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ABSTRACT

This paper evaluates the behavior of a single rigid ellipsoidal particle suspended in homogeneous viscous flow with a power-law generalized
Newtonian fluid rheology using a custom-built finite element analysis (FEA) simulation. The combined effects of the shear-thinning fluid
rheology, the particle aspect ratio, the initial particle orientation, and the shear-extensional rate factor in various homogeneous flow regimes
on the particles dynamics and surface pressure evolution are investigated. The shear-thinning fluid behavior was found to modify the par-
ticle’s trajectory and alter the particle’s kinematic response. Moreover, the pressure distribution over the particle’s surface is significantly
reduced by the shear-thinning fluid rheology. The FEA model is validated by comparing results of the Newtonian case with results obtained
from the well-known Jeffery’s analytical model. Furthermore, Jeffery’s model is extended to define the particle’s trajectory in a special class of
homogeneous Newtonian flows with combined extension and shear rate components typically found in axisymmetric nozzle flow contrac-
tions. The findings provide an improved understanding of key transport phenomenon related to physical processes involving fluid-structure
interaction such as that which occurs within the flow field developed during material extrusion-deposition additive manufacturing of fiber-
reinforced polymeric composites. These results provide insight into important microstructural formations within the print beads.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0242953

INTRODUCTION

Theoretical analysis of particle behavior in a viscous homogeneous
suspension is a well-known fluid-structure interaction (FSI) problem,
which has a variety of applications in key transport phenomena
observed in physical rheological systems such as the movement of cells
and platelets in blood plasma,' the motion of reinforcing particles in
fiber-filled polymer melt suspensions during polymer composite proc-

an example, the dynamics of a single rigid ellipsoidal axisymmetric parti-
cle has been used extensively to investigate particle dynamics and flow-
field structure of polymer composite melt flows during processing to
assess their microstructure.”' "'

Theoretical studies on particle migration in homogeneous viscous
flow are commonly based on the assumptions of negligible inertia

effects, Newtonian fluid rheology, and non-deformable particle shape,
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essing,” proppant transport in fracturing fluids,” and migration of gas-
eous bubbles in quiescent viscous flows." The rheology of particle
suspensions is inherently complex due to a host of factors, including the
presence of inter- and intraparticle forces arising from hydrodynamic
interaction, contact collision between particles, confinement effect and
particle deformability, Brownian disturbance, non-Newtonian viscoelas-
tic fluid rheology, anisotropic particle geometry and concentration, and
existence of various flow regimes within the system, etc.” ” The study of
particle suspension dynamics often starts with the evaluation of single
rigid spherical particle suspension under Newtonian simple shear flow,
which also provides insight into the rheology of dilute suspensions.”” As

conventionally referred to as “standard conditions.”’” Pioneering
works of Oberbeck,'” Edwardes,'* and Jeffery'” evaluated the orbit of
an ellipsoidal rigid particle suspended in a homogeneous shear viscous
flow, where particle motion was determined to be a function of initial
condition, which has been validated experimentally.'” In other work,
Bretherton showed that lateral positioning of spherical isotropic par-
ticles remains unchanged relative to their initial position in quiescent
sedimentation or unidirectional shear viscous flow."” Additionally,
Cox found that the orientation of transversely isotropic rigid particles
in unconfined quiescent sedimentation would remain fixed at its initial
value throughout its motion.'” These studies showed that under
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“standard conditions,” the motion and trajectory of a body of revolu-
tion depend on its initial conditions. For instance, the so-called
“degeneracy” of Jeffery’s orbits is used to describe the indeterminacy of
particle’s motion in sheared viscous suspension whereby an axisym-
metric particle may assume any of the infinitely possible metastable
periodic orbits depending on its initial position. Experimental observa-
tions have revealed a tendency for suspended particles to eventually
acquiesce to an equilibrium configuration within a finite timescale or
equilibrium rate of approach irrespective of its initial configuration
contrary to theoretical predictions based on “standard conditions.”'”
Jeffery'” first suggested the possibility that spheroidal particles in a
sheared viscous suspension with a theoretically indeterminate nature
based on first-order approximations may eventually assume special
configurations, which are the path of least energy dissipation. Taylor'”’
was one of the earlier researchers to provide experimental basis for
Jeffery’s hypothesis and proposed that the higher-order terms
neglected in Jeffery’s approximate equations were responsible for the
observed departure in the actual particle’s behavior from theoretical
predictions. In a separate experimental study, Saffmann’ showed that
suspended particles do not always settle in preferred configuration
states; however, when they do, the contributions of the non-
Newtonian fluid viscosity neglected in Jeffery’s approximate equations
accounted mainly for the observed discrepancy between theoretical
predictions and actual particle’s behavior. Other non-linear effects
such as fluid and particle inertia, confinement, and end effect were
found to be infinitesimal as to significantly alter the particle’s motion
within a finite timescale. Jeffery’s equations are generally found to be
sufficient in predicting particle’s kinematics in a dilute and semi-dilute
viscous shear-thinning particle suspension yleldmg only minor devia-
tions from experimentally observed response.”** However, in the con-
centrated regime, Jeffery’s model are no longer valid in predicting
particle’s motion as the departures of theoretical prediction from
experimental observations becomes significant due to the combined
effect of short-range fiber interactions and shear-thinning fluid rheol-
ogy neglected in Jeffery’s model assumptions.”' The effect of other rhe-
ological properties on the dynamics of a suspended particle such as
higher-order viscoelasticity fluid behavior that may be found in actual
ESI physical systems has also been investigated by several researchers.
An increase in the fluid elasticity results in a slow drift of prolate sphe-
roids in sheared viscous suspension across spectrum of degenerate
Jeftery orbits from a tumbling orb1t to a log-rolling state and at drift
rates proportional to the shear rate.”””* Moreover, an excessive shear
rate was found to result in particle reahgnment with the prevailing
flow direction and the critical shear rate for flow realignment
depended on the particles aspect ratio and Ericksen’s number.
Computational models that account for particle inertia, non-
Newtonian fluid rheology, and/or shape deformability have more
recently emerged. These more advanced models are often used to
assess the departure of each from related theoretical predictions of
fiber kinematics based on standard conditions. These advanced models
are either developed from analytically formulations based on varia-
tional principles or asymptotic series expansion about the limits of
standard theoretical model assumptions'” or developed from
numerical-based simulations.”” Analytical models are relatively faster
and computationally more efficient compared to numerical models;
however, these models are non-flexible, often restricted to predicting
unique quantities and are less accurate due to oversimplification.”®
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Methods based on variational principle are used to define limit bounds
on the hydrodynamic drag coefficient of a spherical particle in GNF
fluid subject to creeping flow.”” The method has been successfully
applied to obtain limit bounds solutions on the drag for spheres in
GNF fluids for different viscosity models including the Newtonian
model,”” the power-law model,”® the Carreau model,”” and the Ellis
model.”’ The approach is more accurate for predicting hydrodynamic
bounds in just Newtonian and power-law fluid models, and the limit
bounds diverges with increasing shear-thinning,”” Perturbation-based
methods are generally used to compute solutions of fluid flow at rela-
tively low Weissenberg number.”' For instance, asymptotic perturba-
tion about the leading-order Newtonian fluid model has been used to
evaluate the motion of transversely 1sotrop1c rigid particles in second-
order viscoelastic fluid suspension.”"”* Consistent with experimental
observations, at low shear rates, the viscoelastic fluids cause the sus-
pended particle to slowly drift through various Jeffery’s orbit until the
attainment of an equilibrium orientation state in the flow vorticity
direction. At higher shear rates, particles re-orient with the flow direc-
tion and its rotation suppressed. Extension of the theory to particle
shapes revealed that while prolate spheroids tend toward a log-rolling
position in the vorticity direction, oblate spheroids had an affinity for
tumbling in the flow plane.”” On the contrary, application of the per-
turbation technique to investigate the effect of weakly shear-thinning
fluid rheology on particles motion in unconfined sheared viscous sus-
pension revealed that the degeneracy of Jeffery’s orbit where unaffected
by the non-Newtonian fluid rheology.”* However, Jeffery’s orbit and
period were found to be instantaneously modified by the shear-
thinning fluid behavior, and the quantitative modifications depended
on the particle’s initial conditions.

Prior research that utilized numerical simulation techniques is
summarized in various kinds of review literature.””” *” The method is
tenable to increased model complexity and improved idealization of
actual physical systems with increased accuracy. However, the method
is computationally intensive and suffers from high computational cost.
Numerical-based models are classified into mesh-free or particle-based
methods (PBM) and the traditional gridded continuum or element-
based method (EBM)."”° To avoid detraction from the primary focus
of this paper, the reader is referred to existing review literature for
more details.””’® PBM is a meshless, fully Lagrangian-based highly
adaptive technique that allows for instantaneous tracking of individual
particle response within a heterogenous multiphase system and capa-
ble of modeling flow fronts, free surfaces, and accurately solving large
deformation problems.” ** Examples of PBM include the explicit
smoothed particle hydrodynamic (SPH), the moving particle semi-
implicit (MPS) method, and the discrete element method (DEM).
Although PBM has been applied to evaluate the development of com-
plex single-phase flows with non-linear fluid rheology,” *° the behav-
ior of suspended particles in non-linear suspension flow is seldom
evaluated with this method. Typical DEM solution techniques include
the dynamic numerical simulation (DNS), lattice Boltzmann method
(LBM), and particle finite element analysis (pFEA). Applications of
DEM to FSI problems are summarized in various kinds of the litera-
ture.””” DEM has been extensively used to study the behavior of single
particles in Newtonian viscous suspension’’ ' and also in non-linear
viscous suspensions.” "

EBM types include the finite element method (FEM), the finite
difference method (FDM), the finite volume method (FVM), and the
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boundary element method (BEM).™"" In EBM, individual domain
units are interconnected via topological maps. EBM involves transfor-
mation of a complex partial differential equation (PDE) into a system
of repetitive but simplified algebraic equations with solutions com-
puted at the unit nodes, cells, or elements level and collated to yield an
approximate general solution. EBM is a well-established and highly
evolved numerical technique extensively utilized in solving computa-
tional fluid dynamics (CFD) and FSI transport problems. For single-
particle suspension, an extra physical modeling that imvolves balancing
the net hydrodynamic forces and couples on the surface of the particle
is required to compute the particle motion. FOM and FVM have been
used to compute flow field and fiber orientation dynamics in mold fill-
ing process. ~ BEM has been successfully implemented to stdy
flow-field development of particulate suspension in viscous shear
flow, " and FEM has been used to stdy single-particle behavior in
linear viscous shear flow.™ ' Relevant to this study are the applica-
tions of EBM in non-linear single-particle suspension. For instance,
2D FEM has been used to simulate single rigid spheroidal particle
behavior in dilute non-linear viscous shear flow. ™" The findings
revealed that shear-thinning effect only slightly affected the particle’s
kinematic, and this impact diminishes with increasing fiber slender-
ness. Moreover, increased shear-thinning was found to significanty
reduced the magnitude of the pressure distribution surrounding the
particle surface although had negligible effect on the shape pressure
profile itself

By reduction from 3D to 2D space, numerical techniques have
also been used to study the effect of dimensional space on flow-field
response surrounding a particle based on Jeffery’s model”” While the
particle’s motion was observed t©o be unaffected by the dimensional
space, the pressure distribution was found to differ significantly.
Although a 2D analysis may suffice to study particle’s motion in vis-
cous suspension, a 3D analysis is necessary to accurately predict the
particle’s surface pressure distribution. It is evident that the extensive
literature on the behavior of axisymmetric particles in viscous suspen-
sion exists; however, previous studies have focused on the evdution of
particles dynamics and are mostly based on linear shear flow. Thelocal
flow-field strocture surrounding the particle including the velocity and
pressure distribution is seldom investigated, which are particulardy rel -
evant in understanding complex processes involved in physical rheo-
logical systems. Moreover, existing studies that also investigated
development of the pressure field surrounding a particle are based on
flow analysis around fixed particle in space”™ " that do not consider
the influence of the particle’s dynamics on the pressure distribution.

The present study utilizes 3D FEM-based simulation to investi-
gate the effect of nonstandard Jeffery’s condition including the effect of
generalized Newtonian fuid (GNF) rheology on the dynamics and sur-
face pressure distribution of a single particle suspended in viscous
homogeneous flows. First, we explore the effect of various factors such
as the fiber geometric aspect ratio and initial fiber angle on the single-
particle motion and surface pressure distribution for a single particle
suspended in Newtonian homogeneous flow field wsing Jeffery's equa-
tion. Typical size of particles encountered during extrusion-deposition
additive mamafacturing (EDAM) polymer composite processing are
on average hundrads of micrometers in magnimde depending on the
particles concentration and system’s scale, usually around 50-100 um
for small-scale EDAM systems and ~ 300 um for large-scale EDAM
systems,” The rotary Peclet number that characterizes these polymeric

pubs.aip.org/aip/pof

melt flow through an EDAM nozzle are orders of magnitnde high (ie.,
Pe, 3 1). Brownian effects arsing from particle interaction with the
surrounding fluid molecules are thus insignificant and have been
ignored in the current investigation since the hydrodynamic forces are
expected to dominate the particle’s motion Jeffery’s equations are a
good starting point for studying particles behavior in these Newtonian
flows. More rigorous stochastic statistical analysis accounting for
Brownian disturbance such as that conducted by Leal and Hinch® and
Zhang and Smith™ is a relevant smdy for future consideration. The
generalized Newtonian FEA single-fiber motion model development is
a nonlinear extension to the Newtonian formulations of Zhang
e al”™" and Awenlimobor et al™™ assuming a power-law non-
Newtonian fluid behavior for fiber suspension rheology. A two-stage
Newton-Raphson numerical algorithm is used in our simulation, first
to solve for the steady-state flow-field velocities and pressure distribu-
tion within the flow domain and second to compute the resulting
translational and rotational velocities of the rigid spheroidal particle
during its motion in various homoge neous Sow fidds by equilibrating
the net force and couple acting on the particles surface and the fiber's
instantaneous positions and orentations are updated using a mumeri-
cal ordinary differential equation (ODE) solution technique. FEA
model validation is achieved by comparing steady-state responses at a
single time step of the quasi-transient analysis of a single-particle
motion along Jeffery’s orbit obtained from a custom-built FEA simula-
tion with results obtained Jeffery’s equations. Likewise, the behavior of
the particke (kinematics and surface pressure response) in various
Newtonian homogeneous flow fields is benchmarked for both Jeffery's
model and FEA simulation. Finally, we investigate the resulting effect
of particle shape and the shear -thinning finid theology on the particle’s
dynamics and evolution of the pressure distrbution response on the
fibers" surface in the varous homogeneous flow fields using owr vali-
dated FEA model. These findings are particulady useful in controlling
process parameters to optimize the microstructure of particulate poly-
mer composites to improve print properties.
METHODOLOGY

This section provides in detail the methods used for predicting
the behavior of a single three-dimensional (3D) rigid ellipsoidal parti-
cle suspendad in Newtonian and non-Newtonian viscous homoge-
neous shear-extension flows. The first section presents [effery's
formulation for the fow-field development around an ellipsoid and
explicit derivations for the particle motion (angular velocities and ori-
entation angles) in a special class of linear homogeneous flow with
combined extension and shear rate velocity gradient components that
idealizes typical flow conditions found in varous sections of an EDAM
extruder nozzle. The second section details the FEA model develop-
ment for obtaining particle angular velocities, orentation angles and
field welocities, and pressure distribution surrounding a particle sus-
pended in non-linear creeping shear flow with a power-law fluid defi-
nition. Subsequent section presents results of the model validation by
comparing the evolution of the particle’s angular velocities and surface
pressure distribution obtained from both Jeffery’s analytical equations
and FEA numerical model for different Newtonian flow cases and par-
ticle aspect ratio. Except stated otherwise, we consider a geometric
aspect ratio of r, = 6 for the prolate spheroid, a consistency index of
m = 1 Pas™ for the power-law fluid or a viscosity of p; = 1 Pas for
Mewtonian fluid, and shear rate of y = 15" for the various flow cases.
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Standard Jeffery analytical model

Jeffery'” derived analytical equations for the motion of a single
3D ellipsoidal particle suspended in a Newtonian homogeneous vis-
cous creeping flow by linearization of the Navier-Stokes equations
assuming a zero Reynolds number. The following includes a summary
of Jeffery’s particle-fluid interaction dynamics model where he
obtained expressions for the velocity and pressure field within the fluid
surrounding the particle. The equations for the pressure and v ocity
within a Newtonian fluid having viscosity u, are, respectively, given as
P =po+ 2m AV, V0 (1)

and

Xi=X; +Vidjyy + Vi X + AZXVVQ - ATV,
(2
where the position vector X, gradient operator ¥V, and integral func-
tion j are given, respectively, as

T
cnon ot oo[d & 4T,

ax, 8x, 08Xy
= n nl-

In the above, the Laplace function £ is defined in terms of the inde-
pendent position vector variables X and A as

_ _Tifx  ox X }
n_n{i‘i}_JE{a2+i+Bz+i+c2+i_l da, @

A

1
A= {@+ DE + D@+ D},
where 1 is an arbitrary offset distance from the particle’s surface
obtained from the positive real roots of
Xi ., X X
= = 0.
a2+i+52+1+r2+1 L, 4z0 (5)

The undisturbed fluid velocity X, in Eq. (2) above is given as

X =LyX;, (6)

where L is the velocity gradient tensor. The constant coefficient

I 4E T ; 1 - .
tensors A;, Ag, and Ay thatappear in Egs. (1)and (2) above are given
as

R U A H @
Al=1]5% A= v AM=|H B F
T W G F C

(7

where expressions for the cmponents shown here are given in
Appendix A, The terms in A:T are simply the stresslet and torque act-
ing on the rigid ellipsoid suspended in linear ambient flow field ™ The
tensarsdf,dﬁ,a:ddfareﬁuﬁﬁansofihesymmmicrﬂeofdnﬁr-
mation tensor 'y and the antisymmetric vorticity tensor =j
= EimmSminj Obtained by decom posing the velocity gradient tensor L
according to

pubs.aip.org/aip/pof

where 'y = L [L + Ly, =5 = L [Lj — L;i]. The velocity gradient Ly is
given with respect to the particle’s local coordinate axis and is thus a
ﬁm:ticmofﬂ'l%' t particle orientation angle vector @
=[¢l ] q{r] obtained by a transformation operation according to

Lij = Zy mitimn Lxujs (@)
where L5 is the velocity gradient in the global reference frame axis.
The ransformation tensor Zy; is given in terms of the Euler angles as

Zyy = AW T2 (10)

ma mmt ey
where
nga = Bindjn + (1 — 8 ) (1 — &ju) [5c0s O + (j — i)sin €],
n=72+ 1% {11}
At the particle’s surface, the field velocity is given by
X=X g = epPiXe (12)
The particle’s angnlar velocity ' in the local reference frame is given
by the expression
"PJ = = + MDD, (13)
where =; is the vorticity vector and I); contains non-diagonal terms of
the symmetric rate of deformation tensor I, Le.,
Do=Ty k=6-i-jli#},
and the constant coefficient matrix My is defined as
B -2 - at
M.

B B N
TRy TP a2ia’

a4 b
(14)
The angular velocities in the global reference coordinate axis € based
on Enler’s definition are obtained by the transformation operation
Zg,0; =¥, (15)

where the transformation operator Z_ is given as [cf. Fig. 1(2)] for the
Euler definition of orientation angles

M; = M3, M

cosh 0 1
Lo,=|—sinfcosyy sing 0. (16)
sinfsiny cosy O

Figure 1{a) llustrates the ellipsoidal particle of interest suspended in
simple shear flow as shown The normal and shear stress components
at any point in the flow field may be evaluated for incompre ssible fluid
as

oy = —pdy + Iy ["F,.i’j +v,-.ff,]. (17)

On the particle’s surface, the stress reduces o a; = —pd,, implying
that the only active stresses on the particle’s surface are ﬂ'leglﬂdmtaﬁc
pressure acting normal to the surface,
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Our main interest here is to evaluate the motion, and surface
pressure and velocity of the ellipsoidal inclusion using Jeffery’s equa-
tions given above. To compute surface pressure and velodty distribu-
tion on the particle surface, the ellipsoidal surface is discretized using
MATLAB'S inbuilt PDE modeler (MathWorks, Natick, MA, USA),
where vertices were imposed at ends of the ellipsoid to enable the cal-
culation of particle tip pressure [cf Fig 1(b)]. At the mesh points, the
flow-field pressure and velocities are evaluated using Eqgs. (1) and (2),
respectively. The degree of mesh refinement is critical to obtaining
accurate pressure extremities and locations on the particle surface A
fourth-order explick Runge-Kutta ordinary differential equation
(ODE) technique is used to numerically integrate the particle’s angular
velocities [cf Eq. (13)] with time to obtain solutions of the particle ori-
entation angles, and the associated field state (pressure and velocities
on each node of the particle surface) basal on Jeffery’s model
equations.

Homogeneous flow considerations

Various homogeneous flows similar to those used in short fiber
composite fiber orientation simubtions’' are considered here which
serve as input for our particle motion smdies. These homogeneous
flows also serve as a basis for understanding the flow-field develop-
ment in common extrusion-deposition additive manufacturing
(EDAM) polymer composite processing that involves a combination
of shearing and extensional components within the flow (cf Appendix
B). The following flows are considered in this study:

(i) Simple shear flow (58), Le, £ = §

(if) Two stretching/shearing fows (SUA), including simple shear
in ¥.%, plane superimposed with uniaxial elongation in the
Xy direction, ie., ) =Epn = —E-:,'.E-B = ZE-:,'.E-B = ‘P Two
cases are considered, balanced shearfstretch, ¥ /& = 10, and

pubs.aip.org/aip/pof

FG. 1. (a) Fiber onentation angles defini-
fion and (b) mesh refinement on the fiber
surface.

(b}

(v} Two shear/planar elongation flows (PST), incuding simple
shear in ¥5 — ¥, plane superimposed on planar elongation in
) — K3 pla.ne, e, By ==& En=E,Ffn= ‘P Two cases
are considered incloding balanced shear planar elongation
with y/e =10, and dominant planar elongation with
/& =L
(vi) Balanced shear/biaxial elongation flow (SBA), simple shear in
the ¥5 — ¥, plane superimposed on biaxial elongation, ie.,
+a3 = &, Epn = &, En =, = —2& Two cases are consid-
ered which include §/¢ = 1 and §/& = 10
(vii) Triaxial elongation low (TA), ie & =En=Ftu=¢E
(viii) Balanced shear/triaxial elongation flow (STA), including sim-
ple shear in the ¥; — ¥, plane superimposed on biaxial elon-
gation, ie, &y =5y =5y =&, 3y =7, Two cases are
considered, ie, § /& = 1, and 3/ = 10.

Classification of the various combined homogeneous flow
regimes based on the flow parameter 7 (cf Appendix B) is given in
Table L

For visualization purposes and to better interpret the results that
follows in later section, typical flow streamlines around a particle sus-
pended in the mixed-mode flow conditions are presented in Fig. 2. In
all flow types, simple shear is applied in the %, — X, plane and the
particle is initially oriented in the X, direction. The SUA flow [cf.
Fig. 2(a)] tends to orent the particle such that its major axis aligns
with the ¥, direction of stretching, thus mitigating the tumbling
motion in the ¥; — ¥, shear plane that occurs under simple shear
flow alone. The inward flow in the y direction initially accelerates the
particle, aiding the tumbling motion into the direction of applied
extension. High shear-to-extension rate dominance is thus required to

TABLE L Flow parameter values T for the combined homogeneous fiow types

dominant stretch, 3/& =1 5 1 atn paT apa aTn
(iii) Uniaxial elongation flow (UA) in the ¥, direction, ie, i
£y = Far = —k, £y = 28 1 0.5657 0.3820 0.5657 0.4514
(iv) Biaxial elongation (BA) flow in the ¥:— ¥: plane, ie, 10 0.0283 0.0098 0.0283 0.0148
By =—28Epy =ty =&
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FIG. 2. Visualizalion of e suspendsd pariicle in the combined shearing in X; — X, plane and (2) uniasial elongation (SUA), (b) planar siretching (PST), and (c) biadal elonga-

fion (SBA) fiow condtions.

prevent the particle from stalling in the ¥, direction. In the PST flow
type shown in Fig. 2(b), the %, direction inward flow tends to constrain
particle umbling motion in the X5 — ¥4 shear plane and promotes pref
erential alignment of the particle in the z direction and there is no flow in
the y direction that mfluence the particles mitial motion Unlike the SUA
flow condition, in the SBA flow regime [cf Fig 2(c)], the ¥, direction
imward flow limits particle tumbling motion in the ¥, — X% shear plane
without promoting directional preference for the particle alignment in
the shear plane Hence, there is no tendency for particle stall to oocur
irrespective of the shear-extension rate dominance Since the STA flow
type has equal applied extension in all principal directions, the deviator
of the velocity gradient has no principal component, and the partide’s
behavior under this flow type is similar to that under simple shear flow.

For the case of an axisymmetric ellipsoidal particle suspended in
unconfined simple shear flow [see type (i) flow abowve] with vdocity
gradient £33 = ¥, Jeffery'” derived analytical expressions for the par-
ticle's angular velocities given as

B(0) =L keos 29 +1),

Be) = 7 (ksin2¢)+/ (K cos2g + 1)22(1 + k)
2 [{Km2¢+l}+;2{l+x}]

(18)

5(0) = — 2 (xcos 24)cos 6,

where the precession ¢ is observed to be independent of f and ¢ is the
orbit constant. By integrating the angular velocities, Jeffery further
obtained expressions for the corresponding particle orientation angles,
which may be written as

fi'l[!}:tan"{u":t—:mn[% l—xzr]},
NET }
Vxcos2p +1)°

W(t) = ] G— :in)msﬂdr,
[i]

alr) =tan"{; (19)

where § is the shear rate and x is a shape fador given as
k= (.= 1)/(r.2 +1). The orbit constant of integration ¢ can be
shown to become c=tanfy when ¢, =0 and &, <8
Emn"{rﬁ"}."' For in-plane particle rotation, ¢ = +o00 such that
f=mnf2,f =0,andy = § =0. The corresponding period for the
in-plane partide tumbling motion in simple shear flow about the ellip-
soid's polar axis is

=X (20)

Y -

As the ellipsoid rotates in the X; — X3 plane of shear flow, ¢ reaches
a maximuom value when the particle is oriented normal to the princi-
pal direction of the fluid motion, ie, at ¢ =nm, |0 =0 [cf.
Fig. 1ia)], and attains a minimum value when it aligns in the flow
direction, ie., at ¢ = nx/2, |n| = 1.” The limit of the precession is
thus 0 < ¢ = j for ellipsoidal particles and ¢¢ = §/2 for spherical
particles. The extremum of the nuotation £ occurs when
¢ = Re{.Scos"q}, where g is the solution to the cubic equation
defined as

{q:%%¢ +3x(B+1)g" + (12 +2B+2)g+x(1-B)=0}, an
B=Z(1+k).
The nutation ranges between —j/4 < # < /4 for spheroidal par-
ticks, and it is critical for rod-like particles when ¢ = 1/4/2, and for
disk-like particles when ¢ = +o0. [tattaing a valueof # = 0 for spher-
ical particles. Likewise, the particle spin rate, i, reaches a minimum at
¢ =nm, n = 0, and a maximom valee at ¢ = .5005"{[—{33+4]I
+./B(9B + 8)|/4x}. The spin rate ranges between —j /2 < i
< 1,2, and it is critical for rod-like particles when ¢ = 0 and for disk-
shaped particle when ¢ = 400

We now consider a more complicated flow condition and
derive expressions for the case of an axisymmetric particle sus-
pended in combined elongation and shear flow, Le., fow types (i, v,
vi, and viii) given above following similar procedures adopted by
Jeffery'” for the case of simple shear flow. Consider a flow with
velocity gradient of the form
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£=|0 & 0|, (22)

where the trace(L ) =0, Le, 81+ E2 + &3 = 0. It can be shown that
the angular velocities of a particle for this £ may be written as

%+§{?m&2¢n — 62 — #s]sin 29}

¢
61= 45{5'31“2‘3' + 62 — és]cos 2 — [2é1 — &2 — i3] }sin26 |,
v —;{?mm— [£2 — &s)sin 2¢p} cos B
(23)
where the in-plane angular velocity reduces to
¢ :%:%{ﬂ[ + K cos2¢) — [B2 — Es]isin2¢}. (24)

By integrating ¢ in Eq. (24), we obtain an expression for the in-plane
orientation angle ¢ in these Sow typeswith characteristics velocity gra-
dient £ given as

tang =lmn [mn"%[éz ;é3+ L lmn:ﬁn] —%Ick‘}'r]

k=1 K
K E3—E3
ko1 5 (25
where
b —is
k= PR -1 (26)
If the initial orientation ¢y, = 0, then Eq. (25) reduces to
. .2
e
tang = — L (27)

%= U keot[Skiit] +2—2
¥

By integrating f in Eq. (23), we can directly obtain an expression for #

as

. 'z
l+.:|:.a~.z¢n.]——["’“z _EslsinZ:pn o
tanf = Kl F 1 = tan flge 750 5 EI
;+mz¢.—usinz¢
(28)

It can be shown that for the special case of initial polar orientation
angle ¢y = 0, then Eq. (28) reduces to
L

1 z
-+1
K

tanf = |- o tan Bye -5k (29)
_+mz¢_umz¢
K

Furthermore, the spin i (t ) for these flow conditions may be written in
integral form as

pubs.aip.org/aip/pof

i

0= [ (£- 4 )cos . (30)
[i]

The quarter-period of rotation may be derived from Eq. (27) by find-
ing the pole of the above expression of tan ¢ as

azs _ 2 [y K
141 TS [rr tan L_:z &l (31)
The period for a complete mmbling motion in this flow type is obtained
by finding the zero of tan ¢ in Eq. (27) above which is given as
4an
T :m.
When (&2 — &) /9 =0, the flow is essentially simple shear, and the
period is as given in Eq. (20) above. The partide stalls when i < 0,
ie, when

(32)

i:,—f:;}».a’l—x*

Tk
and the stall angle ¢, is derived by equating ¢ = 0 [cf Eq. (24)] to
obtain

e —és K] [l —ét 1
ng:il, = [Til;]/[ ? —F 5
[ b 4m/2, ¢, <0

L U )
Corespondingly, given a stall angle tolerance ¢y, the time for particle
stall is obtained by equating Egs. (27) and (34), ie, & : ¢it;)
= ¢, — by When Eq. (34) is satisfied (k = 0), the stall angle may be
shown to be

(33)

(34)

Dopes = tan "1, (35)
The particke orientation at stall for the special class of homogeneous
flows (described as ii, v, vi, and viii above) can be obtained by using
Newton-Raphson numerical iterative process to zero the angnlar
velocities, thus
o =0 -, '8, (36)
. . .7
where @7~ = 4, 6,],@" = [ 8], and the Jacobian Je is
given as -

— 40 cosec 20 — k|28, — & — &4 0
; = . .
L

For particle motion in more general clss of Newtonian homogeneous
flows with velocity gradient £ , the stall angle can be obtained using the
MNewton-Raphson procedure in Appendix C.,

Jeffery's model derivations are limited to the standard assumption
of single rigid elipsoidal shaped particle suspended in Newtonian vis-
cous linear homogeneous flows. Practically spealing, the pressure-
driven flow of polymer melt through EDAM nozzle contraction during
material processing is more accurately characterized by a quadratic
ambient flow field such as given in Lubansky etal. ” As such, develop-
ment of a more realistic solution would involve a velocity gradient

. .37
26 cot 26
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with higher-order polynomial terms, which is a relevant direction for
future studies. For more general conditions, it is common to employ
the finite element analysis (FEA), which are not bound by the limita-
tions of the Jeffery’s model and can include inter and intra fiber forces,
non-elipsoidal fiber shape, non-Newtonian visco-elastic fluid rhed-
ogy, confinement fows, and other deviations from standard condi-
tions. Moving beyond Jeffery’s model assumptions may result in a
preferred particle configuration that is independent of its initial orien-
tation and may cause the particle to align with the flow or vorticity
direction.” *' In the following sections, we describe an FEA modeling
approach that may be used to investigate the effect of generalized
Newtonian fluid (GNF) rheology on the particle dynamics and surface
PrEsSIre Fesponse.

FEA single- particle model with GNF rheology

In the FEA model analysis present here, we simulate the motion
of a single rigid spheroidal particle suspended in homogeneous viscous
flow with GNF rheology. The flow domain & for the single-particle
micromodel analysis is shown in Fig. 3(a). The model extends the
MNewtonian fluid single-fiber model developed by Zhang & al®' "
and implemented by Awenlimobor et al,” ** to simulate GNF flow. In
this approach, the governing equations are based on the Stokes
assumption of creeping, incompressible, isothermal, steady-state, low-
Reynolds- mumber viscous flow where the mass and momentum con-
servation equations may be written as

ViX; =0, (38)

Vigij+ =0 (39)

In the above, ¥; is the gradient operator, X ; is the flow velocity vector,
J[iis the body force vedtor, and o is the Canchy stress tensor given as

In Eq (40}, p is the hydrostatic flnid pressure, &;; is the kronecker delta,
and Tj is the deviatoric stress tensor defined in terms of the strain rate
tensor §5 by the constitutive relation

X,

pubs.aip.org/aip/pof

Tij = 2u(1) 75 (41)
where the viscosity u is considered to be a function of the strain rate
magnitude = /27 The simulations presented below solve Eqgs.
(38)-(41) for quasi-steady wvelocity and pressure within the fluid
domain surrounding the ellipsoidal inclosion wsing our custom finite
element analysis (FEA) program developed in MATLAB. We assume
a non-porous particle surface with zero slip allowance and velocity
boundary conditions are prescribed with respect to the particle’s local

Similar to previous single-particle Newtonian fluid analyses,” the
velocities and velocity gradients of the prevailing flow are I.I.Bﬁl:ltln;lmmm-
pute the far-field velocities on the fluid domain boundary X, [cf.
Fig. 3(b)] of the micromodel as

X =X = Zagk? - Zxpuilomn Zx AP (42)
where Zyj; is the local o global transformation tensor, %Y is the flow-
field velocity vector, &y, is the velocity gradient tensor in global refer-
ence frame, and AX; is the position vector with respect to the particle’s
center. Again, referring to Fig. 3(b), the velocity on the particle’s sur-
face X;  is computed from the particle’s center translational and rota-
tional velocities assuming rigid body motion, which is written with
respect to the particle’s local reference axis as
X7 = X0 = 2 XS+ epZop@ AXEC, (43)
where % is the particle’s center translational velocity vector and ©; is
the particle’s angular velocity vector. A pressure point constraint par
is imposed at a node on the far-field fluid domain [see, eg, BC2 in
Fig. 3(b)] with a magnitnde equal to the prescrbed static fluid pressure
Por Ly
Pacz = Po- (44)
We define a fluid domain size factor M = df /26" (where dy is the
diameter of the flow domain and ¢ is the major axis length of the parti-
cle). The flow domain size thus increases linearly with the size of the
particle. In our analysis, we utilize a factor of M = 10, which is deter-
mined to be sufficiently large to yield accurate results. The fluid

P20 L Z STOT SuUnd 0T
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domain discretization for the base case having a particle geometric
aspect ratio r, = 6 appears in Figs. 4(a) and 4(b) where an increasing
mesh density is used near the partick and particles tip. All FEA simu-
lations are performed with a 10-node quadratic, iso- parametric tetra-
hedral serendipity element as shown in Fig. 4(c).

The weak form of the non-linear finite element equations may be
transformed in the wspal manner to a system of algebraic equations
written in terms of the solution variable vector 4 and the global system
residual vector  as

I=K(uu-f, (45)

where K is the global system “stiffness” matrix, u = [1 E]risihe
primary solution vector containing nodal velocities v and pressures p,
and f is the secondary variable vector containing the associated nodal
reacEanbmesaMﬂﬂwrm.Tasimpﬂjﬁrthemlmbnpmmdme.Ihe
global system matrix is partitioned into essential “¢” (known) and free
*f* (unknown) degrees of freedom (dofs) as

E K: K u ¥
g [ _[Ks =#} —f}- ol
s-{Z}-{f EHE){udep @
where y; and g, are the unknown quantities to be computed in the
finite element analysis. The unknown free velocity and pressure dofs in

where £ and Zf are element residual vectors derived from mass and
momenum conservation, respectively; @, and @, are the arbitrary
FEA weighting functions on the continuity and momentum equa-
tion, respectively; ¥V and ¥V, are the gradient vector and symmetric

=\ _
{—*} [(@ ) uthe (B o - [p(7 w10 - [pulfas - [olzas
&

o
o
o —
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ti are computed via a Newton-Raphson iterative algorithm by zeroing
theﬁ'eeresidmlvecbrzi.ThaIis._gfisittmivdy updated until it
approaches the actual solution according to

w'=w ~ Iy 'Ly (47)
In the above, the Tangent Stiffness Matrix (‘ISM}ar[ambianifis
obmained by differentiating the free residual vector X defined in Eq.
(46) with respedt tothe free degrees of freedom iy to obtain

dE; K K
h:ﬁ:ﬁ{-i&{-éﬁ—i_ (48)
7 Bu oY B
Theunkmwnmactimbmesaniﬂﬂwmtsalthemnﬁald)fsingr
are computed by setting the essential residual vector £, = 0 [cf. Eq.
(46)] to obtain as

ge = Kethp + Keetie — fo. (49)

The global residual vector and Jacobian are assembled from individwal
element residual £° and element tangent stiffness matrices | © in the
usual manner. The element residual vector £° is written in Terms of
the FEA integral equations as

Jgj (M- yydi
™

(50)

L L

gradient matrix operator, respectively, defined in Ref. 76; p and » are
the pressure and velocity field variables; p is the fluid density; u(y) is
the non-Newtonian fluid viscosity; C is a constant coefficient
matrix; f and f are the surface traction and the body force vectors;

@ Virkacin: & oresrun
W Pt

FIG. 4 Single suspended paricle finile element model. (a) Fiuid domsain discrefization, (b) magniied view of he domain mesh on the surface of the rigid pariicle, (c) element

sedecon with acive degrees of freedom.
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and &% and +#* are the element surface and interior domains of inte- 4 . -
gration, respectively. Bu Au = E(u + Au) — Z(u),

The element TSM J* is obtained by differentiating the element ) o . . . L
residual vector £ with 'respﬂ:t to the element solution varables u® w%mhwappljrtaﬂhea:!nunmtyrmdualtrmgj to obtain derivatives
= with respect to the velocity and pressure as

whn:hmnmnsp and #,ie, i = [¥ P°|and

EZ=L(u), (52)

dIj dzs
oz oz . [o a]'[E o= [a@ s, Lm0 o
e wE = L | - D -

=
g

*

Similarly, derivatives of the momentum conservation term with

First-order Fagade derivatives are used to approximate the tangent respect to the solution variables after algebraic manipulations are,

stiffness matrix according to respectively, given as
]
dg _ T 1 la.“ T T .~
Dn= [ (D) e L awo + [ 222k (D) WC L] () e A a0, e
* *
Bap=- [ (2 w)apio 3)
8 3
It follows that the Galerkin formulation written as the element residual vector £° and tangent stiffness matrix I¢in tensorial representation are
given, respectively, as
jﬂ'fmzﬂr_:.,g:dﬁ - [erwas
== ¥ jpszdﬂ + jﬂ“zds
T — T k- == = (56)
= " * &
- jfg'dﬁ 0 - 0
and
BETuC Bedd + lelg—‘_‘ (BT EY) (TBTHICTE )dd - J_sffg'dﬁ
dx° * 1?'“ e *
L‘ = d_ = . [:5?}
) ~[erras 0
L
[
where In this work, we consider the non-Newtonian viscosity u(j) as that of

power-law shear-thinning fuid gi
@ and N° are the pressure and vdocity interpolation functions, 4 g grenas

respectively; B° and EB; are “strain” displicement matrices; ¥* and p* u=my", (59)

P20 L Z STOT SuUnd 0T

am,respecﬁvdy,ﬂleﬁaﬂtyanipmumdegmesafﬁ‘miﬂm(d:ﬂm
the respective element nodes; and & and ¢ are the element bound-

ary surfaces and domain of integration, respectively.

In Eg. (57), § is the scalar magnitude of the strain metensar1
which may be written in terms of FEA quantities as

- 1-,, v
\,le (Xy) & (L), (58)

= ,/mrwmg, Bev

where m is the flow consistency coefficient in Pa - 5" and n is the
power-law index, and § is the scalar magnitnde of the deformation ten-
sor ;. In the second integral of the momentum equation Jacobian in
(57) abowe, it is convenient to introduce a wvariable a
ll."l[p P/ 3) W simplify the expression and make it generally
applicable to other GNF fluids. It follows that 2 can be written for the

power-law fluid as

la—#: L -1 &0
767 F{ﬁ ). (60}

1
.1__2

Phys. Fluids 36, 123113 (2024); doi: 10.1063/5.0242953
Published under an exchsive Bcense by AIP Publishing

36, 123113-10


pubs.aip.org/aip/phf

Physics of Fluids ARTICLE

Alternatively, for a Carrean-Yasuda fluid, the expression for yand =
is, respectively,
H— o -.aq (1) fa
—=1l+(#
=

1 18u l,u—,um{ n—1 }
A= = —— ¢ (61)
2yay ol 1+ (49)
where pi, is the zero-shear viscosity, u._ is an infinite-shear viscosity, A
is a time constant, and a is a fitting parameter.

Single- particle motion with GNF rheclogy

In owr mumerical approach, the particle’s motion is computed
based on an appropriate explicit numerical ordinary differential equa-
tion solution technique by calculating its linear and rotational veloci-
ties that results in a zero net hydrodynamic force and torque acting on
the particle’s surface. Again, we adopt the Newton-Raphson's iterative
method to determine the non-linear solution of particle’s translational
and rotational velocities as

i+:i__éu_j£u~ (62)
where ¥ contains the particle’s linear velocities X° and rotational
I s 3 : T - -

velocity ¥, ie, ¥ = [£ E] »and . is the particle hydrody-
namic residual vector which is composed of the particle’s hydrody-
namic forces fy; and couple Q. ie, Zy= [£H QM]T as a
fundion of the particde’s velocity, Le, I, = £, (¥ ). Since calcula-
tions are performed with respect to the particle’s local reference frame,
the particle’s velocity vector is transformed to global coordinate system
according to the following equation:

¥=Z; ¥, (63)
where variables on the global reference frame are accented by a strike-
through and the pnnﬂe‘svehﬂtytmnshnmﬁanmug? is given by

_ |

dy _ [oKs 0K /i
E—‘{@ﬂﬁ@ﬂfﬂé‘@
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£ 0
é-_=[§'§ =]- (64

We calculate the net hydrodynamic force vector f; and couple Q- on
the particle by vector summation of the nodal reactions forces and tor-
ques on the particle surface as

fu=- Z£F3~ Q,=- Zﬁ_x[":' b gﬁﬂ. (65)
k k

where Ax'® am:l‘;_{.y‘j are the position vector and the nodal reaction
force vedtor at the k™ node on the particle surface (BC3), respectively,
and ng is the total number of nodes on BC3. The particle hydrody-
namic Jacobian J  in Eq. (52) above is obtained by differentiating the
components of the particle hydrodynamic residual vector X, with
respect to components of the particke’s velocity vector ¥ as

0% a
—]I_fzﬂY [Fx Qu]r
T
L (i} g ag[k:l
= -3 = S oe=|. 66
[ 2ap LA Gy 0

Differentiating the global system FEA residual vector E in Eq. (45)
with respect to the particle velocity vector ¥, we obtain the derivative
of the nodal reaction foree vector dg /dY in Eq. (66) as

dg, {f‘é-f GO _“-f'}“é
=

dY | dw~  du du, | dY
Ky K. df, | du
+ {ng + omr e +z£‘f_d2r ar’ (67)

where the derivative du;/dY is written in terms of the derivative
du, /dY as

-1 d
| (e s E)%

To obtain the FEA model derivatives in the above, we differentiate the global FEA system residual £ in Eq. (47) with respect to the solution variable

u to obtain the global FEA system Jacobian [ as

AK AK

(ot et
_az_ [l ke w " Oy
a7 fox, o,

ﬂgfﬂf-'-ﬂgfg‘-'-

where Eq. (48) has been expanded to include all free and essential
degrees of freedom in u = {g; 1 }". In addition, the nodal reac-
tion force vector derivative dg,/dY in Eq. (67) is written in terms of
the submatrices of the global FEA system Jacobian ] as

af; Ky  OK, af;
ﬁ‘@} {E**Eﬂ‘”ﬁ'ﬁ -
o9
af, Oy O
#f_E A, ﬂf"’a&ﬂr"':w_ﬁ
[
di—x.f; dﬁ+x+; dﬁ (70)
di_{=‘ ="} dx {=‘f ="’}di'

Likewise, the derivative du, /dY in Eq. (68) is also written in terms of
the submatrices of the global system Jacobian | as
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. - i

{L+l} (Eetledyy OO
Given the initial condition of the particle, ¥/7! at any instant with an
associated velocity ¥ 77! at each jth time step, we update particle’s
position and orientation ¥/ using on an explicit fourth-order Runge-
Kutta method. ie.,

[ AR AT o ool N T
where
K = fr(f, ) = &
K =J*'1f("i_j +E‘£_1 +%ﬂ_j)'
ot =i+ Y &)

and the function fy is used to evaluate the particles velocities ¥ at time
t and position ¥.

(73)

Comparnison of Jeffery's and FEA model

To validate our FEA model-based particle motion simulations to
calculations performed with Jeffery's equations, we first define the par-
ticle surface pressure P in dimensionless form as

~_F
P .“1?: ’ (?4}
where §_ is a characteristic strain rate of the Sow field. For a given i,
and §, p is evaluated from Egq. (74), where p is computed from
Jeffery's model [cf Eq. (1)] and similady from the nodal pressure solu-
tion of the FEA model described above. Likewise, the flow-field veloc-
ity magnitde is normalized with respect to the tangential velocity at
the particle's tip is given as

v = /b,
where X' is the position vector at particle’s tip defined by the major
axis length. To ensure consistency between the Jeffery's model equa-
tions and finite element analysis (FEA) simulation results, we consider
the particle’s motion and surface pressure distribution for the case ofa
single rigid ellipsoidal particle suspended in viscous homogeneous
Newtonian (Le, power-law index n=1) flow. The FEA model is
shown to exactly match Jeffery’s results for a range ofpnrﬁde_aspect
ratios inchiding r. =1, 2, 3, 6, and 10 [£ Fig S(a) for ¢ and
Fig 5(b) for F|. F mthedlmenmnl&prmueatﬂuepaﬂuﬂfsﬂp
Ad:lm:ma]l}r, Jeffery's orbit exactly match our FEA results for the vari-
ous flow conditions described above as shown in Figs. 5(c) and 5(d)
which show components of the particle umtw:dorpl,andmmmum
and minimum normalized surface pressure p. Results in Figs 5(2) and
5(b) are for one period of Jeffery’s orbit; however, given that valoes at
the end point exactly match within 025%, we expect the accuracy of
our numerical approach to remain as particle rotations continue,
RESULTS AND DISCUSSION

The Results and Discussion section & divided into two sub-sedtions,
The first sub-section presents particles behavior (ordentation dynamics

X'=@xx' (75)

pubs.aip.org/aip/pof

and surface pressure distribution) in 2 Newtonin fluid, considering the
various homogeneous Sows describad above and the effect of geometric
evolution of the surface pressure. The subsequent sub-section presents in
detail the effect of shear-thinning power-law fluid rheology on the par-
ticles behavior in the varions combined homogeneous flows and for dif
ferent shear-to-extension rate ratios (/¢ = 1and 10). The section also
presents the results of sensitivity studies on the nfluence of the ellipsoidal
aspect ratio and initial particle orientation on the particles behavior in
non-Newtonian simple shear flow.

Particle behavior in Newtonian homogeneous flows

For the investigation of the behavior of single rigid spheroidal par-
ticle suspended in Newtonian homogeneous flows, Jeffery’s equations
are sufficient and computationally more efficient than our mumerical
solutions. The basic homogeneous flows discussed in the methodology
section above that consider various combinations of stretching and
shearing rate are expected in polymer composite melt flow applications
such as material extrusion/deposition additive manufacturing (see, eg,
Awenlimobor & ™). In all Newtonian flow analyses considered here,
we employ an aspect ratio of r, = 6, a viscosity of iy = 1Pa-s,and a
shear rate of § = 15! where applicable The particle is mitially oriented
in the X, direction (ie, ¢° =0, # = —x/2, ¥* = 0) and rotates in
the X ; — X, shear plane

Figure & shows the calculated particle in-plane angular velocity
(@) and particle tip pressure (F) in the varions homogeneous flows for
two cases of shear-to-extension rate ratio (/) where applicable.
Here, we use the overbar to indicate a dimensionless pressure as in
Eqgs. (75) and (76). In the planar extensional flows (ie., UA, BA, and
TA flows), we observe an absence of particle motion; however, the par-
ticle begins to rotate with the introduction of a non- zero-shear velocity
gradient component [cf Fig. 6(a)]. In the extension-shear SUA flow
(ie, 7/& = 1), the particle is initially accelerated by the combined
action of the inward flow in the X, direction and the shear flow in the
X,=X, plane The particle eventually stalls at ¢, = 1.58rad as it
aligns with the X, direction due to the applied stretching and relatively
low shear rate. In the PST flow case, there is no flow in the X, direc-
tion that influences the initial particle motion; however, the inflow in
the X, direction keeps the particle motion in the X, — X, shear plane.
Like the SUA flow case, the applied stretching and relatively high
extensional dominance canses the particle to stall at ¢b, = 1.60rad as it
turmns to align in the X, direction. The SUA and PST mixed-mode flow
types are asymmetric in the X, — X, plane. In the SBA flow regime,
the inward flow in the X, direction prevents out-of-plane motion of
the particle, and there is no provision for preferential orentation in the
X, — X, plane due to uniform stretching in the X, — X, shear plane.
As a result, the particle tumbles continuously. The STA and 55 fow
types are essentially similar in terms of ther nfluence on the particle's
behavior. The only difference observed between these flow types is in
the calculated particle tip pressure. At the onset of particle motion at
" = 0, the net pressure at the particle tip is zero (F = 0) for cases with
no net flow in the X, direction. However, the partide tip has a net posi-
tive pressure (P = +31.4) for the UASUA flows due to the inflow in
the X, direction, and the outflow in the X , direction creates a net nega-
tive pressure on the particles tip (P = —31.4) for the BA/SBA cases. As
the shear Sow induces particle rotation, the tip pressure drops gradually
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until it reaches a minimum, at which point the particles orientation
coincides with a principal flow direction [cf. Fig 6(b)].

In the event where the particle does not stall, the pressure on
the particle tip fluctuates between its minimum and maximuom lim-
its at locations where its orientations coincides with the principal
flow directions. For the axisymmetric flows, the particle tip pressure
extremes occur at ¢ = *n/4, while for the SUA asymmetric flow
(ie., 7 /& = 1), this occurs at ¢ = +1.41 rad. Alternatively, for the
PST asymmetric flow, the pressure extreme occurs at
¢ = +1.18 rad. Cessation of the particles motion under the com-
bined SUA and PST flow conditions is lifted once the conditions of
Eq.(33) are violated, ie, when §/& = 3x/v'1 — &2 for the SUA flow
conditionand §/& = k/+1 — x* for the PST flow conditions. In the

current study, where we assumed k = 9459, the particle does not
stall when y /& = 8.75 for SUA flow condition and when /& = 2.92
for the PST flow condition. With increased shear strain rate (ie., for
#/& = 10), the particle rotates periodically for all combined flow
conditions [cf. Fig. 6(c)]. Since &3 = &3 = &, for the axisymmetric
combined flow cases, the particle does not stall regardless of the
magnitude of §/é. One exception is seen for ellipsoidal particles
with small but finite thickness such as in the case of a thin rod when
k — 1 or in the case of a circular disk when x — 0, both of which
are degenerate cases as described by Jeffery.'” As the shear rate
increases, the asymmetric flows becomes more symmetrical and the
particle’s surface pressure magnitndes are increased [cof. Fig. 6(d)].
Additionally, increased shear rate also moves the ofdentation where
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for parficle in the various homogeneous fiow types. In allcases, 7 =15', y, =1Pa

tip pressure extremes occurs (Le., at the point where its coincides
with the principal flow directions). For example, in the SUA flow
case, the orientation where pressure extremes occurs are at
¢ = —0.640, +0.931 rad, while the same occurs at ¢ = —0.736,
+0.835 rad for the PST flow case.

Particle motion analyses show that cessation of the rotation
depends on the value of § /£, Le., for the SUA and PST flows as shown

in Fig. 7. The tumbling period is seen to asymptote from either direc-
tion to the orientation where conditions for the onset of particle stall is
satisfied, which is seen to occur at a limit stall angle of approximately
#y = 1.72rad. To the left of the red-dashed vertical limit lines in
Fig. 7(a), or beneath the red-dashed horizontal line in Fig. 7(b), defin-
ing the asymptote events, the particle would stall; however, the reverse
situation is expected beyond these limits.
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Effect of geometric aspect ratio and shear rate

In a 2D Newtonian study by Awenlimobor et al,” various factors
were shown to influence the peak pressure extreme on the surface ofa
particle suspended in Newtonian purely viscous simple shear flow
including the fluid viscosity u,, the magnitmde of the shear rate §, and
the particle aspect ratio r.. The current investigation explores the 3D
particle behavior in Newtonian purely viscous flow uwsing Jeffery’s
equations. For a given aspect ratio, the net pressure p — py, computed
from Eq. (1) is seen to have a linear de pendence on the Newtonian vis-
cosity u;, and shear rate }, ie, (p — po)/ ;¥ is constant However, as
re increases, so does the extreme tip pressure. Figure 5(b) shows that
the particle’s tip pressure magnitude is proportional to the r, of the
ellipsoidal particle, which is likely doe to the increased particle length,
the reduced particle tip curvature, which occurs as re, is increased, or
both. From Eqs. (18) and (19}, it can be shown that the particle’s tip
pressure extremes occur at an orentation angle of ¢ = *n/4 when
the angular velocity ¢ = ¥,/2, which also corresponds to the principal
flow directions for simple shear flow. Furthermore, at the position
where the particlés precession approaches extremum  at
¢ = nmf2, |n| = 0, the particle tip pressure goes to zero irrespective of
the geometric aspect ratio. Figure 2 shows the pressure distribution on
the surface of rigids spheroidal particles at the location of orbital mini-
mum surface pressure extreme for different aspect ratios and for

(
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\ I1 I l

| & K
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d sl
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particle motion in the plane of shear flow. It is evident that the mini-
mum pressure on the particle surface occurs at the particle tips and the
pressure peak magnitudes increases with the geometric aspect ratio.

With increased dlipsoidal aspect ratio, the curvature radins at the
particle’s tip reduces. It is important to understand the relation of the
tip pressure magnitude with the tip geometry (Le., the curvature radios,
fe = 1/r:) and with the relative positioning of the tip in the constant
velocity gradient flow field (defined by the particles geometric parame-
ter, k). Figure 9(a) shows the relationship between the spheroidal
orbital minimum tip pressure, Py normalized with respect to the
spherical reference values, Prn g (Le, k = 0), and the corvature radius
for a prolate spheroid with unity minor axis length. This relationship
obtained through a typical curve fitting procedure can be represented
by Eq. (76). The Newtonian orbital minimum tip pressure ratio is seen
to decrease exponentially with increasing tip curvature radins as

Prinx/Prming = 0.63 +0.39r, '™ — 4.8lexp(14.47r,).  (76)
Alternatively, the Newtonian orbital minimum tip pressure ratio can
be represented in terms of the geometric parameter k& as shown in
Fig. 9(b) and can be written as

PrinxPming = LB7K + 10.74x"% + 0.82exp(4. 5465, (77)

Figure 9(b) shows that as x tends to unity approaching a slender rod,
the particle tip orbital minimum pressure goes to infinity. Note that

FAG. 8. Presswre distribufion anound the
paricle surface at the point of minimum
peak pressure oooumence (¢ =*/,) for
different aspectrafio (a) r, = 1), =6

E & & B
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the mean aspect ratio of short fiber fillers experimentally measured in
13% CF/ABS large-scale EDAM printed bead were found to be about
r. =45 k= 0999""" that would theoretically yield high pressure
spikes at the particle tips in the polymer suspension during polymer
composite processing based on Jeffery's model assumption, which
have been suggested by Awenlimobor e al™ to be potentially respon-
sible for micro-void nucleation at the fiber tips.

Effect of initial particle orientation

In Fig. 10(z), we present the particle's motion in simple shear flow
for wardous initiall particle azimuth angle 6, =2n/24 <8
< 11n/24 (¢hy =0) basal on Jeffery’s solution given above As
expected, the particle’s motion is periodic, and the period is same for all
orbits. The orbit becomes narrower as we increase the mnitial out-of-plane
orientation angle which reduces the effective aspect ratio (seen as that
projected to the shear plane), resulting in lower peak pressure extremes.
Figure 10(h) shows that the angle at which the particle pressure extreme
occurs shifts as the particle is oriented further out of the shear plane.
Eventually, setting the initial out-of-plane orentation to zero would lead
to the particle spinning about its axis in a log-rolling position with near-
zero surface pressure doe to negligble dstrbance velocity. The phase
diagrams [cf. Figs. 10(c) and 10(d)] reveal a symmetric behavior in parti-
cle dynamics. As the particle moves further out of plane (Le, ¢ — 0), the
location of the tip pressure extremes comverges toward the location of
minimum precession at ¢ = *x,/2, but as the partide moves toward
the shear plane, the pressure extreme locations coincide with the direc-
tion of the principal axis of the flow (¢ = *x/4). Figure 11 shows the
particle's configuration at the location of minimum partide tip pressure
along select Jeffery's orbits with various initial azimuth angle 8. For the
particle tumbling in the shear plane of the flow (f; = —m/2), we see
that the particle’s orientation coincides with the principal direction of the
flow (¢p = m,/4) but as it moves further out of plane, the peak pressure
location moves closer toward the upper limit of azimuthal indination for
each orbit (Le., ¢ — m/2)

Figure 12(a) shows a neardy linear relationship between the par-
ticle's orbital minimum tip pressure and the polar angle location along
the corresponding Jeffery’s orbits. As noted above, when the particle is

tumbling in shear plane (Le., ¢ = +o0), the location of the particle’s
surface extrame pressure coincides with the ellipsoidal tip location.
However, as the particle becomes oriented more out-of-plane (ie.,
g —+ 0}, the location of minimum pressure on the particle surface at
the orientation of peak pressure occurrence is slightly shifted away
from the tip down the leeward side trailing the flow. Figure 12(h)
shows the difference between the minimum pressure on the fiber sur-
face and tip pressure (6P) at the instant when the peak occurs along
Jeffery's orbit. The result shows that a higher initial out-of-plane oren-
tation leads to greater deviation of the fiber tip pressure from its sur-
face pressure extreme magnitude, .

The particle orbital maximum nutation 7 itself peaks at a Jeffery's
orbit that passes through (¢, 0 = *n/4) irrespective of the aspect
ratio. In Fig. 13(a), the continnous lines trace the paths of orbital maxi-
mum nutation across the degenerate spectrum of Jeffery’s orbit for dif-
ferent aspedt ratios, and the dashed lines are the Jeffery’s orbit that cuts
across the location of peak nutation for different ellipsoidal aspect
ratios. From Fig 13(b), the peak mutation across the spectrum of
Jeffery's orbit is observed to increase with the aspect ratio and
approaches the critical valpe at 8 = § /4.

Particle motion in Non-Newtonian homogeneous flows

The results presented above focused on a single rigid ellipsoidal par-
ticke in various combined extensional and shear Newtonian homogensous
flows that are considered typical of those in an EDAM nozzle during poly-
mer omposite processing. It is well understood, however, that thermo-
plastic polymer materials are inherently non-Newtonian, Moreover, the
addition of filler rdnforeements to polymers are lmown o ncrease the
melt visoosity and the shear-thinning fuid béhavior in the nosle.
Additionally, high shear regions of complex flows sudh as the lubrication
zone near the saew edge or regions of flow acceleration near the nozde
are known to result in flow segregation of highly shear-thinning pdymer
melt suspension nto resin lean highly viscous domains and resin rich
low-viscosity domains. As such understanding the partide behavior in
shear-thinning finid within various flow regimes is important in under-
standing microstructural development within polymer composite beads.
The sections to follow present results obtained with the non-linear FEA
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modeling approach presented above which considers a non-Newtonian
shear-thinning power-law fluid theology.

Prior research on the response of a single particle suspended in a
2D viscous flow performed by Awenlimobor et al®™ showed that
although the shear-thinning rheology has no impact on the particles
motion, the particle surface pressure extremes are reduced with
decreasing power-law index. Here, we consider the response of a single

3D ellipsoidal particle in simple homogeneous power-law fluid flows
computed wsing the FEA method described above. The results pre-
sented in Fig. 14 are for an ellipsoid with geometric ratio r, = 6 rotat-
ing in a power-law fluid with a flow shear rate of § = 157" and
power-law indices ranging from 0.2 to 1.0,

Figure 14(a) shows that the shear-thinning behavior has a slight
influence on the particle’s dynamic motion as reduction in the
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power-law index slows down the particle. The limits of the particle’s
in-plane angular velocity are observed to increase with increasing
power-law index. Furthermore, Fig. 14(1) shows that the particle sur-
face pressure extremes increase with decreased shear-thinning
Additionally, it is interesting to note that even though the orbit formed
from particle tumbling in the shear plane appears to exhibit little
noticeable difference due to shear-thinning, Fig. 15(2) shows that the
tumbling period significantly increases with increasing shear-thinning,

The relationship between the particle mmbling period £, and the
power-law index n under simple shear flow conditions was determined
through a typical curve fitting procedure to follow:

t, = 1,(0.9135 4 1.4724,27685n) (78)

where 1, is the tumbling period in a shear-thinning fluid with power-
law index m and 1, is the particle tumbling period for the Newtonian
case, Le., when n = L. Figure 15(b) shows that the orbital minimum
particle tip pressure has a quadratic variation with the flow behavior
index as described as

which implies that the shear-thinning effect on particle pressure distri-
bution can be interpreted as having the same effect as would a modifi-
cation of the Newtonian viscosity, agreeing with the findings of Ji
etal”” and Awenlimobor et al”*

Figure 16 shows the pressure field around the ellipsoidal particle at
various instants during the partide tumbling motion in the plane of the
shear flow. The contowrs show an intensification of the pressure on the
particle surface as the power-law index increases from n =02 ©
n = L.0. The pressure intensification is observed to be higher at orienta-
tions of peak orbital pressure extreme magnitudes (ie, at ¢ = T /4).
These observatjons can be explained from the plot of the disturbance in
the vdocity X;  around the surface of the partide doe to the particles
muﬁundﬂ"uwiasﬂmeﬂifﬁmnmbemmiheﬂnw—ﬁddvehﬂtyandﬁm
stream velodty, ie, X; = X; — X, (cf Fig. 17). We observe a higher
magnitude of the velodty distorbance around same location on the par-
ticles surface where pressure extremes are observed to occur (Le, at the
particle tips). Likewise, the intensity of the distorbance is seen o
increase with increasing power-law index and the magnifimtion is
higher at critical orientation angles where the orbital peak pressure
extremes occur during alignment with the principal flow directions (Le.,

Prninn = Prmin (0.28 +0.42n + 0.301°), (79) at ¢p = *m/4). The lower pressure intensities are thus a result of lower
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disturbance in the velocity field around the particle caused by the decel-
eration of the particles motion in the shear-thinning flnid.

Figures 18(a)-18(d) show the computed results of the single rigid
ellipsoidal particle in combined shear and uniaxial extension (SUA)
flow type with a power-law index » ranging from 02 to 1 while consid-
ering two shear-extension rate ratios (Le, 3/ = land 10). Figure
18(a) and Table 11 show that the particle stalls in the SUA flow
with 7 /& = 1) and the shear-thinning fluid behavior slightly increases
particle rotation speed and shortens the trajectory, which is evident
from the slight reduction in the time to particle stall and the stall angle
with decreasing power-law index Figure 18(h) shows that the
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shear-thinning fluid reduces the magnitude of the particle surface pres-
sure extremes in the SUA flow; however, the shear-thinning rheology
does not affect the orbital angle location where the minimum peak
magnitude pressure occurs (Le, at ¢ = +1.41 rad).

In the shear-dominant flow condition when ¢ /& = 10, the parti-
cle tumbles periodically under slightly non-Newtonian rhedogical
fluid behavior (n = 0.8); however, farther reduction in the power-law
index (n < 0.8) canses the particle to eventually stall in a preferred
orentation along the direction of stretching [cf. Fig. 18(c)]. This
implies that the conditions for particle stall in a shear-thinning fluid
are dependent on the competing influence of the shear-extensional
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rate factor and the intensity of the shear-thinning fluid behavior. Table
[11 shows that the particle stall time (z,) and stall angle (¢b,) when
1 < 0.8, and half-period (t*) for the cases where the particle tumbles
periodically (ie, when n > 0.8). As expected, at the location of the
orbital extreme pressure magnitude where the particle orentation coin-
cides with the principal flow diredion (at ¢ = +0.931, +2.502 rad),
the surface extreme pressure magnitudes are observad to decrease with
the intensity of the shear-thinning flnid rheology [cf Fig 13(d)]. The
pressure fluctuations on the particle’s tip as it mmbles continuously in
the shear-dominant flow o the local pressure that subsist at particle's tip

as it stalls in the extension-dominant fow condition are important in
understanding the final microstructural formations within printed poly-
mer composite beads ™

In the combined shearing/planar stretching (PST) flow, the
shear-thinning fluid rheology does not deter the particle’s acquiescence
into preferred orentation state under the extension rate-dominant
flow condition (i.e., /& = 1). However, the shear-thinning is observed
to decelerate the particles motion, prolong the stall event and extend
the particles trajectory to stall contrary to what was observed in the
SUA flow. Figure 19(2) reveals a slight reduction in the peak in-plane

.83
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angular velocity with decreasing power-law index and Table I'V shows
that the stall time and stall angle both of which increase with increased
shear-thinning The particle tip pressure magnimdes are nonetheless
observed to decrease with increased shear-thinning as expeded [cf
Fig 19(b)]. The particle in-plane orientation at the location of orbital
minimum surface pressure (Le, at ¢ = +1.18) is unaltered by the
shear-thinning effect

The shear-thinning efect does not stall the particle under the shear
rate-dominant condition (Le., when /& = 10) in the PST flow contrary
to what was observed in the SUA flow. However, at the local minima of
the particle's angolar velocity evolution corve when its deceleration
approaches zero [cf Fig. 19%c)], the increased shear-thinning effect is
observed to further decelerate particle motion and bring it closer to stall
condition. Table V' shows that the particles tumbling period increases
with decreasing power-law index indicating the decderation of the parti-
cle rotation with increased shear-thinning. The sostained particle
motion allows for contineous fuctuations between particle surface pres-
sure extremes at the particle tip. As would be expected, the pressure
magnm.u.iﬁ are observed to decrease with increased shear-thinning [cf

d}]. Furthermore, the in-plane orentation at the orbital location
af partn_lf surface tip pressure extremum (ie, at ¢ = +0.835,
+2.406 rad) is unaltered by the shear-thinning effect. The particle’s
tumbling period is likewise observed to increase with decreasing power-
law ndex due to increased particle deceleration induced by the shear-
thinning finid rheology (cf Table IV).

Under the balanced shear and biaxial elongation (SBA) flow condi-
tion, inward flow normal to the shear plane coupled with uniform
stretching along the shear plane promotes particle in-plane mmbling
motion. Under this flow condition, the particle does not stall irrespective
of the magnitude of the extension rate. However, while the increased
shear-thinning & cbserved to accderate the particles motion when

AG. 17. Mid-seciond plot of the disher-
bance velodty around fhe dlipsoidal paride
for at diferent instants duling the parfide’s
inplane umbling mofon (=0, =/4.
n/4 = 4} and for different powerdaw indi-
ces (0.2 <n< 0.8) Resuls am shown
for =6 m=1Pag", 7 =15~ and
=0, 8 = —n/2, 4" =0

/& = 1, it is shown to shightly decelerate the particles motion under a
higher shear rate, e, §/& = 10 [cf Figs. 20(a) and 200c)]. When /&
=1, the limits of particle in-plane angular velocity are observed to
decrease with increased shear-thinning and vice versa when § /& = 10.
The shear-thinning effect decreases the partide mmbli:g pEI'iﬂd when
#/& = 1 and increases the period when § /& = 10 (cf 1 VT). Under
alower shear rate (/& = 1), there are no mmeab]epmks mtheemlu—
tion of the particle maximum surface pressure, contrary to what is
observed when §/é = 10. As would be expected, the particle surface
pressure extremes are observed to decrease with increased shear-thinning
and the location of orbital minimom surface pressure at ¢ = * /4 is
unaffected by the shear- thinning thenlogy [ef Figs. 20(b) and 20(d)].
Observation of particle behavior in the flow types considered
here as applied to polymer melt flow conditions during FDAM proc-
essing suggests that the shear-thinning effect increases the particle stall
tendency closer to the EDAM nozzle center where a higher extension
rate dominance is seen. Shear-thinning is seen here to have a similar
effect as decreasing the shear-to-extension rate (§/£), thus shifting the
boundaries of the extension-dominant region outward (cf Appendix
B, Fig. 24). Irrespective of the flow regime, the shear-thinning rheology
reduces the pressure magnitude which has a similar effect to reducing
the viscosity magninde in a Newtonian fluid Additionally, in high
shear-dominant flow regions of the EDAM nozzle, the shear-thinning
effect is generally expected to slow down the particles motion, while
close to the nozzle center, dominated by high extension rate, the par-
ticle’s stall event is expected to be promoted by shear-thinning effects.

Effect of initial particle orientation
In earlier sections, we showed that the pressure magnitndes on
the surface of a particke suspended in a Newtonian simple shear Sow
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reduces as the orbit constant ¢ [cf Egs. (19) and (20)] goes from
¢ = +o0, where the particle is tumbling in the shear plane to c =10,
where the particle is spinning about its axis perpendicular to the shear
plane. It was also shown that the umbling period was unaffected by
Jeffery’s orbit. The effect of shear-thinning rheology on the particle
motion for various Jeffery orbits are presented in this section. We con-
sider particle motion in simple shear flow with shear rate of § = 15~
and for a GNF power-law fluid rheology with a power-law index of

TABLE I Paricke stall ime 1, and parick stall angle ¢, for single elipsoidal parti-
cle motion in SUA shear-hinning flow for dfierent flow behavior index 0.2 < n
< 1.0wihm= 1Pas® § = 15~ ' and /& = 1.

n = 0.5 and a consistency index of m = 1 Pa - s". The same geometric
aspect ratio of r, = & as was previously used is considered here.,

Figure 21(a) shows that Jeffery’s orbits are altered slightly by the
shear-thinning fluid, which occurs to a greater extent as the fiber is ori-
ented further out of the shear plane (ie, as ¢ =400 s moved ©
¢ = 0). The initial particle polar angle on a particular Newtonian
Jeffery's orbit is observed to also modify the particle trajectory. Figures
21(a) and 21(b) also show that trajectory of the particle motion in an

TABLE L Halfperiodistall ime (where applicable) =, and stall ange ¢ (where
applicable) for single elipsoidal parficle motion in SUA shearthinning flow for differ-
ent fow behaviorindex 0.2 < n < 1.0 withm = 1Pas™, + — 15~ and 3/& = 10.

n 0.2 04 0.6 0.8 L0 n 02 04 0.6 08 1.0
T, 3.92 3.982 4012 4.032 4032 ®%ort,) 31930 39777 65146 59070  40.156
o, 1.574 1.577 1.579 1.580 1580 ¢, 1.607 1.644 1.689 .
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orbit with initial azimuth angle of = 2,24 with two initial starting
positions at the vertices of the Newtonian conical orbit. With an initial
starting position at the vertex of the directrix of the Newtonian conical
arbit on the major axis (at ¢” = /2), the particle path is seen to dilate
outwardly defined by the outer curve (dashed cyan line) from the
Newtonian orbit (continuous black line). However, starting the particle
from the co-vertex of the directrix of the Newtonian orbit on the
minor axis (ie., ¢" = 0), the orbit constricts inwardly defined by the

TABLE IV. Particie stall ime 7, and partide stall angle ¢ for single dlipsoidal parti-
cle mofion in PST shear-hinning flow for different fow behavior index 0.2 < n < 1.0
witim = 1Pas” 3 — 15!, and /& = 1.

f 0.2 0.4 0.6 0.8 1.0
T, 13.337 11.7%6 11.026 10.515 10.135
i 1.676 1.644 1.625 1.611 1.600

inner curve (continuous cyan line). Both curves cleardy illustrate the
extent of deviation in the particle path from the Newtonian orbit and
that for a given power-law index and set of flow parameters. The fluid
shear-thinning is seen o influence the particles motion similar to elon-
gating or shortening the particle, depending on the initial position on
the orbit This observed behavior is consistent with conclusions by
Abtahi and Elfring ™

The fluid shear-thinning is seen to have a more profound effect
on the surface pressure of particles on Jeffery orbit closer to the shear

TABLE V. Halfperiod for single elipsoidal pariicle mofion in PST shear-hinning flow
for different fiow behavior index 0.2 < n < 1.0 wih m= 1Pas", § =157, and
#8 = 10.

f 0.2 0.4 0.6 0.8 1.0

3 36.181 28.045 24.169 21.839 20.280

H
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plne (¢ — +o00) as compared to orbits farther out of plane (Le, close
to ¢ — 0). The net pressure drop (5P) due to the shear-thinning effect
is seen to be proportional to the magnitude of the particle surface pres-
sure as shown in Fig. 21(c). Likewise, the net pressure drop of particle
tip pressure is seen to depend on its initial starting position as is evi-
dent from the net pressure curves shown for each initial polar angle on
the orbit farthest from the shear plane (#" = 21/ 24), ie, dashed cyan
line for ¢¢° = 0 and continuous cyan line for ¢° = n/2,

TABLE V1. Haif tumbling period 2 for singe elipsoidal paricle mofion in SBA
shear-finning flow for cifferent flow behavior index 0.2 < n < 1.0 and different
shear-p-extension rate rafos (7 /2) wih m = 1Pas®, 7 — 151,

n

0 02 0.4 0.6 0.8 1.0

o 1 9558 11273 13266 15799  19.453
PWE 19 25265 22650 21155 20138 19.423

—uf2, 4" =0

As expected, the particle dynamics are also affected by the shear-
thinning thedogy. The envelope of the phase diagram of the particle's
nutation [df. Fig. 21(d)] contract inwardly from the Newtonian envelope
due to the shear-thinning effect irrespective of the initial position on the
orbit. The shear- thinning theology appears to have less effect on the par-
ticle’s precession as the Jeffery's orbit is oriented further out of plane, ie.,
when ¢ — 0 [cf Fig 21(e)], however, this effect on the particle’s muta-
tion is more profound as ¢ — 0. Although the partide’s period of tam-
bling is independent of the Jeffery’s orbit in Newtonian flow, the
tumbling period is observed to be influenced by the Jeffery’s orbit under
shear-thinning flow conditions. Figure 22(a) shows the relationship
between the tumbling period 145 and the mitial azimuth angle, 8, for
the particle motion in non-Newtonian power-lw fluid, with fowbehav-
ior index of n = 0.5. The relationship in Fig. 22(a) can be described as

tas = 1;01.2976 — 0.7358. 18450, ) (80)

which has been obtained wsing a typical curve fitling procedure.
Owerall, the shear-thinning fluid rheology slows down a particle’s
motion, which occurs to a greater degree as the tumbling orbit
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approaches the shear plane (Le, ¢ — +o0). Additionaly, the reduc-
tion in the minimum surface pressure magnitudes due to shear-
thinning becomes more significant as ¢ — +o00 and vice versa. The
relationship between the particles orbital minimum tip pressure P
and the initial particles out-of-plane orientation appearing in
Fig 22(b) clearly shows a gradual widening of the gap between the
Newtonian and non-Newtonian pressure profiles,

Effect of geometric aspect ratio
Sensitivity study on the influence of the particle geometric aspect
ratio on its field state showed that the aspect ratio significanty

= 224, (c) difierence in paricle ip pressune between NT and GNF fiid, (d) phase dagram of agmufh angie & vs
partice orientation between —2/24 < 8° < —12x/, ¢° =0, 4" = 0 and for NT fluid

influences the observed particle kinematic behavior and the surface
pressure distribution in Newtonian shear flow. For completeness, we
now consider the effect of the geometric aspect ratio on particle behav-
jor in shear-thinning simple shear flow making comparisons to the
behavior ina Newtonian fluid. Previous studies showed that the shear-
thinning effect on the particle’s orbit are magnified with increasing ini-
tial out-of-plane orientation 8°.** As such, we consider Jeffery's orbit
with initial particle orientation of ¢ = 0, & = 2r/24, andy° = 0.
Figure 23 shows the deviation in particle trajectories, pressure, and
dynamic responses between the shear-thinning and Newtonian fluid
for various particle aspect ratios. For spherical-shaped partides, shear-
thinning has no significant effect on the particles orbit, or the evolution
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of the particle’s surface pressure and dynamic responses. However, as
the particle aspect ratio increases up to 7, = 6, we observe considerable
deviation in the particle trajectory [cf. Fig. 23(a)] consistent with the
findings of Abtahi and Elfring.”* Similar to results that appear above,
the particle trajectory is elongated or constricted depending on the ini-
tial starting position on a particular Newtonian Jeffery’s orbit. With a
further increase in the particle’s slenderness, i.e., as kK — 1, modifica-
tion of the particle’s trajectory due to shear-thinning becomes negligi-
ble as was also observed by Ferec et al.’”

The shear-thinning effect on the pressure response however con-
tinues to increase with the particle length [cf. Fig. 23(b)], which can be
attributed to the hydrostatic stress intensification at the particle’s tip
arising from the increased particle length and/or the related decrease
in the tip curvature. Likewise, the impact of shear-thinning on particle
angular velocities is initially observed to increase with increasing aspect
ratio [cf. Figs. 23(c) and 23(d)]. The non-linear effects, however, grad-
ually declines with further increase in ellipsoid’s slenderness. The
shear-thinning behavior is observed to slightly decrease the particles
orbit period with slight increase in the aspect ratio. Furthermore,
increases in the particle’s slenderness, however, result in the shear-
thinning behavior prolonging the tumbling period. At lower aspect
ratios, the pressure drag that does not depend on the local viscosity
dominates the hydrodynamic resistance; however, with longer par-
ticles, the skin friction drag becomes significant due to the increased
surface area and change in apparent viscosity.” Since a decrease in the
apparent viscosity is known to slow down particle motion, we experi-
ence longer tumbling periods with considerable increase in the particle
aspect ratio (cf. Table VII).

Since typical EDAM printed fiber-filled polymer composites are
known to have very high aspect ratios 7, > 45,””% the shear-thinning
rheology is expected to have negligible effects on particle angular veloc-
ity and trajectory. However, we expect the non-Newtonian fluid slows
down the particles kinematics and reduces the surface pressure
distribution.

CONCLUSION

In conclusion, a non-linear 3D-FEM numerical approach has
been implemented to investigate the effects of shear-thinning fluid rhe-
ology in combination with other factors including the particles aspect
ratio and initial particle orientation on the dynamics and surface pres-
sure distribution on a particle suspended in viscous homogeneous
flow. The particle behavior in a special class of homogeneous flows
that typifies conditions found in melt flow regions of the of an extru-
sion nozzle during polymer composite additive manufacturing proc-
essing is also studied.

In the Newtonian flow, the ellipsoidal particle stalls in extension-
dominant asymmetric flow regimes but tumbles periodically in axi-
symmetric flows irrespective of the magnitude of the extension rate.
The stall event in asymmetric flows is dictated by the shear-to-exten-
sion rate ratio. Increased shear dominance increases flow symmetry
and tendency for continuous and periodic particle tumbling. The tum-
bling period in the asymmetric flows is expectedly dependent on the
shear-to-extension rate ratio. The tumbling period increases asymptot-
ically with increasing extension dominance until the conditions for
stall based on Jeffery’s equation are satisfied. On the other hand, the
evolution time to particle stall is shown to increase asymptotically with
increased shear dominance until the conditions for stall are violated.
With sustained particle motion, the particle tip pressure fluctuates
between extremums at the instants where its orientation aligns with
the principal flow directions. An increase in the ellipsoidal particle
aspect ratio was shown to affect the particles dynamics and increase
the tumbling period. It also was shown to exacerbate the pressure
extremes at the particle tip, which could be caused by the increased
aspect ratio alone, or the related reduction in tip curvature, or both.
With a narrowing of Jeffery’s orbit as the particle tumbles further out
of plane, the particle surface pressure extremes are observed to
decrease and the surface location of the pressure extreme further devi-
ates from the particle’s tip location. The orbital peak particle tip
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TABLE VIL Rafo of the partice’s tumbing pariod in shear-thinning simple shear 5w pressure magnimde follows a somewhat linear relationship with the
wifi n = 0.5 andm = 1Pas" and 7 = 15~ and wihh © he reference Newlonian  Lolar Jocation on the orbit across spectrum of degenerate Jeffery's

quanfity, .. Initial partide crentaon is ¢° =0, @ = 2x/24, ¢ = 0. it

1 2 3 ;. 0 The behavior of the suspended particle is shown to be affected by
fe the shear-thinning fluid thedogy. In the axisymmetric flows where the
tos/T1 1.000 0.966 0.951 L.027 1.250 particle motion ensues periodically, the shear-thinning fluid rheology

dows down the particles motion and increases the tumbling period.
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Cessation of particle motion (ie., a stall condition) in the asymmetric
homogeneous flows is shown to be dictated by a competing influence
of the shear-thinning intensity and shear-to-extension rate dominance.
The shear-thinning was found to have similar effedt has decreasing the
shear rate dominance of the prevailing flow on the particles motion
Irrespective of the homogeneous flow type, the magnitude of the parti-
cle surface pressure distribution was observed to significantly decrease
with inoreased shear-thinning intensity due to an accompanying
decrease in the effective viscosity of the fluid around the particle sur-
face. The orbital location at which the pressure magnitude extremes on
the particles surface are, however, unaffected by the shear-thinning
rheology. On the shear plane, shear-thinning rheology has no notice-
able effect on the particles orbit, however, with a narmmowing of the
Jeffery orbit as we move further out of plane, the particle’s trajectory
deviates further from the Newtonian reference path. The shear-
thinning rhedogy may either constrict or dilate the Newtonian orbit
depending on the initial starting location of the particle on the orbit.
The elongation of the particle’s motion and the lowering of the pres-
sure on the surface of the particle by the shear-thinning effect is ang-
mented with widening of Jeffery's orbit as the particle mmbles closer
to the shear plane. For spherical particles, the shear-thinning fluid has
no significant effect on the dynamics or surface pressure distribution,
but with increased aspect ratio, modification of the particle’s trajectory
and dynamics due to the non-linear effects becomes significant until a
critical point, where the non-linear effects are reversed. With excessive
particle slendemess, the impact of the shear-thinning flnid on the par-
ticle's trajectory and dynamics diminishes. On the contrary, the effects
of the shear-thinning on lowering of the particle’s surface pressure
magnitude is proportionally elevated with increasing aspect ratio.

The foregoing discussion on the study of rigid spheroidal par-
ticle’s behavior in viscous homogeneous suspension is applicable in
understanding and control various key transport phenomenon of this
FSI process. For instance, the fluctuation of local field surface pressure
distribution of suspended fibers in polymeric processes identified by
Awenlimobor et al™ as a key mechanism potentially responsible for
porosities within the composite beads conld be contralled by suitable
rheological adjustment to reduce the local pressure fluctuations. On
the one hand, increasing the shear-thinning intensity may help control
the void formations; however, increased shear-thinning may increase
the likelihood of multiphase flow segregation within nozzle and the
create more anisotropy in the microstructure of the printed composite.
The present study contributes to understanding the combined effects
of various fow parameters on the flow-field development during poly-
mer compaosite processing, which is instrumental in effetively contra-
ling the expectad microstructural behavior of printed composite beads
and resulting properties.
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APPENDIX A: DEFINITION OF CONSTANTS IN
JEFFERY'S EQUATION

The expressions of the components of the variable vector 3
and coefficient tensors A", A", and A™ that appear in the defini-
tion of the Jeffery's velocity and pressure are defined in Egs.
(Al)-(A6) below. For the variable vector y , the components are
given as B

h = -fxsz, M= ﬁ‘x;xh Iy = }H-ijL (ﬁl}

The components in A7 vector are likewise given as

_ L sk
R= 0 5 ﬁ;,

'I‘hecampumntsiné" tensor are given as

T=-= (A2)

b
S

U=2B-cc, v=2c-aal, w=2a4-BH,
(A3)
where the coefficients A, B, and C in Eq. (A3) above are also com-
pannntsoftensarém containing the stresslet and torque acting on
the rigid ellipsoidal particle suspended in linear ambient flow field ™
given in the following equation:

A:l{ 2 — B — ol } 5B = da(E )
6 | Bors +vid + 88 |’ 20y (B2, + ye)
ot rPa(E-W) 1 [ 2k - e - oga
T By ren) 6 |k +aafa )
. - @ fln=¥2) ., ag+ Iyl —Pa)
T (e R T (o R
,::1{ e — o4 — fy } Y A N
6 | Foyh+yiod + 4B |’ 2yp(atay + B fy)
1y Bol+ @ (L~ s)
BEAELE N

The Greek integral constants 2, ff, y and their symmetric forms
are defined as’”
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_fran Tl di
"‘J_Eazﬂ' : —sz~
.f:JLL1 ﬁ=JLi~

| AT+ D@+ D | A%+

T1 di T1 da
ﬁJ:JE(sH}(mH}' ﬁl:JE{e’+i}{a’+i}|. (A3)

oD

v a1 di
T_JEE+1' ! ‘JEWH}{PH}'

o [L_ i
4 _Jﬁia=+i}{52+i}.

A Greek constant subscripted with 0 implies that the lower limit of
integration A = 0. The varables a, b, £, f,g, h are components of
the rate of deformation tensor [ and £, 5, { are components of the
vorticity tensor 2, Le, -

i h g =L +9
C=|h b f|, E=ExI=|+ ¢
g f ¢ -n + (A6)
g
E=|n
4

APPENDIX B: FLOW REGIMES IN TYPICAL EDAM
NOZZILE

Polymer composite melt flow through the nozzle in typical
EDAM polymer composite processing is characterized by complex
combination of shear and extensional deformation rate components
that are dependent on the viscoelastic polymer melt rheology and
the geometry of the extrusion nozzle. The flow condition at the noz-
zle wall is pure shear and at the nozzle centerline is pure uniaxial
elongation (cf. Fig. 24)." Away from the convergent zone in the
lubrication zone defined by the cearance between the screw edge
and the nozzle walls, the flow is predominantly shear-dominant
while dose to the centerline and near the entrance of the nozzle
where the low undergoes acceleration due to geometric constric-
tion, the flow is dominated by extensional rate, and at the vortices

Pure Shear(v = 0)

.
"y
Y

pubs.aip.org/aip/pof

created near the notch edges with sharp transitions due to elastic
instabilities, the flow is mainly rotational.” The flow contraction
region consists of a complex combination of the varous flow cate-
gores with varying dominance.

A simple metric used to classify the flow regimes is based ona
flow parameter T given by Schuller et al.”™

p=letl (B1)
Pe— e

where y_ is the magnitude of deformation rate tensors defined as
je= /21l and oo, is the magnitude of the vorticity tensor given
as @, = +/25; Ej. The flow is pure shear when 7 = 0, pure elonga-
tional when ¥ = 1, and purely rotational when ¥ = —1. Typical
flow patterns within the convergent zone results in 7 lying between
-1 <F <L

APPENDIX C: OBTAINING PARTICLE STALL
ORIENTATION ANGLES IN NEWTONIAN
HOMOGENEOUS FLOWS

The particle stall angles under favorable conditions in general
class of homogeneous fows can be obtained using the tensorial rep-
resentation for the particle orentation of an axisymmetric ellipsoi-
dal particle in viscous suspension with velocity gradient &
developed by Dinh and Armstrong™ based on Jeffery's model
assumptions and is given as

pi=—Z5p; + k(Tap; — Tupepyp;) s (C1)
where p is the particle orientation defined by the vector

E:[msﬂ sinf sin g sinﬂms:il]r. (cz)

The Eunler angles and angular velocities can be backtracked from the
rate of the orientation vectors p, thus

d= an 122 g =cos 'y,

Py
s _Pipr pa gt o . + @
¢:E[E_P_3:| 1+P—3] , B=—p,1=p}) "

Considering the normalization condition, the independent components
of the particle orentation at stall can likewise be obtained via the
Newton- Raphson numerical iterative process according to Bq. (C4)

o =pr ~ 1o 'O’ (€4)

Pure Unia_x ial - Shear Dominant REIE irculation
EE];'Z‘"EB;JGH —_ Clsvsl) — ¥=-1) FIG. 24. Schematic showing flow regimes
¥ =11 . - -
S— within a typical EDAM nozzle during poly-
T Extension oo - “ShestBominant _ processing
* Dominamt — = e ’
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T . . T
WME&:[F; p;] ,E-,-jpjzl,ﬂpz [,p ﬂ] , and the com-
ponents of the Jacobian [g are explicidly defined in the following

equations:
- PP (f-"z Pz) (Pz P\
I, = J =TI -_ 142 —= +
==l P { ol P'”Ps P s S\ Pz)

-1
x [I+P—22:| . (C5)

Py
- Pr PPy L P3P
I =7 .. - e_Dfz, 00
i P;{”"’ oy psps Pbs

x [l + (%_E)(E+E)_j] } [l+f:|_j, (c6)
la.zn = [‘fp,n (1-pi) +P1] (1- Pﬂ_i- (7
lon = [Tpult-p) +i |- 9

In addition, the tensor [, is computed from the following
equation: -

b =80+ x[L-po"(L+ L) - (") 2
o [—l 1 u] (€9)
= -1 0 1|

APPENDIX D: PRINCIPAL FLOW DIRECTIONS

The principal flow directions can be obtined by spectral
decomposition of the symmetric part of the velocity gradient tensor
I’ . The respective eigenvectors @ are the principal flow directions,
ie.,

!;|rm:¢mdu¢j, Aﬂz{u k#1°
(D1)

Considering the in-plane homogeneous flow velocity gradient of Eq.
(22), the principal flow directions in the shear plane irrespective of
coordinate reference frame are obtained as

_—_— s .2

mng, =22 [T 4y (D2)
¥ ¥

As would be seen from the simulation results, for a particle tum-

bling in the flow shear plane, the particle orientation at the location

of minimum pressure extreme on particle’s surface corresponds to

position of particle alignment with one of the principal flow direc-

tions in the flow shear plane, e,

2l =3t f#=0 (D3)

Hence, the peak pressure occurs at an instant f, such that
() = bp
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