even if that signer later aborts and, as we have noted above,
aborted executions of the underlying identification protocol are not HVZK. To
address this, Damgard et al. modify the above so that each signer sends a (trap-
door) homomorphic commitment to w; in the first round; thus, w; is not revealed
if the ith signer aborts. We omit further details, as they are not necessary to
understand the difficulties in extending this approach to the t-out-of-n case.

A natural way to try to extend the approach of Damgard et al. to the case
of general thresholds is to share the master secret s among the n parties in a

! Applying the Fiat-Shamir transform means that the challenge ¢ is computed as a
hash of the initial message w and possibly other information.

t-out-of-n fashion using, e.g., Shamir secret sharing. The problem with this idea,
however, is that we need both the master secret s and each party’s share s; to
be short, and it is not clear whether this can be achieved when using t-out-of-n
secret sharing. (In contrast, this is easy to achieve in the n-out-of-n case since
the sum of n short vectors is still short.) Note that the {s;} need to be short
regardless of whether one uses the FSwA approach or noise flooding (without
aborts): in the former case, if any s; is too large, the corresponding signer will
abort too often; in the latter case, achieving HVZK with a large s; would require
parameters that are too large to be secure.

Here, we adopt an approach that relies on a threshold (linearly) homomorphic
encryption scheme with non-interactive decryption. We describe the idea based
on a generic scheme and show in Section 3 an instantiation based on standard
lattice assumptions. We build on a version of the identification protocol described
above that uses larger parameters and does not require aborts. The signing key s
and verification key (A,y := As) of the signature scheme will be as before.
Now, however, instead of sharing s itself, the signers each hold an encryption
ctxs = Enc(s) of s with respect to a known public encryption key pk, and share
the corresponding decryption key sk in a t-out-of-n fashion. Any set U C [n] of
t parties can generate a signature (in the semi-honest setting) as follows:

1. For ¢ € U, the ith signer chooses a bounded vector r; € Rf;*k and sends
w; := Ar;. It also sends Ctxp,, an encryption of r;.

2. Each signer in U locally computes w :=) ., w;, ¢ := H(w), and an “en-
crypted (partial) signature” ctx, := c-ctxs +_,y, Ctxp,. The ith signer then
sends its threshold decryption share of ctx,.

3. Given decryption shares from all parties in U, each signer can decrypt ctx,
to obtain z, and output the signature (c, 2).

The key insight is that while we cannot use t-out-of-n secret sharing for the
signing key due to the required size bounds, we can use it for the threshold
decryption key since decryption shares can be large.

While the above is secure for semi-honest adversaries, additional work is
needed to handle malicious adversaries while achieving a two-round signing pro-
tocol. We refer to Section 5 for further details.

1.3 Related Work

Lattice-based threshold signature schemes. Bendlin et al. [BKP13] show
a threshold version of the (hash-and-sign based) GPV scheme [GPV08]. Their
protocol uses generic secure multiparty computation to distributively compute
the most expensive part of the scheme (namely, Gaussian sampling [Peil0]), and
seems unlikely to yield a practical solution; moreover, their scheme requires and
honest majority. Cozzo and Smart [CS19] and Tang et al. [TPCZ23] explored the
use of generic secure multiparty computation to construct threshold versions of
several signature schemes submitted to the NIST post-quantum standardization
process but concluded that this approach is unlikely to yield practical protocols.

Boneh et al. [BGG118] show a “universal thresholdizer” that can be used
to create a threshold version of any signature scheme. The basic idea behind
their framework is to encrypt the master private key of the underlying signa-
ture scheme using a threshold fully homomorphic encryption (FHE) scheme,
evaluate the underlying scheme homomorphically, and then use threshold de-
cryption to recover the signature. Agrawal et al. [ASY22] adapted this approach
to the specific signature scheme Dilithium-G [DKL ' 18] and showed how to toler-
ate adaptive corruptions. OQur approach is similar in spirit to these approaches,
but by moving as many signature steps as possible outside the homomorphic
evaluation we can base our protocol on threshold linearly homomorphic—rather
than fully homomorphic—encryption; besides the efficiency advantages this con-
fers, this also allows us to distribute key generation (something not achieved
in [ASY22,BGGT18]).

We have already mentioned the work of Damgard et al. [DOTT21] showing
an efficient n-out-of-n threshold scheme based on lattices, and explained why
it does not readily extend to give a t-out-of-n scheme. For completeness, we
remark that there has recently been extensive work on lattice-based multisigna-
tures [FH20,DOTT21,BTT22,FSZ22, Che23] which are related to—but distinct
from—n-out-of-n threshold signatures. The schemes of Boschini et al. [BTT22]
and Chen [Che23| can be turned into n-out-of-n threshold schemes. Unfortu-
nately, as with the scheme by Damgard et al., it seems difficult to adapt their
schemes to support arbitrary thresholds.

Threshold homomorphic encryption. Bendlin and Damgard [BD10] show
a threshold homomorphic encryption scheme with semi-honest security. The
scheme we construct is based on the work of Aranha et al. [ABGS23] and Hough
et al. [HSS23], which achieve malicious security for the Bendlin-Damgard scheme.
Although the Bendlin-Damgard scheme supports arbitrary thresholds, the sub-
sequent works only support the full threshold case.

The threshold FHE scheme of Boneh et al. [BGG ™ 18] lacks an efficient mech-
anism for proving correctness of partial decryptions, which is needed for handling
malicious behavior. Recent work by Boudgoust and Scholl [BS23] is similar to
our threshold encryption scheme but has the same drawback; moreover, their
scheme only achieves one-way security.

Chowdhury et al. [CSST22] show a threshold fully homomorphic encryption
scheme with trusted setup and semi-honest security; the size of their key shares is
exponential in the number of parties n. Devevey et al. [DLN*21] also construct
a lattice-based threshold encryption scheme, but this scheme also relies on a
trusted dealer. Rotaru et al. [RSTT22] give an actively secure distributed key-
generation protocol for lattice-based threshold encryption, but only for the full
threshold case. Dahl et al. [DDEK™ 23] present an actively secure threshold FHE
scheme in the honest-majority setting. They rely on generic MPC in an offline
phase.

Concurrent work. Concurrent with or subsequent to our own work, several
other lattice-based threshold signature schemes supporting general thresholds

have been proposed [dPKM*24, EKT24,CATZ24]. In contrast to our work, none
of these support distributed key generation.

2 Background

Let N be a power of 2, and let ¢ = 1 mod 2NN be prime. Define the rings R =
ZIX1/{(XN + 1) and R, = Zy[X]/(XN +1). For f(X) = Zi]i?)l a; X" € Ry,
we compute norms of f by viewing each «; € Z, as an integer in the range
{_%17 e '%1} and then viewing f as a vector over Z; thus,

N-1

N-1 1/2
_ . _ 2 — .
1£h= Y lodl. 17l = (g ai> Wl = el

i—0 - 4 1e0,...,

with «; € {—q;l, el %1} We define the norm of a vector f € R’; to be the

2
largest norm of any of its elements, e.g., || f||; = fnaxk}{HfiHl}. All vectors
ie{l,-..,

are column vectors by default; thus, a row vector is written as the transpose
of a column vector. We use the standard definition of the discrete Gaussian
distribution D, 7 over the integer lattice A = Z*, with center v € RF and
standard deviation . If v = 0, we omit the first subscript.

Shamir secret sharing [Sha79] of elements in RS can be done by indepen-
dently applying standard Shamir secret sharing (over the field Z,) to each of
the £ - g coefficients of the polynomials. We use {z;};c[n « Share () to de-
note t-out-of-n Shamir secret sharing of coeflicients of an element x, and write
x := Recy ({2 }icu) for reconstruction (where U C [n] has size t).

2.1 Cryptographic Assumptions

We define the Ring Short Integer Solution [Mic02] and Ring Learning With
Errors [LPR10] problems as follows:

Definition 1 (R-SIS). The Ring Short Integer Solution problem R-SISy v 5 is
(t,€)-hard if for any adversary A running in time at most t:

<
{ai}iem) < Ry; 0<llyll2<pA

br {vitiew + A({ai}) : l_EZ[k] a;y; =0mod ¢ | < €

Definition 2 (R-LWE). Let x be a bounded distribution over R, outputting el-
ement of mazimum absolute norm B. The Ring Learning with Errors problem
R-LWEy v q,8 is (t,€)-hard if for any adversary A running in time at most t:

‘Pr[{ai}ie[k] — Ryi s, {eitiemn) < X A({ai}, {ais +e;}) = 1]
— Prl{ai}iew), {uitiew + Rq - Al{ai}, {ui}) =1]| <e.

The above assumption also implies that distinguishing uniform « from a;s + pe;
is also (¢, €)-hard if public p € Z, is relatively prime to ¢ [BGV12].

2.2 Homomorphic Trapdoor Commitment Schemes

Let cpp denote fixed parameters implicit input to all algorithms. Following the
definition in [DOTT21], a trapdoor commitment scheme is a tuple of probabilistic
polynomial-time algorithms (CGen, Com, Open, TCGen, TCom, Eqv) where

— CGen outputs a commitment key ck.

— Com takes as input a message p € Ry, samples randomness p € S, according
to distribution D,, and outputs a commitment com.

— Open takes as input a commitment com, message y € Ry, and randomness
p € 5,, and outputs 1 iff the opening is valid.

— TCGen outputs a trapdoor commitment key ck along with a trapdoor td.

— TCom takes as input a trapdoor td and outputs a commitment com.

— Eqv takes as input a trapdoor td, a commitment com, and a message u, and
outputs randomness p € S,,.

The trapdoor commitment scheme is secure if it satisfies the following:

Correctness: The scheme is correct if for any 1 € R,

ck < CGen;
o |:P — D,;com +— Com(p; p) - Open(com, u, p) = 1:| =1
Hiding: The scheme is (¢, €)-hiding if for any adversary .4 running in time at
most :

Pr[(ck + CGen; b+ {0,1}; p < D,; e

tos 1) < A(cpp, ck); com « Com(us; p)

N =

: A(com) = b} <

Binding: The scheme is (¢, ¢€)-binding if for any adversary A running in time
at most ¢:

ck + CGen; Ho 7 11

: A Open(com, i, po)
(com, pio, pos pi1, p1) 4= A(ck) = Open(com. i1, p1)

=1 <e

=1

Equivocality: The scheme is e-equivocal if for any p € Rq, the statistical dif-
ference between the following distributions is at most e:

{ ck + CGen; * (ck, 1, com, p)}
p < D,;com < Com(y; p)
{ (ck,td) + TCGen;

com < TCom(td); p + Equ(td, com, p) : (ck,u,com,p)} ’

A trapdoor commitment scheme over polynomial rings can be constructed
based on R-SIS and R-LWE [DOTT21, GPV08, MP12].

2.3 Non-Interactive Zero-Knowledge Proofs of Knowledge

We use standard definitions of non-interactive zero-knowledge proofs of knowl-
edge (NIZKPoKs). An NIZKPoK for an NP language £ with associated relation
R is a tuple of algorithms (Setup, SetupTD, Prove, Vrfy, Extract, Sim), where:

— Setup outputs a common reference string crs.

— SetupTD outputs a common reference string crs and a trapdoor td.
— Prove, on input crs and (z,w) € R, outputs a proof 7.

— Vrfy, on input crs, z and 7, outputs a result b € {0,1}.

— Extract, on input crs, td, z and 7*, outputs a witness w*.

— Sim, on input crs, td and z, outputs a proof 7*.

A NIZKPoK is secure if the following properties hold:

Correctness: The scheme is correct if for all (x,w) € R, we have

crs < Setup

Pr 7 < Prove(crs, z,w)

: Vrfy(crs,z,m) = 1| = 1.
Knowledge extraction: The scheme is (¢, €)-knowledge extractable if for all

malicious provers P* we have an extractor £ that in time ¢ can, except with
probability e, extract a valid witness by running Extract:

(crs, td) < SetupTD;
Pr| L #7*« P*(crs,z,w);
w* < Extract(crs, td, z, 7*);

Vrfy(ers,z,m%) =1 <
A (x,w*) ¢ RC -

Zero knowledge: The scheme is (¢, €)- (computational) zero-knowledge if there
exists a simulator Sim that in ¢ time can simulate a proof by running Sim:

|Prlcrs < Setup; 7 < Prove(crs, z,w) : A(crs, z,7) = 1]
— Pri(crs, td) < SetupTD; 7 < Sim(crs, td, z) : A(crs, z,7) = 1]| <.

We will make use of the lattice-based zero-knowledge profs of linear re-
lations and shortness by Lyubashevsky et al. [BDL*T18, BLNS21, LNP22] in
this paper, and, for concurrent security, we need zero-knowledge proofs with
straight-line extractability; this can be achieved using, e.g., the transform by
Katsumata [Kat21].

2.4 Threshold Signatures

A threshold signature scheme 7S (adapting [Linl7, Section 4] and [DOTT21,
Definition 5]) consists of the following algorithms:

— KGen7gs is an interactive protocol run by n users that takes as input n and
a threshold ¢. Each user either aborts or outputs a (common) public key pk,
(common) auxiliary data aux, and a secret key share sk;.

— Signy s is an interactive protocol run by a set U of ¢ users. Each party begins
holding their secret key share, auxiliary data aux, and a message u. Each
user either aborts or outputs a signature o.

— Vrfy s takes as input the public key pk, a message 11, and a signature o, and
outputs 1 iff the signature is valid.

Correctness is defined in the natural way. We can consider unforgeability
against either a passive (aka semi-honest) or an active (aka malicious) adversary.
In either case, we consider a static corruption model in which the adversary
A starts by corrupting a set C C [n] of up to t — 1 users. Let H = [n] \ C
denote the honest users. In the passive setting, the attacker is given the view of
the corrupted parties from the execution of the key-generation protocol; in the
malicious setting, the attacker runs an execution of the key-generation protocol
with the honest parties in which the corrupted parties can behave arbitrarily.
(Here and below, we assume a rushing adversary who can wait to receive honest
parties’ messages in any given round before sending any of the corrupted parties’
messages.) Following key generation, A can repeatedly make signing queries
in which it specifies a message 1 and a set of ¢ users U, and thereby initiate
an execution of the signing protocol with those users holding message u. Let
Cy =UNC, and Hy = U NH. In the passive case, A is given the view of the
parties in Cy; in the malicious case, A runs an execution of the signing protocol
with the parties in Hy in which parties in Cyy can behave arbitrarily.

At the end of the experiment, A outputs a message/signature pair (u*,o*).
The adversary succeeds if p* was never used in one of A’s signing queries, and
o* is a valid signature on p* with respect to the common public key output by 2
the honest parties in the key-generation protocol. We let Advi ™™ (A) denote
the probability with which adversary A succeeds when attacking T'S.

3 Threshold Homomorphic Encryption

Our threshold signature scheme relies on an underlying threshold linearly homo-
morphic encryption scheme. We define the required security properties formally
and show how to instantiate a scheme based on BGV [BGV12]. We specialize
our definition for schemes with non-interactive decryption.

3.1 Definitions

A homomorphic encryption scheme &, given a set of possible circuits F, consists
of the following algorithms:

— KGeng is a probabilistic algorithm that outputs a public encryption key pkg
and a decryption key skg.

2 In particular, if all honest parties abort the key-generation protocol (in the malicious
setting) then there is no public key and, by definition, .4 cannot succeed.

— Enc is a probabilistic algorithm that takes as input a public key pke and a
plaintext ptx, and outputs a ciphertext ctx.

— Eval is a deterministic algorithm that takes as input a circuit F' € F and a
list of ciphertexts ctxy, ..., ctxx, and outputs a ciphertext ctx*.

— Dec is a deterministic algorithm that takes as input a decryption key skg
and a ciphertext ctx*, and outputs a plaintext ptx.

Notationally, we allow algorithms to take as inputs a list of plaintexts, cipher-
texts, or keys to denote that they are applied on each input individually. Correct-
ness and ciphertext indistinguishability (i.e., IND-CPA security) are standard,
and thus we omit the definitions here.

We now extend the above to accommodate £ with distributed key generation
and (non-interactive) threshold decryption:

— DKGen is an interactive protocol run by n users, on common input a thresh-
old ¢. Either all honest users output L, or they each output a decryption key
share sk, and a (common) public key pkg.

— TDec is a probabilistic algorithm that takes as input a set I/ consisting of
t users, a decryption key share sk;, and a ciphertext ctx*, and outputs a
partial decryption share ds;.

— Comb is a deterministic algorithm that takes as input a set U consisting of ¢
users, a ciphertext ctx*, and a set of decryption shares {ds; };c1/, and outputs
a plaintext ptx.

We define security in the threshold setting as follows:

Indistinguishability. & is (¢, ¢)-threshold indistinguishable if the probability of
any adversary A running in time ¢ succeeding in experiment ExplgND'CPA (A)

as depicted in Figure 1 is at most 1/2 + ¢.

EXPES‘ND_CPA (.A)

1. A outputs a set of corrupted users C of size at most t—1. Let H := [n]\C.
2. A (controlling parties in C) runs DKGen with the parties in H. The view
of the honest parties defines a public key pk. as well as keys {sk; }icn.
3. At any time during the experiment, .4 may make a “threshold decryp-
tion query” of the form (U, {ptx;,p;}, F' € F), answered as follows:
— Compute ciphertexts ctx; := Enc(pkg, ptx;; p;) for all j.
— Evaluate the function F' on {ctx;} to get ciphertext ctx”.
— Let Hy := H NU. For i € Hy, compute ds; < TDec(U, sk;, ctx™).
— Return decryption shares {ds;}icn,, to A.
4. At some point, A outputs plaintexts ptx, and ptx,. Sample b < {0, 1},
compute ctxp := Enc(pkg, ptx,), and give ctx; to A.
5. A outputs a bit b’ and succeeds if b =V'.

Fig.1. Experiment Expa2-“F4(A) implicitly parameterized by ¢ and n.

10

3.2 The BGV Encryption Scheme

Our threshold scheme is based on the BGV encryption scheme [BGV12], which
we review now. Let p < ¢ be prime, let R, and R, be as in Section 2 (for the
same dimension N), and let Dkgen and Dgnc be distributions over R, such that
elements in their support have ¢, ,-norm bounded by Bkgen and Bgyc, respec-
tively. The BGV encryption scheme consists of the following algorithms:

— KGenggy: Sample a uniform element ag € R, along with s, e < Dkgen, and
output public key pkg 1= (ag,be) = (ag, ags + pe) and secret key skg 1= s.

— Encggy: On input pke and message ptx := m € R, sample 7, €', €’ <= Dgnc
and output ciphertext ctx := (u,v) = (agr + pe’, ber + pe” +m).

— Decpgy: On input the secret key ske and ciphertext ctx, output the plaintext
message ptx :=m = (v — su mod ¢) mod p.

Correctness and IND-CPA security follows from [BGV12,LPR13]:

Lemma 1 (Security). Let Bpec = 2pBkGenBenc + PBenc be such that Bpec <
lg/2]. Let (pkg,ske) be any key pair output from KGenggy and let (u,v) be any
ciphertext output from Encggy on input pkg and any message m. Then the BGV
encryption scheme is perfectly correct, that is, m = Decggy(ske, (u,v)). Further-
more, it is IND-CPA secure if R-LWEN 4. Byeen @1d R-LWEN 4.Bp.. are hard.

3.3 Distributed Key Generation for BGV

We propose a t-out-of-n distributed key-generation protocol for the BGV en-
cryption scheme. For simplicity, we first describe a semi-honest version of the
protocol, and then discuss how to add appropriate zero-knowledge proofs to
ensure security against active adversaries.

In what follows, let Xtern be the distribution over R, where each coefficient a
is sampled independently from {—1,0,1} with Prja = 0] = 1/2 and Pr[a = 1] =
Prla = —1] = 1/4. We assume all parties P; agree on a uniform ring element ag
which could be taken to be the output of a random oracle on some session ID
or nonce. The semi-honest key-generation protocol proceeds as follows:

1. P; samples s;, €; < Xtern, and computes b; := ags; + pe;. It then broadcasts
b; to all other parties.

2. P; generates t-out-of-n Shamir secret shares {s; ;};jec[n of si, and sends s; ;
to P; over a private channel as [s; ;].

3. P; computes bg := > _b; and outputs pk = (ag,be) and sk; =3, 55

If we let Dygen be the distribution over R, obtained by summing n independent
samples from yiem, it is clear that the above generates BGV encryption keys
according to the distribution Dykgen-

For security against a malicious adversary, we use a commit-and-open ap-
proach so corrupted parties cannot choose their contributions based on honest
parties’ contributions, and add ZK proofs of correctness. Let H : {0,1}* —
{0,1}* be a hash function. The modified protocol proceeds as follows:

11

1. P; samples s;,€; < Xtern, COMputes b; := ags; + pe;, and then computes
h; :== H(i,b;). It broadcasts h;.

2. P; broadcasts b;, generates t-out-of-n Shamir secret shares {s; ;};e[n (resp.,
{eij}jem)) of si (vesp., €;), and sets b; j := ags; ; + pe; ; for j € [n].

3. P; samples a commitment randomness p; ; € S, and commits to s;; as
com; ; = Com(s;; pij). It broadcasts {b;;,com; ;};e[n and sends to P;
(over a private channel) the values [s; j,e€; , pij]. Pi also gives an NIZK
proof of knowledge of values s;,e;, {sij,¢€i;}je[n such that (1) s;,e; are
in the support of Xtem, (2) the {si;}jem (resp., {ei;}jem)) are a correct
t-out-of-n secret sharing of s; (resp., e;), and (3) the broadcasted values are
consistent with a correct execution using s;, €;, {55, €i j } jen) (see Section 6
details on the proofs).

4. P; checks that the following hold for all j # ¢ (and aborts if not): (1) h; =
H(j,b;); (2) com;; has a correct opening with respect to s;; and p; ; (3) the
NIZK proof given by P; verifies; and (4) the {b; x }ren] are a correct secret
sharing of a value b;, and locally check the same for the sharings of s; and e;.
If not, P; broadcasts abort and aborts. (All parties abort if any party broad-
casts abort.) Assuming that no party aborted, then P; computes bg := Zj bj,
sk; = Zj Sji, and p; = Zj pj,i- P; then computes the public commitments
com; = 37 1, comy.* The final public key is pke := (ag, be, {com;}jen)
and secret key is then sk = (sk;, p;).

We remark that this protocol leads to the following equation for the dis-
tributed secret key: Zjeu Ajsk; = sk, for Lagrange coefficients ;.

Remark 1. We note that while the adversary can bias the distribution of the
final key, the zero-knowledge proofs ensures that the noise values are properly
bounded, and the honest parties ensures that the final key pair has appropriately
entropy for a secure scheme.

3.4 Threshold Decryption for BGV

We now describe how threshold decryption is done. We begin by considering
the semi-honest setting, and then define appropriate zero-knowledge proofs to
defend against malicious behavior. For statistical security parameter sec and
noise bound Bpe. described in Section 3.2, we have:

TDec: On input a set of users U of size ¢, decryption key share sk;, and ciphertext
ctx = (u,v), let A\; be the Lagrange coefficient for party ¢ with respect to
U. Sample noise E; < Dypec such that [|E;|| < Btpec = 2°°“Bpec/tp and
output decryption share ds; := \;sk;u + pE;.

Comb: On input a ciphertext ctx = (u, v) and partial decryption shares {ds;} jcu,
output plaintext message ptx := (v — Zjeu d;) mod ¢ mod p.

3 By the homomorphic properties of the underlying commitment scheme these are
indeed commitments to sum of s; under the randomness of sum of p; .

12

DKGen(ag, t,n)
Siy€i < Xtem, bi:=ags; +pei, hi:= H(i,b;)
hi

{hj}ii

{si,j}jerm) < Sharesn(s:), {€ij}jem) ¢ Sharesn(e:)
Vj € [n] : bi; = agsij + peij
Vi € [n]: pij < Sp, com;; := Com(sij;pij)

Compute NIZK 7; of shortness and linear relations

bi7 {bld » COM; ;5 }jé[n] 5 Ty [Sidv €ijs Pi,j]]é[n]

{b, {bj.k, com; x tre), 5, [Sj,uej,upj.i]}#l

if any h; # H(j,b;): abort (j)
if any 7; is invalid: abort (j)
if any 0 = Open(comj i, S;.i, pj,i): abort (j)
bet=30,b;, skit=37:850, pi =3P
Vj € [n] : com;j := Z comj x

P

return pkg := (ag,be, {com;}iern)), ski = (sk;, i)

Fig. 2. Actively secure key-generation protocol, from the point of view of P;. The
elements in square brackets with subscript j are sent to P; over a private channel.

Let Bpec + tpBtpec < |¢/2]. To show correctness, we note that

v— Zdj =v— Z(/\jskju+pEj) :v—sku—pZEj.
JEU JEU JEU
Then, from the definition of the encryption algorithm and Lemma 1 we know
that ||v —sku|| ., < Bpec, and from the definition of the threshold decryption
algorithm we have that ||E;||,, < Brpec. It follows that the total amount of
noise is bounded by |g/2], and the scheme is perfectly correct.
The threshold decryption includes the following and is depicted in Figure 3:

1. TDec produces a proof mys ; to show that partial decryption d; is computed
correctly (see Section 6). ds; now also includes mys ;.

2. During Comb upon receiving ds;, it first verifies each proof mgs ; and aborts
with output j if any of them fails. Otherwise, it outputs ptx as above.

3.5 Proof of Security

We now prove that the protocol is secure against an active adversary A corrupt-
ing at most t — 1 parties. We remark that we do not detail the running time
of the adversary here and the rest of the paper, but it is straightforward to see
that is tight with respect to the underlying assumptions.

13

TDec(ctx" = (u,v),sk; = (sk;, pi),U)

if ctx* = L: return L

m; = Aisku, E; < Dtpec, di:=m; +pE;
Compute NIZK 7gs,; of boundedness and linear relations

return ds; := (d;, 7ds,;)

Comb(ctx*, {de = (dj, st,j)}jeu)

if any mg,; is invalid: abort (j)

ptx::vadj mod p

Jjeu

return ptx

Fig. 3. Threshold decryption and share combination algorithms.

Theorem 1 (Indistinguishability). Let the R-LWEy 4 B,.., and R-LWEN 4 Bro..
be er-twe- and ex_we-hard. We model the hash function H as a random oracle
and let Qg be the number of queries made to H. Let the proof system I, for
the relation Ry be (€zK,z, €extract,z)-secure and Com be eniding Secure. Let QTpec
be number of threshold decryption queries made. Finally, let the BGV scheme be
perfectly correct and eggy-IND-CPA secure with respect to (N, q, BcGen, Bpec)-
Then, for any adversary A corrupting up to t — 1 parties:

emnp-cpa = Advg D PR (A) < [H| - (ezisk + [H] €hiding) + |C| * €extract + €R-LWE
Q
+ 25 + QTpec - ([Hul - (€Rorwe + €zK.0s)) + €BGY-

Proof. We prove security through a series of experiments:

Experiment Gy. The first experiment corresponds to the threshold ciphertext
indistinguishability experiment shown in Figure 1.

Experiment G;. We change how proofs during partial decryption are com-
puted for honest parties j € Hy. The proofs mgs; are now computed by the
simulator Simgs of ITygs. The rest of the experiment remains the same. Gy is
indistinguishable from G by the zero-knowledge property of II4s and the distin-
guishing advantage of A per partial decryption query is |Hy| - €zk,ds < t - €zK.ds
by a hybrid argument.

Experiment G. During DKGen, we use the knowledge extractor to obtain
{sk,j}jem) for each corrupted party Py. (We abort the experiment if such ex-
traction fails.) Then derive sk;, for k& € C. The rest of the experiment remains
the same. G5 is then indistinguishable from G; by the knowledge extraction
property of Ilg. The distinguishing advantage of A is the cumulative bound on
independent extraction failure properties, which is |C| - €extract,sk-

14

Experiment G3. We replace how partial decryptions are computed for one of
the honest parties. Let m = ptx be the message in a decryption query, and let
(u,v) be the (honestly generated) encryption of m. Fix an index i € H;; and
compute d; for j # i € Hy as in the previous experiment. Then set the ¢th
partial decryption share equal to dj :=v —m — > ., i, Ajusk; + pE; mod g.
The rest of the experiment is the same.

In G4 the partial decryption share d; is computed as d; := A\usk;, + pE;,
whereas here

d;=v—m— Z Ajusk; + pE; = v —m — (usk — \jusk;) + pE;
JeU,j#i
= v — usk — m + \jusk; + pE..

The statistical distance between d; and d} is thus the distance between pFE; and
v — usk — m + pE]. First note that, E; and E! are bounded uniforms from the
same distribution, and ||v — usk||, < Bpec and ||m|, < p. We also can rewrite
v—usk—m~+pE! as p((v—usk—m)/p+E!). The distinguishing probability between
two distributions using a statistical argument is then how well the distribution
of E; and E! “smudges” the difference term (v — usk —m)/p:

|0 — usk —m)/pllo, _ (Boee +0)/p
1Bl (<Bou/)

G2 and (G5 are thus statistically indistinguishable.

At 275

Experiment G,. We replace the rest of the honest shares, i.e., all but the
special party 4. Instead of honestly computing d; for j € Hy,j # i, the sim-
ulator samples a uniform d; € R,. In addition, d} is now replaced with as
di == v —m—3 e, Ajusk; — > cq iz;dj modp+ pE] mod q. The rest
is the same as G3. We need to show both d) and {d;} e, j+ are indistin-
guishable from their counterparts in Gs. We first show the former assuming
the latter. In Gj, d. is computed as v — m — zjeu,#i Ajusk; + pE;] whereas
d’ = U*m*Zjecu)‘jUSkj*Zjeyu,j;si d; mod p+pE] mod ¢. If {d;};cn, j#i
sampled uniformly is indistinguishable from {d;};en,, j2i computed as d; =
Ajusk; + pEj, then the distributions of Zje?—tu,j;éi d; mod p are indistinguish-
able from Zjeyu’j# Ajusk; mod p since d; mod p = Ajusk; + pE; mod p =
Ajusk; mod p. Then if 37,y . ;d; modpand >y ., usk; are indistin-
guishable, so are d} and d.

All it remains to show that Ajusk; + pEj; is indistinguishable from uniform.
Since A; are invertible in Z,, if we can argue Aas+pe ~ as+ A lpe =as+pex
as + e for uniform a and s, invertible p’, and relatively short e then we can argue
Aas + pe is indistinguishable from uniform.

We first argue that A distinguishing usk; +)\j_lpEj from uniform d; can be
used to break R-LWE: The R-LWE distinguisher interacts with 4 and uses its
replies in G4 to answer R-LWE challenges. The distinguisher obtains an R-LWE
challenge (a;,u;), for each partial decryption query and sets partial ciphertext
u = a; and partial decryption share d; = u;. During each query, if A behaves
noticeably different than G5, the R-LWE distinguisher replies that u; is uniform.

15

Since A; is invertible and p is a prime,)\j_l exists and A~ !p is relatively
prime with g. Hence, if u is an R-LWE instance, then there is no reason for
the adversary to behave different than Gj since a;sk; + e; is indistinguishable
from a;sk; +)\j_lpei for)\j_lp relatively prime with ¢ [BGV12]. If u; is uniform,
any significant advantage A has is R-LWE distinguisher advantage. Hence we
conclude usk,; + /\j_lpEj is indistinguishable from uniform d;.

If uskj+)\j71pEj is indistinguishable from uniform d; then A; (uskj—i—)\j’lpEj) =
Ajusk; + pEj is indistinguishable from A;d;. Since d; is uniform in Ry, so is
Ajd;. Thus we conclude that Ajusk; + pFEj is indistinguishable from uniform d;
by R-LWE N ¢, Brp.. @ssumption.

Experiment G5. Now that partial decryption does not rely on skg, we start to
modify DKGen. Here we modify G4 by simulating m; sent during key generation
for all honest parties. It follows immediately from the zero-knowledge property
of the proof system that G4 and G5 are indistinguishable.

Experiment Gg. For all honest parties, we now replace the unopened commit-
ments to {s; ;}. After deriving bg, each honest party commits to a random ring
element instead. Since the commitments for the shares between honest parties
are not opened, Gg is indistinguishable from G5 as long as the hiding property
of the underlying commitment holds.

Experiment G7. For i we now replace the public key share b;. Sample a random
b; and t-out-of-n secret share it into {b; ;};c[n). Then derive s; j,e;; from by ;.
The rest of the experiment remains the same.

We again show that A distinguishing between Gg and G7 can be used to
break R-LWE assumption. We initiate the challenger for R-LWEy 4.B,.., With ag¢
being the uniform element. We then forward the answer of the challenger as b;.
If the A behaves significantly differently than G5 we reply the challenger as the
sample being uniform.

We have that b; = ags; + pe; is an R-LWE sample, hence if the challenger
returns an R-LWE sample, A has no reason to behave differently. If the chal-
lenger returns a uniform sample, however, any non-negligible advantage A has
is non-negligible advantage in answering challenger’s queries since any behav-
ioral difference is forwarded directly. Since b; is t-out-of-n secret shared, each
b; ; is uniform in R,. This is statistically indistinguishable from the real execu-
tion where s; and e; are t-out-of-n shared therefore s; ;, e; ; and consequently
b; = ags; + pe; is uniform in R,. G is then indistinguishable from G's by R-LWE
assumption and A’s distinguishing advantage can be bounded by er-Lwe-

Experiment Gg. We now derive b; a posteriori. Before step 1 of DKGen, B
receives a BGV key pair (ag, be). In step 1 samples a random h; < {0, 1}*. After
receiving hy for k € C from A finds by such that hy = H(k,by). Then derive
b :=bg — > b; and program H such that H(i,b;) = hp,. If programming
J#i€[n]

fails, abort. The rest of the experiment is the same as before.

The distribution of h; is statistically indistinguishable from the output of H
by the random oracle model. By the R-LWE assumption, b¢ is indistinguishable

16

from uniform. Then, G¢ and G7 are indistinguishable as long as the programming
does not fail. The advantage of A is the probability of programming failing, which
by a standard argument can be bounded by %

We now show that if A wins Gg, then A can be used to break the IND-CPA
security of BGV scheme. B interacts with the challenger to IND-CPA security of
BGYV and obtains ag, bg which then are used during DKGen. Whenever A sends
the challenge plaintexts ptx, and ptx; B forwards them to the BGV challenger
and obtains the ciphertext ctx*. B sends ctx* along with its simulated proof to
A. When A replies with 0 or 1, B forwards the response to BGV challenger.

The public key A generates as part of DKGen contains the same (ag,bg) as
B received from the BGV oracle as a challenge. Hence ctx* received by B and
consequently A is a BGV ciphertext encrypted under ag, be which indistinguish-
able from ctx derived as part of the protocol execution. Then, a correct answer
given by A is also a correct answer for B for the encryption oracle.

This concludes the proof. a

4 Passively Secure t-out-of-n Threshold Signatures

We give a passively secure version of our t-out-of-n threshold signature proto-
col TS. For brevity, we omit the exact bounds and parameters as this section
serves mainly as a warm-up. Let £ = (DKGen, Enc, Eval, Dec, TDec, Comb) be a
threshold (linearly) homomorphic encryption scheme.

4.1 Dilithium without Aborts

We use a ring version of Dilithium without rejection sampling as the underlying
signature scheme, extending [ASY22]. The underlying signature scheme is also
similar to Raccoon [dPEK™23] (which was developed in concurrent work). We
define the challenge set C, = {c € R : ||c||, = 1,]|c||; = v} C Ry to be the set
of polynomials with coefficients in {—1,0,1} and exactly v non-zero coefficients.
We also let C, = {c—c :¢,d € Cp,c#'}.

KGen; Samples a uniform a € R, , then set a := [a 1}. Samples bounded
uniform short secret key si,so with ||s1]| = [|s2]|,, < 7 then set s :=
[s1 s2]. Finally, computes y := (a,s) and outputs sk =s and pk = (a,y).

Sign; Takes as input (sk, pk,), samples r1,7r2 < D, from a Gaussian distribu-
tion with standard deviation o, and set r := [rl 7"2}. Computes w := {(a, r),
derive challenge ¢ := H (w, pk,) € C,,, and outputs signature (¢, z := cs+r).

Vrfy; Takes as input (pk, (z, c), i) and checks that ||z, < B and ¢ = Hy((a, z)—
cy, pk,) and then outputs 1, otherwise outputs 0.

Agrawal et al. [ASY22, Section 4] prove the correctness and security of this
scheme:

Lemma 2. Let v = A+ (Nlog, q)/(logy(2n + 1)), and furthermore set § =
2B+2-n-v-\/y and o > v-n-+/v-Q, where Q is the mazimum number

17

KGenrs(crs = (a1s,ag), t,n)

DKGen(crs = ag, t,n)

N

P —

return pkg, sk;

Si1,8i2 < D, s;:= [Si,l sz‘,z}

yi := (@Ts,S:i), Ctxs,; < Enc(pke,s;)

Yi, CtXs i

{(yy, ctxs,)}z

Y= Z Yj, Ctxs:= Z CtXs,;
J€ln] Jel

=
return pk,g := (ats,y), sk;, auxys:= (pkg,ctxs)

i

Fig. 4. Passively secure key-generation protocol for signer S;.

of signing queries an adversary can make, and let H be modeled as a random
oracle. If the R-SISy 48 problem is hard, then the signature scheme above is
uf-cma-secure.

4.2 Threshold Key Generation and Signing Protocols

We describe the underlying protocols of TS from the viewpoint of a single
signer S; with ¢ € [n] (for DKGen) and i € U C [n], [U| =t (for Sign). We once
again assume access to a crs consisting of a uniform ring element ars € R;. The
key generation protocol is depicted in Figure 4.

The key generation KGenrs goes as follows:

1. The parties begin by invoking the passively secure distributed key genera-
tion protocol DKGen of the underlying threshold homomorphic encryption
scheme with inputs ¢,n for all circuits consisting of one multiplication with
an element from C,, and t additions and all circuits consisting of n additions.
S; learns the public encryption key pke and its decryption key share sk;.

2. The parties are given ars = [aTg 1] as the common reference string. Then
S; samples short s;1,s;2 and sets s; = [5@1 51‘72} and y; = (ars,s;). It
computes the ciphertext ctxs; := Enc(pkg,s;) and broadcasts it with y;.

3. The parties compute ctx := > ctxs ; = Enc(pke,s) and y := > y; = (ars,s),
where s = >_s;, and define the public verification key to be pkyg :=
(a7s,y). The secret key of S; consists of its decryption key share sk;, and
the auxiliary information aux := (pkg, ctxs). The signing share s; is deleted.

The signing protocol depicted in Figure 5 Signrs goes as follows:

18

Sign s (sk;, auxys,U, 1)

ri1 Ti2 < Dy, 1= [7“2‘,1 7“2‘,2]

w; := {aTs,Ti), Ctxr;:= Enc(pkg,r;)

Wi, CtXp i

{(wy, ctxr j) }ieun (i}

w = Z’u)j7 CZ:H(w,kaS7:u)
Jjeu
Cctx :=c- ctxs + Z CtXp,j
jeu
ds; := TDec(ctxz, Skqjyu)

dSz'

{ds;}ieungay

z = Comb(Cth, {de }jeu)

return o := (¢, 2)

Fig. 5. Passively secure t-out-of-n threshold signing protocol for signer S;.

1. To sign a message pu, party S; first samples short ring elements r; 1,7; 2 and
defines vector r; := [ri,l 1"172]. Signer S; then computes w; := (ars,r;) and
generates the ciphertext ctx, ; := Enc(pkg,7;) and broadcasts that cipher-
text and w; to the other signers in U.

2. The signers compute w := >, w; and ¢ := H(w, pkyg, 1) € Cy, followed
by the ciphertext ctx, := ¢ - ctxs + > jeu St - Party S; then computes a
decryption share ds; := TDec(sk;, ctx,,H) and sends it to the other signers.
The signers decrypt ctx, to obtain z, and output the signature (c, z).

Vrfyrs: A signature (c, z) on a message p is valid with respect to the public
key pkrs = (ars,y) if (1) z is short and (2) H({aTs, 2) — cy, pkrs, i) = c.

For a signature (¢, z) output by the signing protocol on a message p and a set
of users [U| > t, we have z = c-s+ 3 o, r; by the linearity of the encryption
scheme (assuming parameters are set so that decryption errors never occurs).
Since ¢ € C,, and s, {r;} are short, then z is short as well. Moreover, we have

(ars,z) — cy = clars,s) + (ars, Y ;) — clars,s) = w;
jeu

thus, H({arts, z) — cy, pkys,) = H(w, pkrg, 1) = ¢ and verification succeeds.

19

4.3 Proof of Security

Theorem 2 (Informal). The threshold signature scheme TS is threshold ex-
istentially unforgeable under chosen message attacks (ts-uf-cma) in the random
oracle model (ROM) if the underlying signature scheme is existentially unforge-
able under chosen message attacks in the ROM, the threshold homomorphic en-
cryption scheme &£ is indistinguishable, and the LWE assumption is secure.

We prove the security of the scheme via a sequence of hybrid experiments.
Starting from the threshold unforgeability experiment, we gradually define a
simulator B interacting with the passive adversary A. B has access to a chal-
lenger D to the unforgeability of Dilithium scheme without aborts as described
in Section 4.1 and can query the challenger for a signature o = (¢, z) on input
of a message p or the public key pkrs = (a1s,y). We show that if A can forge
a signature, it can be used by B as an answer to D.

Gy. The first experiment corresponds to a passive adversary A corrupting par-
ties in C C [n] such that |C| < t and attacking the threshold signature scheme
TS in the real world. Consider the view of A during this experiment. During
key generation, A’s view is generated as follows:

1. DKGen is run with ¢,n,d, and A is given the collective view viewe of the
parties in C that, in particular, includes a public key pkg and key shares
{sk;}jec. This process defines secret key shares {sk;};je# (not given to A).

2. For j € [n], sample s;1,5;2 < D and compute s; = [s;j1 S;,], y; =
(aTs,s;), and ctxs ; = Enc(pke,s;); give {s;}jec, {(y;,ctxs,j)}jen to A.
Set y := Zje[n] y; and ctxg := Zje[n] Ctxg ;.

A repeatedly invokes the signing protocol (possibly concurrently) by speci-
fying a message 1 and a set of parties /. Whenever A queries the random oracle
on (w, pkrg, i) then B forwards the query to D, records the response in a table
‘HT, and forwards the response to A. Letting Hyy = U NH and Cy =UNC, the
view of A is generated as follows:

1. For j € U, sample rj1,7j, < D, and compute r; = [rj1 2], w; =
(ars,r;) and ctx, ; = Enc(pkg, ;). A gets {r;},cc, and {(w;, ctx, ;) }icu-
Set w = > . wj, ¢ = H(w,pkyrg,p), and compute ctx; := c - ctxs +
Zjeu CtXp 5

2. For j € U, set ds; := TDec(skj, ctx,,U) and give {ds;} ei to A.

At the end of the experiment, A outputs a message/signature pair (p*,o* :=
(c*,z*)). If u* was never previously queried and the signature is valid with

respect to y, then A succeeds. We have that

Pr[Go] = AdviEa™em2(4).

20

G : This experiment is identical to G except how the ciphertexts are computed.
Note that the decryption procedure is independent of the encrypted randomness
r;. During key generation, B computes ctxs; := Enc(pkg,0) for ¢ € #H, and in
step 1 of Signyg B computes ctx,; := Enc(pke,0) for i € Hy. The rest of the
execution is the same as G.

If A can distinguish between Gy and Gy, then it is possible to use A to
break indistinguishability of £. When interacting with the challenger to IND-
CPA of &, B submits (0,s,i) for ¢ € H during key generation and (0,r;) for
t € Hy during signing to the challenger to obtain ctxs; and ctx, ; respectively.
If A behaves noticeably different in any of these stages, B forwards 0 to the
challenger, indicating the plaintext was O.

If the IND-CPA challenger has originally given ciphertexts corresponding to
s; and 7r; to B, then G is exactly the same as G, therefore there is no reason
for A to have noticeable behavior difference. If the challenger has encrypted 0
at one stage however, B can use A to have noticeable advantage in IND-CPA
game of £. Note that this is possible since the views given to A are generated by
B therefore B knows plaintext corresponding to each partial decryption query.
Thus we conclude that Gy and G; are indistinguishable as long as IND-CPA
security of £ holds:

| Pr[G1] — Pr[Go]| < einp-cpa-

G5 : In this experiment, BB removes the dependence on the signing key s.

B first changes the key generation step for one honest party. At the start
of key generation, B receives the public key from D where D is initialized with
the parameters for the combined signature (we detail these in the active version
of the proof). Let i be some index in H and Hy. During step 2, everything is
computed in the same was as in Gg except for y; where s; ;1 and s; 2 are never
sampled and y; :=y — Zje[n]ﬁj# Yj-

Whenever p is to be signed, B queries D to obtain a signature (¢, z). During
the first step of signing for j € Cy, sample 71,72 < D, and set 7; := [rj1 7} 2]
and w; = (ars,r;) as before. Letting ¢ denote some index in Hy, sample
wj < Ry uniformly for j € Hy \ {i}, and set w; :=w =3,/ (53 wj, where w is
computed from (¢, z) as w := (ars, z) — cy. B encrypts the received z to obtain
ctx, = Enc(pkg, 2). The rest of the experiment is as before.

D is initialized with the parameters for the combined signature. Hence,
y = (ats,s’) for an unknown s’ with ||s’|| < ¢B. Consequently y; := y —
e Yi = (ars,s;) by the linearity of the operations for an unknown
s, with ||s}|| < B, which is the same distribution for the honest s;.

w is obtained from D, which is ar} +r} for unknown r}, r} and hence an R-LWE
sample from combined parameters. Since {w;};cc, are computed according to
the protocol, then {w;} e, is computationally indistinguishable from uniform
by the same R-LWE assumption. If A can distinguish between Go and Gj then
since ats,y,y; are distributed in the same way as in Go, A can also distinguish
{w;}ieny, in games G; and Go.

21

If A can distinguish w; then it can be used to solve R-LWE. After B initializes
the challenger for R-LWE for parameters of combined r, B computes w; for
j # 1 € U according to the protocol and derives w; := w — Zjeu\{i} and sends
{w;}jeu to A. If A acts with noticeable difference, B answer the challenger that
u was uniform.

If the challenger returned an R-LWE sample for u, the derived w; will have
the same distribution as an honestly computed w; in Go therefore there is no
reason for A to have a noticeable behavior difference. If the challenger sent a
uniform v however, w; should be computationally indistinguishable from uniform
by R-LWE assumption hence if A can act with noticeable difference then R-LWE
assumption should not hold and B can answer challenger’s query with noticeable
advantage using A. Thus we conclude that G; and Gg are indistinguishable as
long as R-LWE holds:

| Pr[Ga] — Pr[G1]| < er-twe + %75
We remark that the combined signature in Go now has the same distribution
for (ars,y,c, z) as the underlying signature for combined parameters, since
(ars,y,c, z) are received from D. If A is able to produce a forgery (u*,o*)
now, this forgery is also against the underlying signature scheme, and hence,
the adversary can be used to break the uf-cma security. Whenever A submits a
forgery (p*,0*), B can submit the said forgery to D, which would have noticeable
probability of winning as long as A has noticeable advantage. Thus we have:

Pr[Gy] = AdvFm2(A).

This concludes the proof. a

Since we remove the reliance on aborts, each signature may leak information
about the secret key as discussed by Lyubashevsky [Lyul2]. Exact parameters
rely on either limiting the number of signatures issued or on noise drowning.
Parameters for active security are analyzed in detail in Section 7.

The actively secure version of our protocol is more involved since we assume
a rushing and active adversary, and hence, we need parties to commit to specific
values, provide zero-knowledge proofs, and conduct consistency checks to ensure
the privacy and correctness of the protocol.

5 Actively Secure t-out-of-n Threshold Signatures

We now describe our main contribution: an actively secure threshold signature
scheme, constructed by bootstrapping the passively secure protocol described in
Section 4. The key generation and signing protocols are depicted in Figure 6 and
Figure 7, respectively. We extend the previous section by giving concrete bounds
and dimensions for the protocol, discussing the communication efficiency in each
round, and giving a detailed security proof.

We start by modifying the underlying signature protocol. Instead of using w
directly as part of the oracle input for challenge derivation, we use a commitment

22

com to w instead. This is the same approach taken by Damgard et al. [DOTT21]
on Dilithium-G [DKLT 18] and does not have any important security implications
on the signatures as long as the underlying commitment scheme is secure.

5.1 Key Generation and Signing Protocols

We retain our notation and viewpoint from the passive protocol and introduce
homomorphic commitments and non-interactive zero-knowledge proofs. Note
that we change the signatures so that the challenge is computed as the hash
of the sum of commitments to the values w; instead of the values themselves,
and openings are published afterward as a part of the signature.

KGenrs(crs = (ars,ae),t,n)

DKGen(crs = ag, t,n)

return sk; = skg ;, pkg, auxe

Si1,Si2 < Ds, s;:= [811,1 51,2]

yi = (a7s,8:), hyi = Ho(i,y:)

hy,i
{hy,i}izi
ctxs,i = Enc(pkg, si)
Compute NIZK 75 ; of ctxs,; (Ys, CtXs,iy Ts,i)

{(y;, ctxs,j, 7s,5) }j i

if any hy; # Ho(j,y;): abort (j)

if any 75 ; is invalid: abort (j)

Y= Z Yj, Ctxs:= Z CtXxs,;
j€ln] j€ln)

return pkrg = (ats,y), sk;,

and auxrs := (auxe, pke, Ctxs)

Fig. 6. Actively secure key generation protocol for signer S;.

KGents works as follows:

1. §; starts by invoking the distributed key generation DKGen of the un-
derlying encryption scheme £ with inputs ¢ and n as in the passive case
and obtains the public encryption key pkg, its threshold decryption key
share sk; and any auxiliary information auxg associated with &.

23

2.

Vityrs

S, then samples short signing key s;1, ;2 sets s; == [s;1 Si2], i ==
(aTs,s;), hash hy,; = Hy(i,y;) as a commitment to y;, and broad-
casts hy ;. Upon receiving h, ; for all j # 4, S; encrypts s; as ctxg; :=
Enc(pkg, s;) and computes a NIZK proof 7 ; to prove that the correct s;
was used for y; and ctxs ; (see Section 6), then broadcasts (y;, CtXs i, Ts i)-
Finally, upon receiving ctxs ;, 7 ; and y; from each j # i, S; verifies that
hy.; = Ho(j,y;) and that mg ; is valid with respect to ctxs ; and y;, and
aborts with output j if any of them fails. If all checks succeed, it defines
the public key pkyg = (ars,y), secret key sk;, and auxiliary information
auxys = (auxe, pke, ctxg) where y := >"y; = (ars,s), ctxg :=) Ctxs ;.
works as follows:

. Let §; be one out of ¢ signers in the set U. Upon receiving the message p

to be signed, S; samples per signatures randomness ;1,752 < D, and
commitment randomness p; < Y, derives per message commitment key
ck = Hq(pkys, 1t), set 7; := [r;1 75 2], and computes w; := (ars,r;) and
commitment com; := Comg(w;, p;). S; then encrypts the randomness r;
with the encryption key pkg as ctx,; := Enc(pkg,7;), and computes a
NIZK proof . ; to prove that r; was used for both com; and ctx, ; (see
Section 6). S; then sends ctx, ;, com; and 7, ; to all j € U \ {i}.

Upon receiving ctx, ;, com; and m, ; for each j € U \ {i}, S; aborts
with output j if 7, ; does not verify with respect to ctx, ; and com;.
Otherwise it computes com :=)" com; for all j € U and derives the
challenge ¢ := Hj(com, pkyg,). It then computes the encryption of
the signature as ctx, := c¢- ctxg + Zjel/{ ctx, ; (that is, computing Eval
on the ciphertexts where F' is the function taking an element from C,,
multiplying it with ctxs, and adding ¢ ciphertexts ctx, ; to the result)
and decrypts its share as ds; := TDec(ctx,, sk;,) and sends the partial
decryption ds; along with opening w; and commitment randomness p;
to the signers in U.

Upon receiving ds;, w;, and p; for all j € U \ {i}, S; aborts with out-
put j if Open(com;,w;,p;) = 0 for any j. Then tries to combine the
decryptions as z := Comb(ctx,, {ds;},;c) and aborts with output j if
z = 1 and Comb aborts with output j. S; finally outputs the signature
o= (c,z,p) where p:=>_ p; forall j € U.

: Upon receiving o := (¢, z,p) and p, checks that ||z|| < B, and ||p|| <

B,, computes w* := (ars,z) — cy, derives ¢* := Hy(Com(w*; p), pkrs, i),
then finally outputs 1 if and only if checks hold and ¢ = ¢*, and 0 otherwise.

5.2 Correctness, Bounds, and Sizes

We proved the correctness of the passively secure signature scheme in Section 4.2,
and as the commitment scheme and the zero-knowledge schemes are complete,
then it follows that the actively secure signature scheme is correct. Furthermore,
the bounds in the protocol depend on the distributions we sample from. If we sum
t samples from a uniform distribution over the values [—B, B], the sum will be

24

Signrs(pkrg, sk;, auxrs, U, 1)

ck ;= Hl(ka$7M), Ti,1,T4,2 $— Do'
T = [7"1',1 T’i,ﬂ, Pi < X, W; = <a7'577°i>

com; := Comek(wi, pi), Ctxr i <— Enc(pkg, ;)

Compute NIZK proof 7, ; of correct encryption (ctxr,s, coms, i)

{(ctxr 5, comy, mr) bicun (i}

if any 7, ; is invalid: abort (j)

com := Z comj, c¢:= Ha(com, pkyg,)
jeu
Ctxy := c- Ctxs + Z CtXy j
Jeu
ds; := TDec(ctx, sk;,U)

(wi7 Pis dsl)

{(wy, pj,ds;)}ieun 13y

if any Open(com;,w;, p;) = 0: abort (j)

z := Comb(ctxz, {ds; }cu), p:= ij
jeu

if z = 1 with abort (j): abort (j)

return o := (¢, z, p)

Fig. 7. Actively secure 2-round t-out-of-n threshold signature protocol for signer S;.

in the interval [—tB, tB]. However, suppose we sample from a discrete Gaussian
distribution of standard deviation o. In that case, each sample is with a high
probability of 2-norm less than 26v/2N for an integer vector of length 2N, and
the sum is bounded by 20v/2¢tN. Hence, the bounds B, and B, must be decided
based on the distribution of choice, and the concrete choice of parameters and
distribution impacts the security and efficiency overall.

When rejection sampling is removed, the signatures might leak information
about the secret key, but this can be prevented by increasing the per-signature
randomness 7 or limiting the number of signatures performed by the same key.
We get optimal parameters if the key is used only once, as the key has high
entropy and only leaks a few bits of information per signature. A recent analysis
by Agrawal et al. [ASY22] using Rényi divergence shows that leakage scales with
\/Q where @ is the number of signatures, and hence, we can keep the bounds
on r small when limiting the number of signatures.

25

Looking at the key generation, each signer first executes the interactive key
generation for the underlying encryption scheme, which has communication size
|DKGen|. Each signer sends a ring element of size N log, g bits. Each partial
signing public key is of size N log, ¢ bits. It also sends the ciphertext and a zero-
knowledge proof, which we denote the sizes by |ctx| and |7s| bits, respectively.

In the signature protocol, each party sends a ciphertext and a commitment
of size |ctx| and |com|, respectively, in addition to a zero-knowledge proof of size
|75|. They furthermore send values w; of size N log, ¢, opening randomness p;
of size |p| and partial decryptions ds; of size N log, g.

5.3 Proof of Security

We prove security of our protocol by constructing an algorithm B interacting
with an active adversary A. Note we assume a rushing adversary, so honest
users always send their messages first.

Theorem 3. Let R-IWEy 4 B, be er-twe-hard. Let Qs, Qu denote the number
of signing queries and the total queries made to Hy, H1, and Hy respectively. Let
{ be the bit-length of the output of Hy. Let £ be einp-cpa secure. Finally, let proof
systems Il for the relations Rq be €7k @, and €extract,z-Secure. Then, the actively
secure t-out-of-n threshold signature scheme TS, described in Section 5 and
depicted in Figure 7, is ts-uf-cma secure when Hy is modeled as a programmable
random oracle and Hy and Hy are modeled as random oracles. The advantage
of adversary A is:

AdVTS M (A) < e(Qu + Qs + 1) ([H] - ezks + [Hul - ezkr +[C| - coractss
C +

+‘|(QI;7ZQS)+(QH+QS)‘€M

+ 2 enp-cpa + er-wE + Adv'TM(A)).

+ [Cul - ezk »

Proof. We prove this through a series of hybrids written out in full detail. The
simulator B is communicating with a challenger D, and we show that a forgery
by A can be used by B to answer D. This time, however, D targets a variant
of the signature scheme described in Section 4.1 where ¢ is derived using the
commitment to w. Hence when queried for a message, D outputs o = (¢, 2, p).

Gy: The first game corresponds to the real world. Specifically, B follows the
protocol according to the description, and A interacts with B arbitrarily. The
oracles Hy,Hq, and Hy are simulated using tables H7 o, H7T 1, and HT 2. Since
we assume a rushing adversary, I sends its messages first.

When A outputs a forgery (o* = (¢*, 2%, p*), u*), B aborts if u* € M. If not,
B derives the commitment key ck™ := Hy(pkyg, #*), computes w* := (ars, z*)—
c*y and com* := comge(w*; p*). If the challenge ¢* # Ha(com*, pkrs,u*), B
aborts, otherwise halts with output (¢*, u*) and A succeeds.

If the real world is indistinguishable from the programmable random oracle
model, then the random oracle simulation is perfect, B’s behavior is exactly the

26

same as in the unforgeability experiment, and we get that
Pr[Go] = AdvE2™em2(4).

G1: In this game B changes how non-interactive zero-knowledge proofs are an-
swered for honest parties. B executes the protocol the same as Gy, but in-
stead of honestly generating 7g; for ¢ € H, m,; for i € Hy, B uses the cor-
responding honest-verifier zero-knowledge simulators, Simg and Sim,. for rela-
tions Rs and R, respectively where mg; := Sim(ars,y;, pkg, Ctxs,;, Bs) and
Tp i i= Sim(arts,com;, pke, ctx, ;, By). B follows the remaining parts of the pro-
tocol honestly. Gy and G is indistinguishable by HVZK of the NIZKs:

PI‘[Gl] — PI‘[GQ] < |H| “€zK,s + ‘7‘[{,{| CE€ZK,p-

G2: Gy is the same as G except B uses the extractability properties of the
NIZKs to learn the signing key shares and the signature randomness encrypted
by parties in C. During key generation, after receiving s ; for j € C, B calls the
extractor s; := Extracts(7s j; @, yj, pke, Ctxs j, Bs). Similarly, during signing after
receiving 7, ;, B computes r; := Extract, (7, ;; as, com;, pke, ctx, ;, B). If any
of the extractions fails, B aborts.

By assumption, the extractor Extract, for R is efficiently computable. If B
does not abort due to a failed extraction, Gy and Gj is indistinguishable for A.
A’s advantage in Gg is bounded by the sum of independent extraction failures:

Pr[G2] - Pr[Gl] < ‘C| - €extract,s T ‘Cljll * €extract,r-

G3: Gj is exactly the same as Gy except B embeds a trapdoor to the com-
mitment key ck with high probability. Then the forgery by A must be for an
honestly generated commitment key ck.

B initially generates only a single commitment key ck < Sc. B keeps a
trapdoor table 7T DT similarly to other random oracles throughout the protocol.
When there is a query for H; for a new message-public key pair, with probability
¢, B samples a trapdoor (ck, td) by invoking TCGen, updates the corresponding
entry in 7D7T to td and updates the corresponding entry in H7 5 to ck. Otherwise
B uses a freshly sampled ck < Sc.

When A queries Hy, B sets the flag bad and aborts if TD7 [pkyg,p] = L.
Otherwise, B obtains the trapdoor td. Then, for j € Hy, B samples r;1,7;2
and computes 7;,w; according to Signrg. Furthermore, B samples commit-
ments com; by invoking TCom on input td. The rest of the first round con-
tinues as in Go. When B has received messages from all users, it checks if
the proofs for r; verify and computes the challenge and derives randomness
p; < Eqvg (td,com;,w;) for each j € Hy. It then continues with the rest as
before. When A sends a forgery (o* := (¢*, 2*, p*), u*), then B repeats the steps
of Ga. At the final step, if TDT [pkyg, 1] # L, B aborts.

If B does not abort, then ck® = H;(pkyg,p*) and the simulated 7, ; must
verify for each honest part j € Hy,. This follows from the fact that the simulation

27

is only successful if the oracle uses the trapdoor commitment for all but one query
to Hy and uses the predefined ck for the one associated with forgery, i.e., bad is
not set. The trapdoor commitment scheme ensures that:

Pr[G3] > 9795 . (1 - ¢) - Pr[Go] — (Qu + Qs) - €x-
By setting ¢ = (Qu + Qs)/(Qu + Qs + 1) we get

PI‘[GQ}
PGl 2 S T 0s 7 D)

where (1/(1+1/(Qu + Qs)))2#+9s > 1/e when Qg + Qg > 0.

—(Qu +Qs) - €,

G4: In this hybrid B changes how ciphertexts are computed similar to G; in
the passive case. B fixes some index i' € H which is also in Hy. B computes
ctxs v = Enc(pkg,0) during key generation and ctx, ;s := Enc(pkg,0) during
signing. The rest of the game is as it is in Gy4. Since r; and s; for j € Cy are
extracted in G, B can compute z = ¢, 8;+ >,y T4, Which is the combined
signature hence the threshold decryption can be simulated. Similar to the G; in
the passive case, we can now reduce to the indistinguishability of &:

| Pr[G4] — Pr[G3]| < 2 - enp-cPa-

Gs: In this hybrid B changes how h, ;s is computed. B sends a random h, €
{0,1}** as the commitment %;; then programs Hy such that Ho(i',y) = Py i
If programming fails, B aborts. Then the only difference in A’s view is how hy i
is computed. By the oracle assumption, the distributions are indistinguishable
between these two games hence from the view of the adversary A, G4 and Gy
are indistinguishable as long as B does not abort during programming. Thus
we can bound the advantage of A in distinguishing G4 and G5 by the failure
probability of programming of Hy:

ICl(Qu + Qs)
ol

| Pr[Gs] — Pr[Gy]| < .
Gg: Now, B removes its reliance on the secret key s for signing similar to Gg
in the passive case. During key generation, B initializes the signing challenger D
with the parameters of the combined signature and queries the oracle to obtain
public keys, then sets crs = ats. Instead of honestly computing y;/, B derives
yy =y — ». y; where y is received from D and continues the rest of key
JemIN{'}

generation as in Gs.

For i € Hy \ {i'}, signing starts as Gs. When a signing query for p comes,
B commits to a random w;s as part of the first message then forwards p to D to
obtain (¢, z, p). B then computes w := (ars, z) — cy and uses z for simulation
to obtain ds;. For j € U \ {i'}, w; is computed the same. B then derives w; =
w—>" jeunfiry Wi and equivocates the commitment to get the randomness p; :=

Eqv(td, com;, wy) using trapdoor td. Otherwise, signing proceeds as Gs.

28

Since ats,y received from D is a valid R-LWE instance, the distribution of
aTs therefore y; in Gg is same as Gy by linearity of operations the derived
Yy = (aTts,s,) for an unknown s,.

B now has to fix the signature and its shares in a way consistent with the
first round of communication in signing. Since D uses the variant that derives ¢
based on a commitment to w, it is possible to obtain consistent (¢, z) such that
w = (ats,z) — cy. The remaining difference in A’s view is the w;,, which is
indistinguishable from uniform the way it is computed. Using the same argument
in Gg of passive, an adversary distinguishing between w;; in G5 and Gg can be
used as a distinguisher for R-LWE. We then have:

|PI‘[G6] - PI“[G5H S €ER-LWE -

The signatures in G7 are independent of secret key material defined as part of
the protocol and solely depend on the signature received from the challenger
D. A forgery against the 7S scheme is then a forgery against the underlying
signature scheme. If A outputs a forgery (c*, z*, p*), u*, B can submit the same
forgery to D as a valid forgery for the underlying signature. Hence if A can
output a forgery at the end of Gz, it can be used to break the uf-cma security
of the underlying scheme, the advantage if A can then be bounded as:

| Pr[Gg]| < Adv*™m2(A).

This concludes the proof. a

6 Instantiating the NIZKPoKs

There are four main relations of the signature protocol (including the homomor-
phic encryption subprotocols) to be proven in zero-knowledge. Here we define
the exact relations that have to be proven and show how we can instantiate cor-
responding zero-knowledge proofs using proofs of shortness and linear relations.

— The relation R¢ during KGeng defines the correctness of partial key shares as
part of the key generation. For fixed public parameters By, and p, the com-
mon reference string crs = ag, public b;, {b; ; }ie[n], and public commitments
to secret short s;, e; and secret s; ;, e, ; the relation shows (1) b; = ags; +pe;;
(2) com;, com; are commitments to s;,e;; and (3) {com; ;}ic[n]s
{com; ; }ic[n) are commitments to {si ;}icin], {€:,j bic[n) Such that {s; j }ic(n),

€i,j tie[n) are valid t-of-n secret sharings of s; and e;; (4) {si,;}je[n) are cor-
rect t-out-of-n shares of s;; (5) {e; ;};e[n) are correct t-out-of-n shares of e;;
(6) {bi,j}jem) is correctly computed from s; ; and e; ;. More formally:

x = (b;, {bs,j }, com;, com’, {comiﬂj}ie[n], {com;’j}ie[n]) A
w = (i, Pis €y Py {5ij }jem)s 1Pig Yiein)> 1€i }iem)s 1Pig tiem)):

&
i
®
S

lsill, lleill < Bten A b = ags; +pe; N Y5 bij = ags;j + peij
A bj = Rect,n({bi,j}) N 8= Rectvn({siyj}) N e = Rect,n({ei_j})
A Open(com;, s;, p;) A Open(com’, e;, p}) A
Vi Open(com; j, i 4, pij) A Vi Open(com; ;. e; ,p; ;)

29

The knowledge of s; and e;, and consequently s; ; and e; ; can be proven
based on b; and b; ; using proofs of linearity and shortness once commitments
to s;, €;, and e;; are available. For which we modify the distributed key
generation algorithm given in Figure 2 as follows: Party P; as part of m;
commits to these secret values and broadcasts them as part of the proof. For
partial shares that are sent through private channels, P; also sends opening
i.e. randomness pj ; corresponding to the commitment to e; ; as well.

It is also possible to show s; and e; are correctly secret shared. Once knowl-
edge of s;, e;, s;; and e; ; is proven, since b; and b; ; is public, it is possible
to check if every subset of size ¢ of b; ; can be used to reconstruct b;.

The relation Rys during TDec defines the correctness of the partial decryp-
tions where the correct secret key share sk; was used to generate the public
decryption share d; for a given ciphertext ctx = (u,v). For fixed parameters
Ais Dy BTDec, common reference string crs = (ag, be) and public commitments
to secret sk;, E; the relation shows: (1) The secret error E; has norm smaller
than Brpec, (2) d; is correctly computed with respect to A;,sk;, u,p, E;:

T = (d,;, ctx, comskv,,;,comEﬂ;) AN w:= (Skiapsk,ia E;, PE,z')I
Rys := (ac,w) IlEl”oo < B1pec N d; = /\iskiu +pE; A
Open(comg s, sk;, pski) A Open(comg ;, Es, pg.i)

Since the commitment to the secret key shares are also included as part of
the distributed key generation, it is trivial to prove the above statements
using the proof of linear relations as before, once the commitments to F;
are available. For which we instantiate the proof mgs; as a proof of linear
relation to show d is correctly computed alongside a commitment to F;.
The relation Ry for KGeny s proves that the short s; was both used to com-
pute the public key share y; and was encrypted in ctxs ;. For a publicly fixed
parameter Bg, the common reference string crs = (ars, pkg) and public y;
and the commitment to the secret s;, the relation R shows:(1) secret s; has
norm smaller than Bs (2) s; is the same s; used for the calculation of y; (3)
Ctxs,; is the encryption of the s; using pkg.

R = { (2, w)

z = (ars,yi, Pke, Ctxs i, Bs) A w:=s; A
Isill < Bs A yi = (ats,si) A ctxs; = Enc(pkg,s;) |-

Since s; is boundend, the relation above is once again a linear relation with
respect to a. y; and s;. Only non-trivial part is to show the knowledge of
s; as plaintext, which we discuss at the end of this section. So s ; includes
commitment to s; and proof linear relation and plaintext knowledge for s;.
The relation R, for Sign;g proves that a bounded signature randomness
r; was both committed to in com; and encrypted in ctx, ;. For a publicly
fixed parameter B,., the common reference string crs = (ars, pkg), public
com;,ctx,. ; for secret w;,r;, p; the relation R, shows: (1) randomness r; has
a norm smaller than B, (2) r; is the same r; used for w; and therefore the

30

commitment com; using randomness p; (3) ctx,; is the encryption of the r;.

T = (aT$7C0mi7 psz?Cth’i’BT) A w= (wi’Ti7pi)
Ry = 4 (z,w) Allrall < Br A ctxr,i = Enc(pke, 7:)
N w; = <a,7—5,’l"i> A com; = Comck(wiapi)

R, is almost exactly the same as Rg with the exception of knowledge of
openings to trapdoor commitments. For which, we do the same treatment
to the protocol where 7, ; includes a proof of linear relation with respect to
r; alongside a proof of plaintext knowledge which we will show next. Both
Rs and R, rely on the availability of a proof of plaintext knowledge where
a given ciphertext corresponds to, for which, we introduce a final relation
Renc which also can be instantiated through proofs of linear relations since
we use BGV as our underlying encryption scheme.

— The Rgne shows that, for fixed public parameters Bg,c, p, and a common
reference string crs = (ag, bg) and a statement consisting of ciphertext ctx =
(u,v) and public commitments com,., com./, com.~, com,, to short secrets
r, €', e”, m. Then the proof shows that (1) commitments open to suitably
short values r, €', €”, m, respectively, such that (2) u = agr+pe’ and (3) v =
ber + pe” + m:

x := (Cctx, com,, Com.s, COMerr, COMy,) A w = (ry e, €” m, pry pery Perry Pm.) -
17l oos 1€ lloos 1€l oo < Bene Aw = agr +pe’ A v=Dbegr+pe’ +m A
Open(com,.,r,p,.) A Open(come, €, per) A
Open(comer,€”, perr) A Open(comy,,m, pm) A |m| <p

Renc i= | (z,w)

The proof of plaintext knowledge proofs in both Rs and R, then can be
instantiated as a proof of linear relation where s = m and r = m with
different Bgnc respectively. g already includes a commitment to s;, so we
can add commitments to remaining encryption randomnesses as well as a
linear relation proof for ctxs; to complete. 7, ; however is a bit non trivial
as commitments sent as part of the message are trapdoor commitments.

Trapdoor commitments and normal commitments can be instantiated using
the commitment scheme by Damgard et al. [BDLT18,DOTT21], and the proofs
of linearity and exact proof of shortness can be instantiated using the zero-
knowledge protocols by Lyubashevsky et al. [BDL'18, BLNS21, LNP22] com-
bined with the Katsumata-transform [Kat21].

7 Example Uses Cases and Performance

To estimate the practicality of our actively secure scheme we give example pa-
rameters for (3,5)-threshold signatures in three different settings: (1) where a
signature is only produced once (1-SIG), (2) where at most signatures are
produced (3-SIG), for some moderate 3, and (3) where up to 2% signatures
is issued (00-SIG), as per NIST recommendations. Schemes secure for issuing
one signature may be of interest for cryptocurrency applications, and there has

31

been ongoing discussion in the context of the NIST post-quantum cryptography
standardization effort?, especially with regard to SPHINCS+ [K&22], about ap-
plications where the assumption of a bounded number of signatures might be
reasonable.

For simplicity, we let the distribution yiern be the uniform ternary distribution
in each of the three cases. We use the threshold scheme described in Section 3 as
the underlying additive homomorphic encryption scheme and the homomorphic
trapdoor commitment scheme by Damgard et al. [DOTT21].

We emphasize that these are rough estimates, and a more careful analysis is
needed before this scheme is ready for real-world use. The main point of this exer-
cise is to showcase that we can achieve practical signatures and verification keys
using our techniques. We acknowledge that the total amount of communication
in the protocol is quite large, and we will provide more details on communica-
tion in the full version of the paper. Furthermore, this section assumes trusted
setup and only focuses on the signing protocol, not distributed key generation.
We summarize the results in Table 1.

Comm. 1-SIG 1-PK B-SIG B-PK 0o-SIG oo-PK
Size 8.5 KB 2.6 KB 10.4 KB 3.1 KB 46.6 KB 13.6 KB

Table 1. Estimated sizes of (3,5)-threshold signatures SIG and public keys PK for
settings: 1) where the signature is only produced once, 2) where a signature is produced
at most 8 = 365 times, and 3) where a signature can be produced co = 2%* times. These
parameters achieve 128 bits R-SIS / R-LWE security using the lattice estimator [APS15].

7.1 One-Time Signatures

The simplest case is when each key is only used to create a single signature before
it is discarded and never used again. One such setting is Bitcoin transactions,
where some funds are tied to a specific public key. When a new transaction is
performed, the remaining funds are sent to a new address tied to a different public
key owned by the same user(s). The setup can be done in advance, independent of
the blockchain and future transactions, and one key is used for each transaction.
This leads to smaller keys and signatures to minimize on-chain data.

With no rejection sampling, publishing a single signature leaks minimal in-
formation about the secret key. Agrawal et al. [ASY22] show that the leakage in
each signature grows linearly in the square root of the number of signatures pro-
duced, but since we only output a single signature, we can keep the parameters
identical to when rejection sampling is performed.

All signing key shares are ternary, which means that even secrets of absolute
norm 1 should ensure that the R-SIS and R-LWE problems are hard. The R-SIS

4 See https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LUczQNCw7HA.

32

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LUczQNCw7HA

problem is hard when the logarithm of the /5 norm of the secret is less than
24/N log, qlog, 6, see [MR09], and we get more roughly 128 bits of security
when § &~ 1.005, and better when it is smaller. The ring dimension N must be
a power of two, so we set N = 1024. Then we let elements of r be sampled
from a Gaussian distribution D, with standard deviation o = v - /7, where
v =128 + (N log, q)/(log,(2n + 1)).

Each signer must prove in zero-knowledge that these bounds are satisfied
to ensure protocol correctness. The most efficient exact zero-knowledge proofs
used today are the proof systems by Lyubashevsky et al. [BLNS21, LNP22],
allowing us to prove the exact maximum norm of the secret values r. The latter
proof system is improved by Aranha et al. [ABGS23] and extended by Hough et
al. [HSS23] to large values using bit decomposition.

We let the /5 norm of z be B=2-0-+/2-t- N in our signature scheme. We
finally set v = 16 (so that |[C| > 21%8) to get o ~ 2109 B, ~ 2181 and ¢ ~ 2%0.
This leads to more than 128 bits of R-SIS security when inserting the parameters
into the equation above and more than 128 bits of R-LWE security according to
the LWE-estimator [APS15] when revealing only one signature per key.

The absolute norm of each coefficient in z is with high probability bounded by
4-/t-o, and this leads to z being approximately 2N log,(4-1/t-c) bits. Following
[ENS*23], the standard deviation to sample p should be roughly 1.17-,/g when
using NTRU trapdoors, which means that p is of size 3- N log,(4.68-/t - q) bits.
This leads to a signature 1-SIG of size 8.5 KB with the given parameters. The
verification key 1-PK is of size N log, ¢ bits (a7s can be generated by a random
oracle as in Dilithium [DKLT18]), resulting in a verification key of 2.6 KB.

The communication consists of commitments, ciphertexts, and NIZKs being
sent in the signing protocol. Similar to Damgard et al. [DOTT21] we use the com-
mitment scheme by Baum et al. [BDL*18] but with NTRU trapdoors [ENST23],
and instantiate this with module dimension one to match our security assump-
tions. We then need to increase the dimension and the moduli of the encryp-
tion scheme to be able to encrypt partial signatures, and use noise drowning to
achieve secure threshold decryption. This leads to communication of = 750 KB

per party.

7.2 Bounded Number of Signatures

Another interesting setting is where a service is used at most once a day each
year, and a signature is required to use the service. An example is FIDO authen-
tication® where the signing key is secret shared over several devices to ensure
both that the user can log in despite lost devices and at the same time that no
one can impersonate the user even two devices are stolen. Hence, we must make
sure that the signing key does not leak when up to 365 signatures are produced.

Following a similar analysis as above, where we extend the standard deviation
to o = v-/7- 365 (see [ASY22, Theorem 4.1]) to ensure that the signature does
not leak too much information when producing at most 365 signatures. We keep

% See https://fidoalliance.org for more details.

33

https://fidoalliance.org

N = 1024, and get o ~ 2'52, B ~ 222 and ¢ ~ 224 to ensure at least 128 bits
of security with respect to the hardness of R-SIS and R-LWE. The signatures are
of size 10.4 KB and the verification key is of size 3.1 KB.

Since ¢ is similar in this setting as in the previous, the size of intermediate
communication within the signing protocol is essentially the same as above.

7.3 Unbounded Number of Signatures

In general, it is undesirable to upper-bound the number of signatures that can be
produced with a signing key before it is not secure to use it anymore. One reason
for this is that it is hard to keep a state over a longer time, and if the signing is
running in a virtual environment it might be re-booted from a backup with an
older state and a fresh counter, and hence, end up producing more signatures
than initially recommended. In practice, we often upper limit the number of
signatures by 24, or some other number that is close to the capacity of what
modern computers can compute when choosing concrete parameters for certain
security levels. Hence, we expand the number of signatures and use the square-
root bound as above to compute the parameters for general-use signatures.

This leads to 0 = v - /v -264 ~ 2% for v = 14 when N = 2048 and get
B = 2519, Hence, we need to set ¢ ~ 2°3 to get correctness and 128 bits of
security. We get signatures of size 46.7 KB, and verification keys of 13.6 KB.

Since ¢ is approximately twice the number of bits, the dimension of the
lattice needs to be doubled, and we estimate the intermediate communication to
be approximately four times larger compared to the previous settings, leading
to communication of ~ 3 MB per party.

8 Extensions

There are several possible considerations for increased efficiency and security:

Compression. The most efficient lattice-based schemes in the literature use
compression techniques to reduce the size of communication. The compression
rate is chosen based on the hardness of the underlying assumptions so that
one gives an approximate relation instead with a fine-tuned reduction to a
problem of the appropriate hardness level, see for example Kyber [SAB*20]
or Dilithium [LDK™"20] for details. These techniques can potentially reduce the
size of public keys and signatures in our case as well, in addition to reducing the
communication on our protocol where the security is much higher to ensure the
correctness of the distributed decryption protocol.

Reducing communication via an optimistic approach. Assuming non-
malicious behavior we can omit sending w; and mgs ; for j € U, and send only
ds; and p; for the second round of signing. If signature verification fails then
each signer sends w; and mgs ; in a third round as proof of correct computation.
In an honest execution, this saves ¢ - (|w;| + |74s ;|) bits per party, significantly

34

reducing the overall communication. For one-time signatures, roughly 400 KB
of 750 KB per party communication is due to mgs, which then can be removed.

Removing trapdoor commitments for pre-processing. The pre-processing
in Boschini et al. [BTT22] to remove the trapdoor commitments is an immediate
extension to our protocol, as the committed values in both protocols are similar
to the ones in [DOTT21]. However, the application is a bit trickier and results
in an increase in communication. Unlike their work, the commitments in our
protocol are to the encryptions of per-signature randomness. This would require
each commitment to have an associated NIZK of correct encryption, increasing
the communication size for a set of commitments. This also raises the non-trivial
question of computing NIZKs for random linear combinations of bounded values,
which gives an extensive overhead to the protocol.

Acknowledgments

The work of Kamil Doruk Gur and Jonathan Katz was supported in part by NSF
award CNS-2154705. We thank Shuichi Katsumata, Mary Maller, and Thomas
Prest for pointing out a mistake in our parameter estimates in an earlier version
of this work and for helping us correct them.

References

ABGS23. Diego F. Aranha, Carsten Baum, Kristian Gjgsteen, and Tjerand Silde.
Verifiable mix-nets and distributed decryption for voting from lattice-
based assumptions. In ACM CCS 2023, page 1467-1481. ACM, 2023.

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. Journal of Mathematical Cryptology, 9(3):169—
203, 2015.

ASY22. Shweta Agrawal, Damien Stehlé, and Anshu Yadav. Round-Optimal
Lattice-Based Threshold Signatures, Revisited. In Mikolaj Bojariczyk,
Emanuela Merelli, and David P. Woodruff, editors, 49th International
Colloquium on Automata, Languages, and Programming (ICALP 2022),
volume 229 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 8:1-8:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-
Zentrum fir Informatik.

BD10. Rikke Bendlin and Ivan Damgard. Threshold decryption and zero-
knowledge proofs for lattice-based cryptosystems. In Daniele Micciancio,
editor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of
Lecture Notes in Computer Science, pages 201-218, Zurich, Switzerland,
2010. Springer, Heidelberg, Germany.

BDL"18. Carsten Baum, Ivan Damgard, Vadim Lyubashevsky, Sabine Oechsner,
and Chris Peikert. More efficient commitments from structured lattice
assumptions. In Dario Catalano and Roberto De Prisco, editors, SCN
18: 11th International Conference on Security in Communication Net-
works, volume 11035 of Lecture Notes in Computer Science, pages 368—385,
Amalfi, Ttaly, 2018. Springer.

35

BGGT18.

BGV12.

BKP13.

BLNS21.

BP23.

BS23.

BTT22.

CATZ24.

CCL*20.

CGG™20.

Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In Hovav Shacham and Alexan-
dra Boldyreva, editors, Advances in Cryptology — CRYPTO 2018, Part I,
volume 10991 of Lecture Notes in Computer Science, pages 565-596, Santa
Barbara, CA, USA, 2018. Springer, Heidelberg, Germany.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, ed-
itor, ITCS 2012: 3rd Innovations in Theoretical Computer Science, pages
309-325, Cambridge, MA, USA, January 8-10, 2012. Association for Com-
puting Machinery.

Rikke Bendlin, Sara Krehbiel, and Chris Peikert. How to share a lattice
trapdoor: Threshold protocols for signatures and (H)IBE. In Michael J.
Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-
Naini, editors, ACNS 13: 11th International Conference on Applied Cryp-
tography and Network Security, volume 7954 of Lecture Notes in Computer
Science, pages 218-236, Banff, AB, Canada, 2013. Springer.

Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gre-
gor Seiler. More efficient amortization of exact zero-knowledge proofs for
LWE. In Elisa Bertino, Haya Shulman, and Michael Waidner, editors,
ESORICS 2021: 26th European Symposium on Research in Computer Se-
curity, Part II, volume 12973 of Lecture Notes in Computer Science, pages
608-627, Darmstadt, Germany, October 4-8, 2021. Springer, Heidelberg,
Germany.

Luis T. A. N. Brandao and René Peralta. NIST first call for multi-party
threshold schemes, January 2023.

Katharina Boudgoust and Peter Scholl. Simple threshold (fully homo-
morphic) encryption from LWE with polynomial modulus. In Jian Guo
and Ron Steinfeld, editors, Advances in Cryptology — ASIACRYPT 2023,
Part I, volume 14438 of Lecture Notes in Computer Science, pages 371-404,
Guangzhou, China, December 4-8, 2023. Springer, Heidelberg, Germany.
Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi. MuSig-L: Lattice-
based multi-signature with single-round online phase. In Yevgeniy Dodis
and Thomas Shrimpton, editors, Advances in Cryptology — CRYPTO 2022,
Part II, volume 13508 of Lecture Notes in Computer Science, pages 276—
305, Santa Barbara, CA, USA, August 15-18, 2022. Springer, Heidelberg,
Germany.

Rutchathon Chairattana-Apirom, Stefano Tessaro, and Chenzhi Zhu. Par-
tially non-interactive two-round lattice-based threshold signatures, 2024.
Available at https://eprint.iacr.org/2024/467.

Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Bandwidth-efficient threshold EC-DSA. In Agge-
los Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors,
PKC 2020: 23rd International Conference on Theory and Practice of Pub-
lic Key Cryptography, Part II, volume 12111 of Lecture Notes in Computer
Science, pages 266—296, Edinburgh, UK, May 4-7, 2020. Springer, Heidel-
berg, Germany.

Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis,
and Udi Peled. UC non-interactive, proactive, threshold ECDSA with
identifiable aborts. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Gio-

36

https://eprint.iacr.org/2024/467

CGRS23.

Che23.

CS19.

CSst22.

DDEK™23.

DJN*20.

DKL7'18.

DKLs19.

DLN*21.

vanni Vigna, editors, ACM CCS 2020: 27th Conference on Computer and
Communications Security, pages 17691787, Virtual Event, USA, Novem-
ber 9-13, 2020. ACM Press.

Hien Chu, Paul Gerhart, Tim Ruffing, and Dominique Schréder. Practi-
cal Schnorr threshold signatures without the algebraic group model. In
Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptol-
ogy — CRYPTO 2023, Part I, volume 14081 of Lecture Notes in Computer
Science, pages 743-773, Santa Barbara, CA, USA, August 20-24, 2023.
Springer, Heidelberg, Germany.

Yanbo Chen. DualMS: Efficient lattice-based two-round multi-signature
with trapdoor-free simulation. In Helena Handschuh and Anna Lysyan-
skaya, editors, Advances in Cryptology — CRYPTO 2023, Part V, volume
14085 of Lecture Notes in Computer Science, pages 716-747, Santa Bar-
bara, CA, USA, August 20-24, 2023. Springer, Heidelberg, Germany.
Daniele Cozzo and Nigel P. Smart. Sharing the LUOV: Threshold post-
quantum signatures. In Martin Albrecht, editor, 17th IMA International
Conference on Cryptography and Coding, volume 11929 of Lecture Notes
in Computer Science, pages 128-153, Oxford, UK, December 16-18, 2019.
Springer, Heidelberg, Germany.

Siddhartha Chowdhury, Sayani Sinha, Animesh Singh, Shubham Mishra,
Chandan Chaudhary, Sikhar Patranabis, Pratyay Mukherjee, Ayantika
Chatterjee, and Debdeep Mukhopadhyay. Efficient threshold FHE with
application to real-time systems, 2022. Available at https://eprint.
iacr.org/2022/1625.

Morten Dahl, Daniel Demmler, Sarah El Kazdadi, Arthur Meyre, Jean-
Baptiste Orfila, Dragos Rotaru, Nigel P. Smart, Samuel Tap, and Michael
Walter. Noah’s ark: Efficient threshold-fhe using noise flooding. In Pro-
ceedings of the 11th Workshop on Encrypted Computing € Applied Ho-
momorphic Cryptography, WAHC ’23, page 35-46, New York, NY, USA,
2023. Association for Computing Machinery.

Ivan Damgard, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Ille-
borg Pagter, and Michael Baeksvang @stergaard. Fast threshold ECDSA
with honest majority. In Clemente Galdi and Vladimir Kolesnikov, edi-
tors, SCN 20: 12th International Conference on Security in Communica-
tion Networks, volume 12238 of Lecture Notes in Computer Science, pages
382-400, Amalfi, Italy, September 14-16, 2020. Springer, Heidelberg, Ger-
many.

Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A
lattice-based digital signature scheme. [IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2018(1):238-268, 2018. https:
//tches.iacr.org/index.php/TCHES/article/view/839.

Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi shelat. Threshold
ECDSA from ECDSA assumptions: The multiparty case. In 2019 IEEE
Symposium on Security and Privacy, pages 1051-1066, San Francisco, CA,
USA, May 19-23, 2019. IEEE Computer Society Press.

Julien Devevey, Benoit Libert, Khoa Nguyen, Thomas Peters, and Moti
Yung. Non-interactive CCA2-secure threshold cryptosystems: Achieving
adaptive security in the standard model without pairings. In Juan Garay,
editor, PKC 2021: 24th International Conference on Theory and Prac-

37

https://eprint.iacr.org/2022/1625
https://eprint.iacr.org/2022/1625
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839

DOTT21.

dPEK™"23.

dPKM*24.

EKT24.

ENS*23.

FH20.

FSZ22.

GG18.

GKPV10.

GKS24.

tice of Public Key Cryptography, Part I, volume 12710 of Lecture Notes
in Computer Science, pages 659-690, Virtual Event, May 10-13, 2021.
Springer, Heidelberg, Germany.

Ivan Damgard, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi.
Two-round n-out-of-n and multi-signatures and trapdoor commitment
from lattices. In Juan Garay, editor, PKC 2021: 24th International Confer-
ence on Theory and Practice of Public Key Cryptography, Part I, volume
12710 of Lecture Notes in Computer Science, pages 99130, Virtual Event,
May 10-13, 2021. Springer, Heidelberg, Germany.

Rafael del Pino, Thomas Espitau, Shuichi Katsumata, Mary Maller, Fab-
rice Mouhartem, Thomas Prest, Melissa Rossi, and Markku-Juhani Saari-
nen. Raccoon: A side-channel secure signature scheme, 2023.

Rafael del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem,
Thomas Prest, and Markku-Juhani Saarinen. Threshold raccoon: Practi-
cal threshold signatures from standard lattice assumptions, 2024. Euro-
crypt 2024, to appear. Available at https://eprint.iacr.org/2024/184.
Thomas Espitau, Shuichi Katsumata, and Kaoru Takemure. Two-round
threshold signature from algebraic one-more learning with errors, 2024.
Available at https://eprint.iacr.org/2024/496.

Thomas Espitau, Thi Thu Quyen Nguyen, Chao Sun, Mehdi Tibouchi,
and Alexandre Wallet. Antrag: Annular NTRU trapdoor generation -
making mitaka as secure as falcon. In Jian Guo and Ron Steinfeld, editors,
Advances in Cryptology — ASIACRYPT 2023, Part VII, volume 14444
of Lecture Notes in Computer Science, pages 3—-36, Guangzhou, China,
December 4-8, 2023. Springer, Heidelberg, Germany.

Masayuki Fukumitsu and Shingo Hasegawa. A lattice-based provably se-
cure multisignature scheme in quantum random oracle model. In Khoa
Nguyen, Wenling Wu, Kwok-Yan Lam, and Huaxiong Wang, editors,
ProvSec 2020: 14th International Conference on Provable Security, vol-
ume 12505 of Lecture Notes in Computer Science, pages 4564, Singapore,
November 29 — December 1, 2020. Springer, Heidelberg, Germany.

Nils Fleischhacker, Mark Simkin, and Zhenfei Zhang. Squirrel: Efficient
synchronized multi-signatures from lattices. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022: 29th Conference on
Computer and Communications Security, pages 1109-1123, Los Angeles,
CA, USA, November 7-11, 2022. ACM Press.

Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA
with fast trustless setup. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference
on Computer and Communications Security, pages 1179-1194, Toronto,
ON, Canada, October 15-19, 2018. ACM Press.

Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikun-
tanathan. Robustness of the learning with errors assumption. In Andrew
Chi-Chih Yao, editor, ICS 2010: 1st Innovations in Computer Science,
pages 230-240, Tsinghua University, Beijing, China, January 5-7, 2010.
Tsinghua University Press.

Kamil Doruk Gur, Jonathan Katz, and Tjerand Silde. Two-round thresh-
old lattice-based signatures from threshold homomorphic encryption.
PQCrypto, 2024.

38

https://eprint.iacr.org/2024/184
https://eprint.iacr.org/2024/496

GPVO08.

HSS23.

Kat21.

KG20.

Ko22.

LDK™20.

Linl7.

Lin24.

LN18.

LNP22.

LPR10.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Richard E. Ladner
and Cynthia Dwork, editors, 40th Annual ACM Symposium on Theory of
Computing, pages 197-206, Victoria, BC, Canada, May 17-20, 2008. ACM
Press.

Patrick Hough, Caroline Sandsbraten, and Tjerand Silde. Concrete NTRU
security and advances in practical lattice-based electronic voting, 2023.
Available at https://eprint.iacr.org/2023/933.

Shuichi Katsumata. A new simple technique to bootstrap various lattice
zero-knowledge proofs to QROM secure NIZKs. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology — CRYPTO 2021, Part II, volume
12826 of Lecture Notes in Computer Science, pages 580—-610, Virtual Event,
August 16-20, 2021. Springer, Heidelberg, Germany.

Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized
Schnorr threshold signatures. In Orr Dunkelman, Michael J. Jacobson Jr.,
and Colin O’Flynn, editors, SAC 2020: 27th Annual International Work-
shop on Selected Areas in Cryptography, volume 12804 of Lecture Notes
in Computer Science, pages 34-65, Halifax, NS, Canada (Virtual Event),
October 21-23, 2020. Springer, Heidelberg, Germany.

Stefan Kolbl. A note on SPHINCS™ parameter sets, 2022. Available at
https://eprint.iacr.org/2022/1725.

Vadim Lyubashevsky, Léo Ducas, Fike Kiltz, Tancrede Lep-
oint, Peter Schwabe, Gregor Seiler, Damien Stehlé, and Shi
Bai. CRYSTALS-DILITHIUM. Technical report, National
Institute of Standards and Technology, 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-3-submissions.
Yehuda Lindell. Fast secure two-party ECDSA signing. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology — CRYPTO 2017,
Part II, volume 10402 of Lecture Notes in Computer Science, pages 613—
644, Santa Barbara, CA, USA, August 20-24, 2017. Springer, Heidelberg,
Germany.

Yehuda Lindell. Simple three-round multiparty schnorr signing with full
simulatability. JACR Communications in Cryptology, 1(1), 2024.

Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practi-
cal distributed key generation and applications to cryptocurrency custody.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018: 25th Conference on Computer and Communi-
cations Security, pages 1837-1854, Toronto, ON, Canada, October 15-19,
2018. ACM Press.

Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Planccon.
Lattice-based zero-knowledge proofs and applications: Shorter, simpler,
and more general. In Yevgeniy Dodis and Thomas Shrimpton, editors,
Advances in Cryptology — CRYPTO 2022, Part II, volume 13508 of Lec-
ture Notes in Computer Science, pages 71-101, Santa Barbara, CA, USA,
August 15-18, 2022. Springer, Heidelberg, Germany.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances
in Cryptology — FUROCRYPT 2010, volume 6110 of Lecture Notes in

39

https://eprint.iacr.org/2023/933
https://eprint.iacr.org/2022/1725
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

LPR13.

Lyul2.

Mic02.

MP12.

MRO09.

Peil0.

RST*22.

SAB*20.

Sha79.

TPCZ23.

Computer Science, pages 1-23, French Riviera, May 30 — June 3, 2010.
Springer, Heidelberg, Germany.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology — EUROCRYPT 2013, volume 7881 of Lecture
Notes in Computer Science, pages 35—54, Athens, Greece, May 26—30,
2013. Springer, Heidelberg, Germany.

Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology —
EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 738-755, Cambridge, UK, April 15-19, 2012. Springer, Heidelberg,
Germany.

Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and
efficient one-way functions from worst-case complexity assumptions. In
48rd Annual Symposium on Foundations of Computer Science, pages 356—
365, Vancouver, BC, Canada, November 16-19, 2002. IEEE Computer
Society Press.

Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In David Pointcheval and Thomas Johansson, ed-
itors, Advances in Cryptology — EUROCRYPT 2012, volume 7237 of Lec-
ture Notes in Computer Science, pages 700-718, Cambridge, UK, April 15—
19, 2012. Springer, Heidelberg, Germany.

Daniele Micciancio and Oded Regev. Lattice-based cryptography. In
Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors, Post-
Quantum Cryptography, pages 147-191. Springer, 2009.

Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In
Tal Rabin, editor, Advances in Cryptology — CRYPTO 2010, volume 6223
of Lecture Notes in Computer Science, pages 80-97, Santa Barbara, CA,
USA, August 15-19, 2010. Springer, Heidelberg, Germany.

Dragos Rotaru, Nigel P. Smart, Titouan Tanguy, Frederik Vercauteren,
and Tim Wood. Actively secure setup for SPDZ. Journal of Cryptology,
35(1):5, January 2022.

Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz,
Tancrede Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor
Seiler, and Damien Stehlé. CRYSTALS-KYBER. Technical report,
National Institute of Standards and Technology, 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-3-submissions.

Adi Shamir. How to share a secret. Communications of the Association
for Computing Machinery, 22(11):612-613, November 1979.

Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang. Efficient
lattice-based threshold signatures with functional interchangeability. IEEE
Transactions on Information Forensics and Security, 18:4173-4187, 2023.

40

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

	Two-Round Threshold Lattice-Based Signatures from Threshold Homomorphic Encryption

