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Abstract

It has been a challenge to integrate human behavior into agent-based models. There are many
different types of human behaviors; one example is strategic group formation. Strategic group
formation, or strategic coalition formation, is when an individual decides to collaborate with others
because it is strategically beneficial to them; that is, it increases their expected utility of the given
situation. Recently, an algorithm called ABMSCORE was developed to help model strategic group
formation in agent-based models. The ABMSCORE uses concepts from cooperative game theory,
traditionally used to model strategic group formation (specifically, hedonic games are considered,
they are games where each agent has a preference relation over coalitions). This algorithm has
been applied to various situations, including refugee egress and small-hold farming cooperatives.
This paper provides a detailed discussion on ABMSCORE, including its mechanism,
requirements, limitations, and application. To demonstrate the potential of ABMSCORE, a new
application example is given; this application is based on a complex version of the Thomas
Schelling’s segregation model. The intent of the paper is to provide the potential user with enough
information so that they can apply ABMSCORE to their simulation products.

Keywords: Agent-based simulation, coalition formation, strategic cooperation, cooperative game
theory

1 Introduction

The integration of models of human behavior within agent-based modeling and simulation
(ABMS) is an important advancement for simulation (Cheng, Macal et al. 2016), especially when
modeling human decision-making (An, Grimm et al. 2020). Modeling human behavior is not a
one-size-fits-all endeavor, and there have been several attempts to include aspects of it within
ABMS (or simulation as a whole), for example, Bratman’s theory of intention (Bratman 1987) in
Belief-Desire-Intent (BDI) models (Rao and Georgeff 1995) or the Rescorla-Wagner’s model of
learning (Rescorla and Wagner 1972) in Agent Zero (Epstein 2014). A more recent attempt is the
integration of strategic coalition (or group) formation using the ABMSCORE algorithm (Collins
and Frydenlund 2018, Vernon-Bido and Collins 2021).

The purpose of this paper is to bring together the work on the ABMSCORE algorithm to provide
a clear and detailed description of the generic version of it. This description is achieved using the
latest version of Overview, Design concepts and Details (ODD) protocol (Grimm, Railsback et al.
2020); a standard approach for describing agent-based models. The intent of this description is to
provide potential users with an easy-to-use guide for using the ABMSCORE algorithm. To this
end, several applications of the ABMSCORE are discussed as well as the application requirements.
These applications include a new application that was specially designed to demonstrate the usage



ofthe ABMSCORE algorithm, which is based on Schelling’s famous segregation model (Schelling
1971).

The ABMSCORE algorithm attempts to model strategic coalition formation by emulating a
solution mechanism from cooperative game theory, specifically, the core partition from hedonic
games. A coalition is a subset of agents that come together for some purpose, it is assumed, in this
work, that agents can only be a member of one coalition at any given time, which is a standard
assumption in the field of cooperative game theory (Thomas 2003). Hedonic games are a form of
non-transferrable utility cooperative games where each agent has a preference relation over the
coalitions (Banerjee, Konishi et al. 2001, Bogomolnaia and Jackson 2002); a core partition is a
collect of stable disjoint covering coalitions of agents; by stable, it is meant no subset of agents
has an incentive to form a new coalition, based on their preferences in the hedonic game (Banerjee,
Konishi et al. 2001).

The algorithm works by dynamically allowing the agents to suggest new coalitions to fellow
agents, with the affected agents determining if they would form that coalition. Some example
suggestions include merging two existing coalitions, forming sub-coalitions of an existing
coalition, or other splitting of the coalitions. The intent of the algorithm is to emulate human
coalition formation (Grigoryan, Etemadidavan et al. 2022) and eventually find the core partition
(Vernon-Bido and Collins 2021).

Cooperation is fundamental to the success of the human race. This point was highlighted by the
Nobel prize winning economist Milton Friedman, who once observed that no one individual would
make a modern pencil from scratch; this tasks requires thousands of autonomous individuals or
groups (Friedman and Friedman 1980). They followed this observation with the following quote:

"It is even more astounding that the pencil was ever produced. No one sitting in a central office
gave orders to these thousands of people. No military police enforced the orders that were not
given. These people live in many lands, speak different languages, practice different religions, may
even hate one another - yet none of these differences prevented them from cooperating to produce
a pencil."

Without centralized control, who cooperates with whom? What coalitions form between these
autonomous agents? It is these types of questions that the ABMSCORE algorithm was designed
to explore and provide insights.

This paper first discusses the lead-up and demand for developing the ABMSCORE algorithm. This
is followed by a detailed description of the algorithm. Several applications are discussed, including
the El Farol bar problem (Collins 2019), the refugee movement (Collins and Frydenlund 2016),
small-hold farming cooperatives (Collins and Krejci 2020), and our new color segregation model.
The paper then discusses the modeling scenario requirements for using the ABMSCORE
algorithm. Finally, the paper finishes with a discussion on future development and conclusions.

2 Background

This section provides a brief introduction to agent-based modeling and simulation (ABMS). This
is followed by a discussion on modeling strategic group formation, which is traditionally modeled



by game theory. A discussion on the hybrid combination of ABMS and game theory is provided
before the ABMSCORE background and history are introduced.

2.1 Agent-based Modeling and Simulation (ABMS)

ABMS is a simulation modeling paradigm that focuses on modeling autonomous, heterogeneous
agents and their interactions. The power of ABMS comes from emergent macro-level phenomena
(or system-level) being observed from the micro-level interactions of the agents (Miller and Page
2007). This simulation paradigm allows the modeler to create simulations that help explain and
discover system-level behavior (Epstein 2008, Macal 2016), which might not be apparent from
empirically observing the system. ABMS can provide insight into systems that might not exist, or
it can provide an understanding of the effects of potential interventions in a system, i.e.,
governmental policy changes (Wilensky and Rand 2015).

Unlike other modeling methods, it does not aggregate or assume homogeneity amongst the
population under consideration. Aggregation can result in erroneous conclusions about the
systems’ behavior, for example, Miller and Page (2007) discuss this issue through examples of
modeling standing ovations at a theatre performance and bees defending their hive. Thus, the
strength of ABMS comes from autonomous, heterogeneous agents without a centralized controller
(Wilensky and Rand 2015) because a phenomenon can emerge that was not hard-coded into the
simulation model. As such, ABMS has been used to model various large systems because it is
difficult to collect empirical observations about them due to scale, ethical, or temporal constraints.
For example, ABMS has been used to model historical events (Hill, Champagne et al. 2004),
economic systems (Tesfatsion 2002, Axtell 2005, Farmer and Foley 2009), organization structures
(Tsvetovat and Carley 2004), social systems (Schelling 1971), evacuations (Helbing, Farkas et al.
2000), or biological systems (Reynolds 1987). More recently, ABMS has been used to model team
performance (Lapp, Jablokow et al. 2019), the spread of the COVID-19 pandemic (Kerr, Stuart et
al. 2021), and many more. Critically, traditional agent-based modeling has not incorporated
strategic group formation behavior (Vernon-Bido and Collins 2021).

2.2  Modeling Strategic Coalition Formation

However, the autonomous individualism of agent-based modeling has its limitations. As already
alluded to, humans cooperate and collude to achieve mutually beneficial goals, be it a sports team
or hunter-gatherer tribes. We would argue that humans have been so successful as a species
because of their ability to cooperate and form groups; as such, there is merit in trying to model
humans acting in a group. However, it becomes difficult to model groups of agents acting together
while still maintaining their autonomy. That is, how do you model groups of rational actors moving
towards a common goal but still have each individual retain control over their own actions and
destiny? What if the group is no longer of benefit to the individual agent? Can it leave? Can it join
a different group? These strategic questions and more led us to develop the ABMSCORE
algorithm.

We tried several approaches (Elzie, Frydenlund et al. 2014, Collins, Vernon-Bido et al. 2017,
Roberts and Collins 2018), but our research focus has been on the ABMSCORE algorithm
discussed in this paper (Collins and Frydenlund 2018, Collins and Etemadidavan 2021, Vernon-
Bido and Collins 2021, Grigoryan, Etemadidavan et al. 2022, Collins, Jayanetti et al. 2023). Before



we introduce the ABMSCORE algorithm, it is necessary to introduce the cooperative game theory
on which it is based.

The main method used to model strategic group formation, or as it is more commonly known,
strategic coalition formation, is cooperative game theory. Game theory is the mathematical
modeling of situations of more than one decision-maker, and it is a critical modeling approach in
economics (Eatwell, Milgate et al. 1987). Normal-form game theory is the dominant method of
applying game theory, which involves solution mechanisms like the Nash Equilibrium (Nash 1951,
Fudenberg and Tirole 1991). However, the normal-form game theory and the Nash Equilibrium
become unwieldy in situations that involve more than two players (agents); as such, cooperative
game theory was proposed as an alternative modeling approach. Technically, cooperative game
theory was introduced by von Neumann and Morgenstern (1944) in their canonical book “Theory
of Games and Economic Behavior,” however, Lloyd Shapley (1953) was the individual who
demonstrated it as a serious technique.

Nash Equilibrium quickly becomes computational complex for games as the number of players
increases. As such, alternative solution mechanisms need to consider, for example, the Shapley
value (Shapley 1953) and the Core (Gillies 1959). The Shapley value assumes superadditivity,
which means the grand coalition (the coalition that includes all players) will form; however, we
were interested in a variety of different coalition structures (covering sets of disjoint coalitions
over the players), so it is the core that is the inspiration for the ABMSCORE algorithm.

In its essence, the core of a cooperative game represents the coalition structure of the players,
where no subgroup of players has an incentive to form a new coalition. Like the Nash Equilibrium,
there can be more than one solution that fits the core’s criteria, or even none (Collins,
Etemadidavan et al. 2022). Strictly speaking, this work considers the core partition (Banerjee,
Konishi et al. 2001); the core partition is the core equivalent for hedonic games (Iehlé 2007).

Cooperative game theory is, technically, a two-part problem: (1) which coalitions will form among
the decision-makers (agents/players) and (2) how the payoffs will be distributed amongst the
coalition members (Chakravarty, Mitra et al. 2015). To simplify finding the solution, we remove
the second problem by only considering non-transferable utility (NTU) games, specifically
hedonic games (Banerjee, Konishi et al. 2001, Bogomolnaia and Jackson 2002, Collins, Thomas
et al. 2019). Unsurprisingly, due to them reducing the complexity of the problem considered,
hedonic games have grown in popularity over the last twenty years (Chalkiadakis, Elkind et al.
2011, Collins, Etemadidavan et al. 2022). However, even with a reduction in the complexity of
games, there is difficulty in solving hedonic games. Ballester (2004) showed that finding the
solution to a hedonic game is NP-complete. Since proving P = NP is beyond the authors' capability,
we are driven to develop a heuristic approach to finding appropriate solutions; the effectiveness of
our approach to do this is discussed in section 6.2.3. Our focus was on integrating this heuristic
within an ABMS so that strategic coalition formation could be included in that modeling paradigm.
Others have combined ABMS and game theory in previous applications, which we will discuss in
the next section. A detailed review about the application of cooperative game theory can be found
in Grigoryan and Collins (2021), and for agent-based modeling the work by Gilbert (2019).



2.3 Game Theory and ABMS

Our approach to using the ABMSCORE algorithm is not the first application of game theory within
an ABMS context. For example, Hill, Champagne et al. (2004) connects game theory and agent-
based modeling by combining a search game (another game theory type) and ABMS to simulate
the search for U-boats in the Second World War. Szilagyi (2012) attempts to solve simplified
versions of famous agent-based models using game theory approaches.

Specifically focusing on cooperative game theory, there have been several attempts to connect it
with ABMS. Bonnevay, Kabachi et al. (2005) used agent-based modeling to simulate a cooperative
game, whereas our ABMSCORE approach incorporates cooperative game theory concepts into
ABMS. More related to our approach, Janovsky and DeLoach (2016) created a heuristic for finding
the core in a multi-agent environment; this has similarities to the ABMSCORE approach but is
focused purely on algorithm development as opposed to its application. Finally, Taywade,
Goldsmith et al. (2018) created decentralized heuristics for solving a particular type of hedonic
game (i.e., additively separable games); the ABMSCORE approach can be applied to all hedonic
games.

As previously mentioned, both game theory and ABMS have weaknesses as modeling paradigms,
i.e., cooperative game theory is computationally intensive, and agent-based models cannot model
strategic group formation. A hybrid simulation is a modern approach to trying to overcome a
modeling paradigm’s weaknesses by incorporating another modeling approach into the model
(Brailsford, Eldabi et al. 2019). The ABMSCORE approach described in this paper is an attempt
to do just that; enriching agent-based modeling by incorporating cooperative game theory elements
within it to model strategic group formation.

The obvious initial question is, why create a hybrid model? ABMS is used to model lots of humans,
and when humans come together, they form mutually beneficial groups (Graeber and Wengrow
2021); however, traditional ABMS does not take into account this grouping effect; as such, if we
are going to better improve the modeling of human behavior in ABMS (Cheng, Macal et al. 2016),
then there is a need to incorporate strategic group formation (Collins and Frydenlund 2018).
Hence, there is a need for the ABMSCORE algorithm.

2.4  ABMSCORE algorithm

In this section, we present the history of ABMSCORE usage over time. Also, the scenarios that
employed ABMSCORE are briefly presented to provide examples of the the algorithm’s
application. More details about the example scenarios can be found in the application section of
this paper; the intent of this section is to provide a timeline and a brief introduction to the
applications.

In 2015, the first version of the ABMSCORE algorithm was demonstrated in a presentation at the
2015 Swarmfest conference at the University of South Florida, Colombia (Collins, Frydenlund et
al. 2015). The intention of this presentation was to introduce the concept of strategic group



formation in the context of ABMS. Swarmfest participants were mainly academics that used
ABMS in their research; hence, a sensible audience for this presentation.

ABMSCORE algorithm's first application studied agents interacting in a Von Neumann
neighborhood (Collins and Frydenlund 2016). The goal of this application was to explore the
coalition formation behavior between agents that are homogeneous (keeping agents’ strengths
constant) or heterogeneous (varying agents’ strengths). The results focused on the size of the
emergent coalition sizes, with a dominant coalition of approximately 60% of agents emerging.
Collins and Frydenlund (2018) have further extended this scenario to describe the possible group
formation configurations, and new ways to represent the simulation runs due to the complexity of
the output.

In 2016, another scenario related to refugee flight employed the ABMSCORE algorithm (Collins
and Frydenlund 2016). Collins and Frydenlund (2016) analyzed the coalition formation of the
refugees, varying their speed levels and estimating the variation effect on agents’ coalition
formation decisions. The simulation results indicated that the refugees ended up in a grand
coalition when the pace to reach the destination was not their primary focus, but “safety in
numbers” was the focus. As the importance of pace increased, sub-coalitions formed because the
agents could move relatively fast while enjoying the benefits of being part of a coalition. Finally,
if the pace was the most important factor, the agents all end up in their singleton coalitions,
representing sheer panic.

In 2018, the classic ABMS problem was considered, namely, the EL Farol bar problem (Collins
2017). The EL Farol Bar problem focuses on the rates of overcrowding when patrons are trying to
avoid an overcrowded bar. The main objective of deploying the ABMSCORE algorithm to this
problem was to study how coalition formation affects the overcrowding of the bar. The results
showed that allowing agent coalitions results in an undesirable scenario for everyone.

Collins and Krejci (2018) used the AMSCORE algorithm to explore small-hold farming
cooperatives in regional food systems. The authors analyzed the trade-off of farmers joining
transportation cooperatives at the cost of their autonomy of decision (a trait that farmers have been
shown to highly value). This problem prevails especially for small-scaled and mid-sized farmers
who struggle with logistic activities to transport goods from rural areas to distant urban sites. The
results of the analysis demonstrated that the farmer agents form singleton coalitions when either
their preference for autonomy is too high, or they consider the impact of distance between farms
is too significant.

In 2021 Collins and Etemadidavan (2021) adopted ABMSCORE to study human behavior by
incorporating human subject experiments. Understanding human behavior has always been an
essential but challenging question to investigate due to humans' constantly evolving behavior. This
work (Collins and Etemadidavan 2021) uses the glove game, a classic game, to create an
interactive simulation to conduct a coalition formation experiment. The work tested if having game
theory experience affects humans’ decisions when forming coalitions in an interactive simulated
environment. The results showed no association between experiment participants’ game theory



experience and their coalition formation decisions. More importantly, it showed that the human
subjects did not always form the coalition structures predicted by cooperative game theory.

2.4.1 Advanced version of the ABMSCORE algorithm

The ABMSCORE algorithm is split into three parts: coalition suggestion, coalition evaluation, and
coalition updating. Suggestions to the agents are made each round of the algorithm; the form of
these suggestions is a new coalition. The agents, that would be members of this new coalition, all
evaluate the new coalition and if they all decide it is beneficial for them to move to it. If all affected
agents would benefit, then it is signaled that this new coalition is acceptable and should form. If
the new coalition is formed, its members are removed from their existing coalitions; this means
that several new coalitions will be created: the suggested one plus the coalitions formed from the
remaining agents after the removal of agents from their old coalition to create the suggested
coalition. For example, consider the case of four agents that are currently in the grand coalition
(1234), if coalition (12) was suggested and accepted by agents / and 2, then it would form; this
would mean that the coalition structure of the agents would be the two coalitions: (12)(34).

In the original ABMSCORE algorithm, presented in Collins and Frydenlund (2018), the suggested
coalitions were randomly generated subsets of the agent pool. Vernon-Bido and Collins (2021)
advanced this approach by incorporating various coalition suggestion types, including joint
coalitions, exit coalitions, pair coalitions, defect coalitions, split coalitions, and singleton
coalitions. They showed that these new coalition suggestions helped speed up the process of
finding a stable solution. The original (Von Neumann Neighborhood), refugee, and El Farol
models were all created using the original algorithm. The farming and glove game models used
the advance version; so is the color segregation model presented in this paper. The next section
provides a detailed overview of the ABMSCORE approach.

3 Model

It has been advocated that there is a need for standardization in the way agent-based models are
presented (Angus and Hassani-Mahmooei 2015, Collins, Petty et al. 2015). One defacto standard
is the Overview, Design concepts, Details (ODD) protocol, presented by Grimm, Berger et al.
(2006). They suggested the ODD protocol to describe agent-based model attributes from various
descriptive angles to help facilitate model replication. The protocol was further advanced by
Grimm, Railsback et al. (2020), and it is this newer version that we describe the structure,
dynamics, and workflow of the ABMSCORE algorithm. ODD consists of seven elements and we
will be described in turn. Each element serves a different purpose in describing the algorithm to
have a more holistic description.

3.1 Purpose and patterns

ABMSCORE algorithm aims to model strategic coalition formation and the situations or
conditions associated with the coalition formation within a particular ABMS modeled scenario.
We call the resultant simulation ‘the parent simulation,” with which the ABMSCORE algorithm
is part. The algorithm, as indicated previously, employs cooperative game theory concepts, which
can be used to determine the effect of coalition formation on the problem of interest. For example,



Collins and Frydenlund (2016) used the ABMSCORE to study coalition formation in the refugee
flight problem. Different coalition formation preferences are possible, such as being in a singleton
coalition, subcoalitions, or a grand coalition.

Patterns: Patterns explored are the agents’ actions to remain or leave the coalition given some
utility functions. The utility of joining or leaving the coalition is associated with benefits gained
from a coalition.

3.2 Entities, state variables, and scales

The algorithm uses a cooperative game theory solution concept called core, which is the set of all
possible payoft allocations that cannot be improved upon by any other coalition. The core is well-
defined but can be empty, and it is not always unique. Core not being unique means that there may
be multiple coalition structures satisfying the core requirements. Strictly speaking, core partitions
are considered in the algorithm, which is the hedonic game equivalent to the core (Iehlé 2007) and
focuses on coalition structures.

Agents: Members, also called players, are the simulated agents.
Environment: Abstract location where agents can communicate and interact.

State variables: Each modeled scenario will have specific variables that describe different factors,
traits, or conditions in varying amounts or forms. Specifically, to the ABMSCORE algorithm is
the current coalition structure; that is, the covering collection of coalitions of the agents.

3.2.1 Scales
The model scales are arbitrary and depend on the modeled scenario. Several updates, such as
coalition formation, can coincide at every iteration.

3.3 Process overview and scheduling

The specific modeled scenario will have its own processes. It is assumed that the simulation will
run over several iterations. Specifically related to ABMSCORE is coalition formation. Each
iteration is an opportunity for the agents to improve their utilities by joining new coalitions. New
coalitions form if all the proposed coalition members would obtain a higher payoff. The algorithm
structure for selecting, evaluating, and updating coalitions is as follows:
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Figure 1: Flow diagram of the ABMSCORE process within the context of the parent simulation;
a suggestion coalition is generated of a particular type, it is evaluated by each affected agent,
and, if acceptable, then this new coalition forms.

At each iteration, several new coalitions are selected and suggested to the agents. The form of
these coalitions is determined by their suggestion type, which is discussed in more detail in the
Submodel section below. Each agent that would be in the new suggested coalition determines if
they would improve their payoff (utility) by being part of this new coalition; if all agent would
improve their payoff, then the new coalition forms. This means that all the agents, in the new
coalition, leave their old coalitions, resulting in new coalitions (and new payoffs) for their old
coalition partners. This process is repeated, each iteration, until a stable coalition structure is found.

3.4 Design concepts

3.4.1 Basic principles

The ABMSCORE algorithm assumes the simulation’s agents can play a hedonic game, which is a
type of game from cooperative game theory. Hedonic games are games where the agents (players)
are self-interested, trying to maximize their utilities, which are deterministically determined by
their current coalition, and the utility is not transferrable (Bogomolnaia and Jackson 2002); most
importantly, the players in hedonic games have a (strict) preference relation over the coalitions.
This means that given any two possible coalitions for a given player, that player has a preference
to be in one of the coalitions over the other. Classic examples of hedonic games are matching
games (Gale and Shapley 1962), which include the modeling of finding a spouse (marriage
problem), a roommate, or college admissions (Aziz 2013). Their preferences are the primary driver
for the agent’s decision-making, which can be represented as a utility value by simply inverse-
ranking the coalitions available and assigning its rank as utility (for strict preferences only). Also,
agents are assumed to have complete information with regard to their evaluation of a suggested
coalition. The utility that the agent gets is called a payoff.



3.4.2 Emergence

Expected emergence is related to the final coalition structure achieved due to simulation-specified
conditions and variable perturbations. A coalition structure is the collection of disjoint coalitions,
and the algorithm focuses on finding stable coalition structures, which are called core partitions.
A core partition refers to disjoint coalitions where no subset of agents has the incentive to form a
new coalition (Banerjee, Konishi et al. 2001, Bogomolnaia and Jackson 2002). The core partition
is an appropriate solution mechanism for ABMS because it focuses on the coalition membership
of each agent, whereas the core focuses on coalition values and imputations. A core partition is
not necessarily unique and might not exist for a given game scenario. The scenarios that have
applied the ABMSCORE algorithm only consider the games where the core exists.

3.4.3 Adaptation

The agents adapt due to their ability to form a new coalition because of coalition splitting or
merging. The algorithm specifies the conditions when the agents can change their coalitions. A
new coalition forms if existing or potential members accept the new member’s suggestion to join
the coalition. This implies that agents have veto power to refuse or approve a new coalition being
formed. However, the agents cannot influence or stop other agents’ decisions to leave the coalition.
The agents’ main objective when making decisions is to improve their utilities.

3.4.4 Objectives
The objective for all agents is to join a coalition that maximizes their utility, which is measured as
their payoft.

3.4.5 Learning
Learning is not integrated into this model setting.

3.4.6 Prediction
Prediction is not integrated into this model setting.

3.4.7 Sensing
Agent sensing is not integrated into this model setting.

3.4.8 Interaction

In the ABMSCORE algorithm, the agents do not directly interact. However, their decisions
influence other agents’ actions. Agents' decisions are about joining or leaving the coalition, directly
affecting the coalition value and other agents’ utilities. In the parent simulation, the agents might
interact with each other due to another non-ABMSCORE process in that simulation.

3.4.9 Stochasticity

The algorithm randomly creates coalition suggestions for agent evaluation. The probability of a
particular coalition being suggested depends on the method for generating the suggested coalition.
Uniform distribution is applied when selecting a suggested coalition.

3.4.10 Collectives
Cooperative game theory is used to study coalition formation, which is a form of collective. The
agents are part of this collective, i.e., the coalitions. The algorithm assigns numbers to the



coalitions. The coalition that contains all the agents is called a grand coalition, while the coalition
that includes a single agent is called a singleton coalition.

3.4.11 Observation
The final coalition structure is observed after specified time steps. The coalition structure is the
main output of the ABMSCORE algorithm.

3.5 Initialization

Initially, all agents are assumed to start in a grand coalition. Each agent’s evaluation of a given
coalition does not change throughout the game, i.e., the utility an agent assigns a coalition is
constant.

3.6 Input data
The utility function, associated with a given agent's evaluation of a given coalition, is either
specified by an inputted look-up table or a pre-determined function. A random number generator

is required for coalition suggestions. The parent simulation might use input data beyond that used
by the ABMSCORE algorithm.

3.7 Submodels

There are three submodels used within the ABMSCORE algorithm: coalition suggestion selection,
coalition evaluation, and coalition updating. The submodels manage the formation of the coalition
structure.

Coalition Suggestion Selection

Different coalitions are suggested at each time step. There are six suggestion type mechanisms:
join coalitions, exit coalition, pair coalition, defect coalition, split coalition, and individual
coalition.

Join coalition: Two different coalitions (S, 7) are randomly chosen from the current coalition
structure (CS). Then the algorithm computes the payoffs of the joined coalition. A new coalition
(represented by a C or D below) will form if the utilities are improved for all the coalition
members. This suggestion will be disregarded if the grand coalition (N) that contains all the agents
has already formed.

IfN¢CS:C=S UTs.t.S#T,{ST} €CS

Exit coalition: The suggested coalition is an existing member of the CS with one of its members
randomly removed, namely agent s. An agent will be permanently removed from a coalition if the
remaining coalition members are better off without that agent. The removed agent will form a
singleton coalition. This suggestion type is only permitted if there exist a coalition, in the current
coalition structure that has more than one agent.

if3S€CSs.t.|S|>1:C=S\{s}, sE€S

Create a pair coalition: A suggestion pair coalition is formed between two randomly selected
agents, a and b. The pair will form if there is an improvement in payoff for both agents.
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Defect coalition: A suggested coalition is formed by including another randomly selected agent d
into an existing coalition S that it is not already a member. Since the existing coalition could be
the empty set, it does not matter if the grand coalition has already formed; in this case, this
suggested coalition will be a singleton coalition.

C={d}uS,d e N\S,SeECSUD

Split coalition: A coalition S will split if two randomly selected disjoint coalitions C and D. Note
in this case, two coalitions will be separately evaluated, if either is preferred by its member, then
the split will occur.

CNnD=@,CuD=S§,S€eCS

Individual coalition: An individual coalition, i.e., the singleton coalition, forms if a randomly
selected agent a is better off herself than joining any other coalition.

C={a}l,aeN
Coalition Evaluation:

Coalition evaluation is performed by determining if the payoff change is acceptable to the coalition
members. Their current payoff is compared to the new payoff, and if the new payoff exceeds the
current one, then the agents will form a new coalition leaving their current coalition (C;).

if Vi € C,u;(C) > u;(C;)) thenC;:==C,Vi €S
Coalition Updating:

The coalition membership number is updated to a unique identification number when new
coalitions are formed. With new coalitions being formed, the information about payoffs will be
updated as well.

4 Applications

The section below discusses applications and situations that have employed the ABMSCORE
algorithm. Most of these situations have a major characteristic in common: involving multiple
interacting agents who might benefit from forming a coalition.

4.1 Von Neumann neighborhood

ABMSCORE algorithm was first adopted by Collins and Frydenlund (2016) to study agents
interacting in a Von Neumann neighborhood, which is the set of all cells that are orthogonally
adjacent to the region of interest. This scenario focused on splitting common resources with
adjacent neighbors. Agents are described with varying levels of strength that introduce model
heterogeneity. The agent with the highest strength gets the resource. In case there is a tie between
the agents, the resource is shared evenly. For simplicity in the homogeneous case, the authors
assigned the value of the resource to be 1, and when the agents stay in their singleton coalition,
then each agent gets two resources, 0.5 for each of its neighbors. Agents can form coalitions with



other neighboring agents. Adjacent coalition members equally divide resources. Agents also have
an incentive to form a coalition as they benefit from additional strength when splitting resources
with neighbors outside the coalition; that is, coalition members exert group pressure on an outsider
to obtain more resources through extortion.

Since coalitions can obtain more resources through this extortion, there is almost no incentive to
form the grand coalition as that will mean there are no non-coalition members to extort. There is
also little incentive for agents to remain in a singleton coalition due to the strength they can gain
by being part of a coalition and avoiding resource loss from the coalition around them. As such, in
this scenario, there is an incentive to form coalitions that are proper subsets of agents.

Varying levels of agents’ strengths have been introduced to determine the effect on the results
found from the homogeneous analysis. The results show that the coalitions will still form;
however, in the heterogeneous case, the stronger agents may dominate the weaker agents.

(a)

Figure 2: Screenshot example of the Von Neumann neighborhood problem with (a)
homogeneous and (b) heterogenous agents; the static agent are represented as circles and their
colors represents the coalition they are a member. Strength is represented by size. The color
choice is arbitrary.

Figure 2 shows a screenshot from two versions of the game. Each static agent is represented by a
single circle, with the color representing which coalition it is a member. The first version of the
game shows all agents with equal strength (homogeneous), whereas the second shows agents of
unequal strength (heterogeneous). The agents interact with their neighbors, as described above,
and a torus space is assumed (i.e., the sides wrap). As Figure 2 (a), the agents are split into two
groups, which was common in the homogeneous case. This occurred, instead of the grand
coalition, because of the malicious nature of the agents as there was an incentive for the groups to



kick out an agent they surrounded so that they could take all of the surrounded agent’s resources
with extortion (colloquially, the agents inhabit a dog-eat-dog world). In the heterogenous case, this
extortion can be seen on a lone turquoise (weak) agent in the center of Figure 1(b).

The authors have employed analytical and empirical analysis approaches to study the scenario.
The analytical approach revealed general patterns in strategic coalition formation. However, the
analysis was limited to a small number of agents only. The empirical approach developed a Monte
Carlo simulation and collected data to study the dynamic version of the scenario. How the
coalitions formed over time was of interest, especially any emergent processes about coalition
development. The simulation modeled coalition formation (suggestion, evaluation, updating)
using a simplified version of the ABMSCORE algorithm described in this paper, with only random
coalitions being considered.

Collins and Frydenlund (2018) have further investigated the results of this scenario to reveal more
information about coalition formation behavior. The authors run several scenarios of homogeneous
agents ranging from 4 to 36 agents to estimate the number of coalitions formed and the size of the
largest coalitions. The analysis showed that as the size of the game increased, the number of
possible final coalition configurations increased. For example, two coalition configurations were
observed with four agents, while with 16 agents, three. An interesting result was observed that the
larger group has approximately 50-60% of agents. Finally, transition matrices were used to show
the transitions from one coalition to another, and an increase in coalition size was generally
observed.

The analysis and results are interesting to understand the coalition formation dynamics better. The
author suggested that organizational coalition formation or coalitions between different sectors of
society can be explored using a similar scenario.

4.2 Refugee Egress Simulation

Another adaptation of the ABMSCORE algorithm was by Collins and Frydenlund (2016) to study
the refugee flight problem. This problem is crucial for the safety of the persecuted and for
understanding where to deploy reception sites. Refugees travel long distances to reach safety, and
these travels result in different refugee flight outcomes; most of the research work studies how to
anticipate, assist, or prevent these refugee flight outcomes (Kunz 1973, Apodaca 1998, Jensen,
Skar et al. 2019). The simulation tried to understand the different outcomes.

The basic version of the ABMSCORE algorithm was applied to explore the arrivals of refugees to
reception sites. Their paper concentrates on two main aspects. The first aspect examines long-
distance migration, and the second one refers to the en-route coalition formation based on
individuals’ utility functions. In the model, at each time step, the individual agent looks for a sub-
coalition within its coalition that makes it better off. The utility to join or leave a coalition is
associated with protection gained from a coalition versus the speed of reaching the destination.
Note that the agents were heterogeneous with regard to their speed.



It is agents move as a whole coalition, which means no coalition member is left behind because
of their slow speed. However, it may take longer to reach the destination with the entire coalition,
as the coalition accommodates the speed of its slowest member. When the agents want to reach
the destination faster, they usually act in a singleton coalition. Agents can form small coalitions,
allowing some agents to move more quickly while maintaining some of the benefits of being part
of the coalition. The figure below shows a screenshot from the model (Figure 3 (a)) and when the
importance of speed is increased (Figure 3 (b)).

(a) (b)
Figure 3: Screenshot example of the refugee problem. The agents (circles) are moving from left to right.
(a) occurs when there is a strong desire for safety and (b) when speed is more desirable. The color of the
agents shows which coalition they are currently a member.

In Figure 3, the agents representing refugees move from the origin (left) to safety (right). Figure 3
(a) shows the grand coalition formed, while in Figure 3 (b), the maximum coalition size is three.
The highlighted points indicate the slowest agents in a given scenario. The agents are purposely
randomly scattered vertically, to give a better view of the coalitions that form. Numerous coalition
sizes and distributions are possible due to the coalition formation mechanisms, i.e., kicked out,
coalition split, and super coalitions, which were simpler forms of the mechanisms described in
section 3.7. The “kicked out” behavior allows coalitions to remove members that are too slow or
fall too far behind and consequently decreases the rest of the coalition members’ utilities relating
to reaching safety in a timely fashion. The “coalition split” behavior occurs when sub-coalitions
of faster members split from the main coalition that has slower members. “Super coalition” allows
smaller coalitions in close proximity to join together.

The analysis of the model especially focused on the effects of the preference for speed as opposed
to safety in numbers. With a low preference, agents tend to form coalitions over rushing to get to
the destination. With a higher preference, most agents do not form coalitions as they put very high
weight on reaching the site on their own without someone slowing them down. Though this result
is obvious, what was interesting was how the dynamics of coalitions changed over time. In the
beginning of a simulation run, the agents will pair up with anyone—even slow agents; however,
as the coalition sizes increase, these slow individuals may be kicked out.



What was interesting is that the model showed there tended to be a large gap between the main
group of refugees arriving to safety and the arrival of the slowest (i.e., probably most vulnerable)
refugees. Further investigation incorporating real-world challenges such as individuals’ health or
cultural barriers could help to better understand the conditions and motivations of coalition
formation during refugee flights.

4.3 El Farol Bar problem

The algorithm was also used to study the El Farol bar problem. This problem was proposed by
Brain Arthur (Arthur 1994), and it describes a situation with multiple decision-makers who try to
attend a bar when it is not too crowded. The decision-makers use different strategies based on
historical data published in the newspaper to determine whether to go or not to attend the bar.
Arthur (1994) suggests that most humans do not act rationally but act inductively in a bounded
rational way due to the complexities, the human logical ability ceases to cope. Minority games are
a generalization of the El Farol bar problem and are of interest to economists and financial analysts
due to their implications for financial market investment (Challet and Zhang 1997).

Collins (2017) applied the ABMSCORE algorithm to the El Farol bar problem situation to see if
agents acting in strategically formed coalitions had an effect on the outcome. The purpose of the
adaptations was to assess the effect of coalition decision-making and the availability of a larger
strategy pool on the final decision to attend the bar and the eventual overcrowding that comes as a
result of the grouping agents.

The adaptation ABMSCORE version introduced the following changes to the original model. First,
the agents can choose the best strategy from the coalition’s pool of strategies instead of just using
their own strategy. This change could increase the agents’ payoffs, i.e., attending the bar when the
bar is not overcrowded. If all the agents remained in their singleton coalition, this would effectively
be the same as the original model developed by Arthur.

For the coalition formation, there needs to be a rationale to join or leave the coalition, which the
ABMSCORE algorithm accounts for coalition splitting/ joining as well as individual agents
leaving. In the El Farol bar problem with strategic coalition formation, the agent may join the
coalition to gain the ability to use the coalition’s best strategy. Here, coalition size could play an
essential role in the agent’s decision to join the coalition because the larger the coalition, the more
it contributes to the overcrowding (because the whole coalition will all attend or not). With a sub-
coalition split, the coalition might have a reduced coalition size and could perhaps avoid
overcrowding. Overcrowding is one of the main reasons to leave the coalition. Note that if a
coalition attends an overcrowded night, members may kick out an individual with the worst best
strategy (with the highest total absolute error).

In a strategic coalition, the whole coalition follows the same strategy that was identified as the best
strategy by the coalition. This can be a problem when the grand coalition forms, which would
cause overcrowding in the bar. The figure below shows the model, where the same colors represent
agents from the same coalition, and the blue square on the top right corner shows the bar.



Figure 4: Screenshot example of the El Farol model when coalition formation is allowed. The
blue area represents the El Farol bar, with the remaining area representing agent not attending the
bar that time-step. Agents’ color represents which coalition they are a member.

Figure 4 shows an example of the adapted version of the El Farol bar problem. In this example,
there are a hundred agents, and each timestep represents a night the bar is open. The agent coalition
all act together; for example, there is a coalition of eleven agents (which are colored green) that
attended that bar on the night shown in the screenshot. Since the bar is not shown to be
overcrowded, this was a wise decision by this green coalition; however, they may make a bad
decision the next night.

Collins (2017) has compared and shown that the two cases, i.e., coalition formation allowed and
not, are statistically different. The work also has concluded that coalition formation was not always
ideal for establishing the optimal strategy due to the reduced number of decision-makers in the
system (because each coalition makes a decision in turn, not each individual). The results suggest
that individuals should not form coalitions when wishing to be in the minority. This, intuitively,
makes sense because even though a coalition has access to more potential strategies than an
individual, them attending as a coalition contributes to overcrowding more than a single individual
attending. In contrast, if agents act individually, their singular decision might not influence the
final outcome of overcrowding.

The results obtained from modeling the El Farol bar problem using strategic coalition formation
imply that people may be worse off being in a coalition when trying to avoid overcrowding
situations. Coalition decision-making may pose more challenges to coordinate and select the best
decision due to increased uncertainty and opinion differences within the coalition. Overall, we
believe ABMSCORE provides the necessary adaption to the model needed to explore the El Farol
problem in contexts where coalitions need to self-organize, cooperate, and predict some
outcomes. This approach could be adapted to explore other situations where too many people using
a service degrades quality, e.g., choosing an internet provider.



4.4 Small-hold Farming Cooperatives

Regional food supply systems refer to the systems that involve the movement of local foods from
the farm to the consumer. The demand for these systems has increased due to the economic,
environmental, and social benefits it brings to the urban as well as the rural communities. However,
it is challenging to deal with the large competitors in the region and manage the financial costs.

One way to address these challenges is to consider collaborative transportation methods to reduce
costs. However, the collaboration will mean reduced autonomy, which farmers highly value. To
better understand the benefit of collaboration and the desire for autonomy, Collins and Krejci
(2018) have employed the ABMSCORE algorithm. In this scenario, the small-scale farmers are
represented by autonomous agents. The farmer agents determined to form coalitions for
coordinated food transport by comparing the value of the coordination with the estimated value of
her autonomy.

The model is comprised of » number of farmer agents. The grand coalition will include all the
farmer agents, and when a farmer acts alone will be considered a singleton coalition. The agents
cooperate based on some utility function, consisting of the following three aspects. The first aspect
is the farmer’s dislike of large groups and their desire to stay independent. The second aspect is
their desire to maximize profit. The final aspect refers to the adverse effects of geographic distance
on a coalition’s ability to function. This includes the increased transportation expenses and the
varying logistical preparation.

The simulation generated the following observations: when the preference toward autonomy (a)
and the distance between farmers increases, the number of singleton groups increases. Farmers
choose to form coalitions with other farmers that are close by when the negative impact of distance
is increased. This reduces the number of coalitions that might form. Figure 5 shows the several
coalitions being formed between agents that are close by (circles with the same color).




Figure 5: Screenshot of the small hold farmer’s location with some coalitions being formed
(which are shown by coloring the white agents). The farms are shown as circles, with the size of
the circle indicating the size (production capability) of a given farm.

Figure 5 shows an aerial perspective of the location of the different small hold farms. Farms where
the farmers have formed transportation coalitions are colored. A white farm indicates that that
farmer has not joined a coalition (i.e., they remain in their singleton coalition). Most coalitions are
formed with close neighboring farms, as such, there can be overlap in the coalitions farm circle
(shown in the case of the red, green, yellow, and turquoise coalitions). In the example shown in
figure 5, only coalition pairs of farms formed.

The results revealed that the average group size formed under the different scenarios considered
was 17 out of 100 farmers, and the maximum group size the authors observed was 27, indicating
explicitly that the grand coalition was not formed. These findings provide an interesting evaluation
of strategic coalition formation of regional food supply systems, considering the AMBSCORE
algorithm. This scenario and the results could be helpful for professionals and stakeholders from
the transportation field who work on resource sharing and coordinating logistic activities.

4.5 Human subject experiments

Another scenario that considered ABMSCORE is the glove game study with human subject
experiments. The glove game is a non-transferable utility cooperative game-theoretic model which
has previously been used in human subject experiments. Understanding human behavior has been
an important but challenging research area due to the personality, preferences, and other
discrepancies, as a result of which they act differently in different situations. In a glove game,
players have a different number of right-hand and left-hand gloves. The players try to form
coalitions to increase their payoff when only the pairs of gloves have values; a right-hand glove is
paired with a left-hand glove.

A human experiment was conducted where there was one human player and the rest computerized
agents. The computerized agents were controlled by the ABMSCORE algorithm. During each trial,
a human subject would play with other computerized agents different glove games. At each round
of the game, the players suggest new coalitions to the other players, and the result of the game is
a coalition structure.

This scenario investigates two main aspects. The first aspect is if the ABMSCORE algorithm
controlled computerized agents’ behavior was consistent with the human behavior (Collins,
Etemadidavan et al. 2020). The second aspect evaluated is whether game theory experience affects
human behavior in an interactive simulation with regard to strategic coalition formation (Collins
and Etemadidavan 2021). Various human subject participants were recruited to participate in the
game trials. The authors have considered only one human per trial to prevent the complexities that
can develop from human interactions. The authors' experimental approach was correlational
research. Two different game settings were analyzed, one single-core and the next one multiple-
core. The single-core game has a single coalition structure, while the multiple-core has more than
one solution. A snapshot of the model is presented in Figure 6.
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Figure 6: Screenshot example of glove game using human subject experiment. The agents are
represented by the numbered circles, with their color representing which coalition they are a
member. The gloves below each agent present the number of gloves they have: left-hand gloves
(red) and right-hand gloves (blue)

In the example glove game (figure 6), shows that three different coalitions have formed. Agents 4
and 6 have formed a coalition, resulting in a total of five pairs being able to sold (2.5 reward for
each agent in the coalition) because, in total, they have collectively five left (red) gloves and five
(blue) gloves. Agents 0, 2, 3, and 5 also form a coalition; resulting in seven pairs of gloves being
sold (4/7 reward for agents in that coalition). Agent 1 is in their singleton coalition, with only one
glove pair being formed.This experiment generated two sets of data; one described the
demographic information about the participants, and the next one was the simulation output. In
total, 31 trials were recorded. The analysis has shown that 8 out of 31 had some experience in
game theory. Also, the results have shown that 42% of the human’s final coalition is a member of
the core. The human participants' final payoff 60% of the time was a core payoff or higher. The
results highlighted the participants’ tendency to maximize their profit, even though perhaps they
were not in the stable coalition structure. Game theory experience showed no statistically
significant association with the participants’ final coalition being in the core. Overall, the outcome
of the simulation analysis showed that the ABMSCORE algorithm controlled computerized
agents’ behavior was consistent. However, the human participants did not seem to be motivated to
find a stable coalition structure and tended to give up, while the computerized agents were
(Grigoryan, Etemadidavan et al. 2022).

This scenario can be adopted to further explore human behavior and decision-making procedures
in simulated and experimental environments. For example, actual incentives can be provided to
the participants, and estimate the impact of these incentives.

5 Color Segregation Model

The original and arguably most famous agent-based model is Schelling’s segregation model
(Schelling 1971). In the Schelling model, he demonstrates that segregation can occur over time,
even when the population has a relatively high tolerance for the proportion of their neighbors that



are different from them (i.e., they remain happy even when 60% or more of their neighbors are not
like them). The model only considered two types of individuals (which Schelling called “zero”
and “stars”). An example of model output from the Schelling model can be seen in Figure 7; here,
you can see clusters of the two types; this type of segregation clustering reflects the racial
segregation that occurs in US cities (Wilensky and Rand 2015).

Figure 7: Screenshot from the computerized version of Schelling's segregation model. The
squares represent the living location of the agents. The color of the squares indicates the type of
agent living there; there are blue and orange agents. Empty locations are represented by white
squares. The simulated world is assumed to be a torus.

Figure 7 shows a screenshot from Schelling’s segregation simulation. In the simulation, each agent
lives in the squares, and they all have the maximum tolerance threshold for its Moore’s neighbors
that are a different type from them; if is threshold is breached, then they will move to a different
location. This moving of agents results in the agents becoming segregated into two groups.

In the model discussed in this section, we increase the number of types to twenty and, instead of
physical location, we apply the ABMSCORE algorithm to investigate coalition formation (thus,
the coalition are equivalent to the clusters seen in Schelling’s Segregation Model). Others have
considered this segregation model with more than two types: Schelling (1978) discusses cases
involving multiple types, and Wilensky and Rand (2015) demonstrate a version of Schelling’s
segregation model with up to five types. Their work focused on the segregation of types, whereas
our model focuses on the coalition of different types.

There are several other changes that we make to the segregation model. Firstly, we remove the
dichotomous construct of similar or not and replace it with a spectrum of preferences. The different
agent types can be considered ordered; a given type prefers the other types that are closer to it on
a spectrum of types. For example, looking at figure 8, the ‘cows’ prefer to be in a group with the
‘turtles’ over the ‘airplanes.” Secondly, having preferences means that the agents can choose
strategically which coalitions to join or leave; thus, we create a hedonic game. We are not the first



to include strategic behavior in Schelling model (Chauhan, Lenzner et al. 2018); they allowed
agents to choose where they want to move as opposed to it being randomly selected.
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Figure 8: A screenshot from the Color Segregation model which shows the twenty different
types and their relation to each other. This is also an example of a model outcome when 100
agents have a tolerance only for their type. The color shows the which coalition an agent is a
member, and the shape shows the type.
Figure 8 shows the coalition split when the agents will only tolerate being in a coalition with those
of the same type. Each coalition has its own color. The type of an agent is shown by its shape, e.g.,
triangle, airplane, happy face, etc. The simulation disperses the coalitions around a 2-D map in a
clock-like pattern. This clock-like pattern is also used to show who close different types are to
each other; for example, planes are most similar to their neighboring types truck and stars. Though
we represent the types on a circle in the diagram for aesthetic reasons, the type preferences do not
wrap; that is, trees and triangles are not neighboring types.

The use of a color wheel to segregate agents was also used by Salamanca and Nufiez-Corrales
(2019). In their agent-based model, they were investigating social viscosity in regards to the self-
organizing group and were using agent color as a proxy for social identity. In their model, color
ordering mattered, whereas, in our model, the color of the coalitions is arbitrary.

5.1 Model

In Schelling’s original segregation model, agents would relocate (or have a desire to relocate)
when a certain percentage of their neighbors were dissimilar to them. In our model, the agents
leave their coalition when the average type in their coalition is farther away from their type by
some threshold. We call this threshold the ‘tolerance distance’ and represent it with a lambda. The
tolerance constant is used in determining the value of a coalition (payoff) to an agent. The agents



are assumed to be rational and desire to be in a coalition that maximizes their payoff. The payoff
of a coalition, C, that agent, i, belongs to is:

1
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Where 1 € {0, 1, ...,20} is a tolerance distance, and g(.) Is a function that determines the type of
an agent; in our model, types are g(.) € {0,1, ...,19}. We assume that the agents what to be in the
largest group possible if the average type is acceptable (i.e., the left-hand part of the equation is
positive). Thus, the agents must balance, in choosing their coalition, the existing size of the
coalition with its average type; that is, given two coalitions of the same average type, the agent
would prefer to join the larger one. The agents must, thus, balance between choosing to join a
coalition with a large number of agents with how close they are to the average type of that coalition.

We can examine the payoff function closer by considering its extremes. When Lambda = 0, the
agents gain no utility from joining a coalition with any other agent; this results in every agent
remaining in their singleton coalition, which achieves the highest payoff of zero (all payofts, in
this case, are non-positive). The situation is simpler when Lambda = 1, agents do care about
coalition size; in this case, the agents will look for coalitions of agents of the same type or similar
type; however, it is feasible that the agent would join a large mixed coalition if the average
coalition type is close to their type. At the other extreme, when Lambda = 20, the agents have a
positive payoff for all coalitions; this makes the size coefficient more important than in cases when
lambda is smaller. From our simulation runs, this large lambda value always resulted in the grand
coalition forming.

A critical aspect of the ABMSCORE algorithm is that it should be possible for an agent to want to
leave (or join) a coalition. Reason to Join: The agents want to be in as large a coalition as possible,
assuming the average type of that coalition is acceptable. The more agents in the coalition, the
higher |C;| will be and, as such, the higher the value to an agent (assuming the average type of the
coalition stays the same). Reason to leave: The agents want to be in a coalition that the average
type is as like them as much as possible, if their current coalition's average type moves away from
their type value significantly, they will leave.



gii -
L.g “@rwes
@1 frererer @
L& L. N L) ?i’*’uﬁv
& e Fren I La s il ]
et iImie@s
e weelw
-
338 =08
£33 ti. | 888
L L 20
2 sz
DS
+ 4
YT AAA
)@ A
@
YA
NAA
>YAA
HYATA
Ay
B ool e
PYAS
*k > @k < k4K
*x *AREF
AXx
(a) =2 (b)yA=7

Figure 9: Screenshots from the simulation showing examples of the number of coalitions that form
when lambda is (a) two and (b) seven. Coalition membership is shown by both color and position.

Figure 9 shows the results from two different simulation runs is shown, for different lambda values.
For (a) lower lambda value of two, an agent cannot deviate too much from a coalitions average
type before its value payoffs becomes negative; hence, there are more coalitions present in (a) than
(b), which has a higher lambda value. There are a few interesting phenomena that occur in both
cases. For the coalition at the top of the screenshot for (a), you will notice a single differently
colored cow (type 5) (so it is in its singleton coalition); this cow would benefit from joining the
nearby coalition; however, due to the payoff functions dynamics, that coalitions single happy face
(type 7) has blocked its membership. Similarly, this is the way the tree (type 0) has been exclude
in (b).

We conducted 100 simulation runs for each value of lambda for a total of 2,100. The batch runs
were conducted on a standard Windows 10 machine, and the simulation was created in the
NetLogo software package (Wilensky 1999). Symbols graphically represented the different types
of agents, and the coalitions were uniquely colored to help distinguish them from each other. To
further help distinguish the coalition, the agents moved to a point on the circle, which represented
the average type of their group (average type multiplied by eighteen to determine the angle on the
circle for the focal point). Each run contained 100 agents, who were randomly assigned a type at
initialization.

5.2 Worked Example

To give the reader a better understanding of the algorithm and its mechanism, we consider a very
simplified example. In this example, we are assuming that only three agents are present: a car
(type 13), truck (type 14), and plane (type 15). We assume that lambda is two, and each agent
starts in their singleton coalition. Based on Equation 1, each agent has a current value of two. Now
we consider what happens when coalitions are suggested.



Imagine during the first round, a join coalition is first suggested. Randomly, the car and the plane
singleton coalitions are selected to be evaluated. First, we create a suggested coalition of the car
and plane. Evaluating this suggested coalition for both agents, we notice that they would both
obtain a value of two under this dyad coalition. Since this value is not an improvement on their
current value (of two), both agents reject this suggestion.

The next type of coalition suggestion considered by the algorithm is the ’exit suggestion.” Since
all agents are currently in their singleton coalition, this suggestion has no impact on the coalition
structure no matter which agent is selected. The next type is the ‘pair suggest.” Consider the car
and the truck agent being chosen randomly. Again, we created a suggested coalition of the car and
the truck this time. The suggested dyad coalition results in a value of three for both agents. Since
this improves their current payoffs, both agents choose the suggested coalition and are both placed
in that dyad coalition. This coalition structure, {car, truck} {plane}, is stable, and all other coalition
suggestions will not result in a change to the coalition structure.

Note that under the ABMSCORE algorithm, the grand coalition will never form in this example,
even though it is weakly Pareto optimal stable solution. The reason is that it is not possible to form
the grand coalition from a coalition structure with an existing pair under the ABMSCORE
algorithm, and once a pair is formed, one of the agents (either car or plane) does not gain any
further benefit from joining the grand coalition so will block its formation.

5.3 Results

This section presents the results from the 2,100 color-segregation model runs. Each run was
complete until steady-state had been reached or 10,000 time-steps had passed (though steady-state
was always reached well in advance of this). The focus of the discussion is on the effects of varying
the tolerance distance on the final number of coalitions formed. Figure 6 shows a ‘fuzzed’ scatter
graph of the results. By ‘fuzzed,’ it is meant that the data points were slightly randomly perturbed
(by adding a small random amount to their values); otherwise, they would be on top of each other,
making it difficult to visualize (Everitt and Dunn 2010, Lynch, Gore et al. 2021).
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Figure 10: Fuzzed scatter plot depicting the number of coalitions formed in relation to
the tolerance weight variable. The best fit lines are also included.

Figure 10 shows a scatter plot where the data has been slightly perturbed (fuzzed) for better clarity.
As the graph shows, there is a rapid decline in the number of coalitions formed as the tolerance
ratio is increased from zero.

The graph indicates what might be expected. That is, when the agent’s tolerance is high, then large
coalitions form, and when it is low, a large number of coalitions, with smaller sizes each, form. At
the extreme, when every type is tolerated by the agents (i.e., it is not possible to have a negative
utility), we find that the grand coalition forms, so there is one coalition (which contacts all the
agents). When the tolerance distance is zero, then the agents will stay on their own or stay within
an already formed coalition that contains only their type; they will not actively seek others of their
own type (i.e., the best utility they can obtain is zero, which is the same whether they are on their
own or in a coalition of their own type). When the tolerance distance is one, then the agent’s
activity seeks to form coalitions with their own type (since they increase their utility by adding
more same-type individuals to their coalition); this results in twenty coalitions being formed,
which is reflective of the twenty types.

Fitting a line to the graph resulted in the following equation:

fo=1+100/ L1y



This line is shown in red in Figure 6. The dotted lines represent when the power of the denominator
is varied to 1.5 and 2.5, respectively.

There are several variations that could be conducted to further investigate the emergent
phenomenon of the color-segregation model. For example, we could vary the number of types and
agents to see if that impacts the results. We could also vary our initial conditions. In the runs
presented, all the agents started in the grand coalition, and the coalitions split from there;
conducting the runs when every agent started in their singleton coalition resulted in similar results
but with less spread within a fixed tolerance distance value, i.e., at lambda equals zero, all runs
resulted in 100 coalitions being formed. We presented the results from a grand coalition start as
that was in line with our previous work (i.e., Vernon-Bido and Collins (2021)).

5.4 Difference to the original Schelling’s segregation model

The main difference from Schelling’s segregation model is that our model can achieve stability
under any tolerance distance. Under certain circumstances (especially when the number of
available empty spaces is relatively low), Schelling’s segregation exhibits instability when there
is a low tolerance threshold, i.e., the simulation never has a situation when all agents do not want
to move. In the color-segregation model, both extremes of coalition formation (the grand coalition
and the set of singleton coalitions) can be achieved by varying the tolerance distance to its
extremes, and, more importantly, this formation is stable. Thus, our model provides a stable final
solution output (assuming adequate simulation rounds completed).

6 Another important distinction between the two models is that our
color-segregation model is not location dependent, meaning that
coalition formation can occur irrespective of the agent’s location. This
is important when modeling situations of type-based coalition
formation that is not restricted by physical location, i.e., coalitions of
political parties or coalitions formed over the Internet. In our mode|,
the agent’s payoff is dependent on whole coalition (type average) as
opposed to just its neighbors, meaning that the whole coalition is
considered in decisions to join or leave a coalition. However, in
situations where the agents are not fully aware of their own coalition,
Schelling’s approach is more appropriate or variations of it; for
example, Agarwal, Elkind et al. (2020).Discussion

In this section, we discuss the application requirements of ABMSCORE, practical application
considerations, and an evaluation of the algorithm. In the application requirements section, we
discuss some of the requirements of the modeling situation that might make it worthwhile to apply
ABMSCORE. In the practical application section, we discuss some of the modeling decisions and
activities that a developer might need to consider when applying the algorithm. Finally, this section



provides some of the details of the evaluation of the algorithm, especially, how it compares to the
theorized core partition and actual human behavior.

6.1 Application Requirements

In this section, we discuss some of the potential requirements for the application of the
ABMSCORE approach. These requirements discussed in this section are only suggestions by the
authors, and their appropriateness will depend on the modeling situation being developed. Initially,
we discussed some of the general requirements with regards to the simuland (the system to be
simulated) and the purpose of simulation before discussing some more technical requirements.

Obviously, the ABMSCORE could be used for situations that include group or coalition formation
or with situations where existing groups may dynamically change. For this section, we are
assuming the formation of groups of humans, but the approach could be applied to situations that
involve any entities or components coming together to form a group. However, the law of
parsimony implies that incorporation of unnecessary components should be avoided and, as such,
we advocate that the ABMSCORE approach should only be incorporated if strategic group
formation is an essential and/or important part of the system under study (called the simuland by
Petty (2010) and others), for the given purpose that the simulation is being built. For example,
imagine the student body of a high school; if a simulation is being built to understand the formation
of cliché over a school year, then ABMSCORE might help; however, if a simulation is being built
to understand the evacuation of the high school, we would advocate that changes to the cliché will
be minimal and do not affect the evacuation time, so group formation modeling is not needed in
this scenario.

Another reason not to include the ABMSCORE algorithm is when strategic group formation is not
well-understood. That is, the mechanism and motivations of the simuland regarding the strategic
group formation are not well understood. Unless the purpose of the simulation is to explore and
understand these mechanisms and motivations, we would advocate that theory (about the
simuland’s strategic group formation) first needs to be developed and tested before the simulation
model can be built. In the next couple of subsections, we discuss some points with regard to
understanding the simuland’s mechanisms that might be required to implement ABMSCORE.

6.1.1 Fixed coalition payoff

Almost all the applications of ABMSCORE algorithms assume that the coalition's payoff vector
is fixed. That is, the payoffs an individual gets are purely dependent on a coalition with which they
are a member. This means that once a coalition forms, the payoff a member receives is fixed.
Hedonic games model this situation.

The only application described above where the coalition's payoff is dependent on coalitions
formed was the El Farol model. Instead of a hedonic game, the El Farol model is closer to a
canonical coalition game (Saad, Han et al. 2009). Canonical coalition games are a form of a
cooperative game where the value of the coalition is dependent on the other coalitions. The El
Farol model is not precisely a canonical coalition game because it is clearly not superadditive, as
the grand coalition clearly has the worst value, not the best.



The El Farol model was also the model with the most concerning results, i.e., introductory
coalitions made the situation worse for the agents, not better. As such, this could be an indicator
that ABMSCORE method is not appropriate for canonical coalition games. We believe that it has
been effective in modeling hedonic games because once a coalition has formed, its payoff does
not fluctuate due to the actions of agents outside the coalition; and it only changes once an agent(s)
joins or leaves the coalition. Thus, we believe that the canonical coalition game environment is too
unstable for the ABMSCORE algorithm. In previous research, we had seen problems due to the
effects of instability when we introduced artificial intelligence, i.e., reinforcement learning, into
an agent-based model (Collins, Sokolowski et al. 2014).

This issue of impact in determining the value of a coalition due to events outside the coalition is
also why we do not believe that the ABMSCORE algorithm will be effective if applied to
transferrable utility (TU) games. The payoff vector, or imputation, of a coalition in TU games is
dependent on what other coalitions could form; agents use these potential coalitions as bargaining
chips when determining how the coalition’s value will be split amongst agents. Hence, whether a
coalition forms and the resultant payoff vector is dependent on what other coalitions have formed.
There might also be concerns with other forms of NTU since, in the strictest sense of an NTU
game, an individual’s payoff is not fixed in a given coalition, and internal bargaining must occur
(Chalkiadakis, Elkind et al. 2011). Hence, we have concerns about applying ABMSCORE beyond
hedonic games.

6.1.2 Benefit

Another requirement of the scenario being modeled for ABMSCORE to be useful, is that there
must be a possibility that, under the right conditions, an agent would want to leave a coalition and
that, under probably different conditions, an agent would want to join a coalition. That is,
sometimes there are conditions where the agents desire to leave the coalitions they are in, and
sometimes they desire to join a new coalition. In a super-additive hedonic game, there is never a
situation where an agent or group of agents would want to leave the coalition to form a smaller
one (assuming the V(.) in equation 1 is a vector, as would be appropriate for a hedonic game).
Super-additive games always result in the grand coalition forming. Similarly, if there is never a
reason to join a coalition, then the agents would remain in their singleton coalitions or degrade
into them (because they are individually rational). Table 1 shows the expected outcomes from
having some, or none, of these requirements.

Table 1: Expected results from having, or not, different characteristics of the modeled scenario

Potential beneficial reasons To leave coalition None

To join coalition Dynamic situation that could | Grand coalition
be modeled with
ABMSCORE

None Singleton coalitions Static

Beyond the requirement of needing these two desires in the agent, there is also a requirement to
have a balance of these two desires. If one desire is far stronger or far more common, then we will
just end up in a situation of either the grand coalition or all singleton coalitions. However, this



imbalance could be used to help verify and validate the simulation as well. By setting the desires
to extremes, we would expect the grand coalition, or all singleton coalitions, to be observed. If this
is not the case, then it should be questioned why. This approach was used in both the refugee model
and the farming model.

6.2 Practical application

One of the main motivations behind this paper comes from discussions with potential users of
ABMSCORE; who are interested in the approach but do not know where to start or whether it is
completely appropriate for their situation. Some of the requirements for ABMSCORE are
discussed above, and the model section gives a detailed overview of technical specifications. The
code for the Color Segregation model was written so that a user could, hopefully easily swap out
their modeling requirements within the code structure. However, these technical specifications do
not answer all the questions that a user might have; this section provides more details on the actual
practical application of ABMSCORE. This includes a discussion on extreme input testing,
initialization, and convergence.

6.2.1 Extreme Input Testing

Extreme Input Testing is a method used in software testing to tell whether the software behaves as
expected at the boundaries of the input domain (Balci 1998). It is a form of boundary value
analysis, though it is discussed here from an assertion-checking standpoint. Simply point out, if
the expected behavior is known at the extremes of the input values (i.e., minimum and maximum),
then the model should behave as expected at these extremes. In our models, we consider the
extremes to be the desire to leave or join a coalition.

Earlier, it was discussed how the model would behave under different desires to leave or join a
coalition; the outcome of these desires is shown in Table 1. If these different desires are explicitly
included numerically as independent aspects of the utility function, then they can be weighted, and
the extremes can be investigated. Ideally, for conducting this type of testing, if your utility to agent
‘1’ of being part of coalition ‘s,” can be put in the form:

U(i,s) = AU]oin(if $)+ (1 = DUeare (i, s)

This is where Uy, 1s a utility function that deals with the reason an agent might join the coalition.
Ujeave 18 a utility function that deals with the reason an agent might leave a coalition. A is the
exponential weight; when it is zero you should observe, in your simulation, no agents joining a
new coalition and, probably, the singleton coalitions forming; when it is one, you should observe
no agents leaving a new coalition and probably, the grand coalition forming.

The refugee egress model, discussed in section 4.2, is used here as an example to give you a better
understanding of this utility split. In the refugee movement model, the agents gain benefit from
being in a larger group (safer in numbers); as such, their Uj,;y, is determined by coalition size.
Slightly more complicated is their U,,,,.. The agents want to move as fast as they can, and their
coalition moves at the average speed of its members; thus, they have an incentive to leave a slow
coalition, or form a sub-coalition of faster members and split the coalition. In Figure 11, you can



see how the agents have split into various coalitions, with the larger coalitions being slower than,
the smaller ones.
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Figure 11: Screenshot from Refuge movement model, with agents moving from right to left.
The color and location of the agents shows which coalition they are currently a member.

Other models discussed in the applications section also have this split in utility. For example, in
the small-hold farming collaboration, the agents must weigh autonomy with cost savings.
Determining whether your model acts as expected at the extremes can be part of the validation
process for the simulation.

6.2.2 Initialization

When applying the ABMSCORE approach, the developer must consider the agents' initial
coalitions. Unless the modeler has collected detailed data on the initial coalitions of the system, it
is unlikely that initial coalitions will be known (as knowing which coalitions will form is likely
part of the reason for using the ABMSCORE approach in the first place). As such, we advocate
again for the extremes: either all agents start in their singleton set or all agents start in the grand
coalition. Obviously, if you expect your agents to end up in the grand coalition (singleton
coalitions), we would suggest that you use initialize in the singleton coalitions (grand coalition).

In some cases, it has been shown not to matter whether you start in either extreme (Vernon-Bido
2022); analysis of the refugee movement model also found that initial starting groups do not matter.
However, it is not difficult to imagine situations where it does matter, especially if the benefits of
joining and leaving are not balanced In case simulation results are sensitive to the initial coalition
structure, sensitivity analysis could be conducted by considering variations in the start-up structure
or even considering the other extreme. This would be part of a wider validation plan as, if the
simulation is sensitive to the startup conditions, one will need to be able to justify that sensitivity.



In some simulations, a warm-up period can be used to mitigate the effects of inaccurate
initialization. A warm-up period allows the simulation to run for a certain number of rounds before
any results data is collected. A warm-up period allows the simulation to compensate for any
extremities in parameter value, from inaccurate initialization, through the simulation’s dynamic
negative feedback loops. Determining how long a warm-up period should be is non-trivial.
Robinson (2007) provides a discussion on a statistical approach to determining the warm-up
period. From an experienced viewpoint, Bandyopadhyay and Datta (1990) suggest that you double
any estimate you create for the warm-up period.

6.2.3 Convergence

A common focus of academic simulations is on their ability to reach steady-state (Law 2015).
However, many real-world systems of interest, especially human systems, are not in a steady state
and will probably never be. Salt (2008) calls the academic obsession with steady-state the ‘dead
fish fallacy.” However, understanding the steady-state of simulation can be useful in understanding
the system. Ideally, the simulation converges to a known solution. For hedonic games, this could
be one of several different solutions based on the stability criteria considered, e.g., core partition,
Nash stable solution, individually stable solution, etc. (Bogomolnaia and Jackson 2002). Our
research has predominantly focused on the core partition, which we call a stable solution, due to
its prevalence in the literature. In this section, it is discussed the difficulties of convergence to a
known solution or even approximations of that solution.

Convergence of the ABMSCORE algorithm to the core partition is not guaranteed for every
conceivable game. It is possible to construct games that will never converge, as Bonifaco, Inarra
et al. (2020) constructed a series of cooperative games in which the ABMSCORE algorithm, or
any similar algorithms, would never converge to a core partition. In fact, a stable solution was
found for the neighborhood strength problem, which could never be reached by the algorithm; this
solution involved two coalitions that had members interlaced with each other (Collins and
Frydenlund 2018). A simple example is as follows: consider a game such that being in a pair is the
worst situation and being in a set of three is the best. This can be represented, mathematically, as
follows:

Vi) = L,V({ij}) = 0,V({i,jk}) = 3,Vi,j,kE€N
V(S) =1VS S Ns.t.|S| >3

If the agents start in their singleton sets, they will never reach the grand coalition using the
ABMSCORE algorithm (because, at most, two existing coalitions are considered in any potential
updates, but you need three coalitions to be considered to get over the lower pair value).

There might not even be a stable solution in the first place. Collins, Etemadidavan et al. (2022)
showed that about 6% of hedonic games do not have a core. We suspect that the application of the
ABMSCORE algorithm to the El Farol algorithm does not have a stable solution.



Given these difficulties, there is no guarantee that the ABMSCORE algorithm will find a stable
solution. In a simulation experiment on glove games, Vernon-Bido and Collins (2021) found that
over 90% of their simulation runs found a core partition (stable solution) after 100,000 time-steps.
However, their work found an eight-player glove that failed to converge 25% of the time; the
reason for this lack of convergence is due to the particular complexities of that game.

An obvious question is how ‘close’ the output of the simulation runs that did not find the stable
solution. Unfortunately, there is not a simple answer to this issue since the output of the algorithm
is a partition and what is meant by ‘close’ is difficult to define. In other problems that have a single
value or vector as an output, closeness can be easily defined by standard metric measures.
However, our output is a partition; it is not clear what is meant by close, as it could be one of
several ideas, e.g., the number of agents in the ‘wrong’ coalition, similar coalition structure,
number of coalition agents moves required to reach core partition, etc. A possible means to resolve
this issue is discussed in Collins (2020), which includes a novel approach of comparison using
Hamming distances. Some have employed hamming distances to compare partitions (Mirkin and
Chernyi 1970, Rossi 2015). These distances do not take into account the complexities of the game.
For example, consider the partition (12)(34)(5) which is only two joins away from the (12345);
this might seem relatively close; however, if subsets (1234), (125), and (345) all have bad payoffs
for their members, then they will never form so (12)(34)(5) will never be morphed into (12345).
As such, with regards to the ABMSCORE algorithm, we have avoided defining closeness.

6.2.4 Validation

Validation is an important step for any development of simulation, as it helps provide creditability
of the simulation’s results to the simulation’s customer (Petty 2010). Agent-based models are a
particular simulation paradigm and have certain nuances when it comes to validation (Hill, Carl et
al. 2006, Macal 2016, Collins, Koehler et al. 2023). There is one aspect of validation that we will
discuss here is the concepts of microvalidation and macrovalidation (Moss and Edmonds 2005).
The latter is concerned with ensuring the modeled systems behave as the real-world system does.
Microvalidation is ensuring that the computerized agents in an ABMS behave like real-world
actors. We would argue, if possible, to focus on macrovalidation, with regards to ABMSCORE
because data on actual human strategic coalition formation is very limited. We have conducted
some limited experiments on human behavior, as it compares to the ABMSCORE’s behavior, but
the results are limited (Grigoryan, Etemadidavan et al. 2022). The ABMSCORE algorithm, itself,
has been compared in several ways.

6.3 Evaluation of Algorithm

We have conducted several studies to evaluate the algorithm. These range from comparing the
algorithms to an idealized solution, the core, to actual human behavior. These evaluations are not
a validation of the algorithm because they are not for a specific real-world purpose; a simulation
can only be validated for a purpose; you cannot just generally validate a simulation (Petty 2010).

Comparing the outcomes of the algorithm to an obvious modeling alternative, known as docking
(Axtell, Axelrod et al. 1996), is one evaluation approach. The obvious model to compare to is



cooperative game theory, specifically the core. As discussed, finding the core of a game is NP-
complete (Ballester 2004); as such, there is a limitation on size that can be compared. As already
mentioned, Vernon-Bido and Collins (2021) compared the ABMSCORE algorithm for a particular
type of cooperative game, known as the glove game, for games with up to nine agents and found
the algorithm found a core solution, which is stable, over 90% of the time. The core is actually a
collection of core partitions, for hedonic games, and Vernon-Bido and Collins research also
showed that only a fraction of the core partitions were reached, implying that some core partitions
are easier to find than others. The number of agents considered was increased to 15, with similar
results (Vernon-Bido 2022).

Comparing to other models is one means of evaluation. Another approach is to comparison is to
compare to actual human behavior. Humans are not generic, and you would expect different people
to play the game in different ways. From Collins and Etemadidavan (2021) it was shown that some
demographics, like education level, did not matter; however, the review of the demographics was
not comprehensive. Again, using a glove game, it was shown the agents were consistent with the
algorithm at the individual agent decision level (Collins, Etemadidavan et al. 2020), and the rate
of finding a core solution was consistent (Grigoryan, Etemadidavan et al. 2022), but only 42% of
the time did the human players find the macro-level core partition.

The low rate of human players finding the core partition might seem concerning. However, it
should be remembered that a core partition is an outcome of cooperative game theory. This implies
that the cooperative game theory solution is not reflective of actual human play. This problem has
been discussed within the literature and is the reason for the rise of behavioral game theory
(Camerer 2011). Given this discrepancy between the theoretical solutions and real-world solutions,
it would be impossible for ABMSCORE to be comparable to both.

6.3.1 Weakness of the algorithm

The discussion earlier in this section has discussed many of the weaknesses of the ABMSCORE
modeling approach. These are: it is not guaranteed to converge, it does not necessarily reflect
human behavior, and it requires several criteria of the simuland to be useful. There are others, i.e.,
it is stochastic, so there is no guarantee the same result will be reached if the simulation experiment
is completed; however, all modeling approaches are limited, but interesting results have been
achieved, in the past, with the algorithm. To put this another way, as George Box says “all models
are wrong, some are useful” (Box 1979).

7 Future Development

There are two areas of future advancement for ABMSCORE. Firstly, the algorithm has been
improved once, so it potentially could be improved again. Secondly, new application areas can be
derived.

7.1 Future Advancement

Vernon-Bido and Collins (2021) were able to improve the original algorithm, presented in Collins
and Frydenlund (2018), from as little as 34% to 90%, in terms of finding a core partition in a glove
game. This was achieved by introducing new procedures to the algorithm that specifically



replicated certain behaviors in the coalition suggestions each round, e.g., pairing, splitting, etc. It
is feasible that further improvements could be made.

Vernon-Bido (2022) investigated several different improvements including the ordering of the
coalition suggestions and using grand coalition starts. Neither case resulted in an improvement to
the algorithm. Other possibilities for change could be how the “left over” coalition is handle (i.e.,
the coalitions that have had members leave to join better coalitions); at present, they still remain a
coalition, but they could disintegrate into singleton coalitions, as suggested in Bonifaco, Inarra et
al. (2020) and used in Murnighan and Roth (1980). However, small scaling testing of this idea did
not result in any improvement.

One promising idea is for the agents to use a simulated annealing-like approach, where they are
willing to accept a slightly worse coalition for the purposes of exploring the solution space.
Simulated annealing is a heuristic method used in Monte Carlo simulation to find optimal solutions
to given numeric problems (Van Laarhoven and Aarts 1987). Simulated annealing has successfully
been applied in an ABMS environment previously (Lapp, Jablokow et al. 2019).

7.2 Future Application

There are several different directions we would like to explore with the ABMS core algorithm,
especially within the human modeling arena. One application would be to advance the famous
sugarscape model (Epstein and Axtell 1996) to include coalition formation; it would be interesting
to see what groupings would form. Another application is to introduce coalition formation into
ABMS the organization of businesses, especially project-based team environments (Tsvetovat and
Carley 2004, Zhao, Chong et al. 2022). The purpose of the introduction could be to investigate the
events of coalition formation on the output of the organizations, i.e., design output from large
design teams (Lapp, Jablokow et al. 2019).

Cooperative game theory has a long history of modeling political situations, including voting
games and coalition formation in legislative bodies (Chalkiadakis, Elkind et al. 2011). An obvious
application of ABMSCORE algorithm is to model legislative bodies, especially those that involve
hundreds of members as finding the core solution of such large games is beyond our current
computational capability. The ABMSCORE algorithm is embedded in an agent-based model
(ABM) and the strength of that modeling approach is that it can incorporate: modeling high levels
of complexity, heterogeneity, and autonomy. This means that ABMSCORE might be useful in
providing insight the formation of coalitions in legislative bodies or even insight into the voting
outcome of proposed legislative. The authors do not believe that ABMSCORE could be used to
predicate the outcome of such a process; however, prediction is only one reason to model (Epstein
2008), and other reasons might be appropriate like insight into the system and to illuminate core
dynamics of the system. More importantly, modeling provides a safe means to examine scenarios
when the system breaks down.

8 Conclusions

This paper provides an overview of the application of the ABMSCORE algorithm in agent-based
models. The paper provides a detailed introduction to the algorithm as well as descriptions of past
applications. The purpose of discussing the different applications is to show the veristically of



ABMSCORE applications. It introduces the color segregation model, which is based on
Schelling’s famous segregation model. The paper also provides a detailed discussion of the
application requirements for the algorithm and some practical considerations.

The algorithm can be considered under certain circumstances to be useful. It must be possible for
the agents in the systems to have some benefit from joining a coalition. similar, it must be feasible
that the agents might want to leave a coalition under certain circumstances. Each agent must have
a fixed utility for a given coalition; otherwise, the coalition structure would be in constant flux.

The paper intends to provide researchers with all the tools they need to apply the ABMSCORE
algorithm to their appropriate modeling problem. We will continue advancing the algorithm and
applying it to new situations like organizational structures.
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