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Abstract. Inthe STRONGLY CONNECTED STEINER SUBGRAPH problem,
we are given an n-vertex digraph D, a weight function w: A(D) — R*
on the arc set of D, and a set of k terminals @ C V (D), and our objec-
tive is to find a strongly connected subgraph of D containing @) with
minimum total weight. The problem is known to be W[1]-hard on gen-
eral digraphs. However on bi-directed graphs (digraphs where, if uv is
an arc then so is vu) with symmetric weight function w: A(D) — R
(i.e., w(uv) = w(vu) for any uwv € A(D)), Chitnis, Feldmann and Manu-
rangsi [TALG 2021] showed that the problem is fixed parameter tractable
(FPT) with running time 20('“2)710(1)7 where n is the input length. They
also show that, unless the Exponential Time Hypothesis (ETH) fails,
there is no algorithm for the problem on bi-directed graphs with running
time 2°® R They left the existence of a single-exponential in k time
algorithm as an open problem. We resolve this question, by designing an
algorithm for the problem running in time 20O that is asymptot-
ically tight under ETH, thereby closing the gap between the upper and
lower-bounds for this problem.

Chitnis, Feldmann and Manurangsi [TALG 2021] showed that an opti-
mum solution to this problem can always be described by a collection
of trees, that are mapped to the input graph via homomorphisms, and
glued together at the terminal vertices. This structural result allows us
to design an algorithm via the combination of a Dreyfus-Wagner style
dynamic programming algorithm and the notion of representative sets
over linear matroids.
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1 Introduction

A central family of problems in network design addresses the objective of con-
necting a given set of terminals in a given network in a particular way, as to
ensure that the terminals can transmit information from one to the other in
that particular way. For instance, such problems naturally arise when modelling
radio or ad-hoc wireless networks. Here, a very general setting is when the input
consists of an arc-weighted digraph D as well as a collection Q of pairs of ter-
minals (designated vertices) in D, while the objective is to find a subgraph of
D with minimum cost (in terms of arc weights) such that for each terminal
pair (s,t) € Q, there is a directed path from s to ¢ in the subgraph. Unfortu-
nately, this problem, called DIRECTED STEINER NETWORK (DSN) (also known
as DIRECTED STEINER FOREST, although the sought solution may not be a
forest), is particularly hard. On the one hand, it is W[1]-hard with respect to
k = |Q| [27], which means that it is unlikely to be fized-parameter tractable
(FPT)—that is, solvable in time f(k)-n®® for some computable function f
of k. In fact, unless Exponential Time Hypothesis (ETH) fails, it is not even
solvable in time f(k) - n°®) for any computable function f of k [10]. On the
other hand, DSN cannot be approximated within factor O(210g176 ™) in polyno-
mial time unless NP C DTIME(2P°¥!°8(")) [16]. Furthermore, even combining
both FPT and approximation also does not seem to be of much help. Indeed,
Dinur and Manurangsi [15] have shown that the approximation of DSN within
factor k1—°M) ig already not FPT unless GAP-ETH fails. Recently, Manurangsi
et al. [31] proved that there is no FPT approximation algorithm for DSN with
a factor of o(k%) assuming Strongish Planted Clique Hypothesis. On the posi-
tive side, DSN is solvable in time n®®) [19], and can be approximated within
factors O(n3+¢) and O(kz*¢) in polynomial time [2,6,20]. When the arc costs
are uniform, DSN can be approximated within a factor O(n3+€) [11].

When dealing with undirected graphs, the problem is significantly easier at
both parameterized complexity and approximation fronts. Here, we are given
an undirected graph G and a set of terminals @, and the objective is to find a
subtree of G with minimum number of edges containing ). This problem is called
STEINER TREE (ST), and a more general version called STEINER FOREST is also
well studied. STEINER TREE is one of the 21 NP-hard problems in the seminal
paper of Karp [28]. Already in 1971, it was shown to be FPT with respect to
k = |Q|—specifically, it was shown to be solvable in time 3* - @) [18]. The
running time was improved to (2 + €)* - nf () and later to 28 - n®® for some
computable function f of 1 and € > 0 [4,23]. The algorithm in [4] works for the
weighted version of the problem with edge weights from {1,2,..., M}, and the
running time will have an additional multiplicative factor of M. On the other
hand, unless ETH fails, STEINER TREE cannot be solved in time 2°(™ and hence
neither in time 2°(%) . n@M)_ (In fact, unless the so called Set Cover Conjecture
(SeCoCo) fails, it is not even solvable in time (2 — €)* - n®™1) [13].) From the
approximation perspective, ST can be approximated within a constant factor
in polynomial-time: for over several decades, there is an ongoing quest to find
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the best possible approximation factor (see, e.g., [5,25,33,37]); to the best of our
knowledge, the current best approximation factor is of In(4) +¢ < 1.39 [5,25]. On
the negative side, unless P=NP, ST is inapproximable within factor % [3,12]. It
is known that unless PH collapses, ST does not admit a polynomial kernel [17].

Between these two extremes, lies the STRONGLY CONNECTED STEINER SUB-
GRAPH (SCSS) problem. Here, given an arc weighted digraph D and a collection
of terminals @, the objective is to find a strongly connected subgraph of D with
minimum number of arcs containing ). Notice that the SCSS problem is pre-
cisely the special case of DSN where Q = {(u,v) : u,v € Q}. Further, the flavor
of SCSS is precisely that of ST in the sense that every terminal can transmit
information to every other terminal in the sought subnetwork, which is a realis-
tic demand in network design. Unlike DSN, SCSS is known to be approximable
within factor 2 in 3% - n®(M) time [9]. Unfortunately, like DSN, SCSS is W[1]-
hard, and in fact it cannot even be approximated within factor (2 — €) in time
f(k) - n®®) unless Gap-ETH fails [8]. We remark that the special case of SCSS
where @ = V (D), known as MINIMUM STRONGLY CONNECTED SPANNING SUB-
RAPH, can be approximated in polynomial time within factor 2 [22] and when
all the edge weights are equal to 1, it has a factor % approximation in polyno-
mial time [35]. Also, it can be solved in single-exponential time in n (specifically,
240nn0(M) where w is the matrix multiplication exponent) [21].

Knowing that SCSS is unlikely to be FPT, how can we make its flavor more
similar to ST so that it will be tractable (FPT) yet will still deal naturally with
digraphs? Recently, Chitnis, Feldmann and Manurangsi [8] initiated a study
where they restricted DSN to bi-directed graphs called BI-DSN. Formally, a
digraph D is bi-directed if for any pair of vertices {u,v} in D, either both arcs
wv and vu belong to D, or none of them does. Moreover, if uv, vu € A(D), then
their weights are also equal. As noted in [8], bi-directed graphs model some real-
istic settings [7,30,34,36]—for instance, when nodes have the same transmitter
model (e.g., in some wireless networks), thus if a node u can transmit information
to a node v, the node v can transmit information to the node u as well. Critically,
unlike undirected graphs which also model this property, bi-directed graphs cap-
ture the property that if we want to transmit information in both directions,
then we need to pay twice, once for each direction. Thus, similarly to general
digraphs, orientation plays a role. In particular, it can completely change the set
of optimal solutions; for example, see Fig. 1, taken from [8]. Chitnis et al. proved
that BI-DSN is W[1]-hard, and it admits a polynomial time 4-approximation
algorithm and a 2-approximation algorithm running in time 2°®)n®M  For-
mally, BI-STRONGLY CONNECTED STEINER SUBGRAPH (BI-SCSS) is defined
as follows.

B1-SCSS Parameter: k = |Q)
Input: A bi-directed graph D, a set of terminals Q C V(D) and a symmetric
weight function w : A(D) — RT such that w(uv) = w(vu) for any uv € A(D).
Output: A strongly connected subgraph of D containing ) of minimum total
weight.
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Fig. 1. An example in [8] of a BI-SCSS instance where all vertices are terminals. Left:
Black edges show a solution which takes an undirected optimum twice. Right: The
actual optimum solution is shown in black.

In [8], it was proved that BI-SCSS is solvable in time 20(k%) . nPM | as well
as that it is NP-hard and that unless ETH fails, it cannot be solved in time
20(k) . n©() Tt was noted in [8] that bidirected inputs are the first example
where SCSS remains NP-hard but turns out to be FPT parameterized by k.
The results of [8] leave a gap between the known upper and conditional lower
bounds and they posed the following open question.

[ Can we obtain a single-exponential FPT algorithm for BI-SCSS?

In this paper, we answer the above question in the affirmative.
Theorem 1. The BI-SCSS problem is solvable in time 2°F) . nO1)

In particular, due to the aforementioned lower bound, our algorithm is opti-
mal under the ETH. Our algorithm builds on a structural result which states
that a minimal solution can always be described as a sum of trees mapped
by homomorphisms into the graph and glued together at the terminal vertices.
This result follows from [8]. The structural result allows us to find an optimal
solution by making use of representative sets combined with a Dreyfus-Wagner
style dynamic programming algorithm. We note the technique of representative
sets has been used to improve the running times of FPT and exact algorithms
of various problems and design efficient kernelization algorithms [21,26,29]. We
describe our algorithms for the unweighted version of the problem, which easily
extends to the symmetric weighted version via weighted representative sets. A
short technical overview of our result is given below.

Our Methods. We start with the definition of homomorphism on digraphs. A
homomorphism from a digraph H to a digraph D is a function ¢ from V(H) to
V(D) such that for any uwv € A(H), ¢(u)p(v) € A(D). Our first step is a struc-
tural analysis of solutions to an instance of BI-SCSS. This result shows that
optimal solutions can be decomposed into a sum of trees mapped by a homo-
morphism from a strongly connected digraph and glued together at the terminal
vertices. Towards that we make the following observation. Any solution D’ to
an instance of BI-SCSS (D, Q) can be viewed as the image of a homomorphism
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from a strongly connected graph H that contains all of (). Observe that, if there
is a homomorphism ¢ from a strongly connected graph H to D then the image
of ¢ forms a strongly connected subgraph D’ of D with |[A(D’)| < |A(H)|. Let us
note that H need not be a subgraph of D. Therefore, one can view a minimum
solution to an instance (D, Q) of BI-SCSS as a homomorphism ¢ from a strongly
connected graph H with minimum number of edges such that Q C ¢(V(H)).
Formally, consider an instance (D, @) of BI-SCSS, and let H be a strongly con-
nected graph and ¢ be a homomorphism from H to D such that @ C ¢(V(H)).
Then ¢(H) is a solution to (D, Q) corresponding to the pair (H, ¢).

We consider both D and H as k-boundaried graphs. In a k-boundaried digraph
D, a certain subset of k vertices, denoted by B(G), are tagged as boundary
vertices and are labeled with 1,..., k. For an instance (D, Q) of BI-SCSS, the
boundary vertices in D are exactly the vertices in @ (i.e., Q@ = B(D)). Then we
say that (H,¢), where H is a strongly connected k-boundaried digraph and ¢
is a homomorphism that preserves labels (i.e., the vertex with label ¢ in H will
be mapped to the vertex in D with label i), is a solution to the k-boundaried
bi-directed graph D. The elements of a k-boundaried digraph H are defined as
follows. Let C be a connected component in H—3(H ), where H is the underlying
undirected graph of H. Here, H is a simple graph that has an edge between u
and v if and only if uv € A(H) or vu € A(H). Then the subgraph of H induced
on the closed neighborhood of V(C), excluding the arcs incident only on 3(H),
ie., HIN[V(C)]] — A(B(H)), is called an element of H. One can show that there
is an optimal solution (H,¢) such that for every element J of H, J is a tree.
This result follows directly from [8, Lemma 5.2]. In other words, we can view H
as a collection of trees that are glued together at boundary vertices union the
set of edges within the boundary (see Fig. 2 for an illustration).

Having established the above structural result, we proceed to an algorithm
for finding an optimum solution to the given instance. We design a Dreyfus-
Wagner style dynamic programming (DP) algorithm via representative families
over graphic matroids. Our algorithm builds upon a well known characterization
of strongly connected digraph: a digraph is strongly connected if and only if for
any vertex u there is a spanning in-tree and a spanning out-tree rooted at w.
This characterization can be captured using a collection of linear matroids [24].
Then, we present a dynamic programming algorithm, that gradually builds an
optimum solution to the given instance. Here, we crucially use the fact that this
solution can be decomposed into a collection of trees, and these trees can be
constructed via a Dreyfus-Wagner style dynamic programming [18]. To ensure
that the algorithm runs in 29" n°M) time, we need an additional tool. At each
step of the dynamic programming algorithm, we must prune the collection of
partial solutions using the notion of representative sets [21] over linear matroids.
Otherwise, the set of partial solution cannot be bounded by a function of &k alone.
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(a) Graph H (b) The elements of H.

Fig. 2. A strongly connected graph H with boundary vertices colored red is drawn in
the left side. Its elements are drawn in the right side. (Color figure online)

2 Preliminaries

We refer the reader to [14] for standard graph theoretic notions that are not
explicitly stated here. For a positive integer ¢ € N, [¢t] denotes the set {1,...,t}.
For a function f: A — B and X C A, f(X) = {f(z) : € X}. We use the
term graph to denote an undirected graph without self-loops, but with parallel
edges. However, the digraphs considered in this paper are without self-loops and
parallel arcs. For a graph G, we use V(G) and E(G) to denote its vertex set
and edge set, respectively. Let G be a graph, u € V(G), and U C V(G). We use
de(u) to denote the number of edges in G that are incident to u. We use N[U]
to denote the closed neighborhood of U and G[U] to denote the subgraph of G
induced on U. We use E(U) to denote the set {uv € E(G) : u,v € U}.

For a digraph D, we use V(D) and A(D) to denote its vertex set and arc
set, respectively. For a digraph D, we use D to denote the underlying undirected
graph of D. Moreover, if there exist two vertices u,v € V(D) such that uv,vu €
A(D), then there will be two edges between u and v in D. For a (di)graph D
and an arc/edge subset F of D, D[F| denotes the graph induced on F, i.e., D[F]
has vertex set V(D) and arc/edge set F'. A connected component of a digraph
D is a maximal subgraph C' of D such that C is a connected graph.

A k-boundaried (di)graph is a (di)graph G with a set W C V(G) of cardinal-
ity at most k such that each vertex w € W has a unique label ¢g(w) € {1,...,k}.
The vertex subset W is referred to as the boundary of G. For a k-boundaried
(di)graph G, the function 5(G) returns the boundary of G. For two k-boundaried
(di)graphs G and G2, G1 @G5 denotes the k-boundaried graph obtained by “glu-
ing together the same labelled boundary vertices”. That is, the gluing operation
takes the disjoint union of G; and G and identifies the vertices of 3(G1) and
B(G2) with the same label. If there are vertices ui,v1 € S(G1) and ug, v2 € 5(G2)
such that ¢, (u1) = g, (u2) and £g, (v1) = fg,(v2), then G has vertices u
and v formed by unifying uw; and us, and v; and wve, respectively. Moreover,
uw € E(G; & Gy) if and only if wjv; € E(Gy) or ugvy € E(G3). Also, u
and v are boundary vertices in G; @ G2 such that g, g¢q, (1) = g, (u1) and
KGI@G2 (U) = EGI (vl)'

A homomorphism from a digraph H to a digraph D is a function ¢ from
V(H) to V(D) such that for any uwv € A(H), ¢(u)p(v) € A(D). Also, if D and
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H are boundaried graphs we say that ¢ is a label preserving homomorphism if ¢
also satisfies the following: For all b € 5(H), ¢(b) € S(D) and £g(b) = ¢p(p(b)).

A digraph T is an arborescence or an out-tree if there is a vertex u in T', called
the root, such that, for any vertex v in T', there is exactly one directed path in
T from u to v. We also call T' a u-arborescence and T is an out-tree rooted
at u. A digraph T is an in-tree if the digraph obtained from T by reversing
all its arcs is an out-tree. For a digraph D, we say that a subgraph T of D is
an in-branching (or an out-branching) of D if T is an in-tree (or an out-tree)
and V(D) = V(T'). The following observation is an alternate characterization of
in-trees and out-trees.

Observation 1. Let T be a digraph and w € V(T). The digraph T is an in-tree
rooted at u if and only if T is a tree, the out-degree of u is 0, and for each
v e V(T)\ {u}, there is exactly one arc vw in T for some w € V(T). Similarly,
T is an out-tree if and only if T is a tree, in-degree of u is 0, and for each
v e V(T)\ {u}, there is exactly one arc wv in T for some w € V(T).

3 Algorithm

Recall that, the input to BI-SCSS is a pair (D, Q) where D is bi-directed graph
D, and @Q C V(D) is the set of terminal vertices. Also recall that we present
an algorithm for the unweighted version of the problem. First we state that a
certain class of solutions for this problem admit a decomposition into trees. For
notational convenience, instead of using a pair (D, Q) to denote an instance of
BI1-SCSS, we consider it as a k-boundaried bi-directed graph D with boundary
B(D), where the boundary vertices 5(D) play the role of terminals. Recall that
we have a labeling ¢{p : S(D) — [k] where k = |3(D)|. Let us begin with the
following lemma that allows us to view a solution to an instance of BI-SCSS as
a homomorphism between graphs. Similar methods, that is, viewing solutions as
homomorphisms were also considered before, for example [32].

Lemma 1. Let D be an instance of BI-SCSS, and H be a strongly connected
digraph with boundary B(H) such that |B(H)| = |B(D)|. If there is a label preseruv-
ing homomorphism ¢ from H to D, then there is a strongly connected subgraph
D’ of D containing B(D) such that |A(D")| < |A(H)|.

Proof. We define the graph D’ as follows. The vertex set of D’ is V(D') =
o(V(H)) C V(D). For any arc uv € A(H), ¢(u)d(v) belongs to A(D’). This
completes the construction of D’.

Since H is strongly connected, between any two vertices x and y in H, there
is a path P; from z to y, and there is a path from y to  in H. Each of these
paths corresponds to a walk in D’. This implies that there is a path from ¢(z)
to ¢(y), and there is a path from ¢(y) to ¢(x) in D’. Thus, D’ is a strongly
connected graph. Moreover, 3(D) C V(D') and |A(D")| < |A(H)|. O

Observe that, for a solution D’ to the instance D, there is a trivial label
preserving homomorphism from H = D’ to D. Thus, because of Lemma 1,
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we can view the solutions of a BI-SCSS instance D as homomorphisms from
strongly connected graphs H to D that induce a one-to-one map from ((H)
to B(D) that also preserves the labels. That is, a solution to an instance G of
B1-SCSS is a pair (H, ¢) where H is a strongly connected k-boundaried digraph
with |B(H)| = |8(D)|, and ¢ is a label preserving homomorphism from H to D.

Next we define a decomposition of a solution into its elements, and then prove
that the underlying undirected graphs of elements of an optimum solution, are
trees (see Fig. 2).

Definition 1 (Elements of a solution). Let H be a k-boundaried graph and
Q = B(H). Let Cy,...,C, be the connected components of H — Q. Then, the
k-boundaried graphs HIN[V (C1)]] — E(Q), ..., H[N[V(C,)]] — E(Q) are called
the elements of H. Here, for each element J, we have G(J) = Q NV (J) and
Ly(b) =Ly (b) for allb e B(J).

The following lemma (Lemma 2) directly follows from [8, Lemma 5.2]. As [8,
Lemma 5.2] holds in the case of symmetric weight functions, Lemma 2 can be
extended to the case of symmetric weight functions as well.

Lemma 2. Let D be an instance of BI-SCSS. Then, there exist a strongly con-
nected subgraph D' of D containing all the boundary vertices with the least num-
ber of edges and a solution (H,¢) to D such that

- D' = (¢(V(H)),{d(u)¢(v) : uv e A(H)}), and

— for every element J of H, J is a tree.

We say that (H, @) is a homomorphism minimal solution to D, if for every
element J of H, J is a tree. Lemma 2 implies that there is an optimum homo-
morphism minimal solution.

Our algorithm is a Dreyfus-Wagner [18] style dynamic programming algo-
rithm combined with representative families [21] on disjoint union of graphic
matroids to prune the sizes of DP table entries. Let D be an instance of BI-SCSS,
where D is a k-boundaried graph. Let (H, ¢) be an optimal homomorphism min-
imal solution to the instance D. Lemma 2 implies that for every element J of
H, J is a tree. The tree structure of the elements of H allows us to do a DP
algorithm in a manner that is designed for STEINER TREE by Dreyfus and Wag-
ner [18]. But, both the sizes of elements and the number of potential choices
for elements that need to be considered as partial solutions are not bounded by
a function of k. To overcome this hurdle, we use the notion of representative
families on graphic matroid to prune the list of partial solutions in our dynamic
programming table.

The following proposition will allow us to see solutions as a union of in-
branchings and out-branchings. This was used in previous results (for exam-
ple [10]). The underlying tree structures in in-branchings and out-branchings
are useful for applying representative families on graphic matroids.

Proposition 1. ([1]). Let H be a digraph and r € V(H). Then, H is strongly
connected if and only if there is an in-branching rooted at r and an out-branching
rooted at r in H.
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Observation 2 (x).! Let D be an instance of BI-SCSS and (H, ¢) be a homo-
morphism minimal solution to D. Then, for any element J of H and u € V(J)
with d(u) <1, u € B(H).

From now on, throughout the section we fix a k-boundaried digraph D as the
input of BI-SCSS and n = |V(D)|. Since we have to explicitly keep track of
parts of in-branching and out-branching in a “partial solution” while doing DP,
we refine the notion of solution from a pair to a quadruple.

Definition 2. A homomorphism minimal solution to D is a quadruple

(H, ¢, Tin, Tout), where H is a k-boundaried digraph, |B(H)| = |B(D)|, and
A(Tin) U A(Tout) = A(H) such that the following holds. Let y € B(H) be the
vertex in H such that {y(y) = 1.

(i) The function ¢ is a label preserving homomorphism from H to D.
(ii) Tipn is an in-branching of H rooted at y and T,y is an out-branching of H
rooted at y.
(iii) For any element J of H and leaf u in J, J is a tree and u € B(H).

Observation 3. Let (H,$, Tin, Tout) be a homomorphism minimal solution to
D and J be an element of H. For any v € V(J)\ B8(J), all the arcs in A(H)
that are incident to v, are also present in J.

Observation 3 follows from the definition of elements. By Observation 3, for
a homomorphism minimal solution (H, ¢, Ty, Tout), €ach element is a subgraph
J of H such that J is a tree and the arcs in A(H) that are incident to a non-
boundary vertex v € V(J) \ B(J) are also present in the graph J. Thus, to have
complete information about the elements we define an element tuple as follows.
For a homomorphism minimal solution (H, ¢, T;y,, Tout) and an element J of H,
the element quadruple associated with J is a quadruple (J, 1, A, Aout), where
Y = dlviny, Ain = A(J)NA(T;,) and Aoy = A(J)NA(Tout). We remark that the
underlying undirected graphs of J[A;,] and J[Au:], are connected. The proof
of the following observation follows from Observation 3.

Observation 4. Let (H,$, Tin, Tout) be a homomorphism minimal solution to
D and J be an element of H. Let (J, 0, Ain, Aout) be the element quadruple
associated with J. Let uw € V(J) and A, be the set of arcs in J that are incident
with u. Let F C A, and let J' be the connected component of J — F containing
u. Then, for any w € V(J')\ (B(J)U{u}), all the arcs of Aip, and Aoy that are
incident with w, are also present in J'.

In the DP algorithm, the first step is to compute a “representative family” of
element quadruples and in the second step we compose element quadruples and
the edges between terminals in an iterative manner using representative families
again, to form a solution.

1 The proofs of the results marked with + are deferred to the full version of the paper.
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3.1 Step 1: Representative Family of Element Quadruples

To compute a representative family of element quadruples using a DP algorithm,
we first define element partial solutions.

Definition 3. An elemental partial solution is a 6-tuple (R, ®, Ain, Aout, b, 2),
where R is a k-boundaried digraph, Ay, € A(R), Aot € A(R), A(R) = Ajp U
Aout, h € V(R), and z € V(D) such that the following holds.

(1) R is a tree.

(2) If there is a vertex x € V(R) with label k + 1, then x = h.

(3) ¢ is a label preserving homomorphism from R to D such that ¢(h) = 22.

(4) The set of vertices {x € V(R) : £r(z) € [k]} forms an independent set in R.

(5) For any u € V(R) \ B(R), there is exactly one arc of the form uw in A,
and there is exactly one arc of the form w'u in Ayys.

Here, notice that we have used one more label for R. This is similar to the
idea of having one more terminal vertex in the Dreyfus-Wagner algorithm. That
is, this extra boundary vertex is used to join two partial solutions. Recall that,
in the Dreyfus-Wagner algorithm, we compute a minimum spanning tree using
a dynamic programming algorithm. Here, we use a similar kind of dynamic
programming algorithm, but instead of computing one solution, we compute a
set of elemental partial solutions such that a solution to D can be composed
of the elemental partial solutions from the set we computed and arcs between
boundary vertices.

We define the size of an elemental partial solution (R, @, Ain, Aout, I, 2) to
be |A(R)|. Suppose we have computed the set S of all possible elemental partial
solutions of size at most 2n — 2, then a solution can be constructed by composing
the element quadruples associated with it and the arcs between the terminal ver-
tices. But the cardinality of S is not bounded by a function of k. Thus, instead
of computing S, we compute only a “representative of S”. In fact, in our DP
algorithm we compute subsets of elemental partial solutions in the increasing
order of their size that preserve some candidates which can be extended to an
optimum solution. In short, we use ideas similar to the Dreyfus-Wagner algo-
rithm to construct partial solutions of larger size from partial solutions of smaller
size and we prune the partial solutions using representative sets on matroids to
reduce its cardinality.

Definition 4. Let Q = (R, ¢, Ain, Aout, h, 2) be a tuple satisfying the conditions
in Definition 3. Let Z = (L,, Bin, C A(L), Bout € A(L),h* € V(L),2) be a
tuple where L is a (k + 1)-boundaried digraph, h* € 3(L), such that

(a) if there is a vertex x such that 01 (x) = k+1, then x = h* (i.e., {;*(k+1) C
{h*}), and
(b) ¢ is a label preserving homomorphism from L to D such that ¥(h*) = z.

2 Here, we slightly abuse the notation and consider z to be a labelled vertex in D with
label k + 1 if £r(h) =k + 1.
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Let y be the vertex in R ® L labelled with 1. We say that Q and Z can be
merged, if the following holds.

(i) (V(R®L),AinUByy) and (V(R® L), Aoyt U Bout) are an in-branching and
an out-branching rooted at y of R ® L, respectively, and
(i1) there is a vertex with label j in R® L for all j € {1,...,k}.

That is, (R® L, ¢*) forms a solution to D, where y*(x) = ¢(z) for allz € V(R),
and Y*(x) = (x) for all x € V(L).

It is easy to prove that the function ¢* in the above definition is well defined.
Intuitively, in Definition 4, @) is a partial solution and it can be extended to a
solution using the tuple Z which is yet to be computed by our DP algorithm.
Now we define the notion of representative set of elemental partial solutions and
later we will prove that a small set which represents any given set of elemental
partial solutions can be computed efficiently.

Definition 5. Let F be a set of elemental partial solutions. We say that a
subset F' C F represents F if the following holds. Suppose there is a tuple
Z =(L,¢,B;, CA(L), Bout C A(L),h* € V(L),z € V(D)) and there is a tuple
Q € F, such that Q and Z can be merged, then there is a tuple Q' € F' such
that Q' and Z can be merged and the size of Q' is at most the size of Q.

Recall that S is the set of all possible elemental partial solutions. Next,
we explain how to compute a subfamily &’ that represents S, of cardinality
20(k)p using a Dreyfus-Wagner style dynamic programming algorithm along
with representative families on the disjoint sum of two graphic matroids. In
what follows we explain how to compute S’ assuming Lemma 3 which can be
proved using the notion of representative families on linear matroids and the
proof is omitted here.

Lemma 3. There is an algorithm that given an instance D (a k-boundaried
graph) of BI-SCSS, and a set of elemental partial solutions F of D, runs in
time O(|F| - n) and outputs a subfamily F' of F of cardinality at most 208+ 1n
that represents F.

Now, we are ready to explain a DP algorithm to compute a subfamily S’ of
S, of cardinality 2°(*)n, that represents S. Let S; be the set of all the elemental
partial solutions of size at most i. At stage ¢, our algorithm will compute a
subfamily S; of S; that represents S; in time 20(F) 3 using already computed
sets of partial solutions Sj,...,S/_;. Then, at the end it is straightforward to
prove that the family S = S{U...US), 5 is a representative for S. Then, in
the final step using similar pruning technique we compute an optimum solution
again by a DP algorithm using S.

Now, we get back to the computation of S; that represents S;, for all i €
{1,...,2n—2}. At the first step, we enumerate S; (its cardinality will be bounded
by n?) and use Lemma 3 to compute a subfamily S} of size at most 205+ 1n.
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Computation of S! for i € {2,...,2n — 2}: Inductively, assume that we have
computed S} of cardinality at most 20F+1n, for all j € {1,...,i — 1}. First we
set S = . Then, we add the following tuples to S}.

(i) For all j,r € [i — 1] such that ¢ = j + r, and for every pair of tuples
(Ru, @1, AL, Ay iy 2) € S oand (Ra, g2, A7, Ay, he, 2) € S) such that

ERl (hl) = ERZ(hQ), we add a tuple Q = (R = R1 D RQ,(ZS,A;TL U A/-/ Ai)ut U

Al i b, z) to S, if Q is an elemental partial solution, where h is the vertex
in R such that {g(h) = lg, (h1) = {r,(h2), and ¢ are defined as follows. For
any © € V(Ry), ¢(x) = ¢q(x) for all ¢ € {1,2}. Since ¢1|3(r,)ns(r,) is same
as ¢2|3(r,)nB(R,), the function ¢ is well defined. Here we compute elemental
partial solutions from already computed partial solutions by gluing at the
vertices labelled k& + 1.

(ii) For each (R',¢', A}, , AL, B ,2') € SI_; and arc 2’z € A(D) let Q1 =
(R, ¢, Aiy U {R'h}, Aput, b, 2), Qa2 = (R, 0, Ain, Aour U {W'h} h,z), and
Qs = (R, ¢, Ay U{R'h}, Apus U{R'h}, h, z), where R is the graph (V(R') U
{h}, A(R")U{R'h}), B(R) = (B(R)U{h})\{I'}, and ¢ is defined as follows:
for any y € V(R'), ¢(y) = ¢'(y), and ¢(h) = z. Here, £g(h) = k+ 1 and
lr(z) = lr(x) for all x € B(R) \ {h}. Then, for any j € {1,2,3}, we add
Q; to §F if @5 is an elemental partial solution. Here we compute partial
solutions from already computed partial solutions by gluing an arc where
the head of the arc is a “new vertex”.

(iii) We have three more cases which are omitted here, as they are identical to
Case (ii). In those cases, we compute partial solutions from already com-
puted partial solutions by gluing an arc where, (a) the tail of the arc is a
“new vertex”, (b) head of the arc is a “new vertex” and both the endpoints
of the arc are boundary vertices, (c) tail of the arc is a “new vertex” and
both the endpoints of the arc are boundary vertices, respectively.

Clearly, the cardinality of S is bounded by 2°*)n? because |Sj] < 2071,

forall j € {1,...,7—1}. Now, we use Lemma 3 and compute a representative S;

of S¥. The construction of S/ takes time 2°()n3 and the cardinality of S/ is at
most 20¥+1n. Thus, the total running time to compute S}, ..., S5, 5 is 20*)p?,

Now,Alet S=8/U...US}, ,. Next, we prove that S/ is a representative of
S;, and S represents S.
Lemma 4 (x). For alli e {1,...,2n — 2}, S! represents S;.
Lemma 5. S represents S and |S| is upper bounded by O(20Fn?).
Proof. Let @ € S and Z be a tuple such that () and Z can be merged. Let the

size of @ be . Then, we have that there exists Q' € S/ C S such that Q' and Z
can be merged. Because of Lemma 3, we have that |S| < O(20%n?). O

3.2 Step 2: Composition of Element Quadruples

The next step is to compose the element quadruples to form a solution. In
this step as well we use the notion of representative families and do a dynamic
programming.
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Definition 6. A partial solution is a quadruple (Y, ¢, Ain, Aout), where Y is a
k-boundaried digraph, A;, C A(Y), Aout € A(Y), and A(Y) = Ay U Apye such
that the following holds.

(1) ¢ is a label preserving homomorphism from'Y to D.
(2) For any uw € V(Y)\ B(Y), there is exactly one arc of the form uw in A,
and there is exactly one arc of the form w'u in Ayys.

The size of a partial solution (Y, ¢, A, Aout) is |A(Y)|. For any two partial
solutions Q1 = (Y1, ¢1, F1, Fy) and Q2 = (Ya, ¢2, Fo, F3), we define Q1 o Q2 to
be the quadruple (Y =Y; @ Ya, ¢, Fi U Fy, F{ U F}), where ¢(z) = ¢1(x) for all
x € V(Y1) and ¢(z) = ¢2(x) otherwise. Similar to the case of elemental partial
solution, we define the notion of a representative for partial solutions and we
prove that small representative families can be computed efficiently.

Definition 7. Let F be a set of partial solutions. We say that a subset F' C F
represents F if the following holds. Suppose there is a partial solution Q € F
and there is another partial solution Z (not necessarily in F), such that Qo Z
is a solution to G, then there exists Q' € F' such that Q' o Z is a solution to D
and the size of Q' is at most the size of Q.

Lemma 6 (x). There is an algorithm that given an instance D of B1-SCSS,
where D is a k-boundaried bi-directed graph and a set of partial solutions F of
D, runs in time ZO(k)\f| -n and outputs a subfamily F' of F of cardinality at
most 20F that represents F.

For any solution (H, ¢, Tin, Tout) of D, we know that the elements of H do
not contain arcs between the boundary vertices. Let B be the set of all partial
solutions (Y, ¢, Ajn, Aout) of size 1 with S(Y) =V (V) and |V (V)| = 2. Let R be
the set of partial solutions extracted from S which is constructed in the previous
subsection. That is,

R = {Q = (Y, ¢, Ain, Aouz) : Q is a partial solution and
I,z s.t. (Y, ¢, Ain, Aous, h, 2) € S}

Now compute sets Py, P1,...,Pon_o in this order as follows. We set Py =
{(0,0,0,0)}. P, = R. For any i € [2n — 2], first we set Q; = {Qo R : Q €
Pi—1 and R € 7%} Then, let P; be the representative of Q;, computed using
Lemma 6. That is, P; will be a representative subfamily of partial solutions
which are composed of i partial solutions from R (that corresponds to elemental
partial solutions). Now, for each i € {0,1,2n — 1} and j € {0,...,k%}, we
construct a set P; ; as follows in the increasing order of j. We set P; o = P; for all
i €{0,...,2n—2}. Now, for any j € [k?],let Q; ; = {PoB: P€P;j_1 and B €
B}. Then, by using Lemma 6, we compute P; ; which is a representative of Q; ;.
Now, among all the tuples in UZ j Q; ; that are solutions of D, we output the
solution with minimum size. This completes the algorithm.

Now, we prove the correctness of our algorithm. For each optimum solution
(H, &, Tin, Tout), H is a union of elements and arcs between boundary vertices
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of H. That is, (H, @, Tin, Tout) is composed of tuples from S and B. That is, if
H is composed of ¢ elements and j arcs between boundary vertices, then there
exist Pi,...,P; € R (where R is defined below) and By, ... B; € B such that

(H, (b, TinaTout) = ((((((Pl [e) PQ) o.. ) OPI) [¢] Bl) [e) Bg) o.. ) o] B]7 Where
R={Q = (Y, d, Ain, Aout) : Q is a partial solution and
3h, z s.b. (Y, b, Ainy Aouts h, 2) € S}

For each i € {0,...,2n — 2} and j € {0,...,k*}, we define Z; ; as follows.
We define Zy9 = {(0,0,0,0)}. For any i € 2n — 2|, Z,0 = {Zo P : Z €
Zi_10and P € R}. Now, for any j € [k?], we define Z;,; = {Zo P : Z €
Z;j—1 and P € B}. That is, for an optimum solution Z = (H, ¢, T, Tout), if H
is composed of 7 elements and j arcs between boundary vertices, then Z € Z; ;.
The correctness of our algorithm follows from the lemma below.

Lemma 7. For any i € {0,...,2n — 2} and j € {0,...,k*}, Pi, is a represen-
tative for Z; ;.

Proof (Proof sketch). First using induction on ¢, we prove that P; o is a repre-
sentative for Z; 5. The base case is when ¢ = 0 and it is true because Py o = Zg o.
Now, consider the induction step when ¢ > 0. Suppose there is a partial solution
Z € Z; o and another partial solution I such that ZoF'is a solution to D. Then,
there exists Z1 € Z;_10 and Zy € R such that Z = Z; 0 Z5. Let F} = Zy o F.
Notice that Zo F' = (Z; 0 ZQ) oF =Zy0(Zy0 F) = Zy 0 Fy. Then, by induction
hypothesis, there exists 21 € Pi_1,0 such that Zl o I is a solution to D. Notice
that Zs o (21 o F) = Z1 o Fj. Smce S is a representatlve of S and from the
construction of R, there exists Zg € R such that ZQ o (21 o F') is a solution
D. Notice that 22 o (21 o F) is equal to (21 ) 22) o F, where 21 € Pi—1,0 and
22 cR. By the definition of Q; o, we get that 21 o 22 € Q; 0. Then, since P; o
is a representative of Q; ¢, there is a partial solution 7 e 771 0 such that ZoF
is a solution to D and size of Z is at most the size of 21 o Zg which is at most
the size of Z. Thus, we have proved that for any ¢ € {0,...,2n — 2}, P, is a
representative for Z; g.

Using similar arguments, one can prove by induction on j that for any j €
{0,...,k%}, P; ; is a representative for Q; ;. O

Running Time Analysis. We have already mentioned that the computation
of S, ..., 8%, o takes time 2°(*)nt and by Lemma 5 the cardinality of 8 is at

most (9(20’C 2). Hence the cardinality of R is upper bounded by O(20%n?). By
Lemma 6, the computation of P, . .., Pa, o, takes time 2°F)n? and |P;| < 20%,
for all i € {0,...,2n — 2}. Because of Lemma 6 the computatlon of P; ; for all
i € {0,...,2n — 2} and j € {0,...,k?} together takes time 2°*)n? and the
cardinality of each Q; ; is upper bounded by 20*. Thus, the total running time
of the algorithm is 2°(F)n*,
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