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Abstract Being the first plant to have its genome sequenced, Arabidopsis thaliana (Arabidopsis) is a well-established genetic model plant system. 
Studies on Arabidopsis have provided major insights into the physiological and biochemical nature of plants. Methods that allow us to study 
organisms’ metabolism computationally include using genome-scale metabolic models (GEMs). Despite its popularity, no GEM currently maps 
the metabolic activity in the roots of Arabidopsis, which is the organ that faces and responds to stress conditions in the soil. We have developed 
a comprehensive metabolic model of the Arabidopsis root system—AraRoot. The final model includes 2,682 reactions, 2,748 metabolites, and 
1,310 genes. Analyzing the metabolic pathways in this model identified 158 possible bottleneck genes that impact biomass production, most of 
which were found to be related to phosphorous-containing- and energy-related pathways. Further insights into tissue-specific metabolic repro-
gramming conclude that the cortex layer in the roots is likely responsible for root growth under prolonged exposure to high salt conditions. At 
the same time, the endodermis and epidermis are responsible for producing metabolites responsible for increased cell wall biosynthesis. The 
epidermis was found to have a very poor ability to regulate its metabolism during exposure to high salt concentrations. Overall, AraRoot is the 
first metabolic model that comprehensively captures the biomass formation and stress responses of the tissues in the Arabidopsis root system.
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1  I N T RO D U CT I O N
It is well-established that Arabidopsis thaliana (Arabidopsis) is 
a popular model organism in plant biology (The Arabidopsis 
Genome Initiative, 2000; Chen et al., 2004; Brady et al., 2007; W. 
Xu et al., 2013; Smolko et al., 2021). Although not economically 
important, its simple metabolism, short lifespan, and minimal 
nutrient requirements have made it the ideal model organism to 
study plant molecular, cellular, and developmental mechanisms 
(The Arabidopsis Genome Initiative, 2000; Poolman et al., 
2009). The sequencing of the Arabidopsis genome provided 
much-needed insights into plant metabolism, with recent stud-
ies focusing on tissue-specific metabolic pathways (Mintz-Oron 
et al., 2012; de Oliveira Dal’Molin et al., 2015a; Shaw & Cheung, 
2018). When exposing Arabidopsis to altered growth media 
and stress conditions, the root system detects and responds to 
changes in the soil, such as water scarcity and nutrient deple-
tion (Kellermeier et al., 2014; Smolko et al., 2021; H. Xu et al., 

2022; Ngo & Nakamura, 2022). The main functionality of the 
roots is to take up all required nutrients and water from the soil 
while also acting as an anchor and providing some storage for 
excess nutrients (Smolko et al., 2021; Chowdhury et al., 2022). 
The absence of complex metabolic processes such as photosyn-
thesis in the roots coupled with a simple cellular organization 
make this an excellent organ for metabolic modeling (Brady et 
al., 2007; W. Xu et al., 2013; Kellermeier et al., 2014).

As novel plant biology discoveries have continued to be 
made, scientists looked to the power of machines for help, 
which brought about the rise of the genome-scale metabolic 
model (GEM) (Varma & Palsson, 1994; C. G. de O. Dal’Molin 
et al., 2010; Thiele & Palsson, 2010; Saha et al., 2011; C. G. O. 
Dal’Molin et al., 2014; de Oliveira Dal’Molin et al., 2015; Metcalf 
et al., 2020). A GEM mathematically formulates the metabolism 
of an organism where a matrix represents the stoichiometry 
between the metabolites and the reactions involved in known 
biological processes as mapped through genome studies, with 
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associated genes mapped through gene-protein-reaction (GPR) 
relations (Edwards & Palsson, 1999; Mahadevan et al., 2002; 
Metcalf et al., 2020). A GEM captures a vast number of meta-
bolic pathways. In any GEM, a metabolite typically participates 
in more than one reaction. With the reaction fluxes in a GEM 
being the unknowns, this high dimensionality and metabolic 
redundancy would make a GEM an underdetermined sys-
tem, which would have an infinite number of feasible solutions 
(Edwards & Palsson, 1999; Poolman et al., 2009). A method to 
reduce the solution space of the model is to introduce ‘omics’ 
data to the model to restrict the bounds of the reaction fluxes in 
the model (Gudmundsson & Thiele, 2010; Sinha et al., 2021).

Experimentally obtained omics data such as transcriptom-
ics and proteomics data can be incorporated into the model 
through the GPR by using any one of the well-established meth-
ods. Some well-known examples include GIMME (Becker & 
Palsson, 2008), iMAT (Zur et al., 2010), and E-Flux (Colijn et 
al., 2009). The expression distributed reaction flux measurement 
(EXTREAM) algorithm is built on the E-Flux method to account 
for gene abundance in the organism (Chowdhury et al., 2023). 
A study conducted by Machado and Herrgård (2014) compared 
18 different published methods that incorporate transcriptomics 
into several different GEMs and concluded that in the case of a 
biomass objective function, E-Flux is the only method that does 
not replace the biomass objective with an objective that relies on 
the specific set of gene expression data (Machado & Herrgård, 
2014) and EXTREAM only has a significant impact on meta-
bolic predictions in the case of complex gene relations.

Though experimentally determined biomass composition 
information yields the most accurate growth predictions by 
a GEM, it is expensive and time-consuming to conduct these 
experiments, which is why GEMs often assume a biomass com-
position established for other similar organisms (de Oliveira 
Dal’Molin et al. 2015; Chowdhury et al., 2022). The maize root 
model published by Chowdhury et al. (2022) included a bio-
mass reaction that captured the stoichiometry of each metabolite 
that contributed to biomass formation based on experimen-
tal evidence obtained specifically for the maize root system 
(Chowdhury et al., 2022). The tissue-specific model published 
by Schroeder and Saha (2020a) contained an Arabidopsis root 
model consisting of a basic biomass composition that included 
only five metabolites, based on the composition of switchgrass 
(Panicum virgatum) (Schroeder and Saha 2020a, b).

Although tissue-specific models of Arabidopsis have been 
developed for whole-plant metabolism, there is currently no 
tissue-specific metabolic model for the Arabidopsis root system 
that comprehensively captures biomass composition and spe-
cialized metabolism. This work aims to develop a comprehensive 
metabolic model for the Arabidopsis root system—AraRoot. 
Figure 1 summarizes the methodology followed to reconstruct 
AraRoot, the first metabolic model capable of capturing the 
biomass formation and stress response of the Arabidopsis root 
system as determined from previous literature (Dinneny et al., 
2008; Iyer-Pascuzzi et al., 2011; Geng et al., 2013; Han & Yang, 
2021; Smolko et al., 2021). A basic local alignment search tool for 
proteins (BLASTp) (Altschul et al., 1990) confirmed high gene 
homology between Arabidopsis and maize (Saha et al., 2011; 
Provart et al., 2016; Woodhouse et al., 2021), motivating the use 

of a published maize root model from Chowdhury et al. as a blue-
print. In addition, AraRoot includes data from established data-
bases such as KEGG (Kanehisa et al., 2014), TAIR (Berardini et 
al., 2015), and MaizeGDB (Woodhouse et al., 2021). The model 
was updated to include a comprehensive biomass reaction and 
specialized metabolites such as dipeptides, coumarins, and 
lignols, which include coniferin, esculetin, scopoletin, and sco-
poline as described by literature (Strehmel et al., 2014). Results 
indicate that sugar components act as overflow metabolites for 
biomass formation, while cellulose and xyloglucan concentra-
tions have the highest impact on biomass synthesis (Zabotina et 
al., 2012). A new in-house tool known as OptRecon was used to 
remove thermodynamically infeasible cycles (TICs) and to add 
missing pertinent reactions from a custom database while pre-
venting the formation of new TICs. Root tissue transcriptomic 
data was integrated using the E-Flux algorithm (Li et al., 2016) 
to reduce the solution space and contextualize the root model. 
Our recently developed metabolic bottleneck analysis (MBA) 
was next applied to the model to identify the bottleneck reac-
tions (and the associated bottleneck genes) that have an impact 
on biomass production when strict bounds are imposed on the 
reaction fluxes (Chowdhury et al., 2023).

Published gene expression data (Geng et al., 2013) was utilized 
to create cell-type-specific models of the cortex, endodermis, 
epidermis, and stele tissues under normal and stress conditions 
using the AraRoot model as a blueprint. Subsequently, the same 
transcriptomics data were used to analyze the bottleneck genes, 
thus identifying correlations between the expression of bot-
tleneck genes under stress conditions to limits in biomass pro-
duction. A flux range variation analysis of each cell type under 
normal and high salt growth conditions captured the metabolic 
reprogramming of each tissue during stress-induced condi-
tions. Resulting variations in reaction flux ranges indicate that 
the cortex ultimately drives growth recovery in the roots after 
prolonged exposure to salt, with increased reaction flux ranges 
found in most of the metabolic pathways (Geng et al., 2013). The 
epidermis and endodermis were found to be responsible for pro-
ducing more metabolites related to cell wall biosynthesis with 
flux ranges in the pentose phosphate pathway increasing dur-
ing salt exposure, particularly the production of D-ribulose 5- 
phosphate (Huang et al., 2020; H. Xu et al., 2022). The  
epidermis was found to lack the ability to further regulate metab-
olism during stress-induced growth (Dinneny et al., 2008; Geng 
et al., 2013). Together, this work proposes a tissue-specific met-
abolic model of the roots, capable of capturing metabolic varia-
tion under different growth conditions.

2.   M ET H O D S
2.1  Initializing the model

The reconstruction and analysis of the AraRoot model aim to 
produce a metabolic model capable of comprehensively captur-
ing the biomass formation and stress response of the Arabidopsis 
root system as described in the literature (Dinneny et al., 2008; 
Iyer-Pascuzzi et al., 2011; Geng et al., 2013; Smolko et al., 2021). 
Model initialization involves establishing a base model capa-
ble of reconstruction to represent an Arabidopsis root system. 
Previous literature indicates high genetic similarity between 
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maize and Arabidopsis with an estimated 90% of the proteins 
found in maize having homologs in Arabidopsis (Brendel et al., 
2002; Saha et al., 2011; Chowdhury et al., 2022). The protein 
sequences of genes in the Arabidopsis root system, as estab-
lished by Li et al. (2016), were obtained from the TAIR database 
and were set as the query sequences for BLASTp. The protein 
sequences of the genes included in the published maize root 
base model were obtained from the KEGG database and were 
considered the subject sequences. The screening criteria for the 
BLASTp result hits were set at a percentage identity (PID) of 
60%, a query coverage (COV) of 0.8, and a Max Score of 400.

The biomass composition of the Arabidopsis root system 
was determined by consulting literature. A complete list of all 
metabolites and their respective compositions that comprise 
the biomass can be found in Supplementary File 1, accompa-
nied by links to the literature sources. The biomass reaction of 
the root system in the base maize model was updated accord-
ing to the new Arabidopsis biomass to accurately represent the 
Arabidopsis root system. Several well-known techniques were 
used to ensure that the base model could produce biomass with 

the updated composition. These techniques include flux balance 
analysis (FBA) and flux variability analysis (FVA). The mathe-
matical formulation of the optimization problem used in both 
techniques can be found in Supplementary File 2.

A previously published algorithm was used to analyze the 
sensitivity of the model to perturbations in the updated bio-
mass metabolite coefficients (Dinh et al., 2022). The proposed 
algorithm calculates a standard deviation ratio (SDR), which 
quantitively determines the impact that deviations in the input 
parameter c  have on the output fluxes v of a stoichiometric met-
abolic model using the following equation:

SDRv
c =

∆(σv\µv)

∆(σc\µc) (1)

Where σ and µ represents the standard deviation and mean, 
respectively. In Equation 1 ∆(σv\µv) represents the change in 
the relative standard deviation of the output (biomass yield) 
that results from introducing noise to the system, and similarly 
∆(σc\µc) represent the change in the relative standard deviation 

Figure 1. Reconstructing and analyzing the AraRoot model by (A) updating a base root model (Zea mays) to include comprehensive 
Arabidopsis root biomass data and reactions from well-known databases, (B) constructing the base model and including published 
transcriptomics into the model, which was analyzed using established methods, and (C) analyzing the response of the model to stress-induced 
environmental conditions by comparing the flux range variations under normal and salt stress conditions available from published data (Kiegle 
et al., 2000; Geng et al., 2013; Han & Yang, 2021; Smolko et al., 2021).
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of the input parameter (biomass coefficient) as subject to the 
introduction of noise (MacGillivray et al., 2017). Parameters 
were sampled 10,000 times from a normal distribution with rel-
ative standard deviations of 5%, 10%, and 20% centered around 
the original values. Noise was imposed on all coefficients simul-
taneously, followed by imposition on cellulose and xylan singu-
larly as biomass metabolites.

For further insights into the relationship between the metabo-
lites and biomass formation in the base model, the shadow price 
values (λ) of the metabolites were calculated by considering the 
dual problem of the FBA formulation. The shadow price value 
calculated for each metabolite quantifies the marginal sensitiv-
ity of biomass (objective function) to single-unit perturbations 
in the availability of a limiting metabolite (Varma & Palsson, 
1994). An upper and lower shadow price range was determined 
by utilizing the coefficients of the biomass reactions determined 
at 20% perturbations during the biomass sensitivity analysis. 
Negative shadow price values would indicate growth-limiting 
metabolites, which are metabolites whose availability indirectly 
affects biomass formation. Positive shadow price values are asso-
ciated with overflow metabolites, which are metabolites whose 
availability directly affects biomass formation. The mathemat-
ical formulation for calculating the shadow price value of each 
metabolite can be found in Supplementary File 2.

2.2  Model reconstruction
After incorporating the updated biomass reaction into the base 
model, a standard model reconstruction procedure was followed 
with added steps to capture comprehensive root metabolism 
(Thiele & Palsson, 2010). It was necessary to determine which 
reactions in the base model had become redundant given the 
new biomass reaction since some reactions in the model were 
only specific to maize and would also need to be removed. FVA 
was utilized to identify all blocked reactions, which are reactions 
that did not carry flux during biomass production. The blocked 
reactions were compared to reactions catalyzed by specific 
gene products that showed high sequence homology between 
Arabidopsis and maize. Common reactions remained in the 
model, while blocked reactions with no homology between 
maize and Arabidopsis were removed from the model.

An in-house tool known as OptRecon was utilized to iden-
tify and remove TICs (Nelson & Saha, 2024). The mathematical 
formulation capable of identifying TICs in a GEM is provided in 
Supplemental File 2 and forms the basis for OptRecon. In addi-
tion to identifying TICs, OptRecon is also able to add reactions 
to any GEM in such a way as to not create any new TICs. To 
account for any reactions that were missing from the maize base 
model but were relevant to the Arabidopsis root system, a cus-
tom database of reactions was created from which relevant reac-
tions were added to AraRoot. The custom database was created 
by comparing the transcriptomes of the Arabidopsis root system 
(Li et al., 2016) to the published root system transcriptomes of 
other similar C3 plants, including tomato (Pirona et al., 2023), 
soybean (Adhikari et al., 2019), and rice (Liu et al., 2021). 
Reactions that were found to have high homology between 
Arabidopsis and the three other plants were compiled to form a 
custom database, and OptRecon was utilized to incorporate the 
maximum number of reactions without creating any TICs.

To reduce the solution space and contextualize the model, 
gene expression data was incorporated into the model. The 
GPR relation of Arabidopsis as published by Saha et al (2011) 
was consulted to include transcriptomics data from the mat-
uration zone of the roots obtained by Li et al. by applying the 
E-Flux algorithm (Sinha et al., 2021). Metabolic bottleneck anal-
ysis identified bottleneck reactions that had formed due to the 
incorporation of transcriptome datasets into the model. A flow 
diagram in Supplementary Figure S1 illustrates how MBA is per-
formed on a GEM to identify bottleneck reactions by expanding 
flux bounds and determining new maximum biomass flux values 
using FBA.

The associated bottleneck genes were identified from the 
same Arabidopsis GPR, and gene expression values from pub-
lished results were used to gain further insights into the nature 
of the bottleneck genes. The transcriptomics data collected by 
Geng et al. (2013) for the cortex, endodermis, epidermis, and 
stele root tissue under normal growth conditions and stress- 
induced growth conditions. The bottleneck genes and their 
associated gene expression values in each tissue were compared 
using the t-distributed Stochastic Neighbor Embedding (t-SNE) 
clustering analysis to evaluate correlations between the expres-
sion of bottleneck genes under normal growth conditions and 
stress-induced growth conditions. The genes associated with 
each cluster in the t-SNE analysis were further studied using 
protein-protein interaction networks available in the STRING 
database (Szklarczyk et al., 2023).

2.3  Biological insights
Dynamic transcriptome datasets collected by Geng et al. (2013) 
were used to analyze flux range variability of the Arabidopsis 
seedlings (Columbia-0 accession) exposed to media supple-
mented with 140 mM of sodium chloride (NaCl; salt) (Geng 
et al., 2013). Spatiotemporal micro-array-based transcriptional 
profiles were determined for the cortex, endodermis, epidermis, 
and stele tissues of the root system. The gene expression data 
collected from the different tissues in normal growth condi-
tions, 1 hour of salt exposure, and 48 hours of salt exposure were 
incorporated into AraRoot using the E-Flux method to create 
tissue-specific root models for each of the growth conditions. 
The normal growth condition was considered as a baseline for 
the flux ranges while the flux ranges resulting from the 1-hour 
exposure and 48-hour exposure were compared to the baseline 
to compare the variations in flux ranges during high salt con-
centration growth conditions. The categories of flux variation 
changes that can occur under high salt concentration growth 
conditions are further illustrated and named in Supplementary 
Figure S2. The flux ranges found under 1-hour salt exposure 
were first compared to the flux ranges found under normal con-
ditions, followed by also comparing the 48-hour salt exposure to 
the normal conditions.

Reduced flux spaces under high salt concentration condi-
tions indicate pathways that produce fewer metabolites under 
reduced flux, while expanded flux spaces indicate an increase in 
metabolite production. These conditions are a direct result of the 
reactions associated with under-expressed and over-expressed 
genes, respectively. Variations in flux range with no overlap indi-
cate major changes in metabolic reprogramming under stressful 
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growth conditions. The variations in flux ranges can be con-
firmed using previously published findings on changes in metab-
olite production under high salt growth conditions (Kiegle et al., 
2000; Geng et al., 2013; Kellermeier et al., 2014; Barberon et al., 
2016; Han & Yang, 2021; Smolko et al., 2021).

2.4  Simulation software
All simulations were run on a combination of General Algebraic 
Modeling System (GAMS) version 24.7.4 and Python version 
3.10. In both cases the IBM CPLEX licensed solver was used 
for optimization calculations such as FBA, MBA, and FVA. All 
simulations were run on a Linux-based terminal connected to 
the Holland Computing Center at the University of Nebraska to 
allow for decreased computational time and adequate memory 
to run extensive optimization formulations. The final version of 
AraRoot is available on the SSBio GitHub page (https://github.
com/ssbio).

3.   R E SU LTS
3.1  Model initialization

This work presents AraRoot, the first metabolic model that aims 
to comprehensively capture the biomass formation and stress 
response of the Arabidopsis root system as described in the liter-
ature. The model consists of 2,682 reactions, 2,748 metabolites, 
and 1,310 genes and was analyzed to determine the metabolic 
reprogramming that occurs in the root tissues during exposure 
to stress. Considering Fig. 1, the first step was initializing the 
model, which involves cross-referencing well-known databases 
for information on the genome, as well as consulting previously 
published models of a similar nature. The maize root model 
published by Chowdhury et al. (2022) was considered a good 
candidate base root model given the major similarities that 
exist between the protein sequences obtained from maize and 
Arabidopsis (Saha et al., 2011; Dukowic-Schulze et al., 2014; 
Schroeder & Saha, 2020a).

To verify the feasibility of using the maize root model as a 
base model, the genes from the maize and Arabidopsis root sys-
tems and their associated protein sequences were included in a 
BLASTp analysis. Results showed 960 hits between the protein 
sequences of the two root systems according to the cutoff crite-
ria outlined in Section 2.1, indicating that the metabolic system 
is likely to be highly similar between both root systems. This 
justifies the use of the previously published maize root model 
as a base model for AraRoot. Using the maize root model as a 
base model, the first step involved updating the composition and 
stoichiometry of the biomass reaction to reflect the biomass of 
the Arabidopsis root system rather than that of the maize root 
system.

Several literature sources were consulted to determine the 
Arabidopsis root biomass composition. The most noticeable 
modification to biomass composition in this model includes 
the addition of cell wall components (cellulose, hemicellulose, 
and pectin) and the increase in lignin composition, both of 
which are responsible for structural support and strength in the 
roots (Zabotina et al., 2012). The specificity of including sub-
erin monomers in the biomass instead of lipids has been well- 
established in several root studies (Soltis & Soltis, 2021; Pirona et 
al., 2023). The mass composition of the lignin, pectin, cellulose, 

and hemicellulose was obtained from the C3 root composi-
tion analyses (Saunders et al., 2006). The specific split between 
p-hydroxyphenyl lignin, guaiacyl lignin, and syringyl lignin was 
assumed to be like that of maize.

Hemicellulose as a compound is a complex branched pol-
ysaccharide that can vary significantly between plant species 
(Zabotina et al., 2012; Rao et al., 2023). A study by Zabotina et 
al. (2012) shows that the hemicellulose in Arabidopsis mainly 
consists of xylan and xyloglucan, with xyloglucan making up 
most of the hemicellulose composition. Since very little is 
known about the reaction mechanism of hemicellulose forma-
tion, hemicellulose is represented by xylan and xyloglucan in 
the root model. Saunders et al. (2006) were able to quantify the 
mass composition of the total sugars, fatty acids, amino acids, 
and suberin monomers found in the root systems of a collection 
of mostly C3 plants. The sugar compounds and compositions 
were assumed to be similar to the root system of Arabidopsis 
proposed by Schroeder and Saha (2020a). The specific weight 
percentage composition of each fatty acid and suberin monomer 
was determined by previous experimental studies (Li-Beisson 
et al., 2013). The specific g/g dry weight compositions of the 
amino acids in the roots were assumed to be similar to that in the 
root system of tomatoes, another C3 plant (Gerlin et al., 2022). 
All Arabidopsis root biomass components and their associated 
mass percentage compositions can be found in Supplementary 
File 1, along with a comparison table to show the difference 
between the original maize root biomass components and that 
of the final AraRoot model. The cell wall components, pectin 
and lignin make up most of the root biomass, while the ions 
involved in biomass formation were reduced compared to the 
maize root biomass.

Once the biomass reaction in the initial model was updated 
by changing the stoichiometry and components to match the 
biomass composition, some reactions had to be added for the 
model to be able to carry flux through the biomass reaction. The 
required reactions and their associated mechanisms were found 
using the KEGG database (Kanehisa et al., 2014). Since all bio-
mass components and their compositions were obtained from 
the literature, a sensitivity analysis was conducted to quantify the 
uncertainty of the coefficients of the biomass components in the 
base model by implementing the algorithm developed by Dinh 
et al (2022). Figure 2A provides the SDR results of the biomass 
coefficient sensitivity analysis where fluctuations in coefficient 
values were imposed on three cases: all coefficients at once, only 
on cellulose, and xylan as singular coefficients. The temporal fluc-
tuations imposed on all coefficients at the same time (cALL) shows 
a significant impact on the predicted biomass flux through FBA 
at an SDR of 14.04%. Imposing a fluctuation on the coefficient 
of cellulose (cCellulose), a major component in the biomass also 
results in a significant impact on the biomass predictions with an 
SDR of 13.96%. The results for imposing fluctuations on the xylan 
coefficient (cXylan) shows little impact on biomass formation with 
an SDR of 1.58%. Expanding on the biomass coefficient sensi-
tivity analysis, the shadow price values of all metabolites in the 
model having the updated biomass reaction were calculated. To 
determine the range of shadow price values for the metabolites, 
the coefficients of the biomass reaction were changed to reflect a 
20% fluctuation in the coefficient values. Figure 2B provides the 
shadow price value ranges for all the biomass metabolites.
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The positive shadow price values of the sugar components 
suggest that they act as overflow metabolites, as do the amino 
acids, proline, and asparagine. All other biomass metabolites 
were found to have negative shadow price values, indicating that 
they act as growth-limiting metabolites. The shadow price values 
calculated for the suberin-derived fatty acids, hexadecadienoic 
acid, and 22-hydroxydocosanoic acid, and the cell wall-derived 
components xyloglucan and cellulose indicate that these metab-
olites would have the highest correlation to biomass synthesis 
in the roots. The suberin-related metabolites make up a minute 
part of the biomass composition, whereas cellulose and xyloglu-
can within the cell wall make up relatively large portions of the 
biomass composition.

3.2  Model reconstruction
3.2.1  Resolved blocked reactions and TICs.

At this stage, the base model included 4,089 reactions, 4,419 
metabolites, and 6,389 genes. Conducting FVA on the model 

identifies blocked reactions by identifying all the reactions that 
have a maximum and minimum optimal flux of zero when pro-
ducing biomass in the case of AraRoot. The base model was 
found to have 2,315 blocked reactions. To determine which of the 
blocked reactions needed to remain in the model due to possible 
downstream involvement in different pathways, the list of blocked 
reactions was compared to the reactions that are associated with 
genes that have high homology between Arabidopsis and maize 
as obtained from the BLAST results. From the comparison, 678 
reactions were found to have high homology between Arabidopsis 
and maize and would need to remain in the model, despite not 
carrying flux during biomass production. The remaining 1,637 
blocked reactions were then manually scrutinized to ensure that 
downstream reactions were also kept in the model. Of the 1,637 
blocked reactions, 22 reactions were found to play a crucial role in 
downstream reactions and were kept in the model. A total of 1,615 
blocked reactions were finally removed from the model by delet-
ing the reactions and removing any unused associated metabolites.

Figure 2. Analysis of the Arabidopsis root biomass composition, including (A) the results of the quantified uncertainty in changes to the 
biomass coefficients in the model, and (B) the range of shadow price values for the biomass metabolites when coefficient values in the biomass 
reaction are deviated by 20%.
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Next, all missing specialized metabolites were verified to be 
in the Arabidopsis roots and their associated missing reactions 
were added to the model (Strehmel et al., 2014). Specialized 
metabolites that were added include coniferin, syringin, 
lariciresinol, esculetin, scopoletin, esculin, and scopoline 
(Strehmel et al., 2014). Once the specialized metabolites and 
reactions were added to the model it could be evaluated for 
any TICs. Since a previously published maize root model was 
used as the base model for AraRoot the inherent base model 
did not contain any TICs, as confirmed by the tool, OptRecon. 
Once this was confirmed, it was necessary to consider that the 
model might be missing some reactions that could be pres-
ent in Arabidopsis but would be missing from the maize root 
model.

To find and add any missing reactions, a custom database con-
taining reactions from the Arabidopsis genome was created. The 
SBML file containing all the custom database reactions can be 
found in the AraRoot GitHub repository (https://github.com/
ssbio/AraRoot), and the compilation of the genes used to create 
the custom database can be found in Supplemental File 4. These 
reactions were identified by obtaining transcriptome data of the 
root systems of other C3 plants, specifically rice (Liu et al., 2021), 
tomato (Gerlin et al., 2022), and soybean (Adhikari et al., 2019). 
The genes that are expressed in these root systems were found 
to have homologous genes that are expressed in Arabidopsis 
roots. Referring to the GPR relationship of Arabidopsis, a list of 
reactions was identified that are associated with genes that have 

high homology among C3 root systems. These reactions were 
considered to form the custom database from which OptRecon 
could add reactions to account for missing reactions. Figure 3 
illustrates the steps taken to create the custom database and use 
OptRecon to fill the missing reactions into the model, construct-
ing the final AraRoot model.

A list of 7,335 unique Arabidopsis genes were found to have 
high homology with the root systems of rice, tomato, and soy-
bean. From these genes, 355 reactions were identified from the 
published A. thaliana iRS1597 (Saha et al., 2011) model GPR 
and were used as a custom reaction database for OptRecon. 
From the custom database, 232 reactions were added to the 
model. The final AraRoot model consists of 2,682 reactions, 
2,748 metabolites, and 1,310 genes.

3.2.2  The inclusion of transcriptome datasets.
At this stage the bounds of the fluxes in the model were all set 
to large values, essentially ‘unbounding’ the flux ranges. When 
computing FBA with unbounded flux ranges, the possible solu-
tions to optimizing the maximum biomass flux (vbiomass) are 
infinite and can take up very large unrealistic fluxes through the 
reaction pathways in the model. The best practice to reduce the 
solution space and contextualize the model is to include empir-
ical transcriptomic data of the Arabidopsis root system in the 
model. The constricted flux bounds will also result in more real-
istic fluxes through the metabolic pathways as compared to what 
happens in nature.

Figure 3. Resolving missing reactions in the model by (A) creating a custom database from other C3 plants, followed by (B) using OptRecon 
to add reactions to the model from a custom database without creating any TICs.
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Gene expression data obtained from literature was incorpo-
rated into the model to contextualize the reaction bounds to 
more realistic limits. The work by Li et al. (2016) generated a 
high-resolution spatiotemporal map of gene expression in the 
Arabidopsis root system. The fragments per kilobase per million 
mapped fragments (FPKM) values of 23,934 unique genes were 
obtained for the meristematic, elongation, and maturation zones 
of the root system. From the Arabidopsis GPR, 1,310 unique 
genes are associated with 1,171 reactions from the whole-plant 
Arabidopsis genome. Of the 1,171 gene-associated reactions, 
507 were present in the AraRoot model and the associated 
bounds were adjusted using the E-Flux algorithm.

3.2.3  MBA results.
Following the procedure for MBA, 106 bottleneck reactions 
were identified, which correlate with 158 unique Arabidopsis 
genes according to the GPR, of which 145 genes were found 
to have high gene expression values under both normal growth 
conditions and high salt concentration growth conditions. 
Transcriptomic data collected by Geng et al. (2013) included 
gene expression values of four different tissues in the root under 
normal growth conditions and high salt growth conditions. The 
tissue-specific transcriptomic data for all genes was included 
in the model using E-Flux. t-Distributed Stochastic Neighbor 
Embedding (t-SNE) clustering analysis revealed further insights 
into the correlations in expression between the proposed bot-
tleneck genes in normal and salt conditions. Figure 4 provides 
the clustering results of all bottleneck genes for each cell type 
in the root to determine the metabolic correlations between 
the bottleneck genes when the Arabidopsis roots are exposed 
to high salt concentration growth conditions as compared to 
normal salt conditions. Supplementary File 5 provides a list of 
all the bottleneck genes, the associated gene expression values, 
the corresponding AraRoot reactions according to the GPR, and 
the cluster and pathway that each gene is associated with as illus-
trated in Fig. 4.

Based on visualization, in the endodermis and stele, the bot-
tleneck genes were found to form distinct clusters where the 
majority of genes in both cell types are associated with the oxida-
tive phosphorylation, and phosphonate and phosphinate metab-
olism pathways. Phosphonate and phosphinate metabolism are 
also prevalent in the cortex and epidermis, though the clusters 
are not as distinct as in the endodermis and stele. Several bottle-
neck genes were found to impact the TCA cycle and pyrimidine 
metabolism in the cortex and epidermis in high salt concentra-
tion growth conditions. The bottleneck genes impacting the 
ubiquinone and other terpenoid-quinone biosynthesis pathways 
in the endodermis and epidermis formed a distinct cluster in 
each case, indicating a high correlation during exposure to nor-
mal and salt conditions. The cortex seems to be the only cell type 
with bottleneck genes involved in the lysine degradation path-
way, which is a downstream pathway of the TCA cycle. The bot-
tleneck genes and their associated gene expression values in each 
identified cluster were imported into the STRING database and 
the protein-protein interaction networks found for Arabidopsis 
provided further insights into the correlations between the bot-
tleneck genes in each root tissue under salt stress growth condi-
tions. The illustrative outputs of the protein-protein interaction 

networks can be found in Supplementary File 3. From compar-
ing the protein-protein networks of each tissue to one another it 
was found that some proteins found in each of the four networks 
include PBL1, ALA2, PECT1, and CCT1.

3.3  Biological insights
To better understand the capabilities AraRoot has for capturing 
the metabolic reprogramming that occurs in stress conditions, 
a flux range variation analysis was carried out to investigate the 
changes in reaction fluxes in the roots when exposed to high 
salt concentration growth conditions. The transcriptomic data 
published by Geng et al. (2013) included gene expression val-
ues of the cortex, endodermis, epidermis, and stele tissues in 
the root system that were exposed to normal growth condi-
tions, 1 hour of salt exposure (short exposure), and 48 hours 
of salt exposure (long exposure). This data was implemented 
into AraRoot through the E-Flux algorithm to formulate 12 
different tissue-specific models under various growth condi-
tions. The flux ranges found under normal growth conditions 
were considered the baseline fluxes, and the flux ranges that 
resulted from the high salt concentration growth conditions 
were each compared to the normal growth condition flux 
ranges according to the categories described in Figure S2 in 
Supplemental File 3. The resulting variations in flux range from 
normal growth conditions to high salt concentration growth 
conditions are provided in Fig. 5.

Central carbon metabolism includes the glycolysis, pentose 
phosphate, and TCA cycle pathways, which are responsible for 
the conversion of carbon-containing compounds to sugars and 
organic molecules and are perhaps the best starting point when 
analyzing the metabolic reprogramming of the roots under salt 
stress (Dieuaide-Noubhani et al., 2007; Nägele et al., 2010). 
Other major pathways that appear upstream and downstream of 
central carbon metabolism include the de novo fatty acid synthe-
sis, galactose, purine, and glycerophospholipid pathways.

Most of the pathways in the cortex experience a shrunk flux 
space after 1 hour of salt exposure, but prolonged salt exposure 
led to widened flux spaces in all pathways except the pentose 
phosphate pathway. The endodermis and stele seem to experi-
ence the opposite metabolic reprogramming, experiencing wid-
ened flux spaces after 1 hour of salt exposure while prolonged 
salt exposure leads to shrunk flux spaces in all pathways except 
the pentose phosphate pathway. The epidermis seems to experi-
ence overall shrunk flux spaces in both short and long salt expo-
sure times.

4.   D I S C U S S I O N
4.1  Reconstructing AraRoot

This work introduces AraRoot, a metabolic model of the 
Arabidopsis root system that includes a comprehensive biomass 
composition that for the first time has the capability of capturing 
the metabolic reprogramming that occurs in separate root tissues 
when exposed to stress-induced growth conditions. The devel-
opment of a tissue-specific metabolic model such as AraRoot 
is crucial for gaining insights into the unique metabolic func-
tions and adaptations of distinct plant organs, such as the roots. 
AraRoot successfully allows for a more precise understanding 
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of how specific root tissues, including the cortex, endodermis, 
epidermis, and stele, respond to environmental stimuli, which 
advances our knowledge of stress responses in plant biology and 
can be further expanded to other crop GEMs to gain insights on 
how to improve crop resilience.

Our in-house tool, OptRecon, was instrumental in the 
development of AraRoot. OptRecon facilitated the accurate 
reconstruction of the Arabidopsis root metabolic network by 

removing TICs and ensuring the completeness of the model by 
adding missing reactions from a database. This tool enabled us 
to refine the metabolic pathways specific to the different root tis-
sues, thereby enhancing the predictive power and reliability of 
AraRoot. The successful application of OptRecon in this study 
underscores its potential as a valuable resource for developing 
other tissue-specific GEMs, further contributing to the field of 
plant systems biology.

Figure 4. K-Means clustering analysis of bottleneck genes in the (A) Cortex, (B) Endodermis, (C) Epidermis, and (D) Stele to indicate genetic 
correlations of the bottleneck genes in normal and salt conditions.
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Figure 5. Flux range variation resulting from high salt exposure during root growth.
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Another crucial part of developing AraRoot was ensuring 
that the model comprehensively captures a realistic biomass 
composition of the root organ as described in multiple liter-
ature sources (Zabotina et al., 2012; Li-Beisson et al., 2013; 
Schroeder & Saha, 2020a; Gerlin et al., 2022; Chowdhury et 
al., 2023). A comprehensive biomass composition would pro-
vide a realistic representation of the metabolic demands and 
outputs of the roots, leading to more accurate simulations and 
predictions of metabolic behavior under various conditions. 
The integration of such precise biomass data ensures that the 
model can better replicate the physiological and biochemical 
states of tissues under different growth conditions. The biomass 
composition included in AraRoot was determined from several 
literature sources and the sensitivity analysis of the model to 
changes in the biomass composition and stoichiometry high-
lights the need to experimentally verify the actual biomass com-
position of Arabidopsis roots. The shadow price values of the 
biomass components indicate that most of the sugar compo-
nents act as overflow metabolites. When considering the starch 
and sucrose metabolism pathways, glucose is formed from 
D-glucose 1-phosphate, which is also needed to form the cel-
lulose and hemicellulose components of the cell wall. Since cel-
lulose makes up most of the biomass composition, higher flux 
is required through the cellulose formation reaction within the 
model, resulting in glucose being an overflow metabolite. The 
negative shadow price values indicate growth-limiting metab-
olites. From the shadow price results, cellulose and xyloglucan 
within the cell wall would impact the actual biomass compo-
sition more than any of the other biomass metabolites since 
they have highly negative shadow price values and make up a 
relatively large proportion of the biomass composition. The 
negative shadow price value range of −0.18 to 0.2 of cellulose 
ties in with the sensitivity analysis of the model after perturba-
tions in the cellulose coefficients resulting in an SDR of 14%, 
both indicating that changes to the amount of cellulose in the 
biomass composition could highly affect the model outcomes. 
The shadow price value of xylan was found to be close to zero, 
while also indicating that it is a growth-limiting metabolite. This 
corresponds with the results of the sensitivity analysis with an 
SDR of 1.58%, both indicating that changes in the xylan compo-
sition of the biomass would not have a significant effect on the 
biomass predictions by AraRoot.

Additionally, the fatty acids, suberin monomers, and lignin 
components of root biomass all exhibit growth-limiting prop-
erties. Both the fatty acids and the suberin monomers depend 
on acetyl-CoA as their major precursor metabolite and are 
dependent on flux through the de novo fatty acid pathway for 
producibility. Although the fatty acids and suberin monomers 
make up a smaller proportion of the biomass, perturbations in 
the coefficients of the components affect the other components 
in the groups as well, creating a ‘ripple effect’ in the biomass pro-
duction predictions, making these metabolites growth-limiting 
metabolites. The insights gained from analyzing the bottleneck 
genes identified from the model provide a unique perspective on 
the metabolic behavior of the root system and would have taken 
much longer to gain from empirical investigations, highlighting 
the incredible power of utilizing tissue-specific predictive meta-
bolic models.

4.2  Predicting stress responses
Developing the AraRoot metabolic model before contextualiz-
ing it to represent specific root cell types provided a foundational 
framework that encompasses the comprehensive metabolic 
capabilities of the root. This includes all known metabolic reac-
tions and pathways within the root, providing a holistic under-
standing that can be selectively refined and tailored to reflect 
the metabolic activities of specific cell types. Furthermore, the 
development of a whole-root metabolic model allows for the uti-
lization of a wide range of experimental data, including transcrip-
tomics, proteomics, and metabolomics data, and allows for easy 
adaptation or expansion as new omics data becomes available. 
To analyze the capability of AraRoot in capturing the response 
of the root system to stress, the model was contextualized to 
represent the cortex, endodermis, epidermis, and stele tissues in 
the root system. Publicly available transcriptomic data for these 
tissues were utilized to not only contextualize the model but also 
to analyze the nature of the bottleneck genes identified from the 
model.

From the clustering analysis results of the transcrip-
tome data of the bottleneck genes, it can be concluded that  
phosphorus-containing pathways and energy-related path-
ways seem to be consistently involved in bottlenecks when the 
Arabidopsis roots are exposed to high salt stress conditions. The 
bottleneck genes were found to be associated with the phos-
phonate and phosphinate metabolism pathway in each of the 
root tissues. By further analyzing the protein-protein networks 
of the clusters it was found that a common bottleneck protein 
among all cell types is PBL1, which is a receptor-like cytoplas-
mic kinase responsible for signaling with calcium and inhibit-
ing root growth during stress conditions. Experimental work 
published by Kiegle et al. (2000) validated that calcium is vital 
for signaling responses in the Arabidopsis root system when 
exposed to salt stress. Calcium signaling was also found to be  
cell type-specific in the roots (Kiegle et al., 2000). Other bot-
tleneck proteins found to be associated with all four root tissue 
types include ALA2, PECT1, and CCT1, all of which are associ-
ated with phospholipid biosynthesis.

To better understand the flux range variation results, it was 
necessary to consult previous experimental findings. Several 
studies have shown that during the initial stages of root exposure 
to salt conditions, the roots go into a ‘shocked’ state where growth 
and metabolism are halted. However, after several hours of expo-
sure, the roots return to a somewhat normal rate of growth (Iyer-
Pascuzzi et al., 2011; Machado & Herrgård, 2014; Pirona et al., 
2023). From the flux variability results in Fig. 5, this is observed 
especially in the cortex, where all pathways have shrunken flux 
spaces after 1 hour of salt exposure but have widened flux spaces 
after 48 hours of salt exposure. However, in the pentose phos-
phate pathway, the formation of D-ribulose 5-phosphate and 
D-glyceraldehyde 3-phosphate remains suppressed in the cortex 
under high salt growth conditions. The de novo fatty acid, galac-
tose, and purine pathways undergo the same reprogramming as 
the glycolysis pathway within the cortex.

The endodermis seems to undergo the opposite reprogram-
ming as compared to the cortex. After 1 hour of salt exposure, 
the majority of the pathways and their associated reactions expe-
rience an increase in flux a widened flux space, and a shrunken 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/7/1/diaf003/8046507 by U

niversity of M
issouri-C

olum
bia Law

 Library user on 20 June 2025



12  •  Esterhuizen et al.

flux space after 48 hours of exposure, with the exception of the 
pentose phosphate pathway. It was also observed by Kiegle et al. 
(2000) that the endodermis has a unique response to salt expo-
sure, with higher levels of cytoplasmic free calcium for stress sig-
naling (Kiegle et al., 2000). The endodermis is also responsible 
for transporting water from the outer cortex and epidermis to 
the stele, which transports the water, via the xylem, to the rest 
of the plant (Brady et al., 2007; Dinneny et al., 2008). A separate 
study showed that the endodermis enhances the deposition of 
suberin in response to long-term exposure to salt stress, likely to 
limit water loss from the root (Barberon et al., 2016). Reduced 
metabolic activity in the endodermis after 48 hours of salt expo-
sure could be due to the suppression of water uptake from the 
growth media.

The increased flux range in the endodermis experienced by 
the pentose phosphate pathway is due to an upregulation in 
the formation of D-ribulose 5-phosphate. A study published 
by Huang et al. (2020) confirmed that D-ribulose 5-phosphate 
forms an essential part of the cell wall biosynthesis pathway as 
one of the essential compounds needed to form cell walls and 
seems to be upregulated in both the endodermis and epidermis 
during growth in high salt conditions (Huang et al., 2020). The 
upregulation of cell wall biosynthesis would allow for cells to 
maintain internal water retention during high salt growth condi-
tions and provide better support for the root structure (Kiegle et 
al., 2000; Iyer-Pascuzzi et al., 2011; Zabotina et al., 2012).

Unlike the other cell types, the epidermis was found to have 
similar metabolic behavior after both 1 hour and 48 hours of 
high salt growth conditions. All pathways, except the pentose 
phosphate pathway, were found to have reduced flux spaces in 
response to salt conditions. However, like the endodermis, the 
formation of D-ribulose 5-phosphate was upregulated in the 
pentose phosphate pathway after both 1 and 48 hours of salt 
exposure. The study published by Dinneny et al. (2008) confirms 
that the epidermis is the only cell type in the roots for which 
gene expression is highly responsive to environmental condi-
tions (Dinneny et al., 2008). The metabolic reprogramming by 
the stele cells under high salt conditions is very similar to that 
of the endodermis. Considering that the stele contains both the 
xylem and the phloem, which are responsible for transporting 
water and nutrients to the rest of the plant, it can be expected 
that metabolic activity will be suppressed under prolonged 
exposure to high salt conditions and result in reduced flux spaces 
in all pathways after 48 hours of salt exposure. Results also indi-
cate that the glycerophospholipid pathway undergoes complete 
reprogramming in the cortex, endodermis, and stele but remains 
suppressed in the epidermis during short and long exposures to 
salt (Han & Yang, 2021). The expanded flux ranges in the glycer-
ophospholipid pathway in the cortex also indicate that signaling 
during salt stress growth might be regulated in the cortex.

Considering the overall impact of high salt growth conditions, 
the different tissue types of the roots undergo unique metabolic 
reprogramming to ensure that the plant survives. The cortex 
undergoes an immediate metabolic suppression upon initial 
exposure to salt conditions; however, it is the tissue most likely 
responsible for root growth, as evidenced by increased synthesis 
of sugar and organic compounds after prolonged exposure to salt 
conditions. The metabolic activity in the endodermis, epidermis, 
and stele is suppressed after prolonged salt exposure, to possibly 

provide a counter-pressure to the external salt conditions while 
maintaining internal functionality. The pentose phosphate 
pathway in the endodermis and epidermis immediately starts 
producing more D-ribulose 5-phosphate that aids in cell wall 
biosynthesis to allow for thicker cell walls, which may lead to 
better water retention in the cells and thickened layers of pro-
tection for the roots themselves. Comparing the flux range varia-
tion results of AraRoot to previous experimental findings, these 
results show that AraRoot can accurately capture the metabolic 
reprogramming that occurs in the root tissues during growth in 
high salt concentrations as described in literature (Kiegle et al., 
2000; Dinneny et al., 2008; Iyer-Pascuzzi et al., 2011; Zabotina et 
al., 2012; Geng et al., 2013; Smolko et al., 2021).

5.   CO N CLU S I O N
The development of the root tissue-specific metabolic model, 
AraRoot, highlights the importance of metabolic models in 
studying the metabolic behavior of plants. Not only does the 
model capture the comprehensive biomass formation of the 
Arabidopsis root system, but it also succeeds in providing valua-
ble insights into the metabolic reprogramming that occurs in dif-
ferent root tissues during exposure to high salt concentrations. 
Our work highlights the importance of the cortex to root growth 
in stress conditions, while also capturing the role of the endo-
dermis and epidermis in producing thicker cell walls to allow for 
better water retention. AraRoot could be used to further predict 
the metabolic responses of the root system to other stress condi-
tions, such as temperature, pH, drought, and nutrient starvation. 
The methodology proposed here could also be used to develop 
metabolic models for the root systems of major crops. This would 
allow for further insights into how crops could be improved in 
terms of resilience to environmental stress and yield.
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