

ACCEPTED MANUSCRIPT

**Greenhouse Gas Emissions and
Decarbonization Potential of Global Fired Clay
Brick Production**

Josefine A Olsson, Hisham Hafez, Sabbie A Miller, Karen L Scrivener

Environmental Science & Technology

Received August 27, 2024

Accepted January 14, 2025

Published January 23, 2025

Please cite this article as:

J.A. Olsson, H. Hafez, S.A. Miller, K.L. Scrivener (2025). "Greenhouse Gas Emissions and Decarbonization Potential of Global Fired Clay Brick Production." *Environmental Science & Technology*. 59(4): 1909-1920. DOI: [10.1021/acs.est.4c08994](https://doi.org/10.1021/acs.est.4c08994).

This is a PDF file of a final draft manuscript post-refereeing that has been accepted for publication. The manuscript has completed the peer review process, but this is not the copyedited version of this publication. This publication is provided to promote timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by the authors or copyright holders.

Please visit the following website to download the copyedited and published copy of this publication from the publisher:

<https://doi.org/10.1021/acs.est.4c08994>

1 Greenhouse gas emissions and decarbonization potential of global fired clay brick

2 production

Josefine A. Olsson ^{a*}, Hisham Hafez ^b, Sabbie A. Miller ^a, Karen L. Scrivener ^c

^a Department of Civil and Environmental Engineering, University of California, Davis, California, 95616, United States

^b School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom

^cLaboratory of Construction Materials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

* Corresponding Author: jaolsson@ucdavis.edu

Abstract:

Fired clay bricks (FCBs) are a dominant building material globally due to their low cost and simplicity of production, especially in low- and middle-income countries. With a projected rising housing demand, a commensurate growth in brick demand is anticipated, the production of which could result in significant greenhouse gas (GHG) emissions. Robust models are needed to estimate brick demand and emissions to systematically address decarbonization pathways. Few sources report production values, hence, we present two novel proxy models: (i) a consumption prediction model, relying on country-specific clay extraction data, dynamic building stock modelling, and average material intensity use allowing for projections to 2050; and (ii) a GHG emissions model, using literature-based data and production technology-specific inputs. Based on these models, the current global FCB consumption is estimated as 2.18 Gt annually, resulting in approximately 500 million tCO₂e (1% of current global GHG emissions). If unaddressed, this fraction could increase to 3.5-5% in 2050 considering a moderate SSP 2-4.5 climate change mitigation scenario. Consequently, we explored three potential decarbonization pathways: (i) improving energy efficiency; (ii) shifting production to best-practices; and (iii) replacing half of FCB demand with hollow concrete blocks, resulting in 27%, 49%, and 51% reduction in GHG emissions, respectively.

Keywords:

Fired clay brick, Brick production, Low-carbon construction, Material demand mapping, Decarbonization potential

Synopsis Statement:

Data on global fired clay brick (FCB) production and associated greenhouse gas emissions are sparse. This work quantifies FCB demand and greenhouse emissions between 2020-2050 and assess decarbonization pathways.

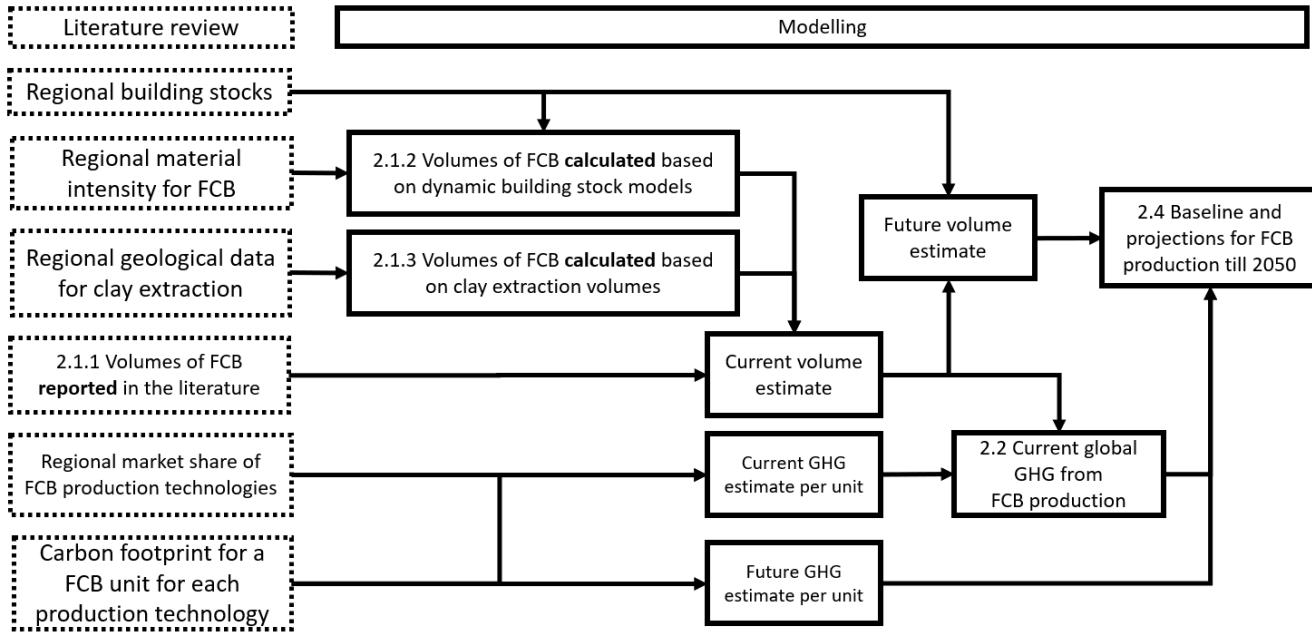
1 **1. Introduction**

2 Within the next three decades, the global population is projected to grow by almost 2 billion people, with the
3 majority of growth in just eight countries, all in Asia and Africa.¹ The estimated global demand in building floor
4 area is expected to double between 2015-2050,²⁻⁴ and hence, there is an anticipated surge in demand for building
5 materials. Among these, fired clay bricks (FCB) are one of the most affordable and commonly used, with
6 approximately 87% produced in Asia.^{5,6} In 2016, the global consumption of brick was estimated to be 1.9-4.1
7 Gt/year (~40% uncertainty), representing about 9% of total material demand.⁷ Others have estimated the lower
8 and upper limit to global production of FCB at approximately 2-3 Gt/year.^{8,9} China, India, Pakistan, Bangladesh and
9 Vietnam are the largest brick-producers,⁹ with nearly two thirds of global production occurring in China.^{10,11}
10 Despite the global effort to shift to low-carbon substitutes, change has been limited for this material. For example,
11 in India, the demand for bricks is projected to increase by 3- to 4-fold in the next two decades, reaching an annual
12 demand of 750-1000 billion bricks.¹² The sector employs nearly 15 million people¹³ and is currently responsible
13 for a 90% share of the country's construction block market, with limited changes projected despite the availability
14 of alternative materials.¹⁴

15 In the regions expecting the highest growth in demand for FCBs, less efficient material production practices
16 that result in higher energy use and greenhouse gas (GHG) emissions are widely prevalent. In South Asia, FCB
17 production technologies have been slow to change over the past century, resulting in pollution.¹¹ It has been
18 estimated that in India, Africa, and several countries in South Asia, material-related GHG emissions will more than
19 double between 2020-2060, with FCBs contributing 18% of these emissions (second only to concrete and steel,
20 contributing 60% combined).¹⁵ The energy demand to produce 1 kg of FCB ranges from 0.5-5 MJ^{11,16-20}, and the
21 associated GHG emissions are highly dependent on the kiln technology efficiency and the fuel used for thermal
22 energy.^{14,21,22} Coal is the most commonly used fuel, contributing to high GHG emissions intensity per produced
23 brick.^{22,23} This use of coal makes the brick sector the second largest coal-consuming industry in India¹¹ and the
24 third largest in Pakistan²⁴; but less GHG-intensive fuels such as wood, wastes, oil, and natural gas are also used to
25 some extent.^{5,6,22} In addition to GHG emissions, current brick production leads to emissions of SO₂, CO, particulate
26 matter (PM), NO_x, as well as black carbon.^{5,6,14,25} In some areas, 90% of all PM emissions can be attributed to this
27 one industry.¹³ Accurate data on the carbon footprint of FCB production technologies are scarce, but the literature
28 reports a range from 0.07-0.34 kg CO₂e/kg for brick for the most common production techniques,^{14,17,18,26-33} and
29 it has been suggested that brick production in the five main brick-producing countries in Asia (China, India,
30 Pakistan, Vietnam, and Bangladesh) may be responsible for 1.24% of global anthropogenic CO₂ emissions based
31 on coal consumption for producing brick.⁹ Yet, robust models to assess such impacts are still needed.

32 To produce FCB, there are six predominant technologies with varying energy efficiency: (i) the Clamp kiln; (ii)
33 the Fixed Chimney kiln; (iii) the Zigzag kiln; (iv) the Hoffman kiln; (v) the Tunnel kiln; and (vi) the Vertical Shaft

1 Brick kiln (VSBK). The Clamp kiln is a non-permanent structure composed of green bricks stacked in a pyramid
2 shape (with a rectangular base) interspersed with combustible material, which is a setup associated with high heat
3 loss and therefore high energy demand.^{9,11,21} The Fixed Chimney kiln and the Zigzag kiln are the most common
4 technologies used in South Asia.¹¹ The Fixed Chimney kiln has been shown to be inefficient compared to newer
5 technologies,³⁴ but the Zigzag kiln is considered a more advanced technology, as it uses suction fans to move and
6 draw the fire between bricks stacked in a zigzag pattern.^{35,36} For the Tunnel kiln, pre-heated green bricks are
7 loaded on carts and moved through the kiln¹⁸ with high firing process control.^{11,18} The VSBK is considered the most
8 energy-efficient kiln, due to its insulated shaft walls and efficient heat transfer.^{11,27}


9 The main decarbonization pathways for FCB production include using production methods with higher energy
10 efficiency, using alternative raw materials and fuels, or using other low-carbon bricks (i.e., resource efficient bricks
11 such as hollow or light-weight bricks or stabilized earth bricks that do not require firing).^{9,37,38} Based on the known
12 differences in the efficiency of different kiln types, increasing energy efficiency is a logical decarbonization lever,
13 but it requires substantial capital investments,^{11,18} which can hinder implementation. Retrofitting kilns may be a
14 more cost-effective measure than kiln replacement, and depending on conditions and retrofit method, retrofits
15 can improve energy efficiency by up to 20% and reduce PM emissions by 50%.¹³ Further, use of cleaner fuels and
16 alternative raw materials, such as fly ash, coal dust and coal slurry, have been reported as means to lower GHG
17 emissions.^{13,14,32,37} Low-carbon bricks may also substitute FCB to reduce emissions. For example, compressed earth
18 blocks (CEBs) have been proposed as alternative low-carbon bricks;^{39,40} however, the need to incorporate
19 stabilizing materials in the earth mix, mainly cement or lime, to achieve the minimum required performance, can
20 increase the environmental impact of CEBs significantly.^{41,42} Concrete blocks have lower GHG emissions than
21 FCBs,⁴³⁻⁴⁵ and the emissions from producing these concrete blocks can be reduced further by using cement with
22 low clinker content, such as limestone calcined clay cement (LC3).⁴⁶

23 Despite awareness of large material consumption and emissions from FCB production, the values of the
24 material stocks, and hence the demand projections for bricks, are not well reported and data are considered either
25 unreliable or incomplete.⁴⁷ Miatto *et al.* (2022)⁴⁸ performed a material flow analysis of bricks used in Italy, and
26 Tibrewal *et al.* (2023)⁴⁹ estimated the brick production and associated regional energy consumption in India, but
27 similar analyses are missing among the other main brick producing countries and at a global scale. Further, to the
28 best of the authors' knowledge, none of the global decarbonization roadmaps have indicated specific baseline CO₂
29 values nor future targets for FCB production. A recent article explored the social and environmental injustice
30 associated with global FCB trade, but not the production.⁵⁰ With initial estimates suggesting that the coal
31 consumption in the production of FCBs alone could be contributing to over 1% of the global anthropogenic GHG
32 emissions, mitigation GHG emissions the FCB industry becomes crucial to reach net-zero CO₂ emissions by 2050.⁹
33 The aim of this study is to use systematic models to quantify the global volume of FCBs produced and the total
34 GHG emissions associated with this production of FCBs. We use these models to establish a current baseline and

1 project the demand for and GHG emissions from bricks to 2050 with and without different decarbonization
2 strategies.

3 **2. Materials and Methods**

4 Here, we establish an estimated baseline for the global production for FCBs and the associated GHG emissions,
5 as well as project demands and emissions to 2050 as a first step in understanding the role of decarbonization
6 strategies. The methodology is portrayed schematically in Figure 1.

7
8 **Figure 1.** A schematic flow chart of the data sources and the different models prepared for this paper. Note: the numbers shown in the
9 flow chart correspond to the Methods sections in the manuscript.
10

11 **2.1. Estimating the total brick demand in 2020**

12 First, we assess the global current production through three different approaches: (1) by collecting the country-
13 specific mass of FCB production from secondary sources, which we note does not alone give a robust means to
14 estimate global production, (2) by multiplying the average material intensity of FCBs used in a building by the
15 global built-up floor area from building stock models, and (3) by deriving a proxy for the global production of brick
16 based on a percentage of extracted clay per world region. We consider brick production to correspond with brick
17 consumption in a region as it is a low-cost commodity, limiting transportation. This assumption is supported by
18 data reported by the United Nations (UN) (Comtrade) database, which indicates that less than 1% of bricks
19 produced in the five largest brick producing countries are exported.⁵¹ Similarly, this modeling is based on the
20 assumption that there is minimal difference between the FCB demand and production, and consequently,
21 consideration of waste is not integrated into the analysis.

1 **2.1.1. Brick demand based on secondary sources**

2 The most direct method of determining the global mass of FCB produced was to determine if values have
3 been reported in secondary sources such as papers and reports. Using ScienceDirect to retrieve literature with
4 the following search terms “fired” AND “clay” AND “bricks” OR “production” OR “volume”, 20 references were
5 found of which only 9 papers reported the mass of brick production in one or more regions (see Supplementary
6 Data 1). Due to limited data availability, the collected data for brick production shows temporal variability,
7 meaning not all data points reflect 2020 production values. However, based on a study by Svedrup *et al.* (2023),⁵²
8 which found only minor changes in cement supply between 2017 and 2020, it is assumed herein that the brick
9 production data from the time-horizon considered are representative. Here, we use a summation of the regional
10 values of mass of produced brick reported by^{6,10,14,25,53–57} to estimate the global brick demand. The data found
11 were generated mainly from countries with the highest production. While we found some estimates for the
12 number of bricks produced (1,500 billion bricks globally),¹⁰ there were no robust data on the mass of produced
13 bricks globally. To better understand potential future demands of this resource, the following two models were
14 developed to triangulate estimated global FCB production.

15 **2.1.2 Material intensity and building stock modelling approach**

16 By adapting dynamic building stock models for estimating global floor area, we can derive a proxy for
17 quantifying brick consumption globally. There are several existing stock models that present estimates of the floor
18 area built in different regions of the world in 2020. The Global Alliance for Buildings and Construction presented
19 in their 2016 Global Status Report² that the expected building floor area globally in 2020 would be 258.2 Bm²,
20 while Güneralp *et al.* (2017)⁵⁸ and Deetman *et al.* (2020)⁵⁹ estimated it at 225.5 and 242.8 Bm², respectively (see
21 Supplementary Data 2). Each of the three models divided the global floor area in different number of regions, so
22 in this work, we aggregate the floor area values into the 7 following countries and regions that were the common
23 or could be determined across all studies, to quantify a global average model: (1) India; (2) Africa and Middle East;
24 (3) Latin America and Oceania; (4) China; (5) Remaining Asia; (6) North America; and (7) Europe. Next, we
25 calculated material intensities for FCB, i.e., the amount of brick used per m² floor area, as an average regional
26 intensity based on data collected from the literature (based on inputs from^{60–66} and presented in Table 1). The
27 majority of presented material intensity data are for residential buildings, but some intensities are presented as
28 not specific to a certain building typology. In this model, the material intensities are assumed to be for a
29 generalized unit, based on an average of typical housing units and general use units, and FCB production globally
30 is estimated as:

$$P_{FCB} = \sum_i FA_i \times MI_i \quad (1)$$

1 where P_{FCB} is the global production of FCB, FA is the floor area for each region, MI is the region-specific material
2 intensity of brick used per m^2 floor area, and i represents each region assessed (Table 1 presents the values used
3 for FA_i and MI_i).

4 **2.1.3. Brick demand based on clay extraction data**

5 Again, noting the paucity of data and degree of assumptions necessary for the prior methods, we employ a
6 third method. This method adapts a value reported by the United States Geological Survey, which states that 45%
7 of extracted clay is used in production of FCB.⁶⁷ This method of estimating the FCB production based on clay
8 extraction was also employed by Miatto *et al.* (2017)⁸. Here, we collect data on the global extraction of clay from
9 Materialflows.net (2019)⁶⁸, which reports resource extraction based on the Global Material Flows Database
10 developed by the UN International Resource Panel. We then assume that for each Gt of extracted clay in a specific
11 region of the world, 0.45 Gt of FCB is produced, and use that ratio as a multiplicative factor with outputs from⁶⁸.
12 The estimates of global FCB production from the methodologies in 2.1.1, 2.1.2, and 2.1.3 are presented in Table
13 1 in the Results section, along with the arithmetic mean of the three modeling outputs which is used in the
14 modeling herein.

15 **2.2. Global GHG emissions from brick production**

16 Next, we estimate the FCB contributions to anthropogenic GHG emissions. A cradle-to-gate system boundary
17 (i.e., from the extraction and transportation of raw materials as well as the production process of the FCB) was
18 the most reported scope for brick production in the literature.⁶⁹ The emissions factor for brick production is
19 calculated according to equation (2) as GHG emissions per 1 kg of FCB.

$$GHG_{FCB-region} = \frac{E_{kiln-avg}}{P} \quad (2)$$

20 Where P is a dimensionless factor representing the share of production process in the total emissions for
21 cradle-to-gate production of FCB, which the literature suggests ranges between 70-80%⁷⁰⁻⁷² (75% used in
22 calculations herein) depending on transportation distance and clay moisture content. The energy intensity,
23 $E_{kiln-avg}$, is the region-specific emissions intensity of the FCB kilns production process, which is calculated using
24 equation (3):

$$E_{kiln-avg} = \sum (E_{kiln} \times M_r) \quad (3)$$

25 Where E_{kiln} is the specific emission intensity of a kiln type, namely: Fixed Chimney kiln, Clamp kiln, Zigzag
26 kiln, VSBK, and Tunnel kiln. M_r is the market share of each kiln type in the regional market in four of the highest
27 FCB-producing countries (India, Pakistan, Bangladesh and Nepal). The values are based on a compilation of inputs
28 from^{10,13,14,17,26-29} and the calculations are presented in the Supplementary Data. A unified emissions factor was
29 then determined by multiplying each region-specific emissions factor ($GHG_{FCB-region}$) by the region's global
30 market share of FCB. The authors point out that China and Vietnam have notable contributions to the global FCB
31 production market, but because data on the FCB kiln technology market shares are scarce in these countries, they

were excluded from the weighted average of technology-specific emissions factors for the main discussion. Technology market shares for the high FCB producing countries considered in this model are presented in Figure 2a, and Figure 2b shows the ranges of GHG emissions per kg brick for each kiln technology obtained from the literature. The estimation of a global GHG emissions factor, used as the baseline hereafter, is determined as the average value of GHG emissions per kg brick and production technology.

To address parameter uncertainty and the potential effects of some modeling assumptions, a sensitivity analysis is performed. In this analysis, we assess the influence of including brick production in China, based on the limited information about technology market shares and emissions factors data available. For this analysis, we model 90%, 5%, and 5% of China's FCBs to be produced using Hoffman kiln, Tunnel kiln, and VSBK, respectively. The emissions factor for the Hoffman kiln is obtained from Chen *et al.* (2017)⁷³. We also assess the sensitivity of brick production and technology market share between the largest brick producing countries, India, Pakistan, Bangladesh and Nepal, and how these shares influence the global emissions factor (See Supplementary Data 3).

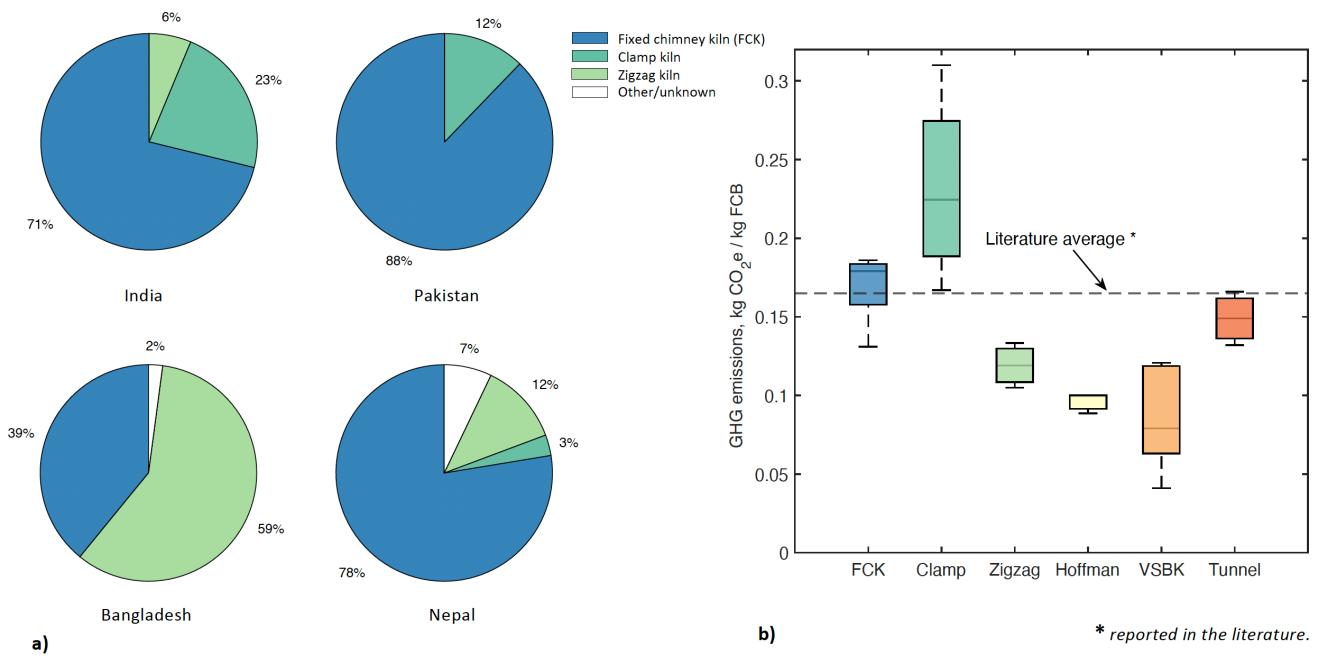


Figure 2: Technology share of FCB production. a) Market share of FCP production technology in each of the modeled brick producing countries.^{11,17,74}, b) GHG intensity for each production technology. FCK = Fixed Chimney kiln, VSBK = Vertical Shaft Brick kiln.^{10,13,14,26–29,75}. The reported literature average, shown as dashed line in Fig. 2b, is based on⁷⁶ and the assumption that 75% of total cradle to gate emissions are from the production process. See Supplementary Data 3.

2.3. Business-as-usual projections for the 2050 FCB demand: mass and GHG emissions

We pair the outputs of the models in Section 2.1 and 2.2 to estimate the increase in demand for FCB in the period 2020-2050 as well as the resulting GHG emissions if no decarbonization efforts take place (i.e., the “business-as-usual” scenario). As the baseline for global brick production in 2020, we use the arithmetic mean of the three values estimated based on reported literature data, brick intensity per floor area, and clay extraction data. Because we cannot perform projections of secondary source values or mining statistics, our projections of

1 the demand between 2020-2050 are based on building stock dynamics, and we extract future floor area values
2 from: Bean *et al* (2016)², Güneralp *et al*. (2017)⁵⁸ and Deetman *et al.* (2020)⁵⁹. As was done in Eq.1, we scale floor
3 area by FCB material intensity. Due to lack of data on how FCB material intensity may change per unit floor area,
4 we consider the material intensity to remain unchanged and growth in demand to be solely a function of increased
5 floor area. GHG emissions were then determined by assuming a constant emissions factor for FCB, calculated
6 based on regional market shares of FCB technology and each region's share of global FCB production. Each region-
7 specific market share of production technology is presented in Fig. 2a, and the average emissions factor for each
8 production technology in Fig. 2b. As a baseline business-as-usual scenario, we model the technology and energy
9 resources, and hence the GHG emissions, as remaining the same between 2020-2050.

10 **2.4. Decarbonization scenarios till 2050 for FCB production**

11 Noting that there are several decarbonization pathways possible for brick production, here we consider three
12 key routes to mitigate emissions from this industry. The first, "Retro", is a low-tech, low-capital investment
13 scenario in which existing kilns are retrofitted with energy efficient interventions, as is commonly investigated for
14 industrial manufacture in the literature.^{77,78} This scenario considers three means of kiln retrofit, namely: (a)
15 adapting the Zigzag technology in Fixed Chimney kilns (a retrofit option which requires low investment as it can
16 be integrated with already used production process^{9,30}), (b) replacing 50% of Clamp kilns with Zigzag kilns, and (c)
17 improving the energy efficiency of Tunnel kilns. Each of these measures would result in higher energy efficiency
18 (i.e., use of flue gases to pre-heat bricks and improved insulation), thus lowering GHG emissions. We model Retro
19 intervention (1) by replacing the average emissions factor for Fixed Chimney kilns (responsible for nearly 72% of
20 the total market share in the countries considered herein) with the emissions factor of the best practice Zigzag
21 technology. Likewise, in (2) we assume that 50% of Clamp kilns can be replaced by best practice Zigzag kilns. In
22 this assessment, "best practice" is assumed to result in an emissions factor in the lower 25th percentile (i.e., the
23 energy efficiency is improved to the extent that the emissions factor is lower than 75% of the Zigzag kilns), as
24 opposed to the average emissions factor (see Fig. 2b). Similarly, we model Retro intervention (3) by replacing the
25 average emissions factor Tunnel kiln technologies with the lower 25th percentile emissions factor.

26 The second scenario, "Tech", is based on a high capital investment assumption that all FCB produced with
27 Fixed Chimney and Clamp kiln technologies would shift to VSBKs and Hybrid Hoffman kilns (50/50 share of the
28 Fixed Chimney and Clamp kiln market share). This shift could reflect a best-practice alternative as these are
29 reported the most efficient kilns being used at this large scale. To model this shift, we replace the emissions factor
30 for the market share of Fixed Chimney and Clamp kilns (72% and 19% of FCB production, respectively) with the
31 emissions factor for the "best practice" (i.e., lower 25th percentile emissions) VSBK and Hybrid Hoffman. This
32 scenario also considers the same improvement in energy efficiency for the Tunnel kilns as in the Retro scenario.

33 The third scenario, "Sub", assumes that 50% of the demand for FCB could be met by substitution with other
34 materials such as low-carbon hollow concrete blocks (HCB), assuming same material performance, with the

1 remaining 50% of FCB production following the Retro scenario. To assess reductions in emissions from material
2 replacement, we decouple materials demand projections from the energy-related emissions from FCB production.
3 The standard size for a FCB is 240*115*55 mm, while that of a HCB is 390*190*190mm; so, we define a
4 comparable unit of a m³ of wall for which ~1800 kg of FCB or ~1100 kg of HCB would be required.⁴⁴ Although the
5 bulk density of light-weight concrete typically used in blocks is 1800 kg/m³, the gross density of the block is as low
6 as 1100 kg/m³ due to the void:solids ratio typical of the material. A typical mix for a concrete block contains 200
7 kg cement, 130 kg of water and 1850 kg of aggregates mostly less than 2 mm⁷⁹. Given that the average GHG
8 emissions per kg for limestone calcined clay cement (LC3) is 0.5 kg CO₂e (assuming it is 50% clinker, 30% calcined
9 clay, 15% limestone and 5% gypsum) and that for water and aggregates is 0.0001 and 0.01 kg CO₂e, respectively,⁸⁰
10 the GHG per m³ of a wall would be approximately 73 kg CO₂e as opposed to 220 kg CO₂e baseline for FCB.
11 Therefore, we model the 50% replacement of materials as leading to a 67% reduction in the emissions factor for
12 50% of brick demand. In this scenario, the remaining quantity of non-replaced brick is also modeled implementing
13 the “Retro” methods. We note many other common strategies for decarbonizing industrial materials production,
14 such as switching to less GHG emissions intense fuels, is outside the scope of this work, but may be necessary to
15 reach net-zero emissions from FCB production. The decarbonization scenarios presented herein are assumed to
16 be implemented linearly between 2020-2050, with full implementation by 2050, and the resulting emissions
17 factors in 2050 for each scenario are presented in Fig. 6.

18 **3. Results and Discussion**

19 **3.1 Global demand for FCB in 2020**

20 The estimates for the global production of FCB using the three methods described in Section 2.1 are presented in
21 Table 1. The first approach, in which we sum the country-specific mass of bricks reported by secondary sources,
22 resulted in an estimate of 2.02 Gt of FCB demand per year. Using dynamic building stock models and materials
23 intensity data to calculate the global FCB production yielded an almost identical value (2.16 Gt FCB/year).
24 However, it is important to highlight that while the sums are similar, regional values do not consistently
25 correspond between the literature and the building stock-based models. This inconsistency arises due to the
26 higher values expected in floor area increase in India and Latin America compared to China, which reduces the
27 estimate for China from 1.5 Gt/year (around 70% of the total) to only 0.19 Gt/year (around 10% of the total).
28 Additionally, there is inherent data uncertainty due to the variance in the building stock inputs (around 30%).
29 Although this uncertainty makes the model less accurate for current volume estimates, the ability to use building
30 stock dynamics to predict the production volumes in the future depending on the floor area increase is
31 advantageous. Estimating FCB production based on clay extraction data from the UN database⁶⁸ again resulted in
32 a similar value, 2.35 Gt FCB/year (15% greater than the values summed from the literature). This method of
33 estimating brick production resulted in proportional global market shares of FCB production as those reported in
34 the literature, suggesting this may be a reasonable proxy for global FCB production estimates going forward.

1 Further, these findings show that regardless of the model used, a few key politically and culturally diverse
 2 countries in what has sometimes been referred to as “the Global South” are the dominant producers of FCB (95%).
 3 To present unified results, hereafter we present findings based on the average value of the three brick production
 4 estimation methods presented in Table 1, namely, 2.18 Gt FCB in 2020.

5

6 **Table 1:** Global brick production (kg/year) estimates from the literature and both proxy models developed. FA = Floor Area, Inc. =
 7 increase, MI = material intensity.

Region/Country	Global literature values	Model 1 - building stock data				Model 2 - clay extraction	
		FCB (Gt/yr)	FA inc. (Bm ² /yr) *	FCB MI (kg/m ²)	Ref	FCB (Gt/yr)	Clay extracted (Mt/yr)
India	0.399	1.2	952	Ramesh et al. (2013)	1.114	0.723	0.325
Africa and Middle East	0.008	0.41	90	Asadollahfardi et al. (2015)	0.037	0.109	0.049
Latin America and Oceania	0	1.06	296	Evangelista et al. (2018)	0.314	0.131	0.059
China	1.46	0.51	374	Huang et al. (2013)	0.191	3.789	1.705
Remaining Asia	0.151	0.58	493	Heeren and Hellweg (2019)	0.286	0.229	0.103
North America	0	0.34	160	Arehart et al. (2022)	0.054	0.029	0.013
Europe	0.003	0.41	392	Sprecher et al. (2022)	0.161	0.203	0.091
	2.02				2.16		2.35
							Average: 2.18 Gt

*based on the average of the modelled values by ^{2,58,59}

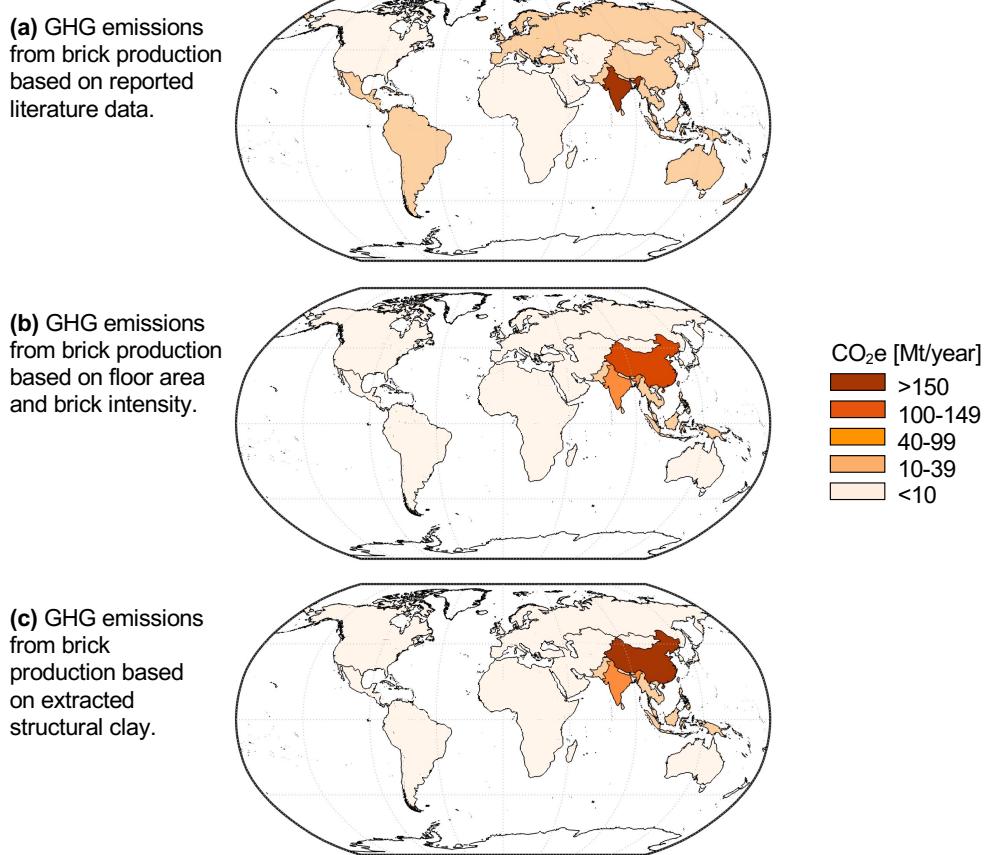
8

9 **3.2 Global emissions from FCB production in 2020**

10 Quantifying GHG emissions from FCB production using region-specific differences in kiln technology results in
 11 average GHG emissions factors of 0.18-0.24 kg CO₂e/kg FCB accounting for the different ratios of the kiln
 12 technologies in use as shown in detail in the Supplementary Data. The calculated weighted average GHG intensity
 13 based on the global production market share is 0.24 kg CO₂e/kg FCB, where the upper limit average value is a
 14 result of India and Pakistan having both the highest FCB production and emissions factors. The calculated value
 15 matches the cradle-to-gate average value for GHG emissions per unit mass of FCB production reported by the
 16 University of Bath’s Inventory of Carbon and Energy (ICE),⁷⁶ namely, 0.22 CO₂e/kg FCB (0.165 kg CO₂e/kg from the
 17 production process, assuming 75% of total are process emissions). However, a recent UN Environment Programme
 18 report cites 0.24 and 0.34 kg CO₂e/kg FCB as the minimum values for natural gas and oil-fired kilns respectively.⁸¹
 19 Further, references such as Huang *et al.* (2013)⁶⁴, Ncube *et al.* (2021)²⁵ and Eil *et al.* (2020)¹¹, reported the following
 20 region-specific values: 0.25, 0.86 and 0.52 kg CO₂e/kg FCB for China, Africa, and India, respectively. To reflect these
 21 factors, we model the emissions by multiplying the specific energy demand per unit mass (MJ/kg) of each
 22 technology (which is shown in Table 2, compiling data from the literature) by the average GHG intensity for energy
 23 use (0.101, 0.072, and 0.056kg CO₂e/MJ for coal, oil, and natural gas, respectively)⁸². The global average value for
 24 energy use per unit mass of FCB production was back calculated using the same method, resulting in an estimate
 25 of 2.22 MJ/kg FCB. Using this output, the carbon intensity was determined as 0.22, 0.16, and 0.12 kg CO₂e/kg FCB
 26 for coal, oil, and natural gas, respectively. The reason behind the lower estimate in the energy-sourced emissions

1 modelled could be attributed to the scarcity and high variability in the secondary data for energy intensity of FCB
2 production.

3 A sensitivity analysis is also performed to examine the robustness of results with different modeling inputs. In
4 this sensitivity analysis, China's approximately 67% share of global FCB production is included in the weighted
5 global emissions factor, with 90% of the Chinese market share being Hoffman kilns. Based on Chen *et al.* (2017)⁷³,
6 the Hoffman kiln emissions factor is estimated as 0.58 kg CO₂/kg FCB just based on fugitive emissions. Including
7 China's market share of global brick production, the estimated global emissions factor is 0.53 kg CO₂/kg FCB as
8 opposed to the 0.24 kg CO₂/kg FCB that was estimated when China is excluded. However, other sources have
9 reported a notably lower emissions factor for the Hoffman kilns (however, not China-specific), 0.09-0.10 kg CO₂/kg
10 FCB, which in turn results in a global emissions factor of 0.13 kg CO₂/kg FCB. When comparing with the values
11 calculated based on energy consumption, the emission factor ranges from 0.10-0.18 kg CO₂/kg FCB depending on
12 the fuel source (coal, oil, or natural gas). This notable difference highlights the need for reliable data from Chinese
13 FCB production. Consequently, the effect of FCB production in China on emissions per kg of FCB is excluded from
14 the primary results discussion herein; although, we do still consider the estimated mass of bricks produced in
15 China when emissions are scaled to global levels. Further, in this sensitivity analysis, we assess the influence of
16 using the lowest and highest reported values for the FCB, Clamp, Zigzag, VSBK, and Tunnel kilns. Varying these
17 parameters results in an estimated range of 0.18-0.27 kg CO₂/kg brick globally, excluding China.


18 **Table 2: Energy intensity of FCB production technologies.** The energy intensity (MJ) per kg FCB for each studied production technology
19 used to calculate the average GHG per kg brick for each technology.^{11,14,18}

Reference:	EE Intensity of fired clay bricks [MJ/kg]					
	Fixed Chimney Kiln	Clamp kiln	Zigzag	Hybrid Hoffman	VSBK	Tunnel
Rajarathnam 2014	1.25	1.48	0.95		0.85	
Eil 2020			1.30	1.20		
Maithel and Heierli 2008	1.50	4.50			1	2.50
Average:	1.4	3.0	1.1	1.2	0.9	2.5

20
21 Using an annual global FCB production volume estimate of 2.18 Gt from averaging across methods, the
22 associated GHG emissions would be equal to 0.51 Gt CO₂e/year (0.40-60 Gt CO₂e/year, using the lowest and
23 highest estimated emissions factors), based on the weighted average emissions factor calculated in Section 3.2.
24 Given that the global anthropogenic GHG emissions in 2020 were approximately 50 Gt CO₂e,⁸³ the share of those
25 GHG emissions from FCB production can be estimated as ~1%. As shown in Figure 3, the degree of production in
26 each region leads to commensurate GHG emissions. Depending on local resources and needs, the influence of
27 social and economic sustainability indicators on the decarbonization strategies may vary. Compared to the
28 mounting efforts to decarbonize industries such as cement and steel by 2050, the limited attention to
29 decarbonizing the FCB production industry highlights a key area where more effort is needed. The annual mass of
30 cement and steel produced are 4.1 and 1.3 Gt, respectively,^{84,85} resulting in approximately 1.6 Gt and 2.6 Gt of

1 CO₂ emissions each.^{86,87} The production of FCB production contributes to CO₂ emissions on a comparable scale to
2 these other major material industries (Figure 4).

3

4

5 **Figure 3. Greenhouse gas (GHG) emissions from global brick production in 2020** estimated based on a) brick production reported in the
6 literature, b) floor area increase (Bm²/year) and brick intensity (kg brick/m²), and c) brick production based on fraction of extracted
7 structural clay.

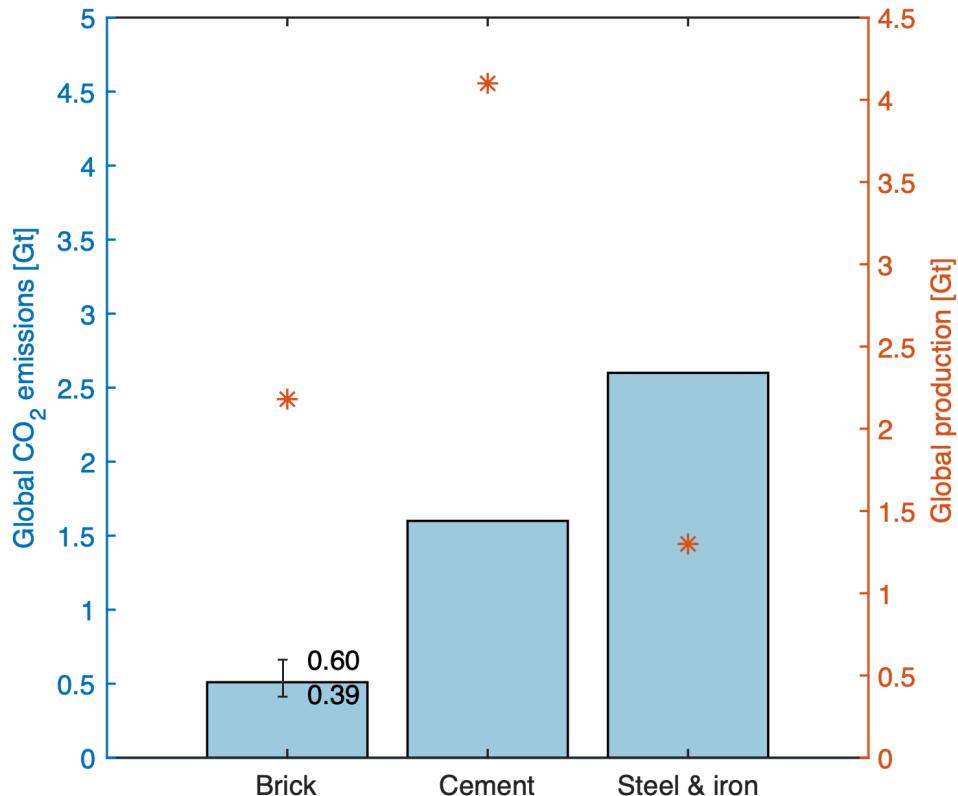


Figure 4: Estimated global production and GHG emissions from FCB, cement and steel. The left axis shows the global GHG emissions associated with the production of brick, cement, and steel, reflected as bars. The right axis shows the global production of these materials, shown as “*”.

3.3 Projections and decarbonization strategies from FCB production till 2050

From a combination of the material intensity and building stock model developed in Section 2, the amount of FCB produced is projected to increase by over 50% by 2050, reaching between 2.92 to 3.78 Gt annually (see Figure 5). Without improvements to production methods (i.e., the business-as-usual production), the resulting GHG emissions would be ~0.68-0.89 Gt CO₂e. Considering the targeted reduction in global GHG emissions to 20 Gt CO₂e in 2050 following a moderate decarbonization scenario of SSP 2-4.5 ⁸⁸, the global share of GHG emissions from FCB production could increase to 4.5% if no action (i.e., a business-as-usual scenario) is taken. As such, FCB production should be a key target to consider in decarbonization strategies.

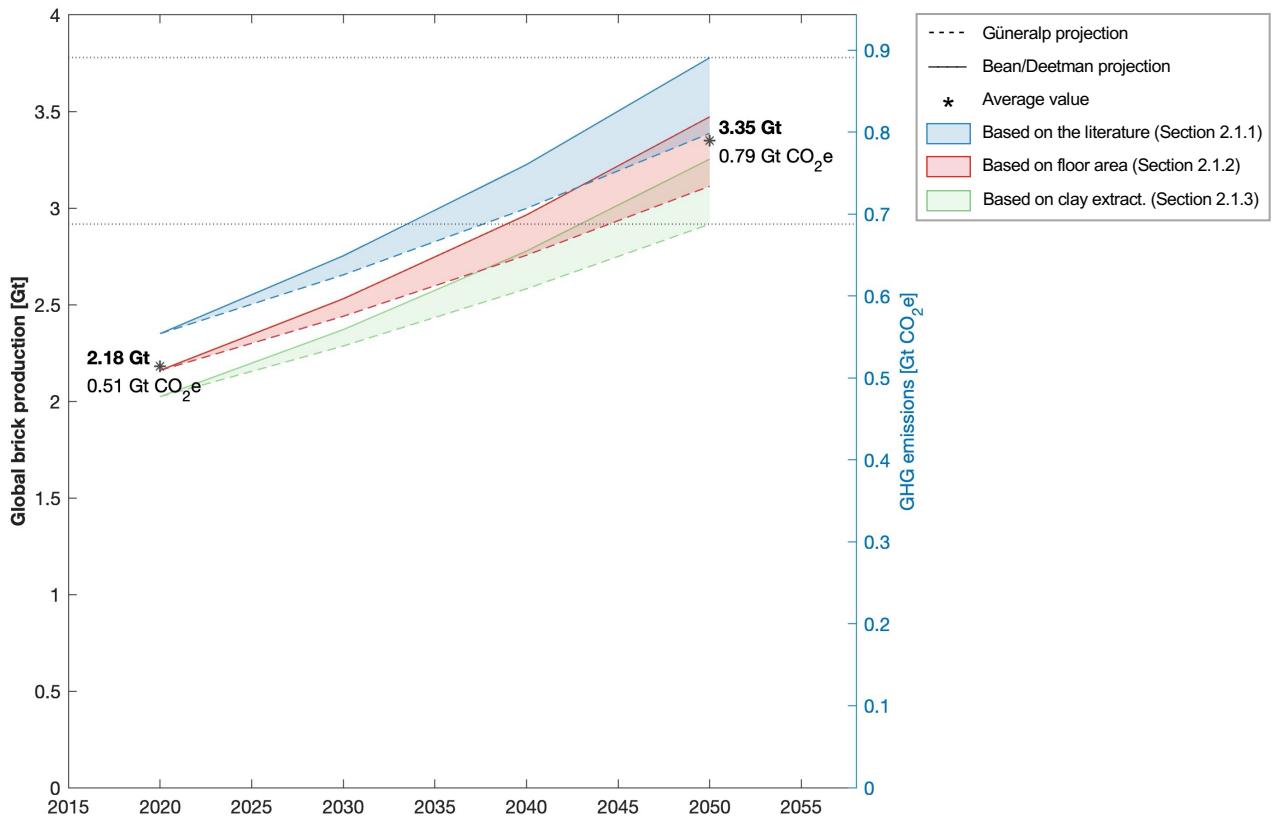
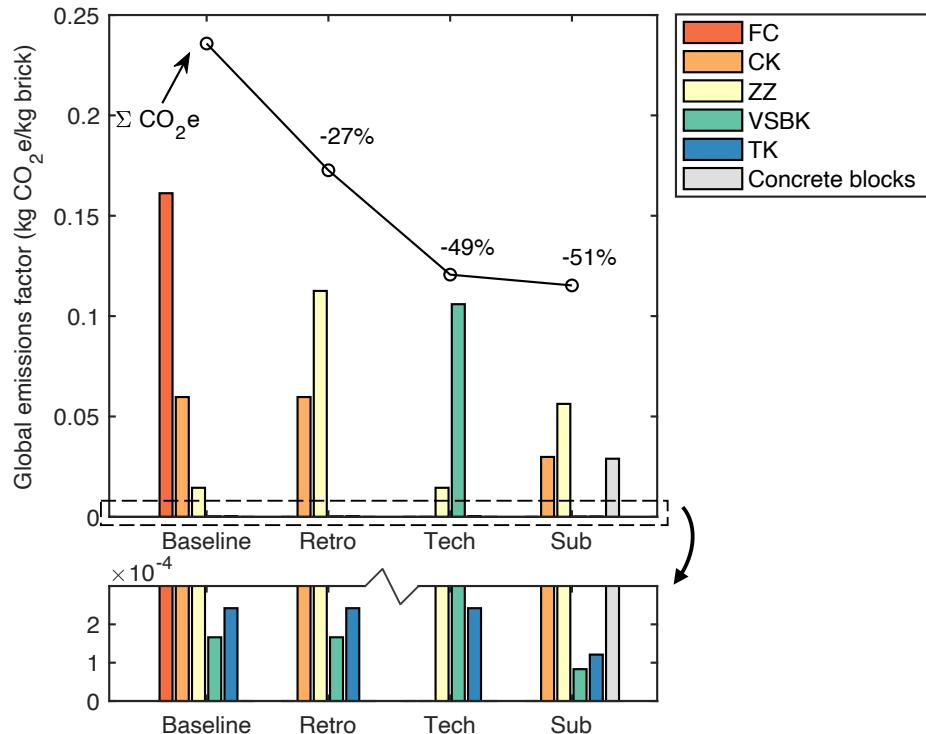



Figure 5: Scenarios for increase in global brick production between 2020-2050, showing global brick production demand and CO₂e from brick production in 2020 based on the brick estimation models from sections 2.1.1, 2.1.2, and 2.1.3, and the estimated projected increase in global brick demand using projected floor area increases by ^{58, 59}, and ². Note: The Bean and the Deetman models project the same floor area increase between 2020-2050 (17% per 10 years). Input data presented in Supplementary Data 4.

Each of the improvement strategies considered in this work yield reductions in emissions. The “Retro” scenario, in which Fixed Chimney kilns are retrofitted to be Zigzag kilns and the energy efficiency of Tunnel kilns is improved to reflect the best practice (i.e., 25% percentile), results in a 27% reduction in the global emissions factor. Because Tunnel kilns represent <1% of all kilns, the reduction is almost entirely a result of a transition from Fixed Chimney kilns to the Zigzag technology. The “Tech” scenario, where in addition to more efficient Tunnel kilns, it is considered that all FCB produced with the Fixed Chimney and Clamp kiln technologies would be replaced by best practice VSBKs and Hoffman (each increase from <1% to approximately 45% of total FCB production). This scenario results in a 49% reduction in GHG emissions as illustrated in Figure 6. However, this “Tech” scenario, requires significant capital investment (as discussed below), compared to the “Retro” scenario. Such investment could lead to a more centralized high-cost mode of production of FCB, limiting access to FCB in rural parts of developing economies.

The “Sub” scenario, where 50% of the global market demand for bricks was assumed to be met by hollow concrete blocks instead of FCB, results in slightly greater reductions in GHG emissions of 51%. However, there are several potential challenges to the realization of this scenario starting with the high capital cost (CAPEX) of concrete block factories. It is reported that a concrete block factory requires a CAPEX of \$150k for a capacity of 6

1 million bricks/year, which is double that of a typical FCB Zigzag kiln (\$75k)^{85,86}, yet only half that of the more
 2 modern VSDK and Hoffman FCB kilns (\$300k)^{85,86}. Also, the selling market price for concrete blocks is currently
 3 slightly higher compared to FCBs, but this could be subject to change given fossil fuel price increase and
 4 potential carbon taxes.⁸⁹ The switch would also require a cultural change due to the difference in size and
 5 masonry technique between FCB and concrete blocks, which could affect construction practice. Further, the
 6 shift from FCB production to more centralized hollow concrete blocks production facilities could lead to longer
 7 transportation distances for blocks.

8
 9
 10 **Figure 6: Global CO₂e emissions factor of FCB in 2050. Contribution per technology market share to the global emissions factor for four**
 11 **scenarios.** The baseline scenario is compared to three scenarios for alternative technology market shares. “Retro”: 100% of Fixed
 12 Chimney kilns can be retrofitted to use the Zigzag technology, “Tech”: 100% of Clamp kilns and 100% of Fixed Chimney kilns can be
 13 replaced by highly efficient VSBK and Hoffman kilns and Tunnel kilns can be improved, and “Sub”: 50% of FCBs can be substituted by
 14 hollow concrete blocks, in addition to reductions achieved by the “Retro” scenario. Circles represent the total CO₂e emissions from global
 15 FCB production for each scenario in 2050. Input data presented in Supplementary Data 5. FC = Fixed chimney kiln, CK = Clamp kiln, ZZ =
 16 Zigzag kiln, HK = Hoffman kiln, VSBK = Vertical Shaft Brick kiln
 17
 18

19 3.4 Discussion

20 With a substantial portion of future construction expected to take place in low- and middle-income countries,
 21 pathways to support necessary infrastructure build-up with limited environmental impacts are crucial. The three
 22 GHG mitigation scenarios outlined in this study aim to address current challenges and barriers to adopting
 23 sustainable practices in brick production. The “Retro” scenario offers the most practical and cost-effective solution
 24 for reducing emissions. The findings in this work shows that by upgrading from Fixed chimney kilns to Zigzag kilns,
 25 which mainly involves reconfiguring the brick stacking pattern to optimize heat flow, significant emission

1 reductions can be achieved with limited investment.³⁵ This option is particularly viable for small-scale kilns, which
2 are predominantly used in rural areas and common in India as well as low- and middle-income countries.^{90,91} Data
3 collection efforts supported by the UN Development Programme have identified and localized highly polluting
4 kilns across India, which has led to targeted financial aid aimed at supporting sustainable transitions.⁹⁰ However,
5 regulatory enforcement for energy-efficient practices remains a challenge, especially in rural areas where small-
6 scale operations dominate. Cultural and workforce barriers can further complicate implementation. The brick
7 industry in countries such as India employs over 12 million unskilled workers, many of whom rely on small-scale
8 brick production.⁹¹ Thus, any technological shift must carefully balance environmental goals with the need to
9 protect these livelihoods through training and financial assistance to avoid disrupting local economies.

10 The “Tech” scenarios considered herein involves higher capital investment to replace traditional kilns like
11 Fixed chimney and Clamp kilns with more advanced options, such as VSBK and Hybrid Hoffman kilns. This scenario
12 will likely rely heavily on government subsidies and policy interventions to offset costs. Nepal, for instance, has
13 taken steps to modernize its brick industry by banning highly polluting kilns like the Bull’s Trench kiln and
14 promoting Zigzag and VSBK technologies.⁹² Despite the successful adoption of Zigzag kilns, the transition to VSBK
15 has been slow, primarily due to financial barriers. Similar changes have taken place in Bangladesh, where brick
16 production is moving away from the highly polluting Bull’s Trench kilns toward VSBK and Hybrid Hoffman kilns.⁹¹
17 Larger operations in India are currently mostly using the Fixed chimney kiln, and to some extent the VSBKs.⁹¹
18 Hence, a technology transition could be made without impeding local rural brick production. Ultimately, more
19 research is required to assess the regional feasibility of decarbonization strategies, as each country faces unique
20 challenges when adopting energy-efficient technologies. Such effort was taken to assess the feasibility of brick
21 production modernization in Nepal.⁹² With increased availability and accuracy of region-specific data,
22 policymakers can design financial incentives and regulatory frameworks that support effective and just transitions
23 to lower emitting alternatives.

24 Substituting part of the market with concrete blocks (such as was presented in the “Sub” scenario), while
25 theoretically possible, could require several shifts in production and consumption. Use of cement-based materials
26 for block production would demand investment in new infrastructure and the development of appropriate raw
27 material supply chains. This shift would also necessitate substantial government support (e.g., through code
28 development, procurement policies, and incentives), workforce training (both in production and construction),
29 and financial backing to ensure a smooth transition. Additionally, it could shift architectural or design styles, which
30 may have both engineering and cultural implications. Such implementation is likely possible in urban areas with
31 more established value chains. Thus, assuming a 50% implementation was performed in this analysis to reflect
32 potential challenges related to scaling this production technology, particularly in rural areas.

1 Excluding China from global emissions assessments poses a significant risk of skewing results, as China
2 accounts for a significant amount of global FCB production. China predominantly uses modern, more energy-
3 efficient Hoffman kilns⁹, but data on Chinese brick production remains limited, restricting its inclusion in this
4 analysis. Environmental policy in China mainly targets concrete, steel, and timber, which make up most of the
5 construction materials market.⁹³ Further research is needed to accurately assess the impact of Chinese kilns on
6 global emissions and to fully understand the potential benefits of more advanced kiln technologies. Herein we
7 also highlight the need for more robust data for regional brick production quantities, kiln energy efficiencies, and
8 estimates for the future demand for bricks as construction material, including how market shares may shift
9 between regions and between production technologies, as well as shifts to other construction materials.

10 This study presents key methodologies to estimate the global quantities of production of FCBs and the
11 associated GHG emissions. FCBs are a popular material in several key countries where most of the projected
12 construction is expected to happen until 2050. The methodology presented here combines literature-based data
13 and a proxy to the nationally reported clay extraction volumes estimated a 2.02-2.35 Gt of FCB production
14 currently, and projections indicate this demand will increase to between 2.92-3.78 Gt by 2050. Despite the
15 uncertainties in the data used in the model, these projections indicate FCB production would continue to
16 contribute significantly to GHG emissions if the current carbon-intensive production methods continue to be used.
17 The annual GHG emissions from this class of materials could rise from 0.51 Gt CO₂e currently to 0.89 Gt CO₂e. This
18 rise in emissions is a concern, particularly as minimal attention is given to FCB in most industrial decarbonization
19 roadmaps.

20 Three scenarios were developed to estimate the savings in GHGs of different decarbonization strategies,
21 based on the estimated production in 2050. The first shows that retrofitting Fixed Chimney kilns into the more
22 energy efficient Zigzag kilns would yield a 27% reduction in GHG emissions. The second assumes a high-investment
23 global shift from conventional production techniques to modern VSBKs, leading to a potential reduction of 49%.
24 Finally, a combination of the first scenario and a 50% global market shift to concrete hollow blocks shows a
25 potential to reduce the carbon footprint of FCB production by 51%. In the future a systematic analysis of potential
26 decarbonization pathways, such as those performed for the cement and steel producing industries, should be
27 extended to brick production.

28 **Acknowledgments**

29 J.O. and S.M. would like to acknowledge the support of the United States National Science Foundation (CBET -
30 2143981). This work represents the views of the authors and not necessarily those of the funders.

1 **Supporting Information**

2 Calculations and collected data used in the modeling presented in the Supplementary Data. This information is
3 available free of charge via the Internet at <http://pubs.acs.org>.

4 **References**

5 (1) United Nations. World Population Prospects, 2022. <https://population.un.org/wpp/> (accessed 2023-03-17).

6 (2) Dean, B.; Dulac, J.; Petrichenko, K.; Graham, P. *Global Status Report 2016: Towards Zero-Emission Efficient*
7 *and Resilient Buildings.*; United Nations Environment Programme: Nairobi, Kenya, 2016.
8 <https://www.unep.org/resources/report/global-status-report-2016-towards-zero-emission-efficient-and-resilient-buildings> (accessed 2023-05-10).

9 (3) Global Alliance for Buildings and Construction; International Energy Agency; United Nations Environment
10 Programme. *2019 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient*
11 *and Resilient Buildings and Construction Sector.*; Global Alliance for Buildings and Construction, 2019.
12 <https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019> (accessed 2023-03-28).

13 (4) Samir, K. C.; Lutz, W. The Human Core of the Shared Socioeconomic Pathways: Population Scenarios by
14 Age, Sex and Level of Education for All Countries to 2100. *Global Environmental Change* **2017**, 42, 181–192.

15 (5) Weyant, C.; Kumar, S.; Maithel, S.; Thompson, R.; Baum, E.; Bond, T. *Brick Kiln Measurement Guidelines: Emissions and Energy Performance*; Climate and Clean Air Coalition, 2016.
16 https://www.ccacoalition.org/sites/default/files/resources/BC_BrickKilns_GuidanceDocument_Final.pdf
17 (accessed 2023-03-27).

18 (6) Zhang, Z. Energy Efficiency and Environmental Pollution of Brickmaking in China. *Energy* **1997**, 22 (1), 33–42. [https://doi.org/10.1016/S0360-5442\(96\)00078-3](https://doi.org/10.1016/S0360-5442(96)00078-3).

19 (7) Plank, B.; Streeck, J.; Virág, D.; Krausmann, F.; Haberl, H.; Wiedenhofer, D. From Resource Extraction to
20 Manufacturing and Construction: Flows of Stock-Building Materials in 177 Countries from 1900 to 2016.
21 *Resources, Conservation and Recycling* **2022**, 179, 106122.
22 <https://doi.org/10.1016/j.resconrec.2021.106122>.

23 (8) Miatto, A.; Schandl, H.; Fishman, T.; Tanikawa, H. Global Patterns and Trends for Non-Metallic Minerals
24 Used for Construction. *J of Industrial Ecology* **2017**, 21 (4), 924–937. <https://doi.org/10.1111/jiec.12471>.

25 (9) Lopez, A.; Lyoda, N.; Segal, R.; Tsai, T. *Building Materials: Pathways to Efficiency in the South Asia*
26 *Brickmaking Industry.*; Johns Hopkins University SAIS, 2012.

27 (10) CCAC. *Mitigating Black Carbon and Other Pollutants from Brick Production.*; Climate and Clean Air
28 Coalition, United Nations Environment Programme: Paris, France, 2015.

1 <https://www.ccacoalition.org/sites/default/files/resources//Fact%20Sheet%205%20->
2 %20Bricks%20FINAL%20Digital%20May2015.pdf (accessed 2023-04-13).

3 (11) Eil, A.; Li, J.; Baral, P.; Saikawa, E. *Dirty Stacks, High Stakes: An Overview of Brick Sector in South Asia.*;
4 World Bank, Washington, DC, 2020. <https://doi.org/10.1596/33727>.

5 (12) Maximize Market Research Pvt. Ltd. *Red Brick Market: Global Industry Analysis and Forecast (2021-2027)*;
6 83808; 2022. <https://www.maximizemarketresearch.com/request-sample/83808/> (accessed 2022-05-29).

7 (13) Sarraf, M.; Croitoru, L.; Khaliquzzaman, M.; Ferdausi, S. A.; Li, J. *Introducing Energy-Efficient Clean*
8 *Technologies in the Brick Sector of Bangladesh*; 60155-BD; The World Bank: Washington D.C., USA, 2011; p
9 81.
10 <https://documents1.worldbank.org/curated/en/770271468212375012/pdf/601550ESW0P1110e00201100>
11 ColorFINAL.pdf (accessed 2023-03-27).

12 (14) Rajarathnam, U.; Athalye, V.; Ragavan, S.; Maithel, S.; Lalchandani, D.; Kumar, S.; Baum, E.; Weyant, C.;
13 Bond, T. Assessment of Air Pollutant Emissions from Brick Kilns. *Atmospheric Environment* **2014**, *98*, 549–
14 553. <https://doi.org/10.1016/j.atmosenv.2014.08.075>.

15 (15) Zhong, X.; Hu, M.; Deetman, S.; Steubing, B.; Lin, H. X.; Hernandez, G. A.; Harpprecht, C.; Zhang, C.; Tukker,
16 A.; Behrens, P. Global Greenhouse Gas Emissions from Residential and Commercial Building Materials and
17 Mitigation Strategies to 2060. *Nat Commun* **2021**, *12* (1), 6126. [https://doi.org/10.1038/s41467-021-26212-z](https://doi.org/10.1038/s41467-021-
18 26212-z).

19 (16) Christoforou, E. A.; Kyllili, A.; Fokaides, P. A.; Ioannou, I. Cradle to Site Life Cycle Assessment (LCA) of Adobe
20 Bricks. *Journal of Cleaner Production* **2016**, *112*, 443–452.

21 (17) Maithel, S.; Kumar, S.; Lalchandani, D. Hybrid Hoffman Kiln Technology. Factsheets about Brick Kilns in
22 South and Southeast Asia., 2014. [https://www.shareweb.ch/site/Climate-Change-and-
24 Environment/about%20us/about%20gpcc/Documents/06%20Hybrid%20Hoffman%20Kiln.pdf](https://www.shareweb.ch/site/Climate-Change-and-
23 Environment/about%20us/about%20gpcc/Documents/06%20Hybrid%20Hoffman%20Kiln.pdf) (accessed
25 2023-04-03).

26 (18) Maithel, S.; Heierli, U. *Brick by Brick: The Herculean Task of Cleaning up the Asian Brick Industry*; The Swiss
27 Agency for Development and Cooperation: Berne, Switzerland, 2008. [https://www.poverty.ch/wp-content/uploads/2017/10/brick.pdf](https://www.poverty.ch/wp-
28 content/uploads/2017/10/brick.pdf) (accessed 2023-04-03).

29 (19) Na Talang, R. P.; Sirivithayapakorn, S. Application of Life Cycle Assessment Method for Environmental
30 Impact Assessment of Fired Brick Production Plant in Thailand. *App. Envi. Res.* **2016**, *15*–26.
31 <https://doi.org/10.35762/AER.2016.38.3.2>.

32 (20) Tiwari, P. Energy Efficiency and Building Construction in India. *Building and Environment* **2001**, *10* (36),
33 1127–1135. [https://doi.org/10.1016/S0360-1323\(00\)00056-1](https://doi.org/10.1016/S0360-1323(00)00056-1).

1 (21) Kumbhar, S.; Kulkarni, N.; Rao, A. B.; Rao, B. Environmental Life Cycle Assessment of Traditional Bricks in
2 Western Maharashtra, India. *Energy Procedia* **2014**, *54*, 260–269.
3 <https://doi.org/10.1016/j.egypro.2014.07.269>.

4 (22) Nepal, S.; Mahapatra, P.; Adhikari, S.; Shrestha, S.; Sharma, P.; Shrestha, K.; Pradhan, B.; Puppala, S. A
5 Comparative Study of Stack Emissions from Straight-Line and Zigzag Brick Kilns in Nepal. *Atmosphere* **2019**,
6 *10* (3), 107. <https://doi.org/10.3390/atmos10030107>.

7 (23) Koroneos, C.; Dompros, A. Environmental Assessment of Brick Production in Greece. *Building and*
8 *Environment* **2007**, *42* (5), 2114–2123. <https://doi.org/10.1016/j.buildenv.2006.03.006>.

9 (24) Ministry of Energy (Petroleum Division). Pakistan Energy Yearbook, 2020.
10 <https://www.petroleum.gov.pk/SiteImage/Downloads/yearbook2019-20.pdf> (accessed 2023-04-17).

11 (25) Ncube, A.; Matsika, R.; Mangori, L.; Ulgjati, S. Moving towards Resource Efficiency and Circular Economy in
12 the Brick Manufacturing Sector in Zimbabwe. *Journal of Cleaner Production* **2021**, *281*, 125238.
13 <https://doi.org/10.1016/j.jclepro.2020.125238>.

14 (26) Akinshipe, O.; Kornelius, G. Quantification of Atmospheric Emissions and Energy Metrics from Simulated
15 Clamp Kiln Technology in the Clay Brick Industry. *Environmental Pollution* **2018**, *236*, 580–590.
16 <https://doi.org/10.1016/j.envpol.2018.01.074>.

17 (27) Akinshipe, O.; Kornelius, G. Chemical and Thermodynamic Processes in Clay Brick Firing Technologies and
18 Associated Atmospheric Emissions Metrics-A Review. *J Pollut Eff Cont* **2017**, *05* (02).
19 <https://doi.org/10.4172/2375-4397.1000190>.

20 (28) Almeida, M. I.; Dias, A. C.; Demertz, M.; Arroja, L. Contribution to the Development of Product Category
21 Rules for Ceramic Bricks. *Journal of Cleaner Production* **2015**, *92*, 206–215.
22 <https://doi.org/10.1016/j.jclepro.2014.12.073>.

23 (29) Kulkarni, N. G.; Rao, A. B. Carbon Footprint of Solid Clay Bricks Fired in Clamps of India. *Journal of Cleaner*
24 *Production* **2016**, *135*, 1396–1406. <https://doi.org/10.1016/j.jclepro.2016.06.152>.

25 (30) Maithel, S.; Lalchandani, D.; Malhotra, G.; Bhanware, P.; Uma, R.; Ragavan, S.; Athalye, V.; Bindiya, K. R.;
26 Reddy, S.; Bond, T. Brick Kilns Performance Assessment. *Greentech, New Delhi, India* **2012**, *164*.

27 (31) Manandhar, U. M.; Dangol, S. B. *Study on Evaluating Energy Conservation Potential of Brick Production in*
28 *SAARC Countries A Report on Nepal*; MinErgy Initiatives: Nepal, 2013. <https://www.saarcenergy.org/wp-content/uploads/2022/06/2012-Final-Report-Evaluating-Energy-Conservation-in-Brick-Production-in-Nepal.pdf>.

31 (32) Rauf, A.; Shakir, S.; Ncube, A.; Abd-ur-Rehman, H. M.; Janjua, A. K.; Khanum, S.; Khoja, A. H. Prospects
32 towards Sustainability: A Comparative Study to Evaluate the Environmental Performance of Brick Making
33 Kilns in Pakistan. *Environmental Impact Assessment Review* **2022**, *94*, 106746.
34 <https://doi.org/10.1016/j.eiar.2022.106746>.

1 (33) Karaman Öztaş, S.; İriş, S. Fired Clay Brick or Autoclaved Aerated Concrete as Walling Materials in Terms of
2 Sustainability. *Celal Bayar University Journal of Science* **2020**, *16* (2), 109–117.

3 (34) Hussain, B.; Naqvi, S. A. A.; Anwar, S.; Shah, S. A. R.; Hassan, R. H. ul; Shah, A. A. Zig-Zag Technology
4 Adoption Behavior among Brick Kiln Owners in Pakistan. *Environ Sci Pollut Res* **2021**, *28* (33), 45168–45182.
5 <https://doi.org/10.1007/s11356-021-13837-2>.

6 (35) Kumar, S.; Maithel, S. *Production of Bricks through Natural Draft Zigzag Kiln*; Greentech Knowledge
7 Solutions Pvt. Ltd.: New Delhi, India, 2015. <https://www.ccacoalition.org/en/resources/cleaner-brick->
8 production-case-study-2-production-bricks-through-natural-draft-zigzag-kiln (accessed 2023-04-03).

9 (36) Vosloo, P.; Harris, H.; Holm, D.; van Rooyen, N.; Rice, G. *Life Cycle Assessment of Clay Brick Walling in South*
10 *Africa Volume 1*; 7A; University of Pretoria, 2016.

11 (37) Abbas, A.; Sajid, M. B.; Iftikhar, M. A.; Khoja, A. H.; Ahmad, M. M.; Shahid, M.; Ullah, K. Assessment of
12 Long-Term Energy and Environmental Impacts of the Cleaner Technologies for Brick Production. *Energy*
13 *Reports* **2021**, *7*, 7157–7169. <https://doi.org/10.1016/j.egyr.2021.10.072>.

14 (38) Ramos Huarachi, D. A.; Gonçalves, G.; de Francisco, A. C.; Canteri, M. H. G.; Piekarski, C. M. Life Cycle
15 Assessment of Traditional and Alternative Bricks: A Review. *Environmental Impact Assessment Review*
16 **2020**, *80*, 106335. <https://doi.org/10.1016/j.eiar.2019.106335>.

17 (39) Bibang Bi Obam Assoumou, S. S.; Zhu, L.; Francis Deng, C. A Conceptual Framework for Achieving
18 Sustainable Building Through Compressed Earth Block: A Case of Ouagadougou, Burkina Faso.
19 *Circ.Econ.Sust.* **2023**, *3* (2), 1029–1043. <https://doi.org/10.1007/s43615-022-00213-6>.

20 (40) Turco, C.; Paula Junior, A. C.; Teixeira, E. R.; Mateus, R. Optimisation of Compressed Earth Blocks (CEBs)
21 Using Natural Origin Materials: A Systematic Literature Review. *Construction and Building Materials* **2021**,
22 *309*, 125140. <https://doi.org/10.1016/j.conbuildmat.2021.125140>.

23 (41) Elahi, T. E.; Shahriar, A. R.; Islam, M. S.; Mehzabin, F.; Mumtaz, N. Suitability of Fly Ash and Cement for
24 Fabrication of Compressed Stabilized Earth Blocks. *Construction and Building Materials* **2020**, *263*, 120935.
25 <https://doi.org/10.1016/j.conbuildmat.2020.120935>.

26 (42) Galán-Marín, C.; Rivera-Gómez, C.; García-Martínez, A. Embodied Energy of Conventional Load-Bearing
27 Walls versus Natural Stabilized Earth Blocks. *Energy and Buildings* **2015**, *97*, 146–154.
28 <https://doi.org/10.1016/j.enbuild.2015.03.054>.

29 (43) Fang, M. H.; Wang, Z. H.; Shi, F. F.; Sun, B. X.; Zhao, M. N.; Cui, S. P.; Meng, X. C. Analysis on Life Cycle CO₂
30 Emission of Aerated Concrete Production in China. *MSF* **2013**, *743–744*, 509–515.
31 <https://doi.org/10.4028/www.scientific.net/MSF.743-744.509>.

32 (44) Wei, H. L.; Ni, J. R.; Xu, N. Energy, Material and Pollutant Intensity Analysis in the Life Cycle of Walling
33 Materials. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects* **2008**, *30* (14–15), 1367–
34 1381. <https://doi.org/10.1080/15567030801928995>.

1 (45) Wolfeva, M. Analysing the Cumulative Energy Demand of External Bearing Walls. *IOP Conf. Ser.: Mater. Sci. Eng.* **2020**, *867* (1), 012048. <https://doi.org/10.1088/1757-899X/867/1/012048>.

2 (46) Sojobi, A. O.; Awolusi, T. F.; Aina, G. B.; Oke, O. L.; Oladokun, M.; Oguntayo, D. O. Ternary and Quaternary
3 Blends as Partial Replacement of Cement to Produce Hollow Sandcrete Blocks. *Heliyon* **2021**, *7* (6), e07227.
4 <https://doi.org/10.1016/j.heliyon.2021.e07227>.

5 (47) Wiedenhofer, D.; Fishman, T.; Plank, B.; Miatto, A.; Lauk, C.; Haas, W.; Haberl, H.; Krausmann, F. Prospects
6 for a Saturation of Humanity's Resource Use? An Analysis of Material Stocks and Flows in Nine World
7 Regions from 1900 to 2035. *Global Environmental Change* **2021**, *71*, 102410.
8 <https://doi.org/10.1016/j.gloenvcha.2021.102410>.

9 (48) Miatto, A.; Sartori, C.; Bianchi, M.; Borin, P.; Giordano, A.; Saxe, S.; Graedel, T. E. Tracking the Material
10 Cycle of Italian Bricks with the Aid of Building Information Modeling. *J of Industrial Ecology* **2022**, *26* (2),
11 609–626. <https://doi.org/10.1111/jiec.13208>.

12 (49) Tibrewal, K.; Venkataraman, C.; Phuleria, H.; Joshi, V.; Maithel, S.; Damle, A.; Gupta, A.; Lokhande, P.;
13 Rabha, S.; Saikia, B. K.; Roy, S.; Habib, G.; Rathi, S.; Goel, A.; Ahlawat, S.; Mandal, T. K.; Azharuddin Hashmi,
14 M.; Qureshi, A.; Dhandapani, A.; Iqbal, J.; Devaliya, S.; Raman, R. S.; Lian, Y.; Pandithurai, G.; Kuppili, S. K.;
15 Shiva Nagendra, M.; Mukherjee, S.; Chatterjee, A.; Najar, T. A.; Jehangir, A.; Singh, J.; Sinha, B.
16 Reconciliation of Energy Use Disparities in Brick Production in India. *Nat Sustain* **2023**, *6* (10), 1248–1257.
17 <https://doi.org/10.1038/s41893-023-01165-x>.

18 (50) Parsons, L.; De Campos, R. S.; Moncaster, A.; Cook, I.; Siddiqui, T.; Abenayake, C.; Jayasinghe, A. B.; Mishra,
19 P.; Ly Vouch, L.; Billah, T. Globalized Climate Precarity: Environmental Degradation, Disasters, and the
20 International Brick Trade. *Annals of the American Association of Geographers* **2024**, *114* (3), 520–535.
21 <https://doi.org/10.1080/24694452.2023.2280666>.

22 (51) United Nations. Trade Data, 2020. <https://comtradeplus.un.org/TradadeFlow> (accessed 2023-08-30).

23 (52) Sverdrup, H. U.; Olafsdottir, A. H. Dynamical Modelling of the Global Cement Production and Supply
24 System, Assessing Climate Impacts of Different Future Scenarios. *Water Air Soil Pollut* **2023**, *234* (3), 191.
25 <https://doi.org/10.1007/s11270-023-06183-1>.

26 (53) Habla Zig-Zag Kilns. *The brick industry world wide*. <https://hablakilns.com/>. <https://hablakilns.com/the-brick-industry/the-brick-market/> (accessed 2023-04-13).

27 (54) ICIMOD. *Burnt Clay Brick Sector in India*; Fact Sheet; International Centre for Integrated Mountain
28 Development: Kathmandu, Nepal, 2019.

29 (55) Lloyd, P. Energy Efficiency in Claybrick Manufacture in South Africa. In *2016 International Conference on*
30 *the Industrial and Commercial Use of Energy (ICUE)*; 2016; pp 52–56.

31 (56) Swisscontact; Clay Brick Association of Southern Africa. *Clay Brick Production Survey*; Survey; Swiss Agency
32 for Development and Cooperation: Berne, Switzerland, 2017.

33

34

1 (57) Zhou, K.; Chen, H.-M.; Wang, Y.; Lam, D.; Ajayebi, A.; Hopkinson, P. Developing Advanced Techniques to
2 Reclaim Existing End of Service Life (EoSL) Bricks – An Assessment of Reuse Technical Viability.
3 *Developments in the Built Environment* **2020**, 2, 100006. <https://doi.org/10.1016/j.dibe.2020.100006>.

4 (58) Güneralp, B.; Zhou, Y.; Ürge-Vorsatz, D.; Gupta, M.; Yu, S.; Patel, P. L.; Fragkias, M.; Li, X.; Seto, K. C. Global
5 Scenarios of Urban Density and Its Impacts on Building Energy Use through 2050. *Proc. Natl. Acad. Sci.*
6 *U.S.A.* **2017**, 114 (34), 8945–8950. <https://doi.org/10.1073/pnas.1606035114>.

7 (59) Deetman, S.; Marinova, S.; van der Voet, E.; van Vuuren, D. P.; Edelenbosch, O.; Heijungs, R. Modelling
8 Global Material Stocks and Flows for Residential and Service Sector Buildings towards 2050. *Journal of*
9 *Cleaner Production* **2020**, 245, 118658. <https://doi.org/10.1016/j.jclepro.2019.118658>.

10 (60) Arehart, J. H.; Pomponi, F.; D'Amico, B.; Srubar, W. V. Structural Material Demand and Associated
11 Embodied Carbon Emissions of the United States Building Stock: 2020–2100. *Resources, Conservation and*
12 *Recycling* **2022**, 186, 106583. <https://doi.org/10.1016/j.resconrec.2022.106583>.

13 (61) Asadollahfardi, G.; Asadi, M.; Karimi, S. Life-Cycle Assessment of Construction in a Developing Country:
14 Life-Cycle Assessment of Construction Activity. *Environmental Quality Management* **2015**, 24 (4), 11–21.
15 <https://doi.org/10.1002/tqem.21398>.

16 (62) Evangelista, P. P. A.; Kiperstok, A.; Torres, E. A.; Gonçalves, J. P. Environmental Performance Analysis of
17 Residential Buildings in Brazil Using Life Cycle Assessment (LCA). *Construction and Building Materials* **2018**,
18 169, 748–761. <https://doi.org/10.1016/j.conbuildmat.2018.02.045>.

19 (63) Heeren, N.; Hellweg, S. Tracking Construction Material over Space and Time: Prospective and Geo-
20 referenced Modeling of Building Stocks and Construction Material Flows. *Journal of Industrial Ecology*
21 **2019**, 23 (1), 253–267. <https://doi.org/10.1111/jiec.12739>.

22 (64) Huang, T.; Shi, F.; Tanikawa, H.; Fei, J.; Han, J. Materials Demand and Environmental Impact of Buildings
23 Construction and Demolition in China Based on Dynamic Material Flow Analysis. *Resources, Conservation*
24 *and Recycling* **2013**, 72, 91–101. <https://doi.org/10.1016/j.resconrec.2012.12.013>.

25 (65) Ramesh, T.; Prakash, R.; Kumar Shukla, K. Life Cycle Energy Analysis of a Multifamily Residential House: A
26 Case Study in Indian Context. *OJEE* **2013**, 02 (01), 34–41. <https://doi.org/10.4236/ojee.2013.21006>.

27 (66) Sprecher, B.; Verhagen, T. J.; Sauer, M. L.; Baars, M.; Heintz, J.; Fishman, T. Material Intensity Database for
28 the Dutch Building Stock: Towards Big Data in Material Stock Analysis. *J of Industrial Ecology* **2022**, 26 (1),
29 272–280. <https://doi.org/10.1111/jiec.13143>.

30 (67) Simmons, K. J. *Clays; Mineral Commodity Summaries*; 2022; U.S. Geological Survey: Reston, VA, United
31 States, 2022.

32 (68) Materialflows.net. *Raw Material Profiles*. Materialflows.net. <https://www.materialflows.net/visualisation-centre/raw-material-profiles/> (accessed 2023-05-10).

1 (69) Hafez, H.; Kurda, R.; Al-Ayish, N.; Garcia-Segura, T.; Cheung, W. M.; Nagaratnam, B. A Whole Life Cycle
2 Performance-Based ECOncmic and ECOlogical Assessment Framework (ECO2) for Concrete Sustainability.
3 *Journal of Cleaner Production* **2021**, *292*, 126060. <https://doi.org/10.1016/j.jclepro.2021.126060>.

4 (70) Muñoz, I.; Cifrián, E.; Andrés, A.; Miguel, G. S.; Ruiz, D.; Viguri, J. R. Analysis of Environmental Benefits
5 Associated with the Incorporation of Waelz Slag into Fired Bricks Using LCA. *Construction and Building*
6 *Materials* **2018**, *168*, 178–186. <https://doi.org/10.1016/j.conbuildmat.2018.02.108>.

7 (71) Dabaieh, M.; Heinonen, J.; El-Mahdy, D.; Hassan, D. M. A Comparative Study of Life Cycle Carbon Emissions
8 and Embodied Energy between Sun-Dried Bricks and Fired Clay Bricks. *Journal of Cleaner Production* **2020**,
9 *275*, 122998. <https://doi.org/10.1016/j.jclepro.2020.122998>.

10 (72) Nouri, H.; Safehian, M.; Mir Mohammad Hosseini, S. M. Life Cycle Assessment of Earthen Materials for
11 Low-Cost Housing a Comparison between Rammed Earth and Fired Clay Bricks. *IJBPA* **2023**, *41* (2), 364–
12 377. <https://doi.org/10.1108/IJBPA-02-2021-0021>.

13 (73) Chen, Y.; Du, W.; Zhuo, S.; Liu, W.; Liu, Y.; Shen, G.; Wu, S.; Li, J.; Zhou, B.; Wang, G.; Zeng, E. Y.; Cheng, H.;
14 Liu, W.; Tao, S. Stack and Fugitive Emissions of Major Air Pollutants from Typical Brick Kilns in China.
15 *Environmental Pollution* **2017**, *224*, 421–429. <https://doi.org/10.1016/j.envpol.2017.02.022>.

16 (74) CCAC. *Bricks Initiative Progress Report 2016-2017.*; Climate and Clean Air Coalition, United Nations
17 Environment Programme: Paris, France, 2017. <https://www.ccacoalition.org/resources/bricks-initiative->
18 [progress-report-2016-2017](https://www.ccacoalition.org/resources/bricks-initiative-progress-report-2016-2017).

19 (75) Maithel, S.; Kumar, S.; Lalchandani, D. Factsheet about Brick Kilns in South and Southeast Asia., 2014.

20 (76) Hammond, G.; Jones, C. *Inventory of Carbon & Energy (ICE)*; Version 1.6a; University of Bath: Bath, UK,
21 2008. www.bath.ac.uk/mech-eng/sert/embodied/.

22 (77) Del Rio, D. D. F.; Sovacool, B. K.; Foley, A. M.; Griffiths, S.; Bazilian, M.; Kim, J.; Rooney, D. Decarbonizing
23 the Ceramics Industry: A Systematic and Critical Review of Policy Options, Developments and
24 Sociotechnical Systems. *Renewable and Sustainable Energy Reviews* **2022**, *157*, 112081.
25 <https://doi.org/10.1016/j.rser.2022.112081>.

26 (78) Löfgren, Å.; Rootzén, J. Brick by Brick: Governing Industry Decarbonization in the Face of Uncertainty and
27 Risk. *Environmental Innovation and Societal Transitions* **2021**, *40*, 189–202.
28 <https://doi.org/10.1016/j.eist.2021.07.002>.

29 (79) Frasson Jr, A.; Machado, J.; Lima, A.; Roberto, L. A Mix Design Methodology for Concrete Block Units. **2012**.

30 (80) Hafez, H.; Teirelbar, A.; Tošić, N.; Ikumi, T.; de la Fuente, A. Data-Driven Optimization Tool for the
31 Functional, Economic, and Environmental Properties of Blended Cement Concrete Using Supplementary
32 Cementitious Materials. *Journal of Building Engineering* **2023**, *67*, 106022.
33 <https://doi.org/10.1016/j.jobe.2023.106022>.

1 (81) United Nations Environment Programme. *Building Materials and the Climate: Constructing a New Future*; 2 Technical Report; United Nations Environment Programme: Nairobi, Kenya, 2023.
3 <https://wedocs.unep.org/20.500.11822/43293>.

4 (82) Forest Research. *Carbon emissions of different fuels*. Forest Research.
5 <https://www.forestresearch.gov.uk/tools-and-resources/fthr/biomass-energy-resources/reference-biomass/facts-figures/carbon-emissions-of-different-fuels/> (accessed 2023-09-29).

7 (83) Ritchie, H.; Roser, M.; Rosado, P. *CO₂ and Greenhouse Gas Emissions*. Our World in Data.
8 <https://ourworldindata.org/co2-and-greenhouse-gas-emissions> (accessed 2023-07-06).

9 (84) U.S. Geological Survey. *Iron and Steel - Historical Statistics (Data Series 140)*.
10 <https://www.usgs.gov/media/files/iron-and-steel-historical-statistics-data-series-140> (accessed 2023-08-10).

12 (85) U.S. Geological Survey. *Cement - Historical Statistics (Data Series 140)*.
13 <https://www.usgs.gov/media/files/cement-historical-statistics-data-series-140> (accessed 2023-08-10).

14 (86) World Resources Institute. *World Greenhouse Gas Emissions: 2020*. <https://www.wri.org/data/world-greenhouse-gas-emissions-2020> (accessed 2024-11-13).

16 (87) IEA. *Iron and Steel Technology Roadmap*; International Energy Agency: Paris, France, 2020.
17 <https://www.iea.org/reports/iron-and-steel-technology-roadmap>.

18 (88) Akashi, O.; Hanaoka, T.; Masui, T.; Kainuma, M. Halving Global GHG Emissions by 2050 without Depending 19 on Nuclear and CCS. *Climatic Change* **2014**, 123 (3–4), 611–622. <https://doi.org/10.1007/s10584-013-0942-x>.

21 (89) Shukla, R. Burnt Clay Bricks Versus Autoclaved Aerated Concrete Blocks. *International Journal of 22 Engineering Research* **2014**, 3 (11). <https://doi.org/10.17577/IJERTV3IS110454>.

23 (90) United Nations Environment Programme Accelerator Labs. *Case Study 5: Brick Kiln Monitoring in India*; 24 United Nations Environment Programme Accelerator Labs: Nairobi, Kenya, 2024.
25 https://www.undp.org/sites/g/files/zskgke326/files/2024-04/undp_untapped_2024.pdf.

26 (91) Development Alternatives. *Enabling Policies in The Indian Brick Sector - Current Status and Future Trends*; 27 Development Alternatives: New Delhi, India, 2012.

28 (92) Timilsina, G. R.; Malla, S.; Heger, M. P. *Economic and Policy Analysis for Emission Reduction from the Brick 29 Industry in Nepal*; Washington, DC: World Bank, 2024. <https://doi.org/10.1596/41853>.

30 (93) IEA. *Action Plan for Promoting the Production and Application of Green Building Materials – Policies*. IEA.
31 <https://www.iea.org/policies/7918-action-plan-for-promoting-the-production-and-application-of-green-building-materials> (accessed 2024-03-18).

33
34