
RefinedFed: A Refining Algorithm for Federated
Learning

Mohamed Gharibi
Dept. of Computer Science and Electrical Engineering

University of Missouri-Kansas City

Kansas City, MO, USA

mggvf@mail.umkc.edu

Praveen Rao
Dept. of Health Management and Informatics

Dept. of Electrical Engineering and Computer Science

University of Missouri-Columbia

Columbia, MO, USA

praveen.rao@missouri.edu

Abstract—Federated learning (FL) is a machine learning ap-
proach where the goal is to train a centralized model using a
large number of clients that host private datasets. FL trains
a smaller version of the model at each dataset site and then
aggregates all the models at the server. In practice, clients (i.e.,
dataset holders) that participate in the learning process may
possess corrupted or noisy datasets resulting in low accuracy
models. Additionally, malicious clients may poison the data or
carry out model discovery attacks.

In this paper, we propose a refining algorithm called Re-
finedFed, to eliminate corrupted, low accuracy, and noisy models
that can negatively impact the centralized model by reducing
its accuracy or cause other malicious activities. Furthermore,
RefinedFed reduces the uplink communication cost with the
centralized server, which in return results in faster aggregation
on the server side. Based on our preliminary experiments on
the MNIST dataset, we observed that RefinedFed improved the
global model accuracy from 84% to 91% while consuming less
time for aggregation.

Index Terms—Privacy-preserving machine learning, federated
learning, noisy data, malicious attacks

I. INTRODUCTION

In 2016, McMahan et al. [1] proposed FL, which is a

distributed machine learning approach to train a central-

ized/global model at a server using a large number of private

datasets held by clients without obtaining the actual data. The

key idea is to train a smaller version of the model at each

client and then aggregate all the models at the server. The

goal is to minimize the objective function [18] (Equation 1)

min
w

f(w) =

n∑

i=1

piFi(w) = Ei[Fi(w)], (1)

where n is the number of clients and
∑

i
pi = 1 s.t. pi ≥ 0. FL

allows the training of models on distributed datasets without

requiring the transfer of the actual datasets to the server. In

particular, FL is one instance of the more general approach of

“bringing the code to the data, instead of the data to the code”.

As a result, we will train a model without having access to

the actual datasets on the clients.

FL is one of the widely adopted techniques in the context

of privacy-preserving machine learning in order to train a

model on data that is not accessible such as patient records in

hospitals. Instead of uploading the data to a centralized server

where a model can be trained, FL techniques rely on sending

the model to clients, which in return will train a model on

their local data without having to share them with the server.

Figure 1 shows a simplified architecture of FL. Furthermore,

FL is often deployed to train models on data from edge and

wearable devices, which continuously collect data from users

such as smartphones and medical equipment. For example, FL

is popularly used in providing smart services on smartphones.

Google extensively uses FL in the Gboard mobile keyboard

[9]–[12] and Android Messages [13]. Apple uses cross-device

FL in iOS 13 [8]. The model that predicts the next word

in a smartphone’s keyboard was also trained using the FL

technique.

In this paper, we propose a refining algorithm called Re-

finedFed, to eliminate corrupted, low accuracy, and noisy

models during FL. The key contributions of our work are as

follows:

• RefinedFed refines all clients models based on their accu-

racy after being tested locally at each client local dataset.

When a model passes a specific accuracy threshold, it will

be collected by the server. Otherwise, the model will be

dropped and will not be collected in that specific round.

• RefinedFed reduces the uplink communication with the

server, since many corrupted models, noisy models, and

low accuracy models will not be collected by the server.

This will save network bandwidth usage for the server.

• RefinedFed reduces the aggregation time on the server by

eliminating low accuracy and corrupted models from the

pool of models at every aggregation phase. Hence, the

number of models that are included in the aggregation

phase are less than the actual models that were included

in the training phase.

• We evaluated RefinedFed on the MNIST dataset and

observed that it yielded an accuracy of 91% compared to

the traditional approach of FL, which yielded only 84%

accuracy.

The rest of the paper is organized as follows: Section II

discusses the background and related work on FL. Section III

provides the motivation for our work. Section IV describes978-1-7281-8243-8/20/$31.00 ©2020 IEEE

2
0
2
0
 I

E
E

E
 A

p
p
li

ed
 I

m
ag

er
y
 P

at
te

rn
 R

ec
o
g
n
it

io
n
 W

o
rk

sh
o
p
 (

A
IP

R
)

| 9
7
8
-1

-7
2
8
1
-8

2
4
3
-8

/2
0
/$

3
1
.0

0
 ©

2
0
2
0
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/A

IP
R

5
0
0
1
1
.2

0
2
0
.9

4
2
5
0
9
4

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on June 20,2025 at 20:44:04 UTC from IEEE Xplore. Restrictions apply.

our approach in detail. Section V reports our experimental

evaluation. Finally, we conclude in Section VI.

II. BACKGROUND AND RELATED WORK

The general description of FL was given by Bonawitz et al.

[2]. Moreover, Konečný et al. [3], Bonawitz et al. [4], [6], and

McMahanet et al. [5] discuss the theory behind FL in a more

detailed way to address the fundamental problems of privacy,

ownership, and locality of data. FL was initially introduced to

target mobile and edge device applications [7]. Later on, FL

was also used across multiple organizations such as hospitals.

We will call these two settings “cross-device” and “cross-silo”,

respectively [8].

In both cross-device and cross-silo settings, the process

starts when a server creates a model (global model) and shares

it with all clients. At that point, each client will have the same

version of the global model. (Once the model is on the client

side, it is called a local model.) The training phase starts at

each client with specific number of epochs among all clients.

Once the training is complete, each client will send the updated

weights to the server. The server will aggregate all of the

weights and average them to produce a generalized global

model. This is considered as one round of training for the

global model. The produced model will then be sent to all of

the clients that are considered in the next round. This process

will continue to repeat and a more generalized model will be

produced.

There are two major types of training algorithms in the

FL infrastructure: synchronous and asynchronous. While the

asynchronous algorithm was implemented earlier and have

had much success [14], recently, Goyal et al. [15] and Smith

et al. [16] changed the trend towards the synchronous batch

training. McMahan at al. [1] proposed the algorithm of Fed-

eratedAveraging (FedAvg), which showed a huge success in

the field, yet it still has some limitations such as dropping

all the devices that fail to finish a specific number of epochs

within a specific amount of time [18]. In general, FedAvg

provides a way to filter the clients from being included in the

aggregation. There is a list of requirements that each client

has to fulfill in order to be included in the current round,

such as having enough phone charge, having a stable Internet

connection, ensuring the phone is not being heavily used, etc.

These requirements make sure that the process will not affect

the user usage. Furthermore, it also selects phones with good

data and good Internet connectivity to avoid a client from

being dropped during a training round.

Nishio et al. [17] have proposed a decentralized framework

for training models while preserving their privacy. Their pro-

posed protocol, FedCS, helps in solving the clients selection

problem by managing clients based on their resources. FedCS

is another protocol that allow client selection before the

aggregation phase. For example, clients with poor Internet

connection have to be managed in another way. However, such

protocols are not selecting the clients based on the model

accuracy when tested locally. Rather they are selecting and

grouping the models that should be included in the current

round before the training starts.

III. MOTIVATION

Averaging all client models is the standard approach cur-

rently used to generate a global, generalized model with a

better accuracy. This technique is similar to Random forests

where the idea is to average all the over-fitted tree models

to produce a better overall model. However, this approach

faces a real challenge when participating entities (i.e., clients

that participate in training small models on premises) do

not hold “good” data or their data might include noise. For

example, in the case of using FL for improving next-word

predictions in smartphones, many use English language to type

words in other languages (e.g., a person may type “salam” in

English while it’s a greeting in Arabic.) Not to mention the

grammatical mistakes and shortcuts such as typing “u” instead

of “you”. Different accents and different slangs may also lower

the model accuracy such as typing “goin” instead of “going”

etc. The models that will be collected from such clients and

will be harmful for the general model.

On the other hand, we have computer vision models that

were trained on images. However, some clients may have

a huge number of images with high resolution. Others may

have only a few images, corrupted images, low resolution

images, black and white images, or images with a lot of noise

that will affect the overall model in a bad way. Moreover,

collecting models from a much larger crowd requires more

computation power, bandwidth, and introduces additional la-

tency. Therefore, our proposed algorithm will run a simple

accuracy test for each client model after each round and based

on its accuracy, the model will be either included or excluded

in further operations on the server.

Algorithm 1 RefinedFed: an extended algorithm for

FederatedAveraging

1: Server executes:

2: initialize w0

3: for each round t=1,2,... do

4: Select K eligible clients to compute updates

5: Wait for updates from K clients (indexed 1, . . . , K)

6: Run clients on local testset

7: if client accuracy less than threshold then

8: drop client

9: end if

10: (∆k, nk) = ClientUpdate(w) from client k ∈ [K]

11: w̄t =
∑

k
∆k // Sum of weighted updates

12: n̄t =
∑

k
nk // Sum of weights

13: ∆t = ∆k
t

/ n̄t // Average update

14: wt+1 ← wt + ∆t

15: end for

IV. REFINEDFED

RefinedFed is a protocol that has the goal of collecting the

federating models that pass a certain test accuracy threshold

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on June 20,2025 at 20:44:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The simplified architecture of FL where the server initially sends a global model to the clients. The clients perform local training and share updated
weights with the server. The server aggregates the weights and updates the the global model and continues to perform these steps again.

after each round. In other words, it is a protocol to decide

which model should be included in the server model aggre-

gation process, such as averaging the weights while training

the model. This protocol as shown in Algorithm 1 helps in

building and training a more accurate model. Furthermore,

when the model fails to pass a certain test accuracy, the model

will not be collected and that will reduce the computation

time and the bandwidth usage on the server which in return

speeds up the aggregation phase on the server. See Figure 2.

We evaluated RefinedFed on the MNIST dataset [19] and

compared with the traditional FL approach. We would like

to mention that our protocol is an extension of McMahan et

al. [1] and Bonawitz et al. [6] with some modification to test

each model on its local testing dataset and select those models

that pass a certain threshold before sending the updates to the

server. The second function in Algorithm 1, ClientUpdate, is

the same as that in the original paper [1].

V. EXPERIMENTS

We used the MNIST dataset [19] for all the experiments by

equally distributing the number of the training images on all

the clients. We used PyTorch and Pysyft platforms to simulate

different number of clients with the centralized server. We

set up a total of five clients. We also added Laplacian noise

to the training images for few clients to simulate corrupted

data, low-accuracy, and noisy models. By design, RefinedFed

will not avoid using these models in the aggregation phase

on the server. We chose Laplacian noise as the peak of the

Laplace distribution is sharper than the Gaussian distribution.

This implies that the number of Laplace samples around the

zero are more than Gaussian. In practice, both Laplace and

Gaussian noise perform well in terms of adding noise to the

images and any other type of noise can be used as well. The

number of noisy models are the same in both experiments for

FL with and without RefinedFed.

Figure 3 shows the accuracy achieved on the server over

10 epochs. Clearly, RefinedFed achieved an higher accuracy

than the traditional way of FL. While RefinedFed’s accuracy

reached 91%, the traditional approach achieved only 84%.

Table I shows the accuracy achieved in each epoch.

VI. CONCLUSION

FL is distributed machine learning approach that focuses on

sending the model to the data on the clients while preserving

the privacy of the actual data. This approach is possible by

training large number of models on the clients followed by

aggregating them using different available algorithms (e.g.,

FedAvg) in order to generate a generalized global model.

However, during the aggregation, low accuracy or defective

models may affect the overall model accuracy. Therefore, we

introduced RefinedFed, a simple, yet effective approach to

filter such models and generate a better global model. Based on

our experiments using MNIST, we observed that our approach

outperformed the standard FL approach that does not use

any filtering mechanisms. While RefinedFed achieved 91%

accuracy, the standard FL approach could achieve only 84%

accuracy.

ACKNOWLEDGMENT

We would like to acknowledge the partial support of NSF

Grant No. 1747751.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, and et al. “Communication-
efficient learning of deep networks from decentralized data,” In Artificial
Intelligence and Statistics, pp. 1273-1282. PMLR, 2017.

[2] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, B. H. McMahan, S.
Patel, D. Ramage, A. Segal, and K. Seth. “Practical secure aggregation
for privacy-preserving machine learning,” In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
pp. 1175-1191. 2017.

[3] J. Konečný, B. H. McMahan, D. Ramage, and P. Richtárik. “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527 (2016).

[4] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, B. H. McMahan, S.
Patel, D. Ramage, A. Segal, and K. Seth. “Practical secure aggregation
for privacy-preserving machine learning,” In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
pp. 1175–1191. ACM, 2017.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on June 20,2025 at 20:44:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. RefinedFed Architecture. A local testing dataset will be added to each client to test the model before the collecting phase. Models pass a certin
accuracy threshold will be collected by the server. Otherwise, the model will be dropped.

TABLE I
ACCURACY OF FL OVER 10 EPOCHS WITH AND WITHOUT REFINEDFED

Accuracy over 10 epochs

Epoch number 1 2 3 4 5 6 7 8 9 10

FL 11% 11% 22% 47% 51% 49% 64% 77% 82% 84%

RefinedFed 11% 30% 36% 43% 62% 79% 83% 86% 88% 91%

Fig. 3. The accuracy over 10 epochs is shown: FL vs. RefinedFed

[5] B. H. McMahan, D. Ramage, K. Talwar, and L. Zhang. “Learn-
ing differentially private recurrent language models,” arXiv preprint
arXiv:1710.06963 (2017).

[6] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V.
Ivanov, C. Kiddon, and et al. “Towards federated learning at scale:
System design,” arXiv preprint arXiv:1902.01046 (2019).

[7] B. H. McMahan and D. Ramage. “Federated learning: Col-
laborative machine learning without centralized training data,”
April 2017. URL https://ai.googleblog.com/2017/04/federated-learning-
collaborative.html. Google AI Blog.

[8] P. Kairouz, B. H. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, and et al. “Advances and open problems in
federated learning,” arXiv preprint arXiv:1912.04977 (2019).

[9] S. Pichai. “Google’s Sundar Pichai: Privacy Should Not Be a Luxury
Good,” New York Times, May 7, 2019.

[10] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage. “Federated learning for
mobile keyboard prediction,” arXiv preprint 1811.03604, 2018.

[11] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ram-
age, and F. Beaufays. “Applied federated learning: Improving Google

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on June 20,2025 at 20:44:04 UTC from IEEE Xplore. Restrictions apply.

keyboard query suggestions,” arXiv preprint 1812.02903, 2018.
[12] M. Chen, R. Mathews, T. Ouyang, and F. Beaufays. “Federated learning

of out-ofvocabulary words,” arXiv preprint 1903.10635, 2019. URL
http://arxiv.org/abs/1903.10635.

[13] support.google. Your chats stay private while
Messages improves suggestions, 2019. URL
https://support.google.com/messages/answer/9327902. Retrieved Aug
2019.

[14] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M.
Ranzato, and et al. “Large scale distributed deep networks,” In Advances
in neural information processing systems, pp. 1223-1231. 2012.

[15] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He. “Accurate, large minibatch SGD: Training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[16] S. Smith, P. J. Kindermans, C. Ying, and Q. V. Le. “Don’t decay the
learning rate, increase the batch size,” In International Conference on
Learning Representations (ICLR), 2018.

[17] T. Nishio, and R. Yonetani. “Client selection for federated learning
with heterogeneous resources in mobile edge,” In ICC 2019-2019 IEEE
International Conference on Communications (ICC), pp. 1-7. IEEE,
2019.

[18] T. Li, Z. Zaheer, S. Maziar, T. Ameet, S. Virginia. “Federated opti-
mization in heterogeneous networks,” arXiv preprint arXiv:1812.06127,
2018.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based
learning applied to document recognition.” Proceedings of the IEEE,
86(11):2278-2324, November 1998.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on June 20,2025 at 20:44:04 UTC from IEEE Xplore. Restrictions apply.

