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Abstract 
It has been a challenge to integrate human behavior into agent-based models. There are many 

different types of human behaviors; one example is strategic group formation. Strategic group 

formation, or strategic coalition formation, is when an individual decides to collaborate with others 

because it is strategically beneficial to them; that is, it increases their expected utility of the given 

situation. Recently, an algorithm called ABMSCORE was developed to help model strategic group 

formation in agent-based models. The ABMSCORE uses concepts from cooperative game theory, 

traditionally used to model strategic group formation (specifically, hedonic games are considered, 

they are games where each agent has a preference relation over coalitions). This algorithm has 

been applied to various situations, including refugee egress and small-hold farming cooperatives. 

This paper provides a detailed discussion on ABMSCORE, including its mechanism, 

requirements, limitations, and application. To demonstrate the potential of ABMSCORE, a new 

application example is given; this application is based on a complex version of the Thomas 

Schelling’s segregation model. The intent of the paper is to provide the potential user with enough 

information so that they can apply ABMSCORE to their simulation products. 

Keywords: Agent-based simulation, coalition formation, strategic cooperation, cooperative game 

theory 

1 Introduction 
The integration of models of human behavior within agent-based modeling and simulation 

(ABMS) is an important advancement for simulation (Cheng, Macal et al. 2016), especially when 

modeling human decision-making (An, Grimm et al. 2020). Modeling human behavior is not a 

one-size-fits-all endeavor, and there have been several attempts to include aspects of it within 

ABMS (or simulation as a whole), for example, Bratman’s theory of intention (Bratman 1987) in 

Belief-Desire-Intent (BDI) models (Rao and Georgeff 1995) or the Rescorla-Wagner’s model of 

learning (Rescorla and Wagner 1972) in Agent_Zero (Epstein 2014). A more recent attempt is the 

integration of strategic coalition (or group) formation using the ABMSCORE algorithm (Collins 

and Frydenlund 2018, Vernon-Bido and Collins 2021).  

The purpose of this paper is to bring together the work on the ABMSCORE algorithm to provide 

a clear and detailed description of the generic version of it. This description is achieved using the 

latest version of Overview, Design concepts and Details (ODD) protocol (Grimm, Railsback et al. 

2020); a standard approach for describing agent-based models. The intent of this description is to 

provide potential users with an easy-to-use guide for using the ABMSCORE algorithm. To this 

end, several applications of the ABMSCORE are discussed as well as the application requirements. 

These applications include a new application that was specially designed to demonstrate the usage 



of the ABMSCORE algorithm, which is based on Schelling’s famous segregation model (Schelling 

1971). 

The ABMSCORE algorithm attempts to model strategic coalition formation by emulating a 

solution mechanism from cooperative game theory, specifically, the core partition from hedonic 

games. A coalition is a subset of agents that come together for some purpose, it is assumed, in this 

work, that agents can only be a member of one coalition at any given time, which is a standard 

assumption in the field of cooperative game theory (Thomas 2003). Hedonic games are a form of 

non-transferrable utility cooperative games where each agent has a preference relation over the 

coalitions (Banerjee, Konishi et al. 2001, Bogomolnaia and Jackson 2002); a core partition is a 

collect of stable disjoint covering coalitions of agents; by stable, it is meant no subset of agents 

has an incentive to form a new coalition, based on their preferences in the hedonic game (Banerjee, 

Konishi et al. 2001).  

The algorithm works by  dynamically allowing the agents to suggest new coalitions to fellow 

agents, with the affected agents determining if they would form that coalition. Some example 

suggestions include merging two existing coalitions, forming sub-coalitions of an existing 

coalition, or other splitting of the coalitions. The intent of the algorithm is to emulate human 

coalition formation (Grigoryan, Etemadidavan et al. 2022) and eventually find the core partition 

(Vernon-Bido and Collins 2021).  

Cooperation is fundamental to the success of the human race. This point was highlighted by the 

Nobel prize winning economist Milton Friedman, who once observed that no one individual would 

make a modern pencil from scratch; this tasks requires thousands of autonomous individuals or 

groups (Friedman and Friedman 1980). They followed this observation with the following quote: 

"It is even more astounding that the pencil was ever produced. No one sitting in a central office 

gave orders to these thousands of people. No military police enforced the orders that were not 

given. These people live in many lands, speak different languages, practice different religions, may 

even hate one another - yet none of these differences prevented them from cooperating to produce 

a pencil." 

Without centralized control, who cooperates with whom? What coalitions form between these 

autonomous agents? It is these types of questions that the ABMSCORE algorithm was designed 

to explore and provide insights. 

This paper first discusses the lead-up and demand for developing the ABMSCORE algorithm. This 

is followed by a detailed description of the algorithm. Several applications are discussed, including 

the El Farol bar problem (Collins 2019), the refugee movement (Collins and Frydenlund 2016), 

small-hold farming cooperatives (Collins and Krejci 2020), and our new color segregation model. 

The paper then discusses the modeling scenario requirements for using the ABMSCORE 

algorithm. Finally, the paper finishes with a discussion on future development and conclusions. 

2 Background 
This section provides a brief introduction to agent-based modeling and simulation (ABMS). This 

is followed by a discussion on modeling strategic group formation, which is traditionally modeled 



by game theory. A discussion on the hybrid combination of ABMS and game theory is provided 

before the ABMSCORE background and history are introduced. 

2.1 Agent-based Modeling and Simulation (ABMS) 
ABMS is a simulation modeling paradigm that focuses on modeling autonomous, heterogeneous 

agents and their interactions. The power of ABMS comes from emergent macro-level phenomena 

(or system-level) being observed from the micro-level interactions of the agents (Miller and Page 

2007). This simulation paradigm allows the modeler to create simulations that help explain and 

discover system-level behavior (Epstein 2008, Macal 2016), which might not be apparent from 

empirically observing the system. ABMS can provide insight into systems that might not exist, or 

it can provide an understanding of the effects of potential interventions in a system, i.e., 

governmental policy changes (Wilensky and Rand 2015).  

Unlike other modeling methods, it does not aggregate or assume homogeneity amongst the 

population under consideration. Aggregation can result in erroneous conclusions about the 

systems’ behavior, for example, Miller and Page (2007) discuss this issue through examples of 

modeling standing ovations at a theatre performance and bees defending their hive. Thus, the 

strength of ABMS comes from autonomous, heterogeneous agents without a centralized controller 

(Wilensky and Rand 2015) because a phenomenon can emerge that was not hard-coded into the 

simulation model. As such, ABMS has been used to model various large systems because it is 

difficult to collect empirical observations about them due to scale, ethical, or temporal constraints. 

For example, ABMS has been used to model historical events (Hill, Champagne et al. 2004), 

economic systems (Tesfatsion 2002, Axtell 2005, Farmer and Foley 2009), organization structures 

(Tsvetovat and Carley 2004), social systems (Schelling 1971), evacuations (Helbing, Farkas et al. 

2000), or biological systems (Reynolds 1987). More recently, ABMS has been used to model team 

performance (Lapp, Jablokow et al. 2019), the spread of the COVID-19 pandemic (Kerr, Stuart et 

al. 2021), and many more. Critically, traditional agent-based modeling has not incorporated 

strategic group formation behavior (Vernon-Bido and Collins 2021). 

2.2 Modeling Strategic Coalition Formation 
However, the autonomous individualism of agent-based modeling has its limitations. As already 

alluded to, humans cooperate and collude to achieve mutually beneficial goals, be it a sports team 

or hunter-gatherer tribes. We would argue that humans have been so successful as a species 

because of their ability to cooperate and form groups; as such, there is merit in trying to model 

humans acting in a group. However, it becomes difficult to model groups of agents acting together 

while still maintaining their autonomy. That is, how do you model groups of rational actors moving 

towards a common goal but still have each individual retain control over their own actions and 

destiny? What if the group is no longer of benefit to the individual agent? Can it leave? Can it join 

a different group? These strategic questions and more led us to develop the ABMSCORE 

algorithm. 

We tried several approaches (Elzie, Frydenlund et al. 2014, Collins, Vernon-Bido et al. 2017, 

Roberts and Collins 2018), but our research focus has been on the ABMSCORE algorithm 

discussed in this paper (Collins and Frydenlund 2018, Collins and Etemadidavan 2021, Vernon-

Bido and Collins 2021, Grigoryan, Etemadidavan et al. 2022, Collins, Jayanetti et al. 2023). Before 



we introduce the ABMSCORE algorithm, it is necessary to introduce the cooperative game theory 

on which it is based. 

The main method used to model strategic group formation, or as it is more commonly known, 

strategic coalition formation, is cooperative game theory. Game theory is the mathematical 

modeling of situations of more than one decision-maker, and it is a critical modeling approach in 

economics (Eatwell, Milgate et al. 1987). Normal-form game theory is the dominant method of 

applying game theory, which involves solution mechanisms like the Nash Equilibrium (Nash 1951, 

Fudenberg and Tirole 1991). However, the normal-form game theory and the Nash Equilibrium 

become unwieldy in situations that involve more than two players (agents); as such, cooperative 

game theory was proposed as an alternative modeling approach. Technically, cooperative game 

theory was introduced by von Neumann and Morgenstern (1944) in their canonical book “Theory 

of Games and Economic Behavior,” however, Lloyd Shapley (1953) was the individual who 

demonstrated it as a serious technique.  

Nash Equilibrium quickly becomes computational complex for games as the number of players 

increases. As such, alternative solution mechanisms need to consider, for example, the Shapley 

value (Shapley 1953) and the Core (Gillies 1959). The Shapley value assumes superadditivity, 

which means the grand coalition (the coalition that includes all players) will form; however, we 

were interested in a variety of different coalition structures (covering sets of disjoint coalitions 

over the players), so it is the core that is the inspiration for the ABMSCORE algorithm. 

In its essence, the core of a cooperative game represents the coalition structure of the players, 

where no subgroup of players has an incentive to form a new coalition. Like the Nash Equilibrium, 

there can be more than one solution that fits the core’s criteria, or even none (Collins, 

Etemadidavan et al. 2022). Strictly speaking, this work considers the core partition (Banerjee, 

Konishi et al. 2001); the core partition is the core equivalent for hedonic games (Iehlé 2007). 

Cooperative game theory is, technically, a two-part problem: (1) which coalitions will form among 

the decision-makers (agents/players) and (2) how the payoffs will be distributed amongst the 

coalition members (Chakravarty, Mitra et al. 2015). To simplify finding the solution, we remove 

the second problem by only considering non-transferable utility (NTU) games, specifically 

hedonic games (Banerjee, Konishi et al. 2001, Bogomolnaia and Jackson 2002, Collins, Thomas 

et al. 2019). Unsurprisingly, due to them reducing the complexity of the problem considered, 

hedonic games have grown in popularity over the last twenty years (Chalkiadakis, Elkind et al. 

2011, Collins, Etemadidavan et al. 2022). However, even with a reduction in the complexity of 

games, there is difficulty in solving hedonic games. Ballester (2004) showed that finding the 

solution to a hedonic game is NP-complete. Since proving P = NP is beyond the authors' capability, 

we are driven to develop a heuristic approach to finding appropriate solutions; the effectiveness of 

our approach to do this is discussed in section 6.2.3. Our focus was on integrating this heuristic 

within an ABMS so that strategic coalition formation could be included in that modeling paradigm. 

Others have combined ABMS and game theory in previous applications, which we will discuss in 

the next section. A detailed review about the application of cooperative game theory can be found 

in Grigoryan and Collins (2021), and for agent-based modeling the work by Gilbert (2019). 



 

2.3 Game Theory and ABMS 
Our approach to using the ABMSCORE algorithm is not the first application of game theory within 

an ABMS context. For example, Hill, Champagne et al. (2004) connects game theory and agent-

based modeling by combining a search game (another game theory type) and ABMS to simulate 

the search for U-boats in the Second World War. Szilagyi (2012) attempts to solve simplified 

versions of famous agent-based models using game theory approaches. 

Specifically focusing on cooperative game theory, there have been several attempts to connect it 

with ABMS. Bonnevay, Kabachi et al. (2005) used agent-based modeling to simulate a cooperative 

game, whereas our ABMSCORE approach incorporates cooperative game theory concepts into 

ABMS. More related to our approach, Janovsky and DeLoach (2016) created a heuristic for finding 

the core in a multi-agent environment; this has similarities to the ABMSCORE approach but is 

focused purely on algorithm development as opposed to its application. Finally, Taywade, 

Goldsmith et al. (2018) created decentralized heuristics for solving a particular type of hedonic 

game (i.e., additively separable games); the ABMSCORE approach can be applied to all hedonic 

games. 

As previously mentioned, both game theory and ABMS have weaknesses as modeling paradigms, 

i.e., cooperative game theory is computationally intensive, and agent-based models cannot model 

strategic group formation. A hybrid simulation is a modern approach to trying to overcome a 

modeling paradigm’s weaknesses by incorporating another modeling approach into the model 

(Brailsford, Eldabi et al. 2019). The ABMSCORE approach described in this paper is an attempt 

to do just that; enriching agent-based modeling by incorporating cooperative game theory elements 

within it to model strategic group formation.  

The obvious initial question is, why create a hybrid model? ABMS is used to model lots of humans, 

and when humans come together, they form mutually beneficial groups (Graeber and Wengrow 

2021); however, traditional ABMS does not take into account this grouping effect; as such, if we 

are going to better improve the modeling of human behavior in ABMS (Cheng, Macal et al. 2016), 

then there is a need to incorporate strategic group formation (Collins and Frydenlund 2018). 

Hence, there is a need for the ABMSCORE algorithm. 

 

2.4 ABMSCORE algorithm 
In this section, we present the history of ABMSCORE usage over time. Also, the scenarios that 

employed ABMSCORE are briefly presented to provide examples of the the algorithm’s 

application. More details about the example scenarios can be found in the application section of 

this paper; the intent of this section is to provide a timeline and a brief introduction to the 

applications. 

In 2015, the first version of the ABMSCORE algorithm was demonstrated in a presentation at the 

2015 Swarmfest conference at the University of South Florida, Colombia (Collins, Frydenlund et 

al. 2015). The intention of this presentation was to introduce the concept of strategic group 



formation in the context of ABMS. Swarmfest participants were mainly academics that used 

ABMS in their research; hence, a sensible audience for this presentation.  

ABMSCORE algorithm's first application studied agents interacting in a Von Neumann 

neighborhood (Collins and Frydenlund 2016). The goal of this application was to explore the 

coalition formation behavior between agents that are homogeneous (keeping agents’ strengths 

constant) or heterogeneous (varying agents’ strengths). The results focused on the size of the 

emergent coalition sizes, with a dominant coalition of approximately 60% of agents emerging. 

Collins and Frydenlund (2018) have further extended this scenario to describe the possible group 

formation configurations, and new ways to represent the simulation runs due to the complexity of 

the output. 

In 2016, another scenario related to refugee flight employed the ABMSCORE algorithm (Collins 

and Frydenlund 2016). Collins and Frydenlund (2016) analyzed the coalition formation of the 

refugees, varying their speed levels and estimating the variation effect on agents’ coalition 

formation decisions. The simulation results indicated that the refugees ended up in a grand 

coalition when the pace to reach the destination was not their primary focus, but “safety in 

numbers” was the focus. As the importance of pace increased, sub-coalitions formed because the 

agents could move relatively fast while enjoying the benefits of being part of a coalition. Finally, 

if the pace was the most important factor, the agents all end up in their singleton coalitions, 

representing sheer panic.  

In 2018, the classic ABMS problem was considered, namely, the EL Farol bar problem (Collins 

2017). The EL Farol Bar problem focuses on the rates of overcrowding when patrons are trying to 

avoid an overcrowded bar. The main objective of deploying the ABMSCORE algorithm to this 

problem was to study how coalition formation affects the overcrowding of the bar. The results 

showed that allowing agent coalitions results in an undesirable scenario for everyone.  

Collins and Krejci (2018) used the AMSCORE algorithm to explore small-hold farming 

cooperatives in regional food systems. The authors analyzed the trade-off of farmers joining 

transportation cooperatives at the cost of their autonomy of decision (a trait that farmers have been 

shown to highly value). This problem prevails especially for small-scaled and mid-sized farmers 

who struggle with logistic activities to transport goods from rural areas to distant urban sites. The 

results of the analysis demonstrated that the farmer agents form singleton coalitions when either 

their preference for autonomy is too high, or they consider the impact of distance between farms 

is too significant. 

In 2021 Collins and Etemadidavan (2021) adopted ABMSCORE to study human behavior by 

incorporating human subject experiments. Understanding human behavior has always been an 

essential but challenging question to investigate due to humans' constantly evolving behavior. This 

work (Collins and Etemadidavan 2021) uses the glove game, a classic game, to create an 

interactive simulation to conduct a coalition formation experiment. The work tested if having game 

theory experience affects humans’ decisions when forming coalitions in an interactive simulated 

environment. The results showed no association between experiment participants’ game theory 



experience and their coalition formation decisions. More importantly, it showed that the human 

subjects did not always form the coalition structures predicted by cooperative game theory. 

 Advanced version of the ABMSCORE algorithm 

The ABMSCORE algorithm is split into three parts: coalition suggestion, coalition evaluation, and 

coalition updating. Suggestions to the agents are made each round of the algorithm; the form of 

these suggestions is a new coalition. The agents, that would be members of this new coalition, all 

evaluate the new coalition and if they all decide it is beneficial for them to move to it. If all affected 

agents would benefit, then it is signaled that this new coalition is acceptable and should form. If 

the new coalition is formed, its members are removed from their existing coalitions; this means 

that several new coalitions will be created: the suggested one plus the coalitions formed from the 

remaining agents after the removal of agents from their old coalition to create the suggested 

coalition. For example, consider the case of four agents that are currently in the grand coalition 

(1234), if coalition (12) was suggested and accepted by agents 1 and 2, then it would form; this 

would mean that the coalition structure of the agents would be the two coalitions: (12)(34). 

In the original ABMSCORE algorithm, presented in Collins and Frydenlund (2018), the suggested 

coalitions were randomly generated subsets of the agent pool. Vernon-Bido and Collins (2021) 

advanced this approach by incorporating various coalition suggestion types, including joint 

coalitions, exit coalitions, pair coalitions, defect coalitions, split coalitions, and singleton 

coalitions. They showed that these new coalition suggestions helped speed up the process of 

finding a stable solution. The original (Von Neumann Neighborhood), refugee, and El Farol 

models were all created using the original algorithm. The farming and glove game models used 

the advance version; so is the color segregation model presented in this paper. The next section 

provides a detailed overview of the ABMSCORE approach. 

 

3 Model 
It has been advocated that there is a need for standardization in the way agent-based models are 

presented (Angus and Hassani-Mahmooei 2015, Collins, Petty et al. 2015). One defacto standard 

is the Overview, Design concepts, Details (ODD) protocol, presented by Grimm, Berger et al. 

(2006). They suggested the ODD protocol to describe agent-based model attributes from various 

descriptive angles to help facilitate model replication. The protocol was further advanced by 

Grimm, Railsback et al. (2020), and it is this newer version that we describe the structure, 

dynamics, and workflow of the ABMSCORE algorithm. ODD consists of seven elements and we 

will be described in turn. Each element serves a different purpose in describing the algorithm to 

have a more holistic description. 

3.1 Purpose and patterns  
ABMSCORE algorithm aims to model strategic coalition formation and the situations or 

conditions associated with the coalition formation within a particular ABMS modeled scenario. 

We call the resultant simulation ‘the parent simulation,’ with which the ABMSCORE algorithm 

is part. The algorithm, as indicated previously, employs cooperative game theory concepts, which 

can be used to determine the effect of coalition formation on the problem of interest. For example, 



Collins and Frydenlund (2016) used the ABMSCORE to study coalition formation in the refugee 

flight problem. Different coalition formation preferences are possible, such as being in a singleton 

coalition, subcoalitions, or a grand coalition.  

Patterns: Patterns explored are the agents’ actions to remain or leave the coalition given some 

utility functions. The utility of joining or leaving the coalition is associated with benefits gained 

from a coalition. 

3.2 Entities, state variables, and scales 
The algorithm uses a cooperative game theory solution concept called core, which is the set of all 

possible payoff allocations that cannot be improved upon by any other coalition. The core is well-

defined but can be empty, and it is not always unique. Core not being unique means that there may 

be multiple coalition structures satisfying the core requirements. Strictly speaking, core partitions 

are considered in the algorithm, which is the hedonic game equivalent to the core (Iehlé 2007) and 

focuses on coalition structures. 

Agents: Members, also called players, are the simulated agents.  

Environment: Abstract location where agents can communicate and interact.  

State variables: Each modeled scenario will have specific variables that describe different factors, 

traits, or conditions in varying amounts or forms. Specifically, to the ABMSCORE algorithm is 

the current coalition structure; that is, the covering collection of coalitions of the agents. 

 Scales 

The model scales are arbitrary and depend on the modeled scenario. Several updates, such as 

coalition formation, can coincide at every iteration.  

3.3 Process overview and scheduling 
The specific modeled scenario will have its own processes. It is assumed that the simulation will 

run over several iterations. Specifically related to ABMSCORE is coalition formation. Each 

iteration is an opportunity for the agents to improve their utilities by joining new coalitions. New 

coalitions form if all the proposed coalition members would obtain a higher payoff. The algorithm 

structure for selecting, evaluating, and updating coalitions is as follows: 



Figure 1: Flow diagram of the ABMSCORE process within the context of the parent simulation; 

a suggestion coalition is generated of a particular type, it is evaluated by each affected agent, 

and, if acceptable, then this new coalition forms. 

At each iteration, several new coalitions are selected and suggested to the agents. The form of 

these coalitions is determined by their suggestion type, which is discussed in more detail in the 

Submodel section below. Each agent that would be in the new suggested coalition determines if 

they would improve their payoff (utility) by being part of this new coalition; if all agent would 

improve their payoff, then the new coalition forms. This means that all the agents, in the new 

coalition, leave their old coalitions, resulting in new coalitions (and new payoffs) for their old 

coalition partners. This process is repeated, each iteration, until a stable coalition structure is found. 

3.4 Design concepts 

 Basic principles 

The ABMSCORE algorithm assumes the simulation’s agents can play a hedonic game, which is a 

type of game from cooperative game theory. Hedonic games are games where the agents (players) 

are self-interested, trying to maximize their utilities, which are deterministically determined by 

their current coalition, and the utility is not transferrable (Bogomolnaia and Jackson 2002); most 

importantly, the players in hedonic games have a (strict) preference relation over the coalitions. 

This means that given any two possible coalitions for a given player, that player has a preference 

to be in one of the coalitions over the other. Classic examples of hedonic games are matching 

games (Gale and Shapley 1962), which include the modeling of finding a spouse (marriage 

problem), a roommate, or college admissions (Aziz 2013). Their preferences are the primary driver 

for the agent’s decision-making, which can be represented as a utility value by simply inverse-

ranking the coalitions available and assigning its rank as utility (for strict preferences only). Also, 

agents are assumed to have complete information with regard to their evaluation of a suggested 

coalition. The utility that the agent gets is called a payoff. 



 Emergence 

Expected emergence is related to the final coalition structure achieved due to simulation-specified 

conditions and variable perturbations. A coalition structure is the collection of disjoint coalitions, 

and the algorithm focuses on finding stable coalition structures, which are called core partitions. 

A core partition refers to disjoint coalitions where no subset of agents has the incentive to form a 

new coalition (Banerjee, Konishi et al. 2001, Bogomolnaia and Jackson 2002). The core partition 

is an appropriate solution mechanism for ABMS because it focuses on the coalition membership 

of each agent, whereas the core focuses on coalition values and imputations. A core partition is 

not necessarily unique and might not exist for a given game scenario. The scenarios that have 

applied the ABMSCORE algorithm only consider the games where the core exists. 

 Adaptation 

The agents adapt due to their ability to form a new coalition because of coalition splitting or 

merging. The algorithm specifies the conditions when the agents can change their coalitions. A 

new coalition forms if existing or potential members accept the new member’s suggestion to join 

the coalition. This implies that agents have veto power to refuse or approve a new coalition being 

formed. However, the agents cannot influence or stop other agents’ decisions to leave the coalition. 

The agents’ main objective when making decisions is to improve their utilities.  

 Objectives 

The objective for all agents is to join a coalition that maximizes their utility, which is measured as 

their payoff.  

 Learning 

Learning is not integrated into this model setting. 

 Prediction 

Prediction is not integrated into this model setting. 

 Sensing 

Agent sensing is not integrated into this model setting. 

 Interaction 

In the ABMSCORE algorithm, the agents do not directly interact. However, their decisions 

influence other agents’ actions. Agents' decisions are about joining or leaving the coalition, directly 

affecting the coalition value and other agents’ utilities. In the parent simulation, the agents might 

interact with each other due to another non-ABMSCORE process in that simulation. 

 Stochasticity 

The algorithm randomly creates coalition suggestions for agent evaluation. The probability of a 

particular coalition being suggested depends on the method for generating the suggested coalition. 

Uniform distribution is applied when selecting a suggested coalition. 

 Collectives 

Cooperative game theory is used to study coalition formation, which is a form of collective. The 

agents are part of this collective, i.e., the coalitions. The algorithm assigns numbers to the 



coalitions. The coalition that contains all the agents is called a grand coalition, while the coalition 

that includes a single agent is called a singleton coalition.  

 Observation 

The final coalition structure is observed after specified time steps. The coalition structure is the 

main output of the ABMSCORE algorithm. 

3.5 Initialization 
Initially, all agents are assumed to start in a grand coalition. Each agent’s evaluation of a given 

coalition does not change throughout the game, i.e., the utility an agent assigns a coalition is 

constant. 

3.6 Input data 
The utility function, associated with a given agent's evaluation of a given coalition, is either 

specified by an inputted look-up table or a pre-determined function. A random number generator 

is required for coalition suggestions. The parent simulation might use input data beyond that used 

by the ABMSCORE algorithm. 

3.7 Submodels 
There are three submodels used within the ABMSCORE algorithm: coalition suggestion selection, 

coalition evaluation, and coalition updating.  The submodels manage the formation of the coalition 

structure. 

Coalition Suggestion Selection 

Different coalitions are suggested at each time step. There are six suggestion type mechanisms: 

join coalitions, exit coalition, pair coalition, defect coalition, split coalition, and individual 

coalition. 

Join coalition: Two different coalitions (S, T) are randomly chosen from the current coalition 

structure (CS). Then the algorithm computes the payoffs of the joined coalition. A new coalition 

(represented by a C or D below) will form if the utilities are improved for all the coalition 

members. This suggestion will be disregarded if the grand coalition (N) that contains all the agents 

has already formed. 

𝐼𝑓 𝑁 ∉ 𝐶𝑆: 𝐶 = 𝑆 ∪ 𝑇 𝑠. 𝑡. 𝑆 ≠ 𝑇, {𝑆, 𝑇}  ⊆ 𝐶𝑆 

Exit coalition: The suggested coalition is an existing member of the CS with one of its members 

randomly removed, namely agent s. An agent will be permanently removed from a coalition if the 

remaining coalition members are better off without that agent. The removed agent will form a 

singleton coalition. This suggestion type is only permitted if there exist a coalition, in the current 

coalition structure that has more than one agent. 

𝑖𝑓 ∃𝑆 ∈ 𝐶𝑆 𝑠. 𝑡. |𝑆| > 1: 𝐶 = 𝑆\{𝑠}, 𝑠 ∈ 𝑆 

Create a pair coalition: A suggestion pair coalition is formed between two randomly selected 

agents, a and b. The pair will form if there is an improvement in payoff for both agents.  



𝐶 = {𝑎}⋃{𝑏}, 𝑎 ≠ 𝑏, {𝑎, 𝑏} ⊆ 𝑁 

Defect coalition: A suggested coalition is formed by including another randomly selected agent d 

into an existing coalition S that it is not already a member. Since the existing coalition could be 

the empty set, it does not matter if the grand coalition has already formed; in this case, this 

suggested coalition will be a singleton coalition. 

𝐶 =  {𝑑} ∪ 𝑆, 𝑑 ∈ 𝑁\𝑆, 𝑆 ∈ 𝐶𝑆 ∪ ∅ 

Split coalition: A coalition S will split if two randomly selected disjoint coalitions C and D. Note 

in this case, two coalitions will be separately evaluated, if either is preferred by its member, then 

the split will occur. 

C ∩  D = ∅, 𝐶 ∪ D = 𝑆, 𝑆 ∈ 𝐶𝑆 

Individual coalition: An individual coalition, i.e., the singleton coalition, forms if a randomly 

selected agent a is better off herself than joining any other coalition. 

𝐶 = {𝑎}, 𝑎 ∈ 𝑁 

Coalition Evaluation:  

Coalition evaluation is performed by determining if the payoff change is acceptable to the coalition 

members. Their current payoff is compared to the new payoff, and if the new payoff exceeds the 

current one, then the agents will form a new coalition leaving their current coalition (Ci). 

𝑖𝑓 ∀𝑖 ∈ 𝐶, 𝑢𝑖(𝐶) >  𝑢𝑖(𝐶𝑖) 𝑡ℎ𝑒𝑛 𝐶𝑖 ≔ 𝐶, ∀𝑖 ∈ 𝑆 

Coalition Updating: 

The coalition membership number is updated to a unique identification number when new 

coalitions are formed. With new coalitions being formed, the information about payoffs will be 

updated as well. 

4 Applications 
The section below discusses applications and situations that have employed the ABMSCORE 

algorithm. Most of these situations have a major characteristic in common: involving multiple 

interacting agents who might benefit from forming a coalition.  

4.1 Von Neumann neighborhood 
ABMSCORE algorithm was first adopted by Collins and Frydenlund (2016) to study agents 

interacting in a Von Neumann neighborhood, which is the set of all cells that are orthogonally 

adjacent to the region of interest. This scenario focused on splitting common resources with 

adjacent neighbors. Agents are described with varying levels of strength that introduce model 

heterogeneity. The agent with the highest strength gets the resource. In case there is a tie between 

the agents, the resource is shared evenly. For simplicity in the homogeneous case, the authors 

assigned the value of the resource to be 1, and when the agents stay in their singleton coalition, 

then each agent gets two resources, 0.5 for each of its neighbors. Agents can form coalitions with 



other neighboring agents. Adjacent coalition members equally divide resources. Agents also have 

an incentive to form a coalition as they benefit from additional strength when splitting resources 

with neighbors outside the coalition; that is, coalition members exert group pressure on an outsider 

to obtain more resources through extortion. 

Since coalitions can obtain more resources through this extortion, there is almost no incentive to 

form the grand coalition as that will mean there are no non-coalition members to extort. There is 

also little incentive for agents to remain in a singleton coalition due to the strength they can gain 

by being part of a coalition and avoiding resource loss from the coalition around them. As such, in 

this scenario, there is an incentive to form coalitions that are proper subsets of agents. 

Varying levels of agents’ strengths have been introduced to determine the effect on the results 

found from the homogeneous analysis. The results show that the coalitions will still form; 

however, in the heterogeneous case, the stronger agents may dominate the weaker agents.  

  
(a) (b) 

 

 

Figure 2: Screenshot example of the Von Neumann neighborhood problem with (a) 

homogeneous and (b) heterogenous agents; the static agent are represented as circles and their 

colors represents the coalition they are a member. Strength is represented by size. The color 

choice is arbitrary. 

Figure 2 shows a screenshot from two versions of the game. Each static agent is represented by a 

single circle, with the color representing which coalition it is a member. The first version of the 

game shows all agents with equal strength (homogeneous), whereas the second shows agents of 

unequal strength (heterogeneous). The agents interact with their neighbors, as described above, 

and a torus space is assumed (i.e., the sides wrap). As Figure 2 (a), the agents are split into two 

groups, which was common in the homogeneous case. This occurred, instead of the grand 

coalition, because of the malicious nature of the agents as there was an incentive for the groups to 



kick out an agent they surrounded so that they could take all of the surrounded agent’s resources 

with extortion (colloquially, the agents inhabit a dog-eat-dog world). In the heterogenous case, this 

extortion can be seen on a lone turquoise (weak) agent in the center of Figure 1(b). 

The authors have employed analytical and empirical analysis approaches to study the scenario. 

The analytical approach revealed general patterns in strategic coalition formation. However, the 

analysis was limited to a small number of agents only. The empirical approach developed a Monte 

Carlo simulation and collected data to study the dynamic version of the scenario. How the 

coalitions formed over time was of interest, especially any emergent processes about coalition 

development. The simulation modeled coalition formation (suggestion, evaluation, updating) 

using a simplified version of the ABMSCORE algorithm described in this paper, with only random 

coalitions being considered. 

Collins and Frydenlund (2018) have further investigated the results of this scenario to reveal more 

information about coalition formation behavior. The authors run several scenarios of homogeneous 

agents ranging from 4 to 36 agents to estimate the number of coalitions formed and the size of the 

largest coalitions. The analysis showed that as the size of the game increased, the number of 

possible final coalition configurations increased. For example, two coalition configurations were 

observed with four agents, while with 16 agents, three. An interesting result was observed that the 

larger group has approximately 50-60% of agents. Finally, transition matrices were used to show 

the transitions from one coalition to another, and an increase in coalition size was generally 

observed. 

The analysis and results are interesting to understand the coalition formation dynamics better. The 

author suggested that organizational coalition formation or coalitions between different sectors of 

society can be explored using a similar scenario. 

 

4.2 Refugee Egress Simulation 
Another adaptation of the ABMSCORE algorithm was by Collins and Frydenlund (2016) to study 

the refugee flight problem. This problem is crucial for the safety of the persecuted and for 

understanding where to deploy reception sites. Refugees travel long distances to reach safety, and 

these travels result in different refugee flight outcomes; most of the research work studies how to 

anticipate, assist, or prevent these refugee flight outcomes (Kunz 1973, Apodaca 1998, Jensen, 

Skar et al. 2019). The simulation tried to understand the different outcomes. 

The basic version of the ABMSCORE algorithm was applied to explore the arrivals of refugees to 

reception sites. Their paper concentrates on two main aspects. The first aspect examines long-

distance migration, and the second one refers to the en-route coalition formation based on 

individuals’ utility functions. In the model, at each time step, the individual agent looks for a sub-

coalition within its coalition that makes it better off. The utility to join or leave a coalition is 

associated with protection gained from a coalition versus the speed of reaching the destination. 

Note that the agents were heterogeneous with regard to their speed.  



It is agents  move as a whole coalition, which means no coalition member is left behind because 

of their slow speed. However, it may take longer to reach the destination with the entire coalition, 

as the coalition accommodates the speed of its slowest member. When the agents want to reach 

the destination faster, they usually act in a singleton coalition. Agents can form small coalitions, 

allowing some agents to move more quickly while maintaining some of the benefits of being part 

of the coalition. The figure below shows a screenshot from the model (Figure 3 (a)) and when the 

importance of speed is increased (Figure 3 (b)). 

  
(a) (b) 

Figure 3: Screenshot example of the refugee problem. The agents (circles) are moving from left to right. 

(a) occurs when there is a strong desire for safety and (b) when speed is more desirable. The color of the 

agents shows which coalition they are currently a member. 

In Figure 3, the agents representing refugees move from the origin (left) to safety (right). Figure 3 

(a) shows the grand coalition formed, while in Figure 3 (b), the maximum coalition size is three. 

The highlighted points indicate the slowest agents in a given scenario. The agents are purposely 

randomly scattered vertically, to give a better view of the coalitions that form. Numerous coalition 

sizes and distributions are possible due to the coalition formation mechanisms, i.e., kicked out, 

coalition split, and super coalitions, which were simpler forms of the mechanisms described in 

section 3.7. The “kicked out” behavior allows coalitions to remove members that are too slow or 

fall too far behind and consequently decreases the rest of the coalition members’ utilities relating 

to reaching safety in a timely fashion. The “coalition split” behavior occurs when sub-coalitions 

of faster members split from the main coalition that has slower members. “Super coalition” allows 

smaller coalitions in close proximity to join together. 

The analysis of the model especially focused on the effects of the preference for speed as opposed 

to safety in numbers. With a low preference, agents tend to form coalitions over rushing to get to 

the destination. With a higher preference, most agents do not form coalitions as they put very high 

weight on reaching the site on their own without someone slowing them down. Though this result 

is obvious, what was interesting was how the dynamics of coalitions changed over time. In the 

beginning of a simulation run, the agents will pair up with anyone—even slow agents; however, 

as the coalition sizes increase, these slow individuals may be kicked out. 



What was interesting is that the model showed there tended to be a large gap between the main 

group of refugees arriving to safety and the arrival of the slowest (i.e., probably most vulnerable) 

refugees. Further investigation incorporating real-world challenges such as individuals’ health or 

cultural barriers could help to better understand the conditions and motivations of coalition 

formation during refugee flights.  

4.3 El Farol Bar problem 
The algorithm was also used to study the El Farol bar problem. This problem was proposed by 

Brain Arthur (Arthur 1994), and it describes a situation with multiple decision-makers who try to 

attend a bar when it is not too crowded. The decision-makers use different strategies based on 

historical data published in the newspaper to determine whether to go or not to attend the bar. 

Arthur (1994) suggests that most humans do not act rationally but act inductively in a bounded 

rational way due to the complexities, the human logical ability ceases to cope. Minority games are 

a generalization of the El Farol bar problem and are of interest to economists and financial analysts 

due to their implications for financial market investment (Challet and Zhang 1997).  

Collins (2017) applied the ABMSCORE algorithm to the El Farol bar problem situation to see if 

agents acting in strategically formed coalitions had an effect on the outcome. The purpose of the 

adaptations was to assess the effect of coalition decision-making and the availability of a larger 

strategy pool on the final decision to attend the bar and the eventual overcrowding that comes as a 

result of the grouping agents. 

The adaptation ABMSCORE version introduced the following changes to the original model. First, 

the agents can choose the best strategy from the coalition’s pool of strategies instead of just using 

their own strategy. This change could increase the agents’ payoffs, i.e., attending the bar when the 

bar is not overcrowded. If all the agents remained in their singleton coalition, this would effectively 

be the same as the original model developed by Arthur. 

For the coalition formation, there needs to be a rationale to join or leave the coalition, which the 

ABMSCORE algorithm accounts for coalition splitting/ joining as well as individual agents 

leaving. In the El Farol bar problem with strategic coalition formation, the agent may join the 

coalition to gain the ability to use the coalition’s best strategy. Here, coalition size could play an 

essential role in the agent’s decision to join the coalition because the larger the coalition, the more 

it contributes to the overcrowding (because the whole coalition will all attend or not). With a sub-

coalition split, the coalition might have a reduced coalition size and could perhaps avoid 

overcrowding. Overcrowding is one of the main reasons to leave the coalition. Note that if a 

coalition attends an overcrowded night, members may kick out an individual with the worst best 

strategy (with the highest total absolute error). 

In a strategic coalition, the whole coalition follows the same strategy that was identified as the best 

strategy by the coalition. This can be a problem when the grand coalition forms, which would 

cause overcrowding in the bar. The figure below shows the model, where the same colors represent 

agents from the same coalition, and the blue square on the top right corner shows the bar. 



 

Figure 4: Screenshot example of the El Farol model when coalition formation is allowed. The 

blue area represents the El Farol bar, with the remaining area representing agent not attending the 

bar that time-step. Agents’ color represents which coalition they are a member. 

Figure 4 shows an example of the adapted version of the El Farol bar problem. In this example, 

there are a hundred agents, and each timestep represents a night the bar is open. The agent coalition 

all act together; for example, there is a coalition of eleven agents (which are colored green) that 

attended that bar on the night shown in the screenshot. Since the bar is not shown to be 

overcrowded, this was a wise decision by this green coalition; however, they may make a bad 

decision the next night. 

Collins (2017) has compared and shown that the two cases, i.e., coalition formation allowed and 

not, are statistically different. The work also has concluded that coalition formation was not always 

ideal for establishing the optimal strategy due to the reduced number of decision-makers in the 

system (because each coalition makes a decision in turn, not each individual). The results suggest 

that individuals should not form coalitions when wishing to be in the minority. This, intuitively, 

makes sense because even though a coalition has access to more potential strategies than an 

individual, them attending as a coalition contributes to overcrowding more than a single individual 

attending. In contrast, if agents act individually, their singular decision might not influence the 

final outcome of overcrowding.  

The results obtained from modeling the El Farol bar problem using strategic coalition formation 

imply that people may be worse off being in a coalition when trying to avoid overcrowding 

situations. Coalition decision-making may pose more challenges to coordinate and select the best 

decision due to increased uncertainty and opinion differences within the coalition. Overall, we 

believe ABMSCORE provides the necessary adaption to the model needed to explore the El Farol 

problem in contexts where coalitions need to self-organize, cooperate, and predict some 

outcomes. This approach could be adapted to explore other situations where too many people using 

a service degrades quality, e.g., choosing an internet provider. 



4.4 Small-hold Farming Cooperatives 
Regional food supply systems refer to the systems that involve the movement of local foods from 

the farm to the consumer. The demand for these systems has increased due to the economic, 

environmental, and social benefits it brings to the urban as well as the rural communities. However, 

it is challenging to deal with the large competitors in the region and manage the financial costs.  

One way to address these challenges is to consider collaborative transportation methods to reduce 

costs. However, the collaboration will mean reduced autonomy, which farmers highly value. To 

better understand the benefit of collaboration and the desire for autonomy, Collins and Krejci 

(2018) have employed the ABMSCORE algorithm. In this scenario, the small-scale farmers are 

represented by autonomous agents. The farmer agents determined to form coalitions for 

coordinated food transport by comparing the value of the coordination with the estimated value of 

her autonomy.  

The model is comprised of n number of farmer agents. The grand coalition will include all the 

farmer agents, and when a farmer acts alone will be considered a singleton coalition. The agents 

cooperate based on some utility function, consisting of the following three aspects. The first aspect 

is the farmer’s dislike of large groups and their desire to stay independent. The second aspect is 

their desire to maximize profit. The final aspect refers to the adverse effects of geographic distance 

on a coalition’s ability to function. This includes the increased transportation expenses and the 

varying logistical preparation.  

The simulation generated the following observations: when the preference toward autonomy (a) 

and the distance between farmers increases, the number of singleton groups increases. Farmers 

choose to form coalitions with other farmers that are close by when the negative impact of distance 

is increased. This reduces the number of coalitions that might form. Figure 5 shows the several 

coalitions being formed between agents that are close by (circles with the same color). 

 



Figure 5: Screenshot of the small hold farmer’s location with some coalitions being formed 

(which are shown by coloring the white agents). The farms are shown as circles, with the size of 

the circle indicating the size (production capability) of a given farm. 

Figure 5 shows an aerial perspective of the location of the different small hold farms. Farms where 

the farmers have formed transportation coalitions are colored. A white farm indicates that that 

farmer has not joined a coalition (i.e., they remain in their singleton coalition). Most coalitions are 

formed with close neighboring farms, as such, there can be overlap in the coalitions farm circle 

(shown in the case of the red, green, yellow, and turquoise coalitions). In the example shown in 

figure 5, only coalition pairs of farms formed. 

The results revealed that the average group size formed under the different scenarios considered 

was 17 out of 100 farmers, and the maximum group size the authors observed was 27, indicating 

explicitly that the grand coalition was not formed. These findings provide an interesting evaluation 

of strategic coalition formation of regional food supply systems, considering the AMBSCORE 

algorithm. This scenario and the results could be helpful for professionals and stakeholders from 

the transportation field who work on resource sharing and coordinating logistic activities. 

4.5 Human subject experiments 
Another scenario that considered ABMSCORE is the glove game study with human subject 

experiments. The glove game is a non-transferable utility cooperative game-theoretic model which 

has previously been used in human subject experiments. Understanding human behavior has been 

an important but challenging research area due to the personality, preferences, and other 

discrepancies, as a result of which they act differently in different situations. In a glove game, 

players have a different number of right-hand and left-hand gloves. The players try to form 

coalitions to increase their payoff when only the pairs of gloves have values; a right-hand glove is 

paired with a left-hand glove.  

A human experiment was conducted where there was one human player and the rest computerized 

agents. The computerized agents were controlled by the ABMSCORE algorithm. During each trial, 

a human subject would play with other computerized agents different glove games. At each round 

of the game, the players suggest new coalitions to the other players, and the result of the game is 

a coalition structure.  

This scenario investigates two main aspects. The first aspect is if the ABMSCORE algorithm 

controlled computerized agents’ behavior was consistent with the human behavior (Collins, 

Etemadidavan et al. 2020). The second aspect evaluated is whether game theory experience affects 

human behavior in an interactive simulation with regard to strategic coalition formation (Collins 

and Etemadidavan 2021). Various human subject participants were recruited to participate in the 

game trials. The authors have considered only one human per trial to prevent the complexities that 

can develop from human interactions. The authors' experimental approach was correlational 

research. Two different game settings were analyzed, one single-core and the next one multiple-

core. The single-core game has a single coalition structure, while the multiple-core has more than 

one solution. A snapshot of the model is presented in Figure 6. 



 

Figure 6: Screenshot example of glove game using human subject experiment. The agents are 

represented by the numbered circles, with their color representing which coalition they are a 

member. The gloves below each agent present the number of gloves they have: left-hand gloves 

(red) and right-hand gloves (blue) 

In the example glove game (figure 6), shows that three different coalitions have formed. Agents 4 

and 6 have formed a coalition, resulting in a total of five pairs being able to sold (2.5 reward for 

each agent in the coalition) because, in total, they have collectively five left (red) gloves and five 

(blue) gloves. Agents 0, 2, 3, and 5 also form a coalition; resulting in seven pairs of gloves being 

sold (4/7 reward for agents in that coalition). Agent 1 is in their singleton coalition, with only one 

glove pair being formed.This experiment generated two sets of data; one described the 

demographic information about the participants, and the next one was the simulation output. In 

total, 31 trials were recorded. The analysis has shown that 8 out of 31 had some experience in 

game theory. Also, the results have shown that 42% of the human’s final coalition is a member of 

the core. The human participants' final payoff 60% of the time was a core payoff or higher. The 

results highlighted the participants’ tendency to maximize their profit, even though perhaps they 

were not in the stable coalition structure. Game theory experience showed no statistically 

significant association with the participants’ final coalition being in the core. Overall, the outcome 

of the simulation analysis showed that the ABMSCORE algorithm controlled computerized 

agents’ behavior was consistent. However, the human participants did not seem to be motivated to 

find a stable coalition structure and tended to give up, while the computerized agents were 

(Grigoryan, Etemadidavan et al. 2022). 

This scenario can be adopted to further explore human behavior and decision-making procedures 

in simulated and experimental environments. For example, actual incentives can be provided to 

the participants, and estimate the impact of these incentives. 

5 Color Segregation Model 
The original and arguably most famous agent-based model is Schelling’s segregation model 

(Schelling 1971). In the Schelling model, he demonstrates that segregation can occur over time, 

even when the population has a relatively high tolerance for the proportion of their neighbors that 



are different from them (i.e., they remain happy even when 60% or more of their neighbors are not 

like them). The model only considered two types of individuals (which Schelling called “zero” 

and “stars”). An example of model output from the Schelling model can be seen in Figure 7; here, 

you can see clusters of the two types; this type of segregation clustering reflects the racial 

segregation that occurs in US cities (Wilensky and Rand 2015). 

 
Figure 7: Screenshot from the computerized version of Schelling's segregation model. The 

squares represent the living location of the agents. The color of the squares indicates the type of 

agent living there; there are blue and orange agents. Empty locations are represented by white 

squares. The simulated world is assumed to be a torus. 

Figure 7 shows a screenshot from Schelling’s segregation simulation. In the simulation, each agent 

lives in the squares, and they all have the maximum tolerance threshold for its Moore’s neighbors 

that are a different type from them; if is threshold is breached, then they will move to a different 

location. This moving of agents results in the agents becoming segregated into two groups. 

In the model discussed in this section, we increase the number of types to twenty and, instead of 

physical location, we apply the ABMSCORE algorithm to investigate coalition formation (thus, 

the coalition are equivalent to the clusters seen in Schelling’s Segregation Model). Others have 

considered this segregation model with more than two types: Schelling (1978) discusses cases 

involving multiple types, and Wilensky and Rand (2015) demonstrate a version of Schelling’s 

segregation model with up to five types. Their work focused on the segregation of types, whereas 

our model focuses on the coalition of different types. 

There are several other changes that we make to the segregation model. Firstly, we remove the 

dichotomous construct of similar or not and replace it with a spectrum of preferences. The different 

agent types can be considered ordered; a given type prefers the other types that are closer to it on 

a spectrum of types. For example, looking at figure 8, the ‘cows’ prefer to be in a group with the 

‘turtles’ over the ‘airplanes.’ Secondly, having preferences means that the agents can choose 

strategically which coalitions to join or leave; thus, we create a hedonic game. We are not the first 



to include strategic behavior in Schelling model (Chauhan, Lenzner et al. 2018); they allowed 

agents to choose where they want to move as opposed to it being randomly selected. 

 
Figure 8: A screenshot from the Color Segregation model which shows the twenty different 

types and their relation to each other. This is also an example of a model outcome when 100 

agents have a tolerance only for their type. The color shows the which coalition an agent is a 

member, and the shape shows the type.  

Figure 8 shows the coalition split when the agents will only tolerate being in a coalition with those 

of the same type. Each coalition has its own color. The type of an agent is shown by its shape, e.g., 

triangle, airplane, happy face, etc. The simulation disperses the coalitions around a 2-D map in a 

clock-like pattern. This clock-like pattern is also used to show who close different types are to 

each other; for example, planes are most similar to their neighboring types truck and stars. Though 

we represent the types on a circle in the diagram for aesthetic reasons, the type preferences do not 

wrap; that is, trees and triangles are not neighboring types. 

The use of a color wheel to segregate agents was also used by Salamanca and Núñez-Corrales 

(2019). In their agent-based model, they were investigating social viscosity in regards to the self-

organizing group and were using agent color as a proxy for social identity. In their model, color 

ordering mattered, whereas, in our model, the color of the coalitions is arbitrary.  

5.1 Model 
In Schelling’s original segregation model, agents would relocate (or have a desire to relocate) 

when a certain percentage of their neighbors were dissimilar to them. In our model, the agents 

leave their coalition when the average type in their coalition is farther away from their type by 

some threshold. We call this threshold the ‘tolerance distance’ and represent it with a lambda. The 

tolerance constant is used in determining the value of a coalition (payoff) to an agent. The agents 



are assumed to be rational and desire to be in a coalition that maximizes their payoff. The payoff 

of a coalition, C, that agent, i, belongs to is: 

𝑉𝑖(𝐶) = |𝐶| ∗ (𝜆 − |𝑔(𝑖) −
1

|𝑆|
∑ 𝑔(𝑗)

𝑗∈𝑆

|) (1) 

 

Where 𝜆 ∈ {0, 1, … ,20} is a tolerance distance, and 𝑔(. ) Is a function that determines the type of 

an agent; in our model, types are 𝑔(. ) ∈ {0, 1, … ,19}. We assume that the agents what to be in the 

largest group possible if the average type is acceptable (i.e., the left-hand part of the equation is 

positive). Thus, the agents must balance, in choosing their coalition, the existing size of the 

coalition with its average type; that is, given two coalitions of the same average type, the agent 

would prefer to join the larger one. The agents must, thus, balance between choosing to join a 

coalition with a large number of agents with how close they are to the average type of that coalition.  

We can examine the payoff function closer by considering its extremes. When Lambda = 0, the 

agents gain no utility from joining a coalition with any other agent; this results in every agent 

remaining in their singleton coalition, which achieves the highest payoff of zero (all payoffs, in 

this case, are non-positive). The situation is simpler when Lambda = 1, agents do care about 

coalition size; in this case, the agents will look for coalitions of agents of the same type or similar 

type; however, it is feasible that the agent would join a large mixed coalition if the average 

coalition type is close to their type. At the other extreme, when Lambda = 20, the agents have a 

positive payoff for all coalitions; this makes the size coefficient more important than in cases when 

lambda is smaller. From our simulation runs, this large lambda value always resulted in the grand 

coalition forming. 

A critical aspect of the ABMSCORE algorithm is that it should be possible for an agent to want to 

leave (or join) a coalition. Reason to Join: The agents want to be in as large a coalition as possible, 

assuming the average type of that coalition is acceptable. The more agents in the coalition, the 

higher |𝐶𝑖| will be and, as such, the higher the value to an agent (assuming the average type of the 

coalition stays the same). Reason to leave: The agents want to be in a coalition that the average 

type is as like them as much as possible, if their current coalition's average type moves away from 

their type value significantly, they will leave.  



  
(a) 𝜆 = 2 (b) 𝜆 = 7 

Figure 9: Screenshots from the simulation showing examples of the number of coalitions that form 

when lambda is (a) two and (b) seven. Coalition membership is shown by both color and position. 

Figure 9 shows the results from two different simulation runs is shown, for different lambda values. 

For (a) lower lambda value of two, an agent cannot deviate too much from a coalitions average 

type before its value payoffs becomes negative; hence, there are more coalitions present in (a) than 

(b), which has a higher lambda value. There are a few interesting phenomena that occur in both 

cases. For the coalition at the top of the screenshot for (a), you will notice a single differently 

colored cow (type 5) (so it is in its singleton coalition); this cow would benefit from joining the 

nearby coalition; however, due to the payoff functions dynamics, that coalitions single happy face 

(type 7) has blocked its membership. Similarly, this is the way the tree (type 0) has been exclude 

in (b).  

We conducted 100 simulation runs for each value of lambda for a total of 2,100. The batch runs 

were conducted on a standard Windows 10 machine, and the simulation was created in the 

NetLogo software package (Wilensky 1999). Symbols graphically represented the different types 

of agents, and the coalitions were uniquely colored to help distinguish them from each other. To 

further help distinguish the coalition, the agents moved to a point on the circle, which represented 

the average type of their group (average type multiplied by eighteen to determine the angle on the 

circle for the focal point). Each run contained 100 agents, who were randomly assigned a type at 

initialization. 

5.2 Worked Example 
To give the reader a better understanding of the algorithm and its mechanism, we consider a very 

simplified example. In this example, we are assuming that only three agents are present: a car 

(type 13), truck (type 14), and plane (type 15). We assume that lambda is two, and each agent 

starts in their singleton coalition. Based on Equation 1, each agent has a current value of two. Now 

we consider what happens when coalitions are suggested. 



Imagine during the first round, a join coalition is first suggested. Randomly, the car and the plane 

singleton coalitions are selected to be evaluated. First, we create a suggested coalition of the car 

and plane. Evaluating this suggested coalition for both agents, we notice that they would both 

obtain a value of two under this dyad coalition. Since this value is not an improvement on their 

current value (of two), both agents reject this suggestion.  

The next type of coalition suggestion considered by the algorithm is the ’exit suggestion.’ Since 

all agents are currently in their singleton coalition, this suggestion has no impact on the coalition 

structure no matter which agent is selected. The next type is the ‘pair suggest.’ Consider the car 

and the truck agent being chosen randomly. Again, we created a suggested coalition of the car and 

the truck this time. The suggested dyad coalition results in a value of three for both agents. Since 

this improves their current payoffs, both agents choose the suggested coalition and are both placed 

in that dyad coalition. This coalition structure, {car, truck}{plane}, is stable, and all other coalition 

suggestions will not result in a change to the coalition structure. 

Note that under the ABMSCORE algorithm, the grand coalition will never form in this example, 

even though it is weakly Pareto optimal stable solution. The reason is that it is not possible to form 

the grand coalition from a coalition structure with an existing pair under the ABMSCORE 

algorithm, and once a pair is formed, one of the agents (either car or plane) does not gain any 

further benefit from joining the grand coalition so will block its formation.  

5.3 Results 
This section presents the results from the 2,100 color-segregation model runs. Each run was 

complete until steady-state had been reached or 10,000 time-steps had passed (though steady-state 

was always reached well in advance of this). The focus of the discussion is on the effects of varying 

the tolerance distance on the final number of coalitions formed. Figure 6 shows a ‘fuzzed’ scatter 

graph of the results. By ‘fuzzed,’ it is meant that the data points were slightly randomly perturbed 

(by adding a small random amount to their values); otherwise, they would be on top of each other, 

making it difficult to visualize (Everitt and Dunn 2010, Lynch, Gore et al. 2021).  



 

 

Figure 10:  Fuzzed scatter plot depicting the number of coalitions formed in relation to 

the tolerance weight variable. The best fit lines are also included. 

Figure 10 shows a scatter plot where the data has been slightly perturbed (fuzzed) for better clarity. 

As the graph shows, there is a rapid decline in the number of coalitions formed as the tolerance 

ratio is increased from zero. 

The graph indicates what might be expected. That is, when the agent’s tolerance is high, then large 

coalitions form, and when it is low, a large number of coalitions, with smaller sizes each, form. At 

the extreme, when every type is tolerated by the agents (i.e., it is not possible to have a negative 

utility), we find that the grand coalition forms, so there is one coalition (which contacts all the 

agents). When the tolerance distance is zero, then the agents will stay on their own or stay within 

an already formed coalition that contains only their type; they will not actively seek others of their 

own type (i.e., the best utility they can obtain is zero, which is the same whether they are on their 

own or in a coalition of their own type). When the tolerance distance is one, then the agent’s 

activity seeks to form coalitions with their own type (since they increase their utility by adding 

more same-type individuals to their coalition); this results in twenty coalitions being formed, 

which is reflective of the twenty types.  

Fitting a line to the graph resulted in the following equation: 

𝑓(𝑥) = 1 + 100
(𝑥 + 1)2⁄  



This line is shown in red in Figure 6. The dotted lines represent when the power of the denominator 

is varied to 1.5 and 2.5, respectively.  

There are several variations that could be conducted to further investigate the emergent 

phenomenon of the color-segregation model. For example, we could vary the number of types and 

agents to see if that impacts the results. We could also vary our initial conditions. In the runs 

presented, all the agents started in the grand coalition, and the coalitions split from there; 

conducting the runs when every agent started in their singleton coalition resulted in similar results 

but with less spread within a fixed tolerance distance value, i.e., at lambda equals zero, all runs 

resulted in 100 coalitions being formed. We presented the results from a grand coalition start as 

that was in line with our previous work (i.e., Vernon-Bido and Collins (2021)). 

5.4 Difference to the original Schelling’s segregation model  
The main difference from Schelling’s segregation model is that our model can achieve stability 

under any tolerance distance. Under certain circumstances (especially when the number of 

available empty spaces is relatively low), Schelling’s segregation exhibits instability when there 

is a low tolerance threshold, i.e., the simulation never has a situation when all agents do not want 

to move. In the color-segregation model, both extremes of coalition formation (the grand coalition 

and the set of singleton coalitions) can be achieved by varying the tolerance distance to its 

extremes, and, more importantly, this formation is stable. Thus, our model provides a stable final 

solution output (assuming adequate simulation rounds completed). 

6 Another important distinction between the two models is that our 

color-segregation model is not location dependent, meaning that 

coalition formation can occur irrespective of the agent’s location. This 

is important when modeling situations of type-based coalition 

formation that is not restricted by physical location, i.e., coalitions of 

political parties or coalitions formed over the Internet. In our model, 

the agent’s payoff is dependent on whole coalition (type average) as 

opposed to just its neighbors, meaning that the whole coalition is 

considered in decisions to join or leave a coalition. However, in 

situations where the agents are not fully aware of their own coalition, 

Schelling’s approach is more appropriate or variations of it; for 

example, Agarwal, Elkind et al. (2020).Discussion 
In this section, we discuss the application requirements of ABMSCORE, practical application 

considerations, and an evaluation of the algorithm. In the application requirements section, we 

discuss some of the requirements of the modeling situation that might make it worthwhile to apply 

ABMSCORE. In the practical application section, we discuss some of the modeling decisions and 

activities that a developer might need to consider when applying the algorithm. Finally, this section 



provides some of the details of the evaluation of the algorithm, especially, how it compares to the 

theorized core partition and actual human behavior. 

6.1 Application Requirements 
In this section, we discuss some of the potential requirements for the application of the 

ABMSCORE approach. These requirements discussed in this section are only suggestions by the 

authors, and their appropriateness will depend on the modeling situation being developed. Initially, 

we discussed some of the general requirements with regards to the simuland (the system to be 

simulated) and the purpose of simulation before discussing some more technical requirements. 

Obviously, the ABMSCORE could be used for situations that include group or coalition formation 

or with situations where existing groups may dynamically change. For this section, we are 

assuming the formation of groups of humans, but the approach could be applied to situations that 

involve any entities or components coming together to form a group. However, the law of 

parsimony implies that incorporation of unnecessary components should be avoided and, as such, 

we advocate that the ABMSCORE approach should only be incorporated if strategic group 

formation is an essential and/or important part of the system under study (called the simuland by 

Petty (2010) and others), for the given purpose that the simulation is being built. For example, 

imagine the student body of a high school; if a simulation is being built to understand the formation 

of cliché over a school year, then ABMSCORE might help; however, if a simulation is being built 

to understand the evacuation of the high school, we would advocate that changes to the cliché will 

be minimal and do not affect the evacuation time, so group formation modeling is not needed in 

this scenario.  

Another reason not to include the ABMSCORE algorithm is when strategic group formation is not 

well-understood. That is, the mechanism and motivations of the simuland regarding the strategic 

group formation are not well understood. Unless the purpose of the simulation is to explore and 

understand these mechanisms and motivations, we would advocate that theory (about the 

simuland’s strategic group formation) first needs to be developed and tested before the simulation 

model can be built. In the next couple of subsections, we discuss some points with regard to 

understanding the simuland’s mechanisms that might be required to implement ABMSCORE. 

 Fixed coalition payoff 

Almost all the applications of ABMSCORE algorithms assume that the coalition's payoff vector 

is fixed. That is, the payoffs an individual gets are purely dependent on a coalition with which they 

are a member. This means that once a coalition forms, the payoff a member receives is fixed. 

Hedonic games model this situation.  

The only application described above where the coalition's payoff is dependent on coalitions 

formed was the El Farol model. Instead of a hedonic game, the El Farol model is closer to a 

canonical coalition game (Saad, Han et al. 2009). Canonical coalition games are a form of a 

cooperative game where the value of the coalition is dependent on the other coalitions. The El 

Farol model is not precisely a canonical coalition game because it is clearly not superadditive, as 

the grand coalition clearly has the worst value, not the best. 



The El Farol model was also the model with the most concerning results, i.e., introductory 

coalitions made the situation worse for the agents, not better. As such, this could be an indicator 

that ABMSCORE method is not appropriate for canonical coalition games. We believe that it has 

been effective in modeling hedonic games because once a coalition has formed, its payoff does 

not fluctuate due to the actions of agents outside the coalition; and it only changes once an agent(s) 

joins or leaves the coalition. Thus, we believe that the canonical coalition game environment is too 

unstable for the ABMSCORE algorithm. In previous research, we had seen problems due to the 

effects of instability when we introduced artificial intelligence, i.e., reinforcement learning, into 

an agent-based model (Collins, Sokolowski et al. 2014). 

This issue of impact in determining the value of a coalition due to events outside the coalition is 

also why we do not believe that the ABMSCORE algorithm will be effective if applied to 

transferrable utility (TU) games. The payoff vector, or imputation, of a coalition in TU games is 

dependent on what other coalitions could form; agents use these potential coalitions as bargaining 

chips when determining how the coalition’s value will be split amongst agents. Hence, whether a 

coalition forms and the resultant payoff vector is dependent on what other coalitions have formed. 

There might also be concerns with other forms of NTU since, in the strictest sense of an NTU 

game, an individual’s payoff is not fixed in a given coalition, and internal bargaining must occur 

(Chalkiadakis, Elkind et al. 2011). Hence, we have concerns about applying ABMSCORE beyond 

hedonic games. 

 Benefit 

Another requirement of the scenario being modeled for ABMSCORE to be useful, is that there 

must be a possibility that, under the right conditions, an agent would want to leave a coalition and 

that, under probably different conditions, an agent would want to join a coalition. That is, 

sometimes there are conditions where the agents desire to leave the coalitions they are in, and 

sometimes they desire to join a new coalition. In a super-additive hedonic game, there is never a 

situation where an agent or group of agents would want to leave the coalition to form a smaller 

one (assuming the V(.) in equation 1 is a vector, as would be appropriate for a hedonic game). 

Super-additive games always result in the grand coalition forming. Similarly, if there is never a 

reason to join a coalition, then the agents would remain in their singleton coalitions or degrade 

into them (because they are individually rational). Table 1 shows the expected outcomes from 

having some, or none, of these requirements. 

Table 1: Expected results from having, or not, different characteristics of the modeled scenario 

Potential beneficial reasons To leave coalition None 

To join coalition Dynamic situation that could 

be modeled with 

ABMSCORE 

Grand coalition  

None Singleton coalitions Static 

 

Beyond the requirement of needing these two desires in the agent, there is also a requirement to 

have a balance of these two desires. If one desire is far stronger or far more common, then we will 

just end up in a situation of either the grand coalition or all singleton coalitions. However, this 



imbalance could be used to help verify and validate the simulation as well. By setting the desires 

to extremes, we would expect the grand coalition, or all singleton coalitions, to be observed. If this 

is not the case, then it should be questioned why. This approach was used in both the refugee model 

and the farming model. 

6.2 Practical application 
One of the main motivations behind this paper comes from discussions with potential users of 

ABMSCORE; who are interested in the approach but do not know where to start or whether it is 

completely appropriate for their situation. Some of the requirements for ABMSCORE are 

discussed above, and the model section gives a detailed overview of technical specifications. The 

code for the Color Segregation model was written so that a user could, hopefully easily swap out 

their modeling requirements within the code structure. However, these technical specifications do 

not answer all the questions that a user might have; this section provides more details on the actual 

practical application of ABMSCORE. This includes a discussion on extreme input testing, 

initialization, and convergence. 

 Extreme Input Testing 

Extreme Input Testing is a method used in software testing to tell whether the software behaves as 

expected at the boundaries of the input domain (Balci 1998). It is a form of boundary value 

analysis, though it is discussed here from an assertion-checking standpoint. Simply point out, if 

the expected behavior is known at the extremes of the input values (i.e., minimum and maximum), 

then the model should behave as expected at these extremes. In our models, we consider the 

extremes to be the desire to leave or join a coalition. 

Earlier, it was discussed how the model would behave under different desires to leave or join a 

coalition; the outcome of these desires is shown in Table 1. If these different desires are explicitly 

included numerically as independent aspects of the utility function, then they can be weighted, and 

the extremes can be investigated. Ideally, for conducting this type of testing, if your utility to agent 

‘i’ of being part of coalition ‘s,’ can be put in the form:  

𝑈(𝑖, 𝑠) = 𝜆𝑈𝐽𝑜𝑖𝑛(𝑖, 𝑠) + (1 − 𝜆)𝑈𝑙𝑒𝑎𝑣𝑒(𝑖, 𝑠) 

This is where 𝑈𝐽𝑜𝑖𝑛 is a utility function that deals with the reason an agent might join the coalition. 

𝑈𝑙𝑒𝑎𝑣𝑒 is a utility function that deals with the reason an agent might leave a coalition. 𝜆 is the 

exponential weight; when it is zero you should observe, in your simulation, no agents joining a 

new coalition and, probably, the singleton coalitions forming; when it is one, you should observe 

no agents leaving a new coalition and probably, the grand coalition forming. 

The refugee egress model, discussed in section 4.2, is used here as an example to give you a better 

understanding of this utility split. In the refugee movement model, the agents gain benefit from 

being in a larger group (safer in numbers); as such, their 𝑈𝐽𝑜𝑖𝑛 is determined by coalition size. 

Slightly more complicated is their 𝑈𝑙𝑒𝑎𝑣𝑒. The agents want to move as fast as they can, and their 

coalition moves at the average speed of its members; thus, they have an incentive to leave a slow 

coalition, or form a sub-coalition of faster members and split the coalition. In Figure 11, you can 



see how the agents have split into various coalitions, with the larger coalitions being slower than, 

the smaller ones. 

 
 

 

Figure 11:  Screenshot from Refuge movement model, with agents moving from right to left. 

The color and location of the agents shows which coalition they are currently a member. 
 

Other models discussed in the applications section also have this split in utility. For example, in 

the small-hold farming collaboration, the agents must weigh autonomy with cost savings. 

Determining whether your model acts as expected at the extremes can be part of the validation 

process for the simulation.  

 Initialization 

When applying the ABMSCORE approach, the developer must consider the agents' initial 

coalitions. Unless the modeler has collected detailed data on the initial coalitions of the system, it 

is unlikely that initial coalitions will be known (as knowing which coalitions will form is likely 

part of the reason for using the ABMSCORE approach in the first place). As such, we advocate 

again for the extremes: either all agents start in their singleton set or all agents start in the grand 

coalition. Obviously, if you expect your agents to end up in the grand coalition (singleton 

coalitions), we would suggest that you use initialize in the singleton coalitions (grand coalition).  

In some cases, it has been shown not to matter whether you start in either extreme (Vernon-Bido 

2022); analysis of the refugee movement model also found that initial starting groups do not matter. 

However, it is not difficult to imagine situations where it does matter, especially if the benefits of 

joining and leaving are not balanced In case simulation results are sensitive to the initial coalition 

structure, sensitivity analysis could be conducted by considering variations in the start-up structure 

or even considering the other extreme. This would be part of a wider validation plan as, if the 

simulation is sensitive to the startup conditions, one will need to be able to justify that sensitivity. 



In some simulations, a warm-up period can be used to mitigate the effects of inaccurate 

initialization. A warm-up period allows the simulation to run for a certain number of rounds before 

any results data is collected. A warm-up period allows the simulation to compensate for any 

extremities in parameter value, from inaccurate initialization, through the simulation’s dynamic 

negative feedback loops. Determining how long a warm-up period should be is non-trivial. 

Robinson (2007) provides a discussion on a statistical approach to determining the warm-up 

period. From an experienced viewpoint, Bandyopadhyay and Datta (1990) suggest that you double 

any estimate you create for the warm-up period. 

 Convergence 

A common focus of academic simulations is on their ability to reach steady-state (Law 2015). 

However, many real-world systems of interest, especially human systems, are not in a steady state 

and will probably never be. Salt (2008) calls the academic obsession with steady-state the ‘dead 

fish fallacy.’ However, understanding the steady-state of simulation can be useful in understanding 

the system. Ideally, the simulation converges to a known solution. For hedonic games, this could 

be one of several different solutions based on the stability criteria considered, e.g., core partition, 

Nash stable solution, individually stable solution, etc. (Bogomolnaia and Jackson 2002). Our 

research has predominantly focused on the core partition, which we call a stable solution, due to 

its prevalence in the literature. In this section, it is discussed the difficulties of convergence to a 

known solution or even approximations of that solution. 

 

Convergence of the ABMSCORE algorithm to the core partition is not guaranteed for every 

conceivable game. It is possible to construct games that will never converge, as Bonifaco, Inarra 

et al. (2020) constructed a series of cooperative games in which the ABMSCORE algorithm, or 

any similar algorithms, would never converge to a core partition. In fact, a stable solution was 

found for the neighborhood strength problem, which could never be reached by the algorithm; this 

solution involved two coalitions that had members interlaced with each other (Collins and 

Frydenlund 2018). A simple example is as follows: consider a game such that being in a pair is the 

worst situation and being in a set of three is the best. This can be represented, mathematically, as 

follows: 

V({i})  =  1, V({i, j})  =  0, V({i, j, k})  =  3, ∀i, j, k ∈ N 

V(S) = 1 ∀S ⊆ N s. t. |S| > 3 

If the agents start in their singleton sets, they will never reach the grand coalition using the 

ABMSCORE algorithm (because, at most, two existing coalitions are considered in any potential 

updates, but you need three coalitions to be considered to get over the lower pair value). 

There might not even be a stable solution in the first place. Collins, Etemadidavan et al. (2022) 

showed that about 6% of hedonic games do not have a core. We suspect that the application of the 

ABMSCORE algorithm to the El Farol algorithm does not have a stable solution. 

 



Given these difficulties, there is no guarantee that the ABMSCORE algorithm will find a stable 

solution. In a simulation experiment on glove games, Vernon-Bido and Collins (2021) found that 

over 90% of their simulation runs found a core partition (stable solution) after 100,000 time-steps. 

However, their work found an eight-player glove that failed to converge 25% of the time; the 

reason for this lack of convergence is due to the particular complexities of that game.  

An obvious question is how ‘close’ the output of the simulation runs that did not find the stable 

solution. Unfortunately, there is not a simple answer to this issue since the output of the algorithm 

is a partition and what is meant by ‘close’ is difficult to define. In other problems that have a single 

value or vector as an output, closeness can be easily defined by standard metric measures. 

However, our output is a partition; it is not clear what is meant by close, as it could be one of 

several ideas, e.g., the number of agents in the ‘wrong’ coalition, similar coalition structure, 

number of coalition agents moves required to reach core partition, etc. A possible means to resolve 

this issue is discussed in Collins (2020), which includes a novel approach of comparison using 

Hamming distances. Some have employed hamming distances to compare partitions (Mirkin and 

Chernyi 1970, Rossi 2015). These distances do not take into account the complexities of the game. 

For example, consider the partition (12)(34)(5) which is only two joins away from the (12345); 

this might seem relatively close; however, if subsets (1234), (125), and (345) all have bad payoffs 

for their members, then they will never form so (12)(34)(5) will never be morphed into (12345). 

As such, with regards to the ABMSCORE algorithm, we have avoided defining closeness. 

 

 Validation 

Validation is an important step for any development of simulation, as it helps provide creditability 

of the simulation’s results to the simulation’s customer (Petty 2010). Agent-based models are a 

particular simulation paradigm and have certain nuances when it comes to validation (Hill, Carl et 

al. 2006, Macal 2016, Collins, Koehler et al. 2023). There is one aspect of validation that we will 

discuss here is the concepts of microvalidation and macrovalidation (Moss and Edmonds 2005). 

The latter is concerned with ensuring the modeled systems behave as the real-world system does. 

Microvalidation is ensuring that the computerized agents in an ABMS behave like real-world 

actors. We would argue, if possible, to focus on macrovalidation, with regards to ABMSCORE 

because data on actual human strategic coalition formation is very limited. We have conducted 

some limited experiments on human behavior, as it compares to the ABMSCORE’s behavior, but 

the results are limited (Grigoryan, Etemadidavan et al. 2022). The ABMSCORE algorithm, itself, 

has been compared in several ways. 

6.3 Evaluation of Algorithm 
We have conducted several studies to evaluate the algorithm. These range from comparing the 

algorithms to an idealized solution, the core, to actual human behavior. These evaluations are not 

a validation of the algorithm because they are not for a specific real-world purpose; a simulation 

can only be validated for a purpose; you cannot just generally validate a simulation (Petty 2010).  

Comparing the outcomes of the algorithm to an obvious modeling alternative, known as docking 

(Axtell, Axelrod et al. 1996), is one evaluation approach. The obvious model to compare to is 



cooperative game theory, specifically the core. As discussed, finding the core of a game is NP-

complete (Ballester 2004); as such, there is a limitation on size that can be compared. As already 

mentioned, Vernon-Bido and Collins (2021) compared the ABMSCORE algorithm for a particular 

type of cooperative game, known as the glove game, for games with up to nine agents and found 

the algorithm found a core solution, which is stable, over 90% of the time. The core is actually a 

collection of core partitions, for hedonic games, and Vernon-Bido and Collins research also 

showed that only a fraction of the core partitions were reached, implying that some core partitions 

are easier to find than others. The number of agents considered was increased to 15, with similar 

results (Vernon-Bido 2022). 

Comparing to other models is one means of evaluation. Another approach is to comparison is to 

compare to actual human behavior. Humans are not generic, and you would expect different people 

to play the game in different ways. From Collins and Etemadidavan (2021) it was shown that some 

demographics, like education level, did not matter; however, the review of the demographics was 

not comprehensive. Again, using a glove game, it was shown the agents were consistent with the 

algorithm at the individual agent decision level (Collins, Etemadidavan et al. 2020), and the rate 

of finding a core solution was consistent (Grigoryan, Etemadidavan et al. 2022), but only 42% of 

the time did the human players find the macro-level core partition. 

The low rate of human players finding the core partition might seem concerning. However, it 

should be remembered that a core partition is an outcome of cooperative game theory. This implies 

that the cooperative game theory solution is not reflective of actual human play. This problem has 

been discussed within the literature and is the reason for the rise of behavioral game theory 

(Camerer 2011). Given this discrepancy between the theoretical solutions and real-world solutions, 

it would be impossible for ABMSCORE to be comparable to both.  

 Weakness of the algorithm 

The discussion earlier in this section has discussed many of the weaknesses of the ABMSCORE 

modeling approach. These are: it is not guaranteed to converge, it does not necessarily reflect 

human behavior, and it requires several criteria of the simuland to be useful. There are others, i.e., 

it is stochastic, so there is no guarantee the same result will be reached if the simulation experiment 

is completed; however, all modeling approaches are limited, but interesting results have been 

achieved, in the past, with the algorithm. To put this another way, as George Box says “all models 

are wrong, some are useful” (Box 1979). 

7 Future Development 
There are two areas of future advancement for ABMSCORE. Firstly, the algorithm has been 

improved once, so it potentially could be improved again. Secondly, new application areas can be 

derived. 

7.1 Future Advancement 
Vernon-Bido and Collins (2021) were able to improve the original algorithm, presented in Collins 

and Frydenlund (2018), from as little as 34% to 90%, in terms of finding a core partition in a glove 

game. This was achieved by introducing new procedures to the algorithm that specifically 



replicated certain behaviors in the coalition suggestions each round, e.g., pairing, splitting, etc. It 

is feasible that further improvements could be made. 

Vernon-Bido (2022) investigated several different improvements including the ordering of the 

coalition suggestions and using grand coalition starts. Neither case resulted in an improvement to 

the algorithm. Other possibilities for change could be how the “left over” coalition is handle (i.e., 

the coalitions that have had members leave to join better coalitions); at present, they still remain a 

coalition, but they could disintegrate into singleton coalitions, as suggested in Bonifaco, Inarra et 

al. (2020) and used in Murnighan and Roth (1980). However, small scaling testing of this idea did 

not result in any improvement. 

One promising idea is for the agents to use a simulated annealing-like approach, where they are 

willing to accept a slightly worse coalition for the purposes of exploring the solution space. 

Simulated annealing is a heuristic method used in Monte Carlo simulation to find optimal solutions 

to given numeric problems (Van Laarhoven and Aarts 1987). Simulated annealing has successfully 

been applied in an ABMS environment previously (Lapp, Jablokow et al. 2019). 

7.2 Future Application 
There are several different directions we would like to explore with the ABMS core algorithm, 

especially within the human modeling arena. One application would be to advance the famous 

sugarscape model (Epstein and Axtell 1996) to include coalition formation; it would be interesting 

to see what groupings would form. Another application is to introduce coalition formation into 

ABMS the organization of businesses, especially project-based team environments (Tsvetovat and 

Carley 2004, Zhao, Chong et al. 2022). The purpose of the introduction could be to investigate the 

events of coalition formation on the output of the organizations, i.e., design output from large 

design teams (Lapp, Jablokow et al. 2019).  

Cooperative game theory has a long history of modeling political situations, including voting 

games and coalition formation in legislative bodies (Chalkiadakis, Elkind et al. 2011). An obvious 

application of ABMSCORE algorithm is to model legislative bodies, especially those that involve 

hundreds of members as finding the core solution of such large games is beyond our current 

computational capability. The ABMSCORE algorithm is embedded in an agent-based model  

(ABM) and the strength of that modeling approach is that it can incorporate: modeling high levels 

of complexity, heterogeneity, and autonomy.  This means that ABMSCORE might be useful in 

providing insight the formation of coalitions in legislative bodies or even insight into the voting 

outcome of proposed legislative. The authors do not believe that ABMSCORE could be used to 

predicate the outcome of such a process; however, prediction is only one reason to model (Epstein 

2008), and other reasons might be appropriate like insight into the system and to illuminate core 

dynamics of the system. More importantly, modeling provides a safe means to examine scenarios 

when the system breaks down.  

8 Conclusions 
This paper provides an overview of the application of the ABMSCORE algorithm in agent-based 

models. The paper provides a detailed introduction to the algorithm as well as descriptions of past 

applications. The purpose of discussing the different applications is to show the veristically of 



ABMSCORE applications. It introduces the color segregation model, which is based on 

Schelling’s famous segregation model. The paper also provides a detailed discussion of the 

application requirements for the algorithm and some practical considerations. 

The algorithm can be considered under certain circumstances to be useful. It must be possible for 

the agents in the systems to have some benefit from joining a coalition. similar, it must be feasible 

that the agents might want to leave a coalition under certain circumstances. Each agent must have 

a fixed utility for a given coalition; otherwise, the coalition structure would be in constant flux. 

The paper intends to provide researchers with all the tools they need to apply the ABMSCORE 

algorithm to their appropriate modeling problem. We will continue advancing the algorithm and 

applying it to new situations like organizational structures. 
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